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Abstract. Downy mildew, powdery mildew, and gray mold are major diseases of 
grapevine with a strong negative impact on fruit yield and fruit quality. These diseases 
are controlled by the application of chemicals, which may cause undesirable effects on 
the environment and on human health. Thus, monitoring and forecasting crop disease 
is essential to support integrated pest management (IPM) measures. In this study, two 
tree-based machine learning (ML) algorithms, random forest and C5.0, were compared 
to test their capability to predict the appearance of symptoms of grapevine diseases, 
considering meteorological conditions, spatial indices, the number of crop protection 
treatments and the frequency of monitoring days in which symptoms were recorded 
in the previous year. Data collected in Tuscany region (Italy), on the presence of symp-
toms on grapevine, from 2006 to 2017 were divided with an 80/20 proportion in train-
ing and test set, data collected in 2018 and 2019 were tested as independent years for 
downy mildew and powdery mildew. The frequency of symptoms in the previous year 
and the cumulative precipitation from April to seven days before the monitoring day 
were the most important variables among those considered in the analysis for pre-
dicting the occurrence of disease symptoms. The best performance in predicting the 
presence of symptoms of the three diseases was obtained with the algorithm C5.0 by 
applying (i) a technique to deal with imbalanced dataset (i.e., symptoms were detect-
ed in the minority of observations) and (ii) an optimized cut-off for predictions. The 
balanced accuracy achieved in the test set was 0.8 for downy mildew, 0.7 for powdery 
mildew and 0.9 for gray mold. The application of the models for downy mildew and 
powdery mildew in the two independent years (2018 and 2019) achieved a lower bal-
anced accuracy, around 0.7 for both the diseases. Machine learning models were able 
to select the best predictors and to unravel the complex relationships among geograph-
ic indices, bioclimatic indices, protection treatments and the frequency of symptoms in 
the previous year. 
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1. INTRODUCTION

Downy mildew, powdery mildew, and gray mold are major diseases of 
grapevine (Vitis vinifera L.), affecting leaves and fruits and causing yield 
loss and quality decrease of must and wine. Downy mildew is caused by 
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the Oomycete Plasmopara viticola (Berk. & Curt.) Berl. 
& de Toni, with sexual spores determining primary 
infections and asexual spores causing secondary infec-
tions (Gessler et al., 2011). This pathogen infects leaves, 
shoots, and bunches, damaging up to 75% of the crop 
in one season when no treatments are applied (Buonas-
sisi et al., 2017), thus leading to great economic losses. 
Powdery mildew is caused by Erisyphe necator Schwein., 
a polycyclic disease with two distinct phases: primary 
infections are caused by sexual spores (ascospores) and 
secondary infections are determined by asexual spores 
(conidia) (Gadoury and Pearson, 1988), on all green tis-
sues of grapevines, mainly leaves and berries (Gadoury 
et al., 2001; Caffi et al., 2011). Botrytis cinerea Pers. is the 
causal agent of gray mold and in grapevine infects all 
green tissues, particularly ripening berries, with differ-
ent infection pathways for conidia (inflorescences, young 
clusters and ripening berries) and mycelium (berry-to-
berry) (Elmer et al., 2007).

Because these pathogens may cause severe symp-
toms on grapevines at the beginning of infection, con-
trol strategies have focused on early treatments, even 
in integrated pest management (IPM), as prevention to 
stop the pathogen outbreak before its establishment. 
Applying fungicide treatments during the growing sea-
son remains the most common practice to control these 
diseases, from early spring onward, with differences 
between years due to weather conditions and to the geo-
graphic location of the vineyard (Chen et al., 2020; Lu et 
al., 2020; Molitor et al., 2016). However, concerns about 
the negative impact of chemicals on environmental and 
human health have resulted in restrictions to regulate 
fungicide use, such as the EU directives (i.e., Directive 
1107/2009/EU) (Valdés-Gómez et al., 2017). European 
Commission currently enforces national action plans for 
pesticide reduction, encouraging the use of monitoring 
networks (Directive 128/2009/EC), forecasting models, 
and dissemination tools to share this information among 
growers and technicians (Pertot et al., 2017). Therefore, 
a reliable monitoring and forecasting system is essential 
for deriving prediction indices in support of sustainable 
protection measures (e.g., Marchi et al., 2016).

To this aim, various weather-driven models, either 
mechanistic (Rossi et al., 2008; Caffi et al., 2011; Legler 
et al., 2011; Gonzales et al., 2015) or empirical (Orlandini 
et al., 1993; Rodríguez-Rajo et al., 2010; Hill et al., 2019), 
have been developed for predicting grapevine diseases 
and assisting farmers in decision-making for crop pro-
tection. Decision support systems (DSSs), based on pre-
dictive models that use weather data and infection infor-
mation, may provide this service to farmers (Rossi et al., 
2014; Pertot et al., 2017). In particular, DSSs may help 

determine the time window for fungicide application to 
optimize their effects and to reduce the number of inter-
ventions during the growing season. Nevertheless, cur-
rently available models are mainly focused on predicting 
the risk of the outbreak, rather than the pressure of the 
disease. This approach may cause unnecessary fungicide 
applications and the use of untargeted chemical com-
pounds, in turn contravening control regulations based 
on the maximum number of treatments allowed for each 
season (mandatory in IPM). 

