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Abstract. Accurate estimation of reference evapotranspiration is essential for agricul-
tural management and water resources engineering applications. In the present study, 
the ability and precision of three artificial intelligence (AI) models (i.e., Support Vector 
Machines (SVMs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Categorical 
Boosting (CatBoost)) were assessed for estimating daily reference evapotranspiration 
(ET0) using limited weather data from five locations in a warm sub-humid climate in 
Mexico. The Penman–Monteith FAO-56 equation was used as a reference target for 
ET0 values. Three different input combinations were investigated, namely: temperature-
based (minimum and maximum air temperature), rainfall-based (minimum air tem-
perature, maximum air temperature and rainfall), and relative humidity-based (mini-
mum air temperature, maximum air temperature and relative humidity). Extraterres-
trial radiation values were used in all combinations. The temperature-based AI models 
were compared with the conventional Hargreaves–Samani (HS) model commonly used 
to estimate ET0 when only temperature records are available. The goodness of fit for all 
models was assessed in terms of the coefficient of determination (R2), Nash–Sutcliffe 
model efficiency coefficient (NSE), root mean square error (RMSE) and mean abso-
lute error (MAE). The results showed that among the AI models evaluated, the SVM 
models outperformed ANFIS and CatBoost for modeling ET0. Further, the influence 
of relative humidity and rainfall on the performance of the models was investigated. 
The analysis indicated that relative humidity significantly improved the accuracy of 
the models. Finally, the results showed a better response of the temperature-based AI 
models over the HS method. AI models can be an adequate alternative to conventional 
models for ET0 modeling.

Keywords: reference evapotranspiration, FAO56-PM, artificial intelligence, warm sub-
humid environment, Yucatán Peninsula. 
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1. INTRODUCTION 

Evapotranspiration (ET) refers to the physical 
processes of transferring water from the soil surface 
(evaporation) and plants (transpiration) to the atmos-
phere (Allen et al., 1998). ET is a critical component of 
the water balance at plot, field, farm, catchment, basin 
and global levels. The measurement of evapotranspira-
tion under normal conditions is of great importance in 
the estimation and management of present and future 
water resources and for solving many theoretical prob-
lems in the fields of hydrology, climatology and mete-
orology. In irrigation planning, evapotranspiration data 
are used for estimating the acreage of various crops or 
combinations of crops that can be irrigated with a giv-
en water supply or as a basis for estimating the amount 
of water that will be required to irrigate a given area. A 
lysimeter can be used to directly and accurately meas-
ure crop evapotranspiration (ETc) from a well-watered 
agricultural crop. However, its widespread application 
is restricted by costly and time-consuming operations 
for data management (Wang et al., 2014). Therefore, in 
practice, the most common approach used for estimat-
ing crop evapotranspiration (ETc) is the crop coefficient 
(Kc) approach, which consists of multiplying reference 
evapotranspiration (ET0) with the crop coefficient (Allen 
et al., 1998). ET0 is “the rate at which water, if available, 
would be removed from the soil and plant surface of a 
specific crop, arbitrarily called a reference crop” (Jens-
en et al., 1990). The reference crop is typically grass or 
alfalfa under well-watered conditions. Numerous equa-
tions, classified as temperature-based, radiation-based, 
pan evaporation-based and combination-type have been 
developed for estimating ET0. They vary in terms of data 
requirements and accuracy. The adapted FAO-56 Pen-
man–Monteith equation (FAO56-PM) was recommend-
ed as the standard equation for estimating ET0 and cali-
brating other ET0 equations (Allen et al., 1998; Jensen et 
al., 1990; Kisi, 2013; Wang et al., 2014). FAO56-PM can 
be used in a wide variety of climate conditions, at differ-
ent time steps and needs no local calibration because of 
its physical basis.

In the recent years, artificial intelligence (AI) tech-
niques such as Artificial Neural Network (ANN), Gen-
eralized Regression Neural Network (GRNN), Adaptive 
Neuro-Fuzzy Inference System (ANFIS), Support Vec-
tor Machines (SVMs), Gene Expression Programming 
(GEP), Genetic Programming (GP), Extreme Learn-
ing Machine (ELM), Random Forest (RF), Categori-
cal Boosting (CatBoost), Multilayer Perceptron (MLP) 
and Cascade Correlation Neural Network (CCNN) have 
been accepted as effective tools for estimating reference 

evapotranspiration (ET0). Artificial intelligence meth-
ods are an alternative and emerging method, and can be 
used as innovative approaches because they offer bene-
fits such as no required knowledge of internal variables, 
simpler solutions for multi-variable problems and accu-
rate calculation (Gocić et al., 2015). In several studies, 
the accuracy of these techniques has been improved by 
using algorithms [e.g., Fire Fly Algorithm (FFA), Genetic 
Algorithm (GA), Particle Swarm Optimizer (PSO), Grey 
Wolf Optimizer (GWO), Multi-Verse Optimizer (MVO), 
Whale Optimization Algorithm (WOA) and Ant Lion 
Optimizer (ALO)] to tune the model’s parameters and 
by the use of wavelet transform (WT) techniques to 
transform data series into sub-series. Reis et al. (2019) 
examined the accuracy of ANN and ELM techniques 
for estimating ET0 based on temperature data in a semi-
arid region of Brazil and compared them with the Har-
greaves–Samani (HS) empirical equation. They found 
that ANN and ELM models provide further accuracy 
compared to the HS equation. In recent years, the com-
pany Yandex has proposed a novel AI algorithm called 
CatBoost, capable of solving problems with heterogene-
ous features, noisy data and complex dependencies (Dor-
ogush et al., 2018). Among its main features is the abil-
ity to avoid overfitting of trained models (Prokhoren-
kova et al., 2018). Huang et al. (2019b) employed Cat-
Boost, RF and SVMs to predict ET0 in a humid region 
of China. The results showed that the SVM technique 
offered the best accuracy when an incomplete combina-
tion of meteorological parameters was used, while Cat-
Boost performed best with the complete combination 
of meteorological parameters. Tikhamarine et al. (2019) 
used five ANN models optimized by GWO, MVO, PSO, 
WOA and ALO algorithms to estimate monthly ET0. 
The results of the comparison showed that the ANN-
GWO model’s performance was superior to that of the 
other models. Raza et al. (2020) investigated the poten-
tial of SVM, MLP, GRNN and CCNN machine learning 
models to estimate ET0 in four climatic regions. They 
found that the accuracy of the SVM model was better 
than the others for all evaluated climatic zones. Zhang 
et al. (2020) compared the performance of three artifi-
cial intelligence methods (i.e., CatBoost, GRNN and RF) 
for estimating daily ET0 using limited meteorological 
data in an arid and semi-arid region of Northern Chi-
na. CatBoost was found to perform better than GRNN 
and RF models. Tikhamarine et al. (2020) developed an 
optimized SVM model using the WOA algorithm for 
monthly ET0 estimation and compared it with other two 
SVM-hybrid models named SVM-MVO and SVM-ALO. 
Their results indicated that the SVM-WOA model was 
more accurate at predicting ET0 compared to the other 
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models. Furthermore, prior studies have also proved the 
usability and potential of the ANFIS method for ET0 
modeling (Alizamir et al., 2020; Rezaabad et al., 2020; 
Roy et al., 2020).

