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Abstract. The effects of climate changes on agroecosystems can cause relevant issues. 
Using principal component analysis (PCA) we determined the 67 agricultural cli-
mate indicators (ACI) at 44 of Iran’s synoptic stations under current (1990-2019) and 
future (2025, 2050, 2075, and 2100) conditions. Based on UNESCO aridity index, the 
agroecological zonation (AEZ) was used to classify Iran’s regions (very dry, dry, semi-
dry and humid climates). Using the PCA method, the first 5 principal components 
were determined by including data sets for temperature (winter, spring, summer and 
autumn maximum and winter minimum temperature), precipitation (winter and sum-
mer precipitation), reference evapotranspiration (ETref), and the degree of growth days 
in spring and winter, which explained about 96 percent of the total variance. For each 
climate empirical equation for ETref was selected. In order to accurate evaluation of 
ETref were used The Penman-Monteith based on FAO56 (PM-FAO56) for the very dry 
climate, the Hargreaves equation for the semidry climate, and the Penman 1 and 2 
equations for the dry and humid climates, respectively. According to the results, the 
first component alone, with an eigenvalue of 41.15, explained more than 74 percent 
of the total variance. Based on the results of zoning by the PCA outcomes, the sta-
tions for 1990-2019 were classified into 7 zones. While 2025, 2050, 2075, and 2100 
were classified in 6, 7, 6, and 5 zones, respectively. Under the future climatic condi-
tions of the country, in terms of climatic indicators, the similarity between the stations 
will increase and the climatic diversity of the country will decline compared to cur-
rent conditions. The results demonstrated that the PCA method would be valuable for 
monitoring AEZ in semidry climates at reasonably long periods.

Keywords: agro-climatic indicators, agro-ecological zonation, empirical equation, ref-
erence evapotranspiration.

INTRODUCTION

Climate change and variability affects agriculture more than any other 
human activity. Given the role of agriculture in food production, investigat-
ing the impacts of climate change on agriculture give some important ele-
ments to evaluate the world’s future food security (Anwar et al., 2007; Chal-
linor et al., 2005; Choudhary et al., 2012; Torriani et al., 2007). In other 
words, these changes have a direct effect on agriculture and food security 
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(Brown & Funk, 2008; Schmidhuber & Tubiello, 2007). 
Therefore, this sector is the most vulnerable, especially 
in semi dry climates (Sharafi & Mir Karim, 2020). 

The effect of fluctuation on climatic parameters on 
crops, variety and phonological stage. Therefore, cli-
mate change can reduce economic incomes by reducing 
production in the agricultural sector and thus reduces 
individuals’ purchasing power, especially that of poor 
communities (Blazquez & Domenech, 2018). Solaymani 
(2018) confirmed the negative impact of rainfall-temper-
ature variability on food availability and access to food 
due to a reduction in the supply of agricultural prod-
ucts, a commodity inflation pressure and a reduction in 
household income in Malesia. Moreover, results suggest 
that the climate variability shocks lead to a reduction in 
the consumption and welfare of all household groups, 
particularly in rural areas.

On the basis of the aridity index of UNESCO, 
the climate of Iran is classified as dry climatic region 
(Sharafi & Ghaleni, 2021b), and therefore, its agriculture 
is highly dependent on precipitation and temperature. 
According to Rahim (2014) and Mohammed & Scholz 
(2019), the changes in precipitation patterns, directly 
and indirectly might reduce crop yield (Sánchez-Mar-
tín et al., 2017). Such changes exemplify just how much 
weather during the growing season, alongside long-
term changes in climate, are having a significant impact 
on regional and global crop production (Newlands & 
Zamar, 2012). The effects of climate change on crop pro-
duction are usually studied through crop physiology and 
ecology sciences. In a comprehensive review of the phys-
iological mechanisms of crop response, various aspects 
of the impacts of climate change on these processes have 
been presented. More details of the responses of different 
species of crops as well as related physiological mecha-
nisms can be reviewed from various resources (Nassiri 
et al., 2006; Kamali 2007). Although these studies are 
important in revealing crop growth responses to climate 
change, they do not provide data about the regional 
effects of climate change on crop production (e.g. rain-
fed wheat). Therefore, another part of this study investi-
gates the effect of climate change on crop production on 
a regional scale to provide complete information about 
the production situation, and future climate limitations 
and barriers to crop production. The complexity of such 
studies has led to far fewer scientific references than in 
the first group of studies (Hammer et al., 2001; Nassiri et 
al., 2006; Gholipoor 2008; Sharafi et al., 2016). 