Since these three diseases are strongly influenced by 
seasonal weather conditions, albeit with different path-
ways among vectors, varying annually and driven by 
composite interactions between the disease agent and 
the host plant (growth stage and grapevine cultivar), 
models that provide information on infection risk need 
to combine numerous weather variables, crop param-
eters, and disease traits. Increasing computing power is 
providing the means to capture and process abundant 
data, and to reveal associations among variables that 
describe the weather-pathogen-host interactions. In par-
ticular, machine learning (ML) techniques allow con-
sidering a large number of variables, integrating diverse 
data sources in close real time, in order to assess the 
interactions among disease agent, host plant, and climat-
ic variability, before visible symptoms are present, with 
the aim of ensuring effective and sustainable fungicide 
management (Lee et al., 2019; Sperschneider, 2019).

The potential of statistical models and ML algorithms 
to predict the occurrence of grapevine diseases has been 
rarely assessed (Chen et al., 2020). Here, we investigated 
the ability of ML algorithms to clarify the occurrence of 
symptoms of these three important diseases of grapevine 
based on prevailing weather conditions both within and 
between locations and years, generating temporal- and 
spatial-explicit projections of the infections. These models 
were implemented using as inputs: bioclimatic and geo-
graphic indices, the frequency of monitored symptoms 
in the previous year, and the number of crop protection 
treatments during the growing season. The aim of the 
study was to calculate the overall probability of symptom 
appearance at field scale, using the ML approach and the 
area-wide IPM monitoring network of Regione Toscana, 
providing farmers with a tool able to address timely and 
accurate grapevine disease forecasting.

2. MATERIALS AND METHODS

2.1 Monitoring grapevine diseases

Data on disease symptoms were obtained from 
Agroambiente.info (http://www.agroambiente.info/), the 
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agricultural and environmental portal of Phytosanitary 
Service of Regione Toscana (Italy). Agroambiente.info 
stores data deriving from an area-wide IPM monitoring 
network, which covers most of the wine production area 
of Tuscany. Sampling is carried out weekly by trained 
field technicians, from the leaf development stage (mid-
end of April) to harvest (mid-end of September), in a 
variable number of vineyards through years (112-179). In 
each vineyard, date and presence of symptoms of downy 
mildew, powdery mildew and gray mold are recorded 
inspecting leaves and/or bunches. In addition, the date 
of treatments is reported, as well as the active substance 
(maximum two active substances for each treatment), 
among those allowed by “Integrated Production Regula-
tion” of Regione Toscana. A simplified index of disease 
severity for each disease is documented during the mon-
itoring activity, though it was not used for the ML exer-
cise. Considering that different cultivars may show vari-
able susceptibilities to the three diseases, the monitoring 
network focuses only on the cv Sangiovese, which is the 
most widespread and important for Tuscany denomina-
tion of controlled origin red wines. A numeric identifi-
cation code (“farm ID”) is assigned to each of the select-
ed vineyards.

In this study, we considered data from 2006 to 2019, 
excluding 2011 since no data was available for that year 
in the regional database. In each dataset of the three 
diseases, the observations were classified as “inf” or 
“no”, according to the presence or absence of disease 
symptoms, respectively. Observations were classified as 
“inf” when symptoms were present on leaves and/or on 
bunches.

2.2 Variables associated with grapevine diseases

Variables were calculated for each vineyard and each 
disease to be used as features for the ML models. The set 
of variables included: bioclimatic indices, geographical 
indices, indices indicating the number of phytosanitary 
treatments applied, an index referring to the frequency 
of the presence of infection in the previous year, and the 
day-of-year (doy) (Tab. 1).

The package ‘raster’ (Hijmans, 2019a) of the R envi-
ronment (R Core Team, 2020), was used to extract for 
each vineyard from the raster files of the Tuscany region: 
(i) the Euclidean distance from the sea (dis_sea) in m 
and (ii) the elevation above sea level (m), obtained from 
the Digital Elevation Model (dem).

Meteorological data were downloaded from the 
open access ERA5-Land dataset, the latest generation of 
ECMWF atmospheric reanalysis, which provides hourly 
data from 1981 to 2-3 months before present in a fixed 

grid and with a native resolution of 9 km (Copernicus 
Climate Change Service, 2017). 

ERA5-Land dataset was selected over others (e.g., 
ERA5, ERA-Interim) because of its higher spatial resolu-
tion and its improved correlation with in situ measure-
ments, especially concerning the water cycle (Muñoz-
Sabater et al., 2021). Using reanalysis meteorological 
data, as ERA5-Land dataset, for modelling has the main 
advantages of providing data with a better temporal and 
spatial coverage with respect to the data collected with 
real weather stations that do not have a uniform spatial 
and temporal coverage and may be subjected to breaks 
(Padulano et a., 2021). Indeed, concerning the density of 
the weather monitoring network of Tuscany Region, the 
distance from each vineyard to its nearest station ranged 
between 120 m to 27000 m with an average value of 
6640 m.