In more recent years, a special class of AI algo-
rithms known as Deep Learning (DL) has been success-
fully applied for estimating ET0, as in the case of Chen 
et al. (2020), who evaluated three DL models named 
Deep Neural Network (DNN), Temporal Convolution 
Neural Network (TCN) and Long Short-Term Memory 
Neural Network (LSTM) using limited meteorological 
data. Their results were compared with classic Machine 
Learning (ML) and empirical models, and the results 
indicated that both DL and ML techniques performed 
better than empirical models. In another study, Granata 
and Di (2021) examined two types of DL models called 
LSTM and NARX (Nonlinear Autoregressive Network 
with Exogenous input) for estimating actual evapotran-
spiration (ETa) in two different climatic conditions of 
the United States. The results revealed that both models 
can provide very accurate predictions of ETa, although 
the performance of the models can be affected by local 
climatic conditions. 

The objectives of this study were to: (1) investigate 
the capability of three artificial intelligence techniques, 
i.e., ANFIS, SVMs and CatBoost, for modeling daily ET0 
in a sub-humid region based on limited climate data, (2) 
to compare the accuracy of the ANFIS, SVM and Cat-
Boost techniques with the Hargreaves–Samani model 
when only temperature data are available, and (3) to 

examine the effect of using relative humidity and rain-
fall as input variables on the artificial intelligence mod-
el’s prediction precision in a warm sub-humid region. 

2. MATERIALS AND METHODS

2.1. Case study site and data collection 

This study was performed using weather data from 
five meteorological stations located in the Yucatán Pen-
insula, Mexico (Fig. 1). The climatic data were provided 
by the Mexican National Meteorological Service (SMN; 
Servicio Meteorológico Nacional) and Mexico’s Nation-
al Institute for Forestry, Agriculture and Livestock 
Research (INIFAP; Instituto Nacional de Investigaciones 
Forestales Agrícolas y Pecuarias). Continuous and long-
term series of observed daily weather data including 
minimum and maximum air temperature (Tmin, Tmax, 
°C), mean wind speed (u2, ms-1), mean relative humid-
ity (RH, %), precipitation (W) and global solar radiation 
(Rs, MJ M-2day-1) were collected from five meteorological 
stations. The geographic information and annual mete-
orological conditions of these stations during the period 
under study are presented in Tab. 1. All stations studied 
were identified as moist sub-humid (annual P/ET0 ratio 
between 0.65 and 1.0) according to the global aridity 
index (Tab. 1) developed by the United Nations Conven-
tion to Combat Desertification (Middleton and Thomas, 
1997). 

Fig. 1. Locations of the weather stations in the Yucatán Peninsula, Mexico used in this study.
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The climate in the Yucatán Peninsula can be 
described as tropical savanna (Aw) according to the 
Köppen system (Köppen, 1936), with a rainy summer 
and dry winter. The maximum and minimum daily air 
temperature is 36 ºC and 16 ºC respectively. The rainfall 
occurs in summer and autumn with a gradient of mini-
mum rainfall in the northwest (600 mm/year) to higher 
quantities toward the southeast (1400 mm/year). 

The database was checked to find missing or incon-
sistent records of air temperature, relative humidity and 
precipitation. In cases where less than five consecutive 
missing or incorrect records were found within a period 
of one month, the Piecewise Cubic Hermite Interpolat-
ing Polynomials (PCHIPs) interpolation method (Fritsch 
and Carlson, 1980; Torrente Cantó, 2018) was used to fill 
in missing values or replace inconsistent values. Oth-
erwise, these values were removed from the database. 
Overall, deleted and missing data, which accounted for 
approximately 2% of the database, were replaced with 
values estimated by interpolation. 

2.2. Targets used for training and testing

In this paper, the FAO56-PM equation (Allen et al., 
1998) was used to provide the daily ET0 estimates for 
training and testing the models. This is a very common 
practice, because lysimetric or other experimental ET 
measurements are not available in most cases.

 (1)

where ET0 is reference evapotranspiration (mm day-1),  
Δ is the slope of the saturation vapor pressure (kPa 
°C-1), γ is the psychrometric constant (kPa °C-1), Rn is 
net radiation at the crop surface (MJ m-2 day-1), G is soil 
heat flux density (MJ m-2 day-1), which may be ignored 
as the magnitude of the day soil flux is small, T is mean 

daily air temperature (°C), u2 is average wind speed at 2 
m height (m s-1), es is saturation vapor pressure (kPa), ea 
is actual vapor pressure (kPa), and es - ea is saturation 
vapor pressure deficit (kPa). The computation of all data 
required for calculating ET0 followed the method and 
procedure given in Chapter 3 of FAO-56.