Several researchers have evaluated the dependence 
of different empirical ETref equations on various mete-
orological parameters over different climates (Güçlü et 
al. 2017; Saggi and Jain 2019; Shiri et al. 2019; Ndiaye 

et al. 2020; Sharafi and Mohammadi Ghaleni 2021a, 
b). Sharafi and Mohammadi Ghaleni (2021b) evalu-
ated different empirical equations for ETref in differ-
ent climates of Iran. Their results found that the sim-
plest regression model (MLR) based on minimum and 
maximum temperature data was more precise than the 
empirical equations. They also recommended the solar 
radiation–based Irmak equation as the best substitute 
for the PM-FAO56 model, especially in dry and semidry 
climates. Furthermore, accurate measurement of ETref 
is used as an indicator to understand the concepts of 
climate change. To better evaluate ETref in each climate, 
it is necessary to be aware of the climatic conditions, 
the quality of the weather data, and the related costs 
(Sharafi et al., 2016). 

However, the study of the impacts of regional cli-
mate change on crop production is based on determin-
ing ACIs in the current situation, predicting future 
climatic conditions based on different scenarios by the 
current climate and climate change indicators, such as 
the GCM, calculation of ACIs under the conditions of 
climate change, comparison with the current condi-
tions, and finally evaluation of future climatic condi-
tions for plant growth and production (Antle, 1996; 
Holden & Brereton, 2004), but, the results of studies 
have confirmed that the PCA is suitable for analysis of 
agricultural climatic indicators on the regional scale 
and classification of stations studied in terms of simi-
lar agro-climatic characteristics (Gholipoor, 2009; Nas-
siri & Koocheki, 2006). PCA is a statistical method that 
converts a set of interdependent variables into a set of 
independent (non-interdependent) variables (John-
son, 1998). Many researchers have used this method 
to homogenize interdependent climate variables and 
use them in subsequent statistical analysis (Briggs & 
Lemin, 1992; Fovell and Fovell, 1993). PCA can also 
establish a functional relationship between variables 
and a close relationship between the Pearson correla-
tion coefficient of determination and graphical data 
distribution (Chatterchi & Hadi, 2012). The aim of this 
study is to develop and introduce ACIs by PCA on a 
regional scale and station zoning under future climatic 
conditions in very dry, dry, semi dry and humid cli-
mates. In the development of these indicators, criteria 
such as the availability of the required climatic param-
eters at the regional level and a simple and accurate 
working method have been considered. The introduced 
indicators can be calculated and applied for future time 
series with observational numerical values for climatic 
parameters under future climatic conditions (2025, 
2050, 2075 and 2100) of Iran.
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MATERIAL AND METHODS

Study area

Iran located in geographical coordinates between 25° 
and 39° north latitudes and 44° and 63° east longitudes, 
with an area of about 1.65 × 106 km2. The long-term 
monthly climatic data of precipitation (mm), tempera-
ture (maximum and minimum), relative humidity, wind 
speed, sunshine duration, and solar radiation from 1990 
up to 2019 in 44 synoptic stations have been used in this 
study. Data have been sourced from the Iranian Mete-
orological Organization of Iran (IRIMO). Some records 
of data input were incomplete, or not available for some 
stations, therefore only stations with long climatic period 
length remained. Due to the widespread geographical 
distribution of selected stations, complete coverage for 
different Iranian climatic regions is given. The studied 
synoptic stations were divided into four climatic regions, 
namely, very dry (13 stations), dry (15 stations), semi dry 
(11 stations), and humid climates (5 stations) (Table 1).