Meteorological data from the ERA5-Land dataset 
used to calculate daily maximum, minimum and aver-
age air temperature (°C) and daily precipitation (mm) 
for the period from 2006 to 2019 were: “2-m tempera-
ture”, defined as the hourly temperature of air at 2 m 
above the ground, sea or inland waters, and “total pre-
cipitation”, defined as accumulated liquid and frozen 
water, including rain and snow, that falls to the Earth’s 
surface. The distance between each ERA5 grid-box 
and each georeferenced monitoring site was calculated 
through the R package ‘geosphere’ (Hijmans, 2019 b), 
with the aim of associating each sampling site with an 
ERA5 grid-box.

Bioclimatic indices were calculated starting from 
daily data on air temperature and precipitation, consid-
ering three different periods: (i) from November to Janu-
ary for the indices describing the weather conditions 
during overwintering (average of minimum, maximum 
and mean daily temperature), (ii) from November to 
March for monthly mean air temperature and cumula-
tive precipitation, (iii) from April to October (monitor-
ing period) for the bioclimatic indices describing the 
weather conditions in the interval from 14 to 7 days 
before the monitoring day or during the 7 days before 
the monitoring day. We considered these two time steps 
to identify the environmental conditions of the period 
during which the pathogen penetration into the host tis-
sues was most probable (avg_14_7, avg_max_14_7, avg_
min_14_7, cum_rain_14_7) (Chen et al., 2020; Carisse et 
al., 2009; Barka et al., 2002).

The phytosanitary treatments were included in the 
ML models as counts of the applications carried out in 
each vineyard from the beginning of the vegetative sea-
son, considering three periods: (i) cumulative number of 
treatments carried out until 14 days before the monitor-
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ing day (count_tr_14), (ii) number of treatments carried 
out from 14 to 7 days before the monitoring day (count_
tr_7_14), and (iii) number of treatments carried out in 
the 7 days before the monitoring day (count_tr_0_7).

In addition, the models included as a variable the 
frequency of monitoring days in which symptoms were 
recorded in the previous year, to consider the potential 
presence of the pathogens overwintering in the vine-

Table 1. Set of variables associated with the three grapevine diseases. 

Indices Period Description Unit Disease

w_mean_avg November - January Average of mean daily temperatures °C downy mildew, powdery mildew, gray mold
w_min_avg November - January Average of minimum daily temperatures °C downy mildew, powdery mildew, gray mold
w_rain_cum November - January Cumulative precipitation mm downy mildew, powdery mildew, gray mold
tavg_11 November Average of mean daily temperatures °C downy mildew, powdery mildew, gray mold
tavg_12 December Average of mean daily temperatures °C downy mildew, powdery mildew, gray mold
tavg_1 January Average of mean daily temperatures °C downy mildew, powdery mildew, gray mold
tavg_2 February Average of mean daily temperatures °C downy mildew, powdery mildew, gray mold
tavg_3 March Average of mean daily temperatures °C downy mildew, powdery mildew, gray mold
psum_11 November Cumulative precipitation mm downy mildew, powdery mildew, gray mold
psum_12 December Cumulative precipitation mm downy mildew, powdery mildew, gray mold
psum_1 January Cumulative precipitation mm downy mildew, powdery mildew, gray mold
psum_2 February Cumulative precipitation mm downy mildew, powdery mildew, gray mold
psum_3 March Cumulative precipitation mm downy mildew, powdery mildew, gray mold

avg_14_7 April - October Average of mean daily temperatures from 14 days 
to 7 days before the monitoring day °C downy mildew, powdery mildew, gray mold

avg_max_14_7 April - October Average of max daily temperatures from 14 days to 
7 days before the monitoring day °C downy mildew, powdery mildew, gray mold

avg_min_14_7 April - October Average of min daily temperatures from 14 days to 
7 days before the monitoring day °C downy mildew, powdery mildew, gray mold

cum_
rain_14_7 April - October Cumulative precipitation from 14 days to 7 days 

before the monitoring day mm downy mildew, powdery mildew, gray mold

cum_rain_7 April - October Cumulative precipitation from April to 7 days 
before the monitoring day mm downy mildew, powdery mildew, gray mold

gdd_apr_7 April - October
Cumulative degree day (mean air temperature) 
from April to 7 days before the monitoring day, 

with a lower threshold of 10 °C
°C downy mildew, gray mold

gdd_jan_7 January - October
Cumulative degree day (mean air temperature) 

from January to 7 days before the monitoring day, 
with a lower threshold of 10 °C

°C downy mildew, gray mold

gdd_7 April - October
Cumulative degree day from April to 7 days before 
the monitoring day, with a lower threshold of 6 °C 

and an upper threshold of 30.5 °C 1, 2
°C powdery mildew

dem100 n.a. Elevation a.s.l. m downy mildew, powdery mildew, gray mold
dis_sea n.a. Euclidean distance from sea m downy mildew, powdery mildew, gray mold

count_tr_0_7 n.a. Number of treatments in the 7 days before the 
monitoring day n° downy mildew, powdery mildew, gray mold

count_tr_7_14 n.a. Number of treatments from 14 days to 7 days 
before the monitoring day n° downy mildew, powdery mildew, gray mold

count_tr_14 n.a. Cumulative number of treatments 14 days before 
the monitoring day n° downy mildew, powdery mildew, gray mold

perc_inf n.a.
Percentage of the observation in which was 

reported the presence of symptoms in the previous 
year

% downy mildew, powdery mildew, gray mold

doy n.a. Day of the year n.a. downy mildew, powdery mildew, gray mold

1 Allen (1976).
2 Carisse et al. (2009).
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yard. The latter variable was calculated as the percentage 
of observations in which the presence of symptoms was 
observed in each year and in each vineyard, and it was 
assigned to the following monitoring year (perc_inf).