In this study, the ET0-FAO56PM equation was used 
to evaluate multiple linear regression and artificial intel-
ligence methods.

2.3. Adaptive neuro fuzzy inference system (ANFIS)

ANFIS is a multilayer model initially proposed by 
Jang (1993). It is a hybrid model where the nodes in the 
different layers of a feed-forward network handle fuzzy 
parameters. This is equivalent to a fuzzy inference system 
(FIS) with distributed parameters. The technique splits 
the representation of prior knowledge into subsets, in 
order to reduce the search space, and uses the backprop-
agation algorithm to adjust the fuzzy parameters. The 
resulting system is an adaptive neural network function-
ally equivalent to a first-order Takagi–Sugeno inference 
system, where the input-output relationship is linear. 

In a first-order Sugeno system, a standard rule set 
with two fuzzy IF/THEN rules can be expressed as:
• Rule 1. If x is A1 and y is B1, then f1 = p1 x + q1 y + r1 (2)
• Rule 2. If x is A2 and y is B2, then f2 = p2 x + q2 y + r2 (3)
where A1 and B1 are the fuzzy sets in the antecedent, fi is 
the output within the fuzzy region specified by the fuzzy 
rule; and pi, qi and ri are the design parameters that are 
determined during the training process. 

The ANFIS architecture consists of five layers, 
namely: fuzzy layer, product layer, normalized layer, de-
fuzzy layer and total output layer. The inputs for two of 
them are shown in Fig. 2. Each layer performs a specific 
function in the fuzzy inference system. For identifica-
tion, the adaptive nodes are represented by squares and 
fixed nodes are portrayed as circles. 

Table 1. Geographic information and annual meteorological conditions during the period under study.

Station LON (°W) LAT (°N) TP ALT (m)
Annual Average

P/ET0Ratio CZ
T (ºC) P (mm) U2 (m/s) ET0 (mm)

Campeche -90.507 19.836 2000-2018 11 26.8 1279 1.8 1555 0.82 Moist sub- humid
Efraín Hernández -89.892 18.193 2006-2014 90 25.9 1336 2.6 1361 0.98 Moist sub-humid
Mérida -89.651 20.946 2000-2006 18 27.4 1123 2.9 1690 0.66 Moist sub-humid
Tatankín -89.047 20.030 2003-2011 30 26.5 1154 1.6 1515 0.76 Moist sub-humid
Calakmul    -89.893 18.365 2003-2014 28 26.2 1357 1.2 1580 0.85        Moist sub-humid

LON longitude, LAT latitude, TP time period, ALT altitude, T temperature, P precipitation, U2 wind speed, ET0 reference evapotranspira-
tion, CZ climate zone.
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Layer 1 (Fuzzy layer): each node i in this layer (indi-
cated with a square) represents a node function:

O1,i = μAi (x), for i = 1,2,…,n
O1,i = μBi-2 (y), for i = 1,2,…,n (4)

where x (or y) is the input to node i, and Ai or (Bi-2) is 
the linguistic label (small, large, etc.) characterized by 
appropriate membership functions (MFs) μAi(x) and μBi-

2(y). In this study, bell-shaped MFs (Eq. 5) were used 
(Petković et al., 2015).

 (5)

where x is the input to the node and ({a,b,c}) are the 
premise parameters set that changes the shapes of the 
MFs with a maximum of 1 and a minimum of 0.
Layer 2 (Product layer): The circle nodes represented 
with Π in Fig. 2 denote a fuzzy operator, e.g., product 
t-norm, which multiplies the incoming signals, such as:

O2,i=wi= μAi (x)*μBi (y), for i=1,2. (6)

where O2,i is the output of layer, and the output signal wi 
indicates the firing strength of the rule.
Layer 3 (Normalized layer): The nodes in this layer are 
represented with N and they calculate the ratio of the 
i-th rule’s firing strength to the sum of firing strengths 
of all rules by:

 for i=1,2. (7)

where the O3,i is the output of Layer 3. The quantity  is 
referred to as the normalized firing strength.

Layer 4 (De-fuzzy layer): The nodes in this layer are rep-
resented with a square and they calculate the weighted 
output of each linear function:

 for i=1,2. (8)

where  is the output of layer 3, and {pi x + qi y + ri} is 
the parameter set, referred to as the consequent parame-
ters.
Layer 5 (Total output layer): The single node denoted 
with a Σ computes the overall output as follows:

=fout=Estimated overall output (9)

A hybrid learning algorithm was used to determine 
the premise and consequent parameters. The hybrid 
learning algorithm procedure calculates the consequent 
parameters in a forward pass and the premise parame-
ters in a backward pass. In the forward phase, the infor-
mation is transmitted forward to layer 4, where the con-
sequent parameters are calculated using the least squares 
regression algorithm. In the backward phase, the error 
signals propagate backwards and the premise param-
eters are estimated by the gradient descent (GD) algo-
rithm (Jang et al., 1997). This error measure is generally 
defined by the sum of the squared differences between 
actual and desired outputs.

In the present study, a bell-shaped function (Eq. 5) 
was used for the MFs. On the other hand, two MFs were 
used for each input variable, considering that the best 
results were obtained with this value, achieved through 
an iterative process. The clustering method called grid 
partitioning was used to create the Takagi–Sugeno FIS 
structure (Cobaner, 2011; Shiri et al., 2012).

2.4. Support Vector Machines (SVMs)

Support vector machines (SVMs) is a supervised 
learning method from the field of machine learning 
theory and structural risk minimization, applicable to 
classification or regression analysis, and was presented 
by Vapnik (2013). In addition to its strong mathemati-
cal foundation in statistical learning theory, SVMs have 
proven to have highly competitive performance in sever-
al real-world applications. Originally developed for solv-
ing classification problems, the SVM procedure can also 
be effectively applied to regression problems as follows. 
Given a data set {(xi,yi)}N

i=1, where xi is the input vector, 
yi is the output value and N is the total number of data 
sets, the objective is to establish a function that indicates 
the degree of independence of yi from the input xi. 

Fig. 2. Topological structure of ANFIS.
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In SVMs, this regression function is approximated 
using the following function: 

f(x)=ω.φ(x)+b (10)

where ω is a weight vector, b is a bias (scalar value) and 
φ(x) is the high-dimensional feature space which is non-
linearly mapped from the input space x. The coefficients 
b and ω are calculated by minimizing the following reg-
ularized risk function:

 (11)

In the regularized risk function, the term 
 is empirical error (risk), and measured 

by function Lε given below:

 (12)

The term  is the regularization term, which 
represents the Euclidean norm, C is a positive trade-off 
parameter that regulates the degree of the empirical error 
in the optimization problem that is selected by the user. 
is called tube size and it is equivalent to the accuracy of 
the approximation placed on the training data points. 

To obtain the estimations of w and b, Eq. (11) is 
transformed to the primal function given by Eq. (12) by 
introducing the positive slack variables ξ and ξ* as follows:

Minimize 

 (13)

subjected to 

To address the optimization problem, Lagrange mul-
tipliers α and α* are added to the condition equations, 
and the equation can be written in its dual form:

 (14)

with constraints:  

(αi-αi*)=0     0≤αi≤C ,0≤αi*≤C     i=1,2,……,n

where αi and αi* are Lagrange multipliers to be solved, 
and K(xi,xj) is the so-called kernel function and calcu-

lated by K(xi,xj)=φ(xi).φ(xj) on the feature space. The ker-
nel allows SVMs to form nonlinear boundaries; in other 
words, it gives the SVM the capacity to model compli-
cated separating hyperplanes. In this study, after a num-
ber of trial-and-error processes, the radial basis function 
(RBF) was chosen as the kernel function. The RBF is 
defined as follows: 

(xi,xj)=exp(γ||xi-xj||2),     γ>0 (15)

where xi and xj are vectors in the input space and γ is 
the kernel parameter. 
After calculating Lagrange multipliers, an optimal 
desired weights vector of the regression hyperplane is 
found as follows:

 (16)

and Eq. (10) can be rewritten as follows:

 (17)

where n is the number of support vectors, (αi-αi*) are 
their Lagrange multipliers, the term K(xi,xj) is the kernel 
function in the input space and the bias b is calculated 
from training samples. 

There are three free parameters while using the RBF 
kernel: C (cost), ε (epsilon) and γ (gamma) should be 
determined to find the optimal solutions. In this study 
we have used the genetic algorithm (GA) technique with 
a ten-fold cross-validation procedure to optimize these 
parameters (Saud et al., 2020) and varying the param-
eters ε = 0.002 to ε = 2, C = 0.0001 to C = 10, and γ = 
0.0001 to γ = 2. A GA is an intelligent optimization 
method based on the principles of genetics and natu-
ral selection. Further details of this technique can be 
found in Antonanzas-Torres et al. (2015) and Zhang et 
al. (2015).

2.5. CatBoost

CatBoost is a decision-tree machine learning algo-
rithm based on gradient boosting decision tree (GBDT), 
developed by researchers from the Russian internet com-
pany Yandex (Prokhorenkova et al., 2018). It is capable 
of solving problems with heterogeneous characteristics, 
noisy data and complex dependencies compared to other 
algorithms based on decision trees. Among the advan-
tages of using CatBoost is that it requires the configura-
tion of few hyperparameters, thus avoiding overfitting 
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and obtaining more generalized models. Decision trees 
are used for regression, and each tree corresponds to a 
partition of the feature space and the output value. 

This model has several advantages compared with 
traditional GBDT algorithms, which generally cope with 
categorical features by a method named Greedy Target 
Statistics (Greedy TS). To deal with categorical features 
during training rather than the preprocessing phase to 
estimate the expected and category driven target, Cat-
Boost allows the use of a complete data set for training. 
According to (Prokhorenkova et al., 2018), the Greedy 
TS strategy manages categorical features with minimum 
information loss. This is useful for minimizing infor-
mation loss and overfitting. Given a data set D={Xi} i= 
1,…,n, where Xi=(xi,1,⋯,xi,m) is a vector of m character-
istics, the category of the k-th training example can be 
replaced by a numerical characteristic expressed in (Eq. 
20) according to the requested TS. The substitution of 
a given categorical example xσp,k, k can be obtained by 
calculating its average value with the same category 
value placed before in a random permutation of data set 
σ=(σ1,⋯,σn). Also, CatBoost is able to combine various 
categorical features into a new one in a greedy way by 
establishing a new tree split.

 (20)

where y is the objective function, P is a previous value,  
is the weight of the previous value, and [xσj,k=xσp,k] is 
equal to one when xσj,k=xσp,k, otherwise it is equal to 
zero, since α>0 represents the P weight. This method 
contributes to reducing the noise obtained from the low 
frequency category.

On the other hand, CatBoost combines multiple cat-
egorical features, using a greedy way of combining all the 
categorical characteristics and their combinations in the 
current tree with all the categorical characteristics in the 
data set, so that CatBoost overcomes the gradient bias.

The classic GBDT procedure generates a weak learn-
er in each iteration and each learner is trained based on 
the gradient of the previous learner. The accumulation 
of the classified results of all learners provides the result 
(Friedman, 2002).  However, it will lead to a punctual 
and biased gradient estimation, causing the final learned 
model to overfit. CatBoost uses a new method to change 
the gradient estimation method in the classic algorithm, 
called gradient augmentation. This method can over-
come the prediction change caused by gradient bias and 
further improve model generalizability.

To obtain an unbiased gradient estimate, CatBoost 
trains a separate Mi model for each xi sample, and the 

Mi model is trained with a data set that does not contain 
the Xi sample. In this case, Mi is used to obtain a gra-
dient estimate of the sample. Also, this gradient will be 
used to train the base learner for the final model.