2.3 Data analysis

The three datasets on the symptoms observed of 
downy mildew, powdery mildew and gray mold covered 
a period from 2006 to 2019, excluding 2011 since no data 
were available for that year. The datasets had a different 
number of observations: 18857 for downy mildew, 14848 
for powdery mildew, and 4960 for gray mold.

The dataset of each disease was partitioned with 
the aim of training and testing the ML models. The 
two datasets, downy mildew and powdery mildew, were 
divided in one training set and two test sets. In particu-
lar, data collected in the period from 2006 to 2017 were 
partitioned with an 80/20 proportion in “training” and 
“test 1”, respectively. The partition was carried out using 
the R package ‘healthcareai’ (Thatcher et al., 2020), 
considering the group “farm ID x year”, which allowed 
ensuring that observations from each vineyard in each 
year were not contained in both training set and test set. 
A further test (“test 2”) included data collected in 2018 
and 2019 to evaluate the performance of the model on 
two independent years. Since less data were available in 
comparison with the other two diseases, the dataset on 
gray mold infection (2006-2019) was partitioned only 
in training set and test set with an 80/20 proportion in 
“training” and “test 20%”, considering the group “farm 
ID x year”.

The class “inf” was present in a different percent-
age of the total observations for the three diseases: 37% 
in training set, 35% in “test 1”, and 58% in “test 2” for 
downy mildew; (ii) 16% in training set, 15% in “test 1”, 
and 28% in “test 2” for powdery mildew; (iii) 10% in 
training set and 8% in test set for gray mold.

Spearman’s correlation among the variables associ-
ated with each disease was calculated with the R package 
‘Hmisc’ (Harrell, 2019), to remove redundant features, 
highlighting variables that were highly correlated. Thus, 
in the case that the Spearman’s correlation coefficient 
between two variables was higher than 0.9 (absolute 
value), we selected the one with the highest importance, 
using a filter approach based on the Receiver Operating 
Characteristic (ROC) curve analysis, a plot of true posi-
tive rate (TPR) versus false positive rate (FPR) at various 
threshold settings.

Machine learning models selected for comparison 
were: (i) Random forest (RF), based on several decision 
trees, which operates as an ensemble to produce an out-

put with low bias and lower variance than each single 
tree; and (ii) C5.0 based on single binary decision tree 
or a collection of rules with a boosted procedure. Both 
algorithms were tree-based models, being able to han-
dle complex non-linear relationships and outperforming 
other ML algorithms in earth science and ecology appli-
cations (Thessen, 2016). 

The train function of the R package ‘caret’ (Kuhn, 
2020) was used to train and tune the two models, RF 
and C5.0, by means of the ROC metric, using a 10-fold 
cross-validation clustered by the grouping factor “farm 
ID x year”. Thus, while running the train function of 
‘caret’, through the 10-fold cross-validation the training 
set is partitioned in 10 equal size subsamples of which 9 
subsamples are used to train the model and a single sub-
sample is retained as the validation data for testing the 
performance of the model with the aim of tuning the 
model parameters.

The models were evaluated using a confusion matrix 
among observed and predicted classes (Tab. 2) and a set 
of performance metrics on the training set and test set 
(Tab. 3).

The best performing algorithm (evaluated on train-
ing set and test set), was further optimized: (i) applying 
subsampling techniques for class imbalance during the 
training with the R package ‘caret’, and (ii) selecting the 
cut-off, to be applied on the probability outputs of the 
models for classification, which optimized the informed-
ness (Specificity+Sensitivity-1) of the trained model, 
using the R package ‘MLeval’ (John, 2020).

For the best performing algorithm, the importance 
of variables in the modelling mechanism was extracted 
using the function varImp() of the R package “caret”.

3. RESULTS

The correlation analysis allowed removing highly 
correlated variables associated with each disease. Vari-
ables removed were: avg_14_7, avg_max_14_7, gdd_
apr_7, gdd_jan_7, tavg_12, w_min_avg for downy mil-
dew; avg_14_7, avg_max_14_7, doy, w_min_avg for 
powdery mildew and avg_14_7, avg_max_14_7, doy, 
gdd_apr_7, tavg_12, w_mean_avg, w_min_avg, w_rain_
cum for gray mold.

The results of the cross-validation on the training 
set highlighted ROC-AUC values higher than 0.8 for 
both RF and C5.0 (Tab. 4). 

AUC-PR was higher than 0.6 for downy mildew and 
gray mold, while it was around 0.6 for powdery mildew. 
The sensitivity was around 0.7 for downy mildew, while 
it was around 0.4 for powdery mildew and gray mold. 
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The specificity was around 0.8 for downy mildew, while 
it was higher than 0.9 for the other two diseases. The 
two algorithms performed similarly on the training set, 
with slightly better results for RF.