In the present study, in the implementation of the 
CatBoost model, some of its main parameters that affect 
the precision and model stability were adjusted using the 
cross-validation (fold = 5) technique (Saud et al., 2020); 
the number of iterations varied between 200 and 800 at 
100 intervals, the maximum depth of tree ranged from 2 
to 10 at intervals of 2, and the proportion of subsets var-
ied from 0.5 to 1 at intervals of 0.05.

2.6. Hargreaves and Samani equation

The HS model (Hargreaves and Samani, 1985) is 
considered an alternative for estimating ET0 when only 
temperature records are available. The HS model is 
structured as follows:

ETHS=Kcoef *0.408*H0*(Tmean+17.8)*(Tmax-Tmin)0.5 (21)

where ETHS is the reference evapotranspiration estimat-
ed (mm day-1); Kcoef is an empirical coefficient, which 
was initially established at 0.0023 but has been recali-
brated according to the place used; Tmean, Tmax, and 
Tmin are the average, maximum and minimum daily air 
temperature respectively; H0 is the extraterrestrial solar 
radiation (MJ m-2 day-1); and the coefficient 0.048 is for 
converting MJm-2 day-1 to mm day-1.

In this study, the Kcoef was obtained by the nonlinear 
least squares fitting technique. 

2.7. Inputs considered and model scenarios

In the present study, three input combinations of the 
daily minimum air temperature (Tmin; ºC), maximum 
air temperature (Tmax; ºC), mean relative humidity (RH; 
%), extraterrestrial radiation (H0; MJ m-2 day-1), and 
rainy days (RT) as binary number [(W), rainfall > 0, W 
= 1; rainfall = 0, W = 0] were used to estimate the daily 
reference evapotranspiration. To identify the influence 
of the parameters considered on the accurate prediction 
of ET0, the Pearson correlation coefficients between the 
ET0 and independent parameters (inputs) were calcu-
lated. Tab. 2 presents the Pearson correlation coefficients 
obtained. According to Tab. 2, all inputs considered were 
observed to have favorable correlations with ET0. How-
ever, the highest correlation was obtained for Tmax and 
RH, while the lowest correlation was obtained for the RT 
variable. In this study, three scenarios were considered 
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to evaluate the effect of relative humidity, rainfall and 
temperature, namely:
(1) Relative humidity-based: Tmin, Tmax, RH and H0 
(SVM1, ANFIS1, CatBoost1),
(2) Rainfall-based: Tmin, Tmax, RT and H0 (SVM2, 
ANFIS2, CatBoost2),
(3) Temperature-based: Tmin, Tmax and H0 (SVM3, 
ANFIS3, CatBoost3),
H0 was calculated as a function of the day of year, site 
latitude and solar angle, according to the equation pro-
posed by Allen et al. (1998).

As a normal practice for developing predictive 
models and to avoid problems in the training and test-
ing stages due to the different orders of magnitude 
and large-scale fluctuations of the inputs that generate 
numerical issues while producing the forecast, the data-
set was normalized to the range from zero to one using 
the following equation (Feng et al., 2016):

 (22)

where xn, x0, xmin and xmax are the normalized value, real 
value, minimum value and maximum value respectively.

Moreover, to ensure the representativeness of the 
dataset, the database was randomly split into two sub-
sets, using 70% for training and the remaining 30% to 
test the model. The training dataset was used to train 
all the models, while the testing data was used to verify 
the accuracy and the performance of the trained model. 
Despite the fact that a k-fold validation might be desir-
able, a simple holdout assessment was applied, i.e., a sin-
gle data set assignment was considered for evaluating 
the models. Given the size of the data series, the test set 
sample was considered representative enough. Further, 
in light of the different modeling approaches consid-
ered, the application of the k-fold assessment might have 
involved too high computational costs.

A script file written in MATLAB 2019b software 
version was used to carry out the computer simulation 
of the ANFIS models. For the SVM and CatBoost mod-

els, two open-source software packages named ‘LIBSVM 
3.2’ (Chang et al., 2013) and ‘Catboost’ respectively were 
implemented using the R computing environment (Mey-
er and Wien, 2014; RDevelopment, 2009).

2.8. Model performance evaluation

The performance and accuracy of the proposed 
models for estimating daily ET0 were evaluated using 
five common statistical tests (Despotovic et al., 2015; 
Teke et al., 2015): root mean square error (RMSE; Eq. 
23), mean absolute error (MAE; Eq. 24), mean bias error 
(MBE; Eq. 25), coefficient of determination (R2; Eq. 26) 
and the Nash–Sutcliffe model efficiency coefficient (NSE; 
Eq. 27). The five criteria adopted are sufficient to fully 
characterize the efficiency of the models. 

   (mm day-1) (23)

   (mm day-1) (24)

   (mm day-1) (25)

   (unitless) (26)

   (unitless) (27)

where n and avg represent the total number of evaluated 
data and the average of the variable, and x and y are the 
ET0 values predicted by the models and ET0-FAO56PM 
respectively.

Smaller RMSE and MAE values imply a closer 
approximation of the values measured by the models. 
Larger R2 values indicate a closer match of measured 
data trends with the model results. Mean Bias Error 
(MBE) captures the average bias in the prediction. MBE 
is primarily used to estimate the average bias in the 
model and to decide if any steps need to be taken to cor-
rect the model bias. Positive values of MBE indicate the 
overestimation of daily ET0 by a model and negative val-
ues indicate underestimation. The NSE values can range 
from -∞ to 1, and a perfect fit between the simulated 
and observed data is reached when NSE value is close to 
1 (Krause et al., 2005). 

Table 2. Pearson correlations between ET0 and input variables used 
in this study.

Station/Variable H0 Tmax Tmin RH RT

Calakmul 0.660** 0.800** 0.403** -0.748** -0.250**
Campeche 0.735** 0.746** 0.490** -0.662** -0.266**
Efraín Hernández 0.610** 0.738** 0.371** -0.688** -0.372**
Mérida 0.646** 0.776** 0.411** -0.698** -0.272**
Tantakín 0.655** 0.784** 0.247** -0.712** -0.265**

** Correlation is significant at the 0.05 level (2-tailed).
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3. RESULTS AND DISCUSSION 

In this study, the capabilities of three artificial intel-
ligence techniques (i.e., CatBoost, ANFIS and SVMs) for 
predicting ET0 with the daily meteorological variables 
Tmax, Tmin, RH, Rs and u2 were examined. The type of 
input parameters plays an important role in the accu-
racy of AI models in predicting daily ET0. Fig. 3 shows 
the scatter plots of the ET0 values estimated by the best 
AI technique and calibrated HS model in each scenario 
during the testing phase and measured values at the five 
meteorological stations. According to R2 values, the plots 
clearly reveal that relative humidity might be the most 
influential input for estimating ET0, and it is also noted 
that the SVM method was the best in the three scenarios 
evaluated. In addition, it is observed that the empirical 
HS equation commonly used when temperature data are 
available performed worse compared to the temperature-
based AI models. Tab. 4 gives the R2, NSE, RMSE, MAE 
and MBE values for ANFIS, SVM and CatBoost models 
during the training and testing phase. In the first sce-
nario, the effect of relative humidity on the model’s pre-
diction accuracy was evaluated in a sub-humid tropical 
region. The SVM1 model had the best performance for 
all evaluated stations, with an RMSE of 0.37 –0.479 mm 
day-1, MAE of 0.285–0.372 mm day-1, R2 of 0.937–0.862 
and NSE of 0.936–0.861. The CatBoost1 and ANFIS1 
models were ranked second and third respectively. For 
the second scenario, the effect of rainfall on the perfor-
mance of the models was investigated, since it is usu-
ally measured and can be used to improve ET0 estima-
tion. The SVM2 models outperform the CatBoost2 and 
ANFIS2 models for all locations with an RMSE of 0.494–
0.700 mm day-1, MAE of 0.379–0.534 mm day-1, R2 of 
0.834–0.758 and NSE of 0.833–0.752. On the other hand, 
the ANFIS2 and CatBoost2 models based on rainfall data 
presented similar performance criteria (RMSE, MAE, R2 
and NSE). In the third scenario, considering that relative 
humidity and rainfall data are not always readily avail-
able, a temperature-based model may be helpful. The 
SVM3 model provided the best performance at four of 
the five stations evaluated with RMSE values of 0.548–
0.731 mm day-1, MAE of 0.418–0.563 mm day-1, R2 of 
0.779–0.738 and NSE of 0.778–0.731, with the CatBoost3 
model showing higher accuracy at the Mérida station. 
Overall, the SVM technique offers better performance 
for all evaluated scenarios with a RMSE = 0.552 mm day-

1, MAE = 0.425 mm day-1, R2 = 0.811 and NSE = 0.806, 
followed by the CatBoost model with a RMSE = 0.561 
mm day-1, MAE = 0.434 mm day-1, R2 = 0.799 and NSE 
= 0.737. As seen in scenario 1, the inclusion of relative 
humidity significantly improved all evaluated techniques. 

In general, during the test phase, it should be noted 
that the consideration of relative humidity as an input in 
the SVM1 model significantly increased the estimation 
accuracy through a decrease in MAE and RMSE values 
of 32.73 and 32.71% respectively, and an increase in R2 
of 14.5%. Meanwhile, when W data were added to the 
SVM2 model, it showed a slight reduction in MAE and 
RMSE of 9.06 and 8.87% respectively, while R2 increased 
by 4.4%. As demonstrated in several studies, the combi-
nation of bio-inspired algorithms improves the accuracy 
of artificial intelligence models (Mohammadi and Meh-
dizadeh, 2020; Yin et al., 2017). In the present study the 
parameters of the SVM-based models (C, g, and e) were 
optimized using the genetic algorithm (Tab. 3).

One of the main drawbacks of AI-based techniques 
is overfitting (Fathian et al., 2019). However, in the case 
of the SVM method, one of its main advantages over 
other AI methods lies in the fact that the non-linear 
problem always converges to a global minimum. In most 
studies, model accuracy has been shown to increase in 
ET0 prediction as the number of meteorological param-
eters increase. A study conducted by Chen et al. (2020) 
showed that the performance of SVM models was bet-
ter than LSTM and DNN models when relative humid-
ity features were available. Tab. 4 also shows the per-
formance indicators for the data set during the training 

Table 3. The SVM parameters optimized by the GA. 

Station/Model 
Optimum values

Cost (C) Gamma (γ) Epsilon (ε)

Calakmul
SVM1 1.957 0.196 0.318
SVM2 2.170 0.452 0.305
SVM3 1.135 0.668 0.350
Campeche
SVM1 4.774 0.334 0.299
SVM2 2.911 0.114 0.420
SVM3 5.412 0.136 0.472
Efraín Hernández
SVM1 1.488 0.381 0.244
SVM2 3.617 0.422 0.356
SVM3 1.963 0.551 0.299
Mérida
SVM1 4.585 0.108 0.291
SVM2 2.263 0.227 0.413
SVM3 7.250 0.598 0.402
Tantakín
SVM1 9.315 0.148 0.252
SVM2 5.835 0.110 0.404
SVM3 5.966 0.200 0.509
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Table 4. Training and test performance indicators by station.