For all the three diseases, the algorithm C5.0 per-
formed better than RF on the test set (“test 1”), report-
ing in particular a higher sensitivity and a higher bal-
anced accuracy (Tab. 5). 

The C5.0 algorithm predicted the presence of symp-
toms of downy mildew with a balanced accuracy of 78%. 
The overall predicted “inf” were correct for 71% of the 
cases, whereas the percentage of correctly predicted “no” 
on the total prediction of no symptoms was 87%. The 
percentage of cases in which “inf” was correctly identi-
fied was 74%, while for “no” it was 85%. The presence 
of symptoms of powdery mildew was predicted by C5.0 
with a balanced accuracy of 69%. The overall predicted 
“inf” were correct for 42% of the cases, whereas the per-

centage of correctly predicted “no” on the total predic-
tion of no symptoms was 96%. The percentage of cases 
in which “inf” was correctly identified was 63%, while 
for “no” it was 90%. The presence of symptoms of gray 
mold was predicted by C5.0 with a balanced accuracy of 
79%. The overall predicted “inf” were correct for 59% of 
the cases, whereas the percentage of correctly predicted 
“no” on the total prediction of no symptoms was 99%. 
The percentage of cases in which “inf” was correctly 
identified was 85%, while for “no” it was 96%.

The subsampling technique “down” was selected as 
the best according to the performance on the test set of 
the three diseases (Tab. S1). Applying the subsampling 
technique to the algorithm C5.0 increased the percent-
age of cases in which “inf” was correctly identified and 
the balanced accuracy for all the three diseases (Tab. 6). 
Moreover, the informedness of the C5.0 algorithm with 
down-sampling was the highest when applying a cut-off 
equal to: (i) 0.46 for the prediction of downy mildew and 

Table 2. Confusion matrix based on the number of observed and 
predicted classes. For each disease the class “inf ” indicated the 
presence of symptoms on leaves or on grapes.

Predicted 
symptoms

Observed symptoms

inf no

inf True Positive (TP) False Positive (FP)
no False Negative (FN) True Negative (TN)

Table 3. List of metrics used to evaluate the performance of the 
classification algorithms.

Evaluation metric Data Description

AUC-ROC Training
Area under the ROC 
(Receiver operating 
characteristic) curve

AUC-PR Training Area under the Precision- 
Recall curve

Sensitivity = Recall Training/Test

Specificity Training/Test

Positive Predictive Value 
(PPV) = Precision Test

Negative Predictive Value 
(NPV) Test

F1 Test

Accuracy Test

Balanced accuracy Test

Table 4. Performance of the two machine learning algorithms (RF 
and C5.0), tuned through the 10-fold cross-validation, on the train-
ing sets of the three diseases.

 

RF C5.0

Downy 
mildew

Powdery 
mildew

Gray 
mold

Downy 
mildew

Powdery 
mildew

Gray 
mold

AUC-ROC 0.85 0.87 0.91 0.84 0.87 0.90
AUC-PR 0.77 0.60 0.69 0.75 0.59 0.66
Sensitivity 0.66 0.43 0.45 0.65 0.50 0.48
Specificity 0.84 0.96 0.99 0.85 0.94 0.98

Table 5. Results of RF and C5.0 in predicting the presence of symp-
toms of the three diseases on the test sets “test 1”.

 

RF C5.0

Downy 
mildew

Powdery 
mildew

Gray 
mold

Downy 
mildew

Powdery 
mildew

Gray 
mold

TP 701 129 44 705 158 52
FP 256 75 9 245 92 9
TN 1573 2024 967 1584 2007 967
FN 285 243 44 281 214 36
Sensitivity 0.71 0.35 0.50 0.71 0.42 0.59
Specificity 0.86 0.94 0.99 0.87 0.96 0.99
PPV 0.73 0.63 0.83 0.74 0.63 0.85
NPV 0.85 0.89 0.96 0.85 0.90 0.96
F1 0.72 0.45 0.62 0.73 0.51 0.70
Accuracy 0.81 0.87 0.95 0.81 0.88 0.96
Balanced 
accuracy 0.78 0.66 0.74 0.79 0.69 0.79
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powdery mildew symptoms and (ii) 0.36 for the predic-
tion of gray mold. The application of the optimized cut-
off on the results of the C5.0 algorithm with down-sam-
pling improved the sensitivity, being 0.80 for downy mil-
dew, 0.68 for powdery mildew and 0.95 for gray mold. 

Results on “test 2”, highlighted a prediction accura-
cy around 0.7 for both the symptoms of downy mildew 
and powdery mildew, in both 2018 and 2019 (Tab. 7).

The importance of the variables in the modelling 
process for the three diseases is reported in Tab. 8. 

Around 50% of the splits were associated with the 
first six most important variables for downy mildew, 
namely: the percentage of observations of the year before 
in which symptoms were present, day of year, the cumu-
lative precipitation from April to 7 days before the moni-
toring day, the elevation, and the precipitation of March 
and February.

For powdery mildew, the first eight most important 
variables covered around 50% of the splits, being: the 
percentage of the observation of the previous year in 
which symptoms appeared, the distance from sea, the 
cumulative precipitation from April until 7 days before 
the monitoring day, cumulative degree day (gdd) from 
April until 7 days before the monitoring day, the eleva-
tion, the count of the treatments carried out until 14 
days before the monitoring day, the average minimum 
temperature between 14 and 7 days before the monitor-
ing day, the precipitation of February.

For gray mold, the first six most important vari-
ables were associated to around 50% of the splits: the 

Table 6. Results of C5.0 on the test sets “test 1” applying: (i) down-
sampling during training (C5.0 ‘down’), and (ii) the optimized cut-
off for classification on the probability outputs of C5.0 ‘down’.

 

C5.0 ‘down’ C5.0 ‘down’ & cut-off opt.

Downy 
mildew

Powdery 
mildew

Gray 
mold

Downy 
mildew

Powdery 
mildew

Gray 
mold

TP 758 236 77 791 254 84
FP 378 252 64 446 329 137
TN 1451 1847 912 1383 1770 839
FN 228 136 11 195 118 4
Sensitivity 0.77 0.63 0.87 0.80 0.68 0.95
Specificity 0.79 0.88 0.93 0.76 0.84 0.86
PPV 0.67 0.48 0.55 0.64 0.46 0.38
NPV 0.86 0.93 0.99 0.88 0.86 0.99
F1 0.71 0.55 0.67 0.71 0.56 0.54
Accuracy 0.78 0.84 0.93 0.77 0.69 0.87
Balanced 
accuracy 0.78 0.76 0.90 0.78 0.70 0.91

Table 7. Results of the application of the optimized cut-off for clas-
sification on the probability outputs of C5.0 ‘down’ on both the 
overall “test 2” and on the two years considered separately (2018 
and 2019).

C5.0 ‘down’ & cut-off opt.

Downy mildew Powdery mildew

test 2 2018 2019 test 2 2018 2019

TP 1662 1126 536 304 168 136
FP 385 47 338 201 89 112
TN 1503 855 648 1409 824 585
FN 964 721 243 313 221 92
Sensitivity 0.63 0.61 0.69 0.49 0.43 0.60
Specificity 0.8 0.95 0.66 0.87 0.9 0.84
PPV 0.81 0.96 0.61 0.6 0.65 0.55
NPV 0.61 0.54 0.73 0.82 0.79 0.86
F1 0.71 0.75 0.65 0.54 0.52 0.57
Accuracy 0.7 0.72 0.67 0.77 0.76 0.78
Balanced 
accuracy 0.71 0.78 0.67 0.68 0.67 0.72

Table 8. Importance of variables in the modelling process of the 
algorithm C5.0 ‘down’ for the three diseases. The importance is cal-
culated as the percentage of splits associated with each predictor 
(metric = ‘splits’).

C5.0 ‘down’

Downy mildew Powdery mildew Gray mold

perc_inf 12.3 perc_inf 7.3 perc_inf 11.2
doy 11.1 dis_sea 7.2 cum_rain_7 7.9
cum_rain_7 7.6 cum_rain_7 6.6 gdd_jan_7 7.8
dem100 6.2 gdd_7 6.5 cum_rain_14_7 7.3
psum_3 5.9 dem100 6.5 psum_12 7.3
psum_2 5.9 count_tr_14 5.7 avg_min_14_7 6.6
dis_sea 5.0 avg_min_14_7 5.7 psum_2 6.6
psum_12 4.3 psum_2 5.4 tavg_11 6.2
count_tr_14 4.3 psum_12 5 dis_sea 5
tavg_2 3.9 psum_3 4.5 psum_3 4.6
psum_1 3.8 tavg_11 4.3 count_tr_0_7 4.4
w_rain_cum 3.8 tavg_3 4.1 psum_11 4.3
psum_11 3.7 psum_1 4 dem100 4.2
tavg_1 3.6 psum_11 3.9 psum_1 3.5
tavg_11 3.3 count_tr_0_7 3.8 tavg_1 3
count_tr_0_7 3.0 w_mean_avg 3.8 count_tr_7_14 3
avg_min_14_7 2.9 w_rain_cum 3.8 tavg_3 2.9
cum_rain_14_7 2.7 cum_rain_14_7 3.2 tavg_2 2.3
tavg_3 2.4 tavg_1 3.2 count_tr_14 2.3
count_tr_7_14 2.4 tavg_2 3.1
w_mean_avg 1.9 count_tr_7_14 2.2   
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percentage of the observation of the previous year in 
which symptoms appeared, the cumulative precipita-
tion from April until 7 days before the monitoring day 
and between 14 and 7 days before the monitoring day, 
the precipitation of December, the average minimum 
temperature between 14 and 7 days before the monitor-
ing day.

Among the three models, common variables on the 
top of the list were: perc_inf and cum_rain_7. Similar 
variables, such as doy and gdd, were ranked within the 
top variables for all the three models. Partial depend-
ence plots (pdp) (Fig. 1) represent the marginal effect of 

the latter variables on the probability of predicting the 
presence of symptoms for the three diseases. In particu-
lar, with increasing values of perc_inf and cum_rain_7, 
the probability of predicting “inf” increased for pow-
dery mildew, until about 500 mm for cum_rain_7. Con-
cerning downy mildew, with increasing values of doy, 
the probability of the class “inf” increased, until about 
doy 200, while decreasing after this threshold. For pow-
dery mildew, the probability of the class “inf” markedly 
increased with ggd_7, until 1000, while the probabil-
ity of the class “inf” for gray mold increased with ggd_
jan_7, between about 1200 and 1600.