Station/model
Training data Test data

R2 NSE RMSE 
(mm day-1)

MAE 
(mm day-1)

MBE 
(mm day-1) R2 NSE RMSE 

(mm day-1)
MAE 

(mm day-1)
MBE 

(mm day-1)
Calakmul
CatBoost1 0.859 0.824 0.444 0.334 -0.025 0.851 0.823 0.459 0.348 -0.035
SVM1 0.848 0.849 0.455 0.341 -0.006 0.862 0.862 0.447 0.340 0.008
ANFIS1 0.824 0.824 0.475 0.359 0.000 0.86 0.836 0.473 0.355 0.135
CatBoost2 0.760 0.657 0.578 0.441 -0.025 0.763 0.662 0.581 0.447 -0.032
SVM2 0.764 0.763 0.576 0.434 0.009 0.767 0.765 0.569 0.435 0.042
ANFIS2 0.766 0.766 0.547 0.415 0.000 0.759 0.697 0.707 0.538 0.254
CatBoost3 0.736 0.609 0.606 0.462 -0.026 0.732 0.601 0.619 0.475 -0.045
SVM3 0.7211 0.720 0.621 0.474 0.016 0.746 0.742 0.607 0.461 0.029
ANFIS3 0.732 0.732 0.586 0.445 0.000 0.695 0.646 0.765 0.580 0.240
Campeche
CatBoost1 0.861 0.824 0.475 0.365 -0.032 0.860 0.820 0.482 0.370 -0.028
SVM1 0.845 0.846 0.498 0.376 0.003 0.862 0.861 0.479 0.372 0.036
ANFIS1 0.858 0.858 0.477 0.359 0.000 0.807 0.800 0.569 0.422 -0.082
CatBoost2 0.791 0.716 0.582 0.448 -0.031 0.780 0.703 0.602 0.463 -0.017
SVM2 0.782 0.782 0.592 0.451 -0.011 0.793 0.792 0.584 0.455 0.006
ANFIS2 0.803 0.803 0.562 0.424 0.000 0.765 0.732 0.659 0.529 0.231
CatBoost3 0.743 0.626 0.645 0.494 -0.032 0.723 0.598 0.675 0.520 -0.022
SVM3 0.716 0.715 0.676 0.512 -0.034 0.745 0.744 0.652 0.508 -0.009
ANFIS3 0.746 0.746 0.638 0.481 0.000 0.683 0.654 0.749 0.598 0.212
Efraín Hernández
CatBoost1 0.871 0.837 0.406 0.311 -0.030 0.851 0.822 0.432 0.333 -0.029
SVM1 0.862 0.863 0.417 0.314 -0.008 0.864 0.864 0.411 0.315 -0.001
ANFIS1 0.862 0.862 0.415 0.312 0.000 0.846 0.828 0.451 0.338 -0.118
CatBoost2 0.821 0.772 0.474 0.361 0.000 0.800 0.744 0.506 0.387 0.013
SVM2 0.806 0.806 0.496 0.38 0.000 0.805 0.804 0.494 0.379 0.029
ANFIS2 0.8 0.801 0.497 0.379 0.000 0.801 0.779 0.512 0.385 -0.147
CatBoost3 0.782 0.698 0.523 0.400 0.000 0.741 0.663 0.578 0.445 -0.029
SVM3 0.757 0.757 0.547 0.417 -0.018 0.774 0.772 0.548 0.418 -0.007
ANFIS3 0.736 0.737 0.572 0.442 0.000 0.738 0.712 0.583 0.450 -0.142
Mérida
CatBoost1 0.934 0.927 0.374 0.280 0.000 0.924 0.918 0.381 0.289 -0.024
SVM1 0.923 0.924 0.394 0.300 0.017 0.937 0.936 0.371 0.285 0.035
ANFIS1 0.932 0.932 0.379 0.282 0.000 0.921 0.920 0.391 0.300 0.007
CatBoost2 0.847 0.811 0.569 0.438 0.000 0.839 0.807 0.556 0.442 -0.029
SVM2 0.834 0.834 0.574 0.449 0.006 0.834 0.833 0.580 0.450 0.015
ANFIS2 0.837 0.837 0.588 0.455 0.000 0.828 0.825 0.611 0.467 -0.035
CatBoost3 0.791 0.716 0.667 0.513 0.000 0.786 0.712 0.643 0.500 -0.050
SVM3 0.783 0.783 0.670 0.519 0.010 0.779 0.778 0.678 0.521 0.011
ANFIS3 0.765 0.765 0.706 0.551 0.000 0.749 0.741 0.705 0.537 -0.041
Tantakín
CatBoost1 0.906 0.892 0.428 0.321 -0.001 0.866 0.849 0.499 0.367 0.033
SVM1 0.887 0.887 0.467 0.346 -0.011 0.901 0.900 0.437 0.333 0.004
ANFIS1 0.896 0.897 0.458 0.340 0.000 0.861 0.858 0.485 0.357 -0.058
CatBoost2 0.778 0.700 0.659 0.507 -0.001 0.756 0.677 0.672 0.522 -0.004
SVM2 0.749 0.749 0.691 0.532 0.017 0.758 0.752 0.700 0.534 0.061
ANFIS2 0.797 0.798 0.640 0.489 0.000 0.736 0.536 0.877 0.730 -0.531
CatBoost3 0.751 0.644 0.699 0.536 -0.001 0.715 0.598 0.725 0.562 0.004
SVM3 0.705 0.705 0.745 0.574 0.000 0.738 0.737 0.731 0.563 0.008
ANFIS3 0.762 0.762 0.695 0.524 0.000 0.695 0.454 0.952 0.785 -0.571

Note: Models with the best fit during the test phase are shown in bold.
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phase. It should be noted that the R2, NSE, RMSE and 
MAE values are similar to those reached during the test 
phase; these values denote the absence of overfitting 
during training, due to the previous adjustment of the 
model’s parameters.

Tab. 5 shows the performance results of the HS 
model, as well as its calibrated empirical coefficient 
(Kcoef). On comparing these results with the AI-based 
models of scenario 3 (temperature-based), it is clearly 
observed that in general the AI-based models outper-
formed the HS method. In fact, many studies have 
shown the superiority of AI-based methods over the 
HS equation (Reis et al., 2019; Chen et al., 2020; Zhu et 
al., 2020). In addition, the calibration of the Ks coeffi-
cient considerably improved the performance of the HS 
models compared to the uncalibrated ones. On the other 
hand, the temperature- and extraterrestrial radiation-
based HS equation tended to overestimate ET0 in humid 
and sub-humid regions (Allen et al., 1998), with esti-
mates improving when calibrated in local climate con-
ditions (Almorox et al., 2015). However, the uncalibrat-
ed HS equation was found to underestimate ET0 under 
the warm sub-humid climate of the Yucatán Peninsula, 
according to the MBE statistic in Tab. 5. 