Fig. 1. Partial dependence plots for the marginal effect on the prediction of the class “inf ” of the variables: (i) perc_inf, cum_rain_7 and doy 
for downy mildew; (ii) perc_inf, cum_rain_7 and gdd_7 for powdery mildew and (iii) perc_inf, cum_rain_7 and gdd_jan_7 for gray mold.
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4. DISCUSSION

Results of the application of ML algorithms, trained 
on historical data, for the prediction of the appearance 
of symptoms of downy mildew, powdery mildew, and 
gray mold in grapevine, demonstrated a better perfor-
mance of the algorithm C5.0 in comparison with the RF, 
in the test set (“test 1”), for all the three diseases. Simi-
lar results were found by Volpi et al. (2020), who applied 
ML algorithms for predicting the probability of infes-
tation by Bactrocera oleae on olive trees, founding that 
C5.0 had a higher ROC compared to k-nearest neighbors 
(k-NN), Classification and Regression Trees (CART), 
Random Forest (RF) and Neural Network (NN).

The three datasets on grapevine diseases were 
unbalanced, since the observations in which the symp-
toms of diseases were recorded were a minority of the 
total observations, in particular for powdery mildew and 
gray mold (<20%). Class imbalance problems may lead to 
partial behaviour of the classifier towards the majority 
class and sampling methods are most commonly applied 
to balance the class distribution of the training data 
(Kaur et al., 2019). Moreover, the output of C5.0 classi-
fication for each observation is a probability between 0 
and 1 of being classified as “inf” or “no” and the stand-
ard cut-off applied for classification is 0.5, which is not 
the most appropriate for imbalanced datasets (Zou et 
al., 2016). Therefore, the application of both the down-
sampling technique and a cut-off for classification, 
optimized to improve the informedness of the model, 
increased the sensitivity of the model, thus increasing 
the amount of true positives and decreasing the amount 
of false negatives, which has a high cost for the predic-
tion of plant diseases. 

The final models achieved a good performance in 
predicting the presence of symptoms of the three diseas-
es on “test 1”, with a balanced accuracy of 0.8 for downy 
mildew, 0.7 for powdery mildew and 0.9 for gray mold, 
highlighting a lower occurrence of wrong classifications 
for the gray mold model. 

The application of the models for downy mildew 
and powdery mildew on the two independent years 
(2018 and 2019) achieved a lower balanced accuracy than 
on “test 1”, being, however, around 0.7 for the two dis-
eases. This slightly lower performance of the ML model 
on unseen data may be due to the known bias-variance 
tradeoff of ML models, being complex models more sub-
jected to high variance (Abu-Mostafa et al., 2012).

Differently to other ML techniques (i.e., Bayesian 
network) in which the causal relationships among the 
variables are linked to previous knowledge (Lu et al., 
2020), the effect of the variables on the prediction in 

tree-based ML models is entirely data-driven. However, 
it is possible to interpret the C5.0 model by exploring 
the importance of variables in the modelling mechanism 
and the effect of variables on the prediction.

Indeed, it was possible to highlight, for all the dis-
eases, a higher frequency in the top-ranking positions, 
in terms of importance, of indices related to precipita-
tion rather than to air temperature. In particular, the 
cumulative precipitation from the beginning of April 
to 7 days before the day of observation was among the 
most important variables for the three diseases. 

For downy mildew and gray mold, the probability of 
infection increased with increasing values of cumulative 
precipitation (approximately until 500 mm); while, for 
powdery mildew, the relationship was less clear. In par-
ticular, downy mildew is typically diffused in viticultur-
al areas characterized by temperate climate and frequent 
precipitation during spring and summer (Lafon and 
Clerjeau, 1988), and precipitation was reported as a key 
driver for both primary and secondary infections (Ros-
si et al., 2008). Climate conditions at the end of spring, 
particularly precipitation, were found to be decisive for 
the development of downy mildew symptoms (Chen et 
al., 2020). Precipitation events have a positive effect in 
spreading the infection of powdery mildew (dispersing 
cleistothecia and releasing ascospores) and, though free 
water is detrimental to conidial germination, in rainy 
seasons the environmental conditions become favour-
able for the infection due to mild temperatures, lim-
ited direct sunlight, and high humidity (Gadoury et al., 
2012). Furthermore, more severe gray mold epidemics 
were reported under wet growing seasons, since the wet-
ness duration is a key factor for both the development of 
early season and late season infections (Ciliberti et al., 
2015 a, b).

The frequency of symptoms observed in the pre-
vious year (the year before the one considered for ML 
application) was the most important variable in the 
modelling mechanism for the appearance of symptoms 
of the three diseases. In particular, the risk of symp-
tom development in the current year increased with 
the occurrence of severe infection in the previous year. 
Severe infections may be a source of overwintering path-
ogens, potentially leading to new infections under opti-
mal environmental conditions. Indeed, downy mildew 
is able to overwinter mainly on infected shoots, while 
powdery mildew in grapevine buds, and gray mold in 
grapevine debris (Pertot et al., 2017; Jaspers et al., 2013; 
Rügner et al., 2002).

Variables describing the progress of the season, such 
as doy for downy mildew and cumulative degree days for 
powdery mildew and gray mold, were among the most 
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important variables for predicting the development of dis-
ease symptoms. In particular, the probability of infection 
increased for downy mildew from April to about mid-
July and then decreased. Previous studies reported that 
the progress of disease relates to the phenological devel-
opment of grapevine (Molitor et al., 2016; Carmichael et 
al., 2018; Bove et al., 2020). In addition, ggd_7 was a key 
variable for predicting the occurrence of powdery mildew 
symptoms; Carisse et al. (2009) used this variable to pre-
dict the proportion of seasonal airborne inoculum. 

However, even if gdd or doy were among the most 
important variable in the modelling mechanism, the use 
of a multivariate approach through ML algorithms with 
respect to a univariate cumulative GDD index is recog-
nized to be more suited to model non-linear patterns 
and variable interactions often characterizing real-world 
ecological patterns (Yo et al., 2017). 

The effect of the number of chemical treatments was 
more important for powdery mildew than for the other 
diseases, since only for powdery mildew an index indi-
cating the frequency of treatments was among the top 
variables. Further studies are needed to evaluate new 
approaches to include the effect of treatments in mod-
elling predictions, considering the type of chemical and 
the mechanism of action.

Results from this work highlighted that a ML algo-
rithm trained on historical data, may be efficiently used 
to predict the appearance of symptoms of downy mil-
dew, powdery mildew, and gray mold in grapevine, pro-
viding an innovative control tool, even in association 
with traditional models. The simplicity of the approach 
requires, however, the availability of symptom records, 
which is the monitoring of disease occurrence. Mas-
sive datasets of disease symptoms or pest attacks may 
allow not only regional-level analyses, like in the present 
study, but also the recognition of specific and localized 
risk factors, which take into account additional vari-
ables, conferring susceptibility or resistance to a given 
disease or pest. The ML algorithms can be implemented 
with additional weather data that are used in other mod-
els for disease prediction (Rossi et al., 2008; Chen et al., 
2020). Yet, climatic inputs can be further enriched to 
forecast the occurrence of downy mildew, powdery mil-
dew, and gray mold under different climate scenarios 
and assess the future trajectories of these diseases. 

The integration of ML models in decision support 
systems also represents a practical application to plan 
the reduction of fungicide treatments. In particular, the 
use of ML is a promising approach to implement early 
warning systems, identifying periods when climatic con-
ditions are favourable to promote disease development 
and alerting on symptoms that are associated with high 

risk of infection (Caffi et al., 2010; Pellegrini et al., 2010). 
As future activity, the integration of mechanistic and 
ML models (e.g., in Bayesian networks) could be tested 
to evaluate the effect of including previous knowledge in 
the modelling mechanism.

5 CONCLUSION

The application of ML algorithms, trained on his-
torical data, was proved useful for the prediction of the 
appearance of symptoms of downy mildew, powdery 
mildew, and gray mold in grapevine. The grape disease 
monitoring network enabled the observation of a wide 
range of symptoms. This, in combination with ERA5-
Land dataset allowed the development of early detec-
tion algorithms to support the implementation of IPM 
in viticulture. Compared to ground weather stations, 
ERA5 data had the advantage of providing information 
for locations that are not covered by traditional agrome-
teorological networks. Nevertheless, for becoming fully 
operative, this approach needs an efficient monitoring 
system at the landscape scale and intensive field surveys 
at the local scale.
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Table S1. Results of the application on the dataset “test 1” of the algorithm C5.0 trained with different subsampling techniques: down-sam-
pling (down), up-sampling (up), Synthetic Minority Over-sampling Technique (SMOTE) and Random Over-Sampling Examples (ROSE).

 
Downy mildew Powdery mildew Gray mold

down up SMOTE ROSE down up SMOTE ROSE down up SMOTE ROSE

TP 758 657 748 706 236 155 170 256 77 47 63 55
FP 378 259 385 523 252 95 114 334 64 12 56 55
TN 1451 1570 1444 1306 1847 2004 1985 1765 912 964 920 921
FN 228 329 238 280 136 217 202 116 11 41 25 33
Sensitivity 0.77 0.66 0.76 0.72 0.63 0.42 0.46 0.69 0.87 0.53 0.72 0.62
Specificity 0.79 0.86 0.79 0.71 0.88 0.95 0.95 0.84 0.93 0.99 0.94 0.94
PPV 0.67 0.72 0.66 0.57 0.48 0.62 0.59 0.43 0.55 0.80 0.53 0.50
NPV 0.86 0.83 0.86 0.82 0.93 0.90 0.91 0.94 0.99 0.96 0.97 0.96
F1 0.71 0.69 0.71 0.64 0.55 0.50 0.52 0.53 0.67 0.64 0.61 0.56
Accuracy 0.78 0.79 0.78 0.71 0.84 0.87 0.87 0.82 0.93 0.95 0.92 0.92
Balanced accuracy 0.78 0.76 0.77 0.71 0.76 0.69 0.70 0.76 0.90 0.76 0.83 0.78

Link to a GitHub repository containing the R script for ML models and a subset of data as example: https://github.
com/aeditsrl/grapevine_ML
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