Overall, SVM showed the best performance among 
the three AI models, and comparing the CatBoost and 
ANFIS models, the CatBoost model showed better per-
formance than the ANFIS model for all three scenarios 
evaluated. These results agreed with the result obtained by 
Raza et al. (2020), who evaluated five AI-based methods, 
finding that the SVM method improves the accuracy of 
estimates in both hyper-arid and high-humidity climates. 
Similar results were obtained by Huang et al. (2019b) in 

humid regions of China when they evaluated the SVM, 
CatBoost and RF methods, finding that, of the three 
methods, SVMs offered the best prediction accuracy and 
stability with incomplete combinations of meteorological 
parameters as inputs (Tmin, Tmax, RH) with a RMSE value 
of 0.640 mm day-1, while CatBoost performed best with 
the complete combination of parameters (Tmin, Tmax, RH, 
U2 and Rs) with a RMSE value of 0.220 mm day-1. 

Regarding the bias of the AI-based models, Tab. 4 
shows that the SVM model had small positive MBE val-
ues during the test phase, suggesting that the SVM mod-
el slightly overestimates ET0 values at the study site, the 
exception being at the Campeche station when only tem-
perature data were used. Overall, the CatBoost method 
had a tendency to slightly underestimate the values of 
ET0, according to the negative MBE values. In the case 
of the ANFIS models, according to the MBE indicator, 
the model overestimated ET0 values at the Campeche 
and Calakmul stations, and underestimated ET0 values 
at the Efraín Hernández, Mérida and Tantakín stations.

One of the main advantages of AI-based models 
over traditional methods is that overfitting problems can 
be avoided by selecting an appropriate structure, such 
as in the case of ANFIS method, or by adjusting inter-
nal parameters through cross-validation in CatBoost or 
using algorithms in the case of SVM models.

The main advantage of the use of AI models is their 
capacity to model large amounts of noisy data from 
dynamic and non-linear systems. One of the main dis-
advantages of using AI-based models is that the trained 
algorithm to be used requires the use of specialized soft-
ware (i.e., MATLAB, R or Python) or, where appropri-
ate, it must be embedded as a module on an Arduino or 
Raspberry Pi board.

4. CONCLUSIONS

In the present study, the performance of SVM, 
ANFIS and CatBoost models was assessed for estimating 
daily ET0, considering climatic data from five weather 
stations located in the Yucatán Peninsula, Mexico. 

Overall, the SVM approach showed the best per-
formance for all evaluated scenarios for estimating ET0, 
which is helpful for irrigation scheduling in a warm 
sub-humid region of the Yucatán Peninsula, Mexico and 
possibly elsewhere with similar climate. In the present 
study, it has been shown that the use of the GA algo-
rithm combined with SVM-based models improves the 
accuracy of daily ET0 estimation.

Most of the previous works carried out in warm 
sub-humid climates include the relative humidity vari-

Table 5. Performance statistics of the Hargreaves–Samani model. 

Station/model R2 NSE
RMSE 
(mm 
day-1)

MAE 
(mm 
day-1)

MBE 
(mm 
day-1)

Kcoef

Calibrated 
Calakmul 0.692 0.582 0.826 0.614 0.241 0.0015
Campeche 0.653 0.623 0.775 0.615 0.217 0.0020
Efraín Hernández 0.678 0.634 0.653 0.507 -0.220 0.0019
Mérida 0.702 0.701 0.754 0.590 -0.012 0.0021
Tantakín 0.668 0.577 0.831 0.680 -0.373 0.0018

Uncalibrated 
Calakmul 0.692 0.534 1.681 1.540 -1.524 0.0023
Campeche 0.653 0.569 0.827 0.644 -0.346 0.0023
Efraín Hernández 0.678 0.342 1.250 1.101 -1.080 0.0023
Mérida 0.702 0.637 0.830 0.642 -0.346 0.0023
Tantakín 0.668 0.459 1.841 1.702 -1.677 0.0023
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Fig. 3. The FAO56-PM ET0 and estimated ET0 values obtained by the best AI model and calibrated HS model in each scenario during the 
testing phase.
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able in the model. In this study, the precipitation vari-
able was considered because the variability of tempera-
ture in the rainy season in the Yucatán region is strongly 
modulated by precipitation events. This way, adding pre-
cipitation data as a binary number in the rainfall-based 
scenario slightly increased model performance. Howev-
er, the inclusion of RH values into the relative humidity-
based scenario significantly improved estimation accura-
cy. A major disadvantage of this scenario is the unavail-
ability of RH data in some regions, while temperature 
and rainfall data are generally measured at all weather 
stations. This suggests that, if RH data are available, the 
SVM1 model should be used to obtain better results. 
Finally, a comparative analysis of model performance 
showed that the AI models have better ability than the 
HS model for ET0 modelling when only temperature 
records are available, although the HS model presents 
the advantage of using an algebraic equation, facilitating 
its application.

AI-based models can be a suitable alternative to 
conventional models for ET0 modelling; however, prior 
adjustment of their internal parameters by using a cross-
validation test is necessary to avoid overfitting. In the 
future, in order to improve the present study, it would 
be convenient to analyze the performance of the models 
under a seasonal analysis scheme, as well as the perfor-
mance of the models in the dry and rainy seasons. 

Thus, the results of this study indicate that SVMs 
increase the prediction accuracies of ET0 estimates in 
warm sub-humid tropical climates such as the Yucatán 
in Mexico, especially when air humidity is included in 
the model.
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