ETref evaluation

The methods for calculating ETref according to the 
type of input data (temperature, relative humidity, wind 
speed, precipitation, geographical coordinates, and alti-
tude of each station) include seven hybrid methods 
based on Penman (1948), two temperature-based meth-
ods, three hybrid radiation-temperature-based methods, 
and a radiation-based method (Zare et al., 2006; Sharafi 
and Ghalenee, 2021b). 

According to Sharafi and Ghaleni’s (2021a) results, 
the ETref were estimated by empirical equations of the 
PM-FAO56 for very dry climate, the Hargreaves equation 
for the semidry climate, and the Penman 1 and 2 equa-
tions for the dry and humid climates, respectively (Table 
1). At the same time, the Penman-Monteith method is 
a suitable method in most parts of the country due to 
its comprehensiveness (Sharafi and Ghalenee, 2021b). 
This method has been used in studies by Sun and Song 
(2008), Gong et al. (2008), Celestin et al. (2020), and oth-
ers. Since the condition for using this estimator is the 
normality of the studied variable (ETref), the Kolmog-
orov-Smirnov test was used. To evaluate the accuracy 
and measurement of the obtained results, there are simi-
lar statistics for measuring the validity of the models, 
among which is the coefficient of determination (R²), 
the root of square errors (RMSE), and mean bias error 
(MBE) (Jacovides, 1998). Based on the mentioned statis-
tics, the most appropriate method was proposed for each 
climate and was considered as the basic method for the 
studied stations (Table 1). 

The slope of the line and the coefficient of deter-
mination of ETref values (mm y-1) in the 5 climates are: 
very dry (19.91, R² = 0.6); dry (-18.43, r = 0.72); semi 
dry (17.54, R² = 0.83); semi humid (9.34, R² = 0.87); 
and humid (57.3, R² = 0.91). The stations were divided 
according to ETref values. In 2019, the maximum value 
of ETref was detected in Chabahar (14.56 mm d-1) and 
Abadan (13.38 mm per day); and the lowest value of 
ETref was at the Bandar Anzali (2.08 mm d-1) and Rasht 
stations (2.67 mm d-1), respectively. 

Table 1. The values of estimated error of ETref in models used for Iran’s climate.

Code Abs. Climate R2 RMSE
(mm day-1)

MBE
(mm day-1) Suggested model Reference

(1) P-MFAO56 Very dry
0.92 1.33 -0.37

Allen et al. (2006)
0.29 2.12 -0.86

(2) P-M1 Dry
0.43 0.73 -0.24

Penman (1948)
0.97 1.62 -0.77

(3) H-G Semidry 0.77 0.88 0.15 Hargreaves (1975) 

(4) P-M2 Humid
0.68 0.68 0.03

Penman (1948)
0.9 0.387 0.08

Average 0.74 1.12 0.195

ETref; reference evapotranspiration (mm day-1), △; the slope of saturation vapor pressure curve (mb °C-1), Rn; net solar radiation (MJ m-2 
day-1); G; soil heat flux density (mm day-1), γ; psychometric constant (kPa °C-1), Tmean; mean daily temperature (°C), U2: wind speed meas-
ured at 2 m height (m s-1), Ra; extraterrestrial radiation (mm day-1), λ; latent heat of vaporization (MJ kg-1), esa; saturation vapor pressure (k 
Pa), ea; actual vapor pressure (k Pa) and (es-ea); saturation vapor pressure deficit (k Pa).

900
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M-K test

Table 1 shows the seasonal climatic trends and sig-
nificance at the level of 1 and 5%. According to the 
M-K test results, many stations show an increase in 
mean temperature the autumn, winter, spring and sum-
mer seasons. The slope of the warming trend was much 
steeper in winter and summer. In dry and very dry cli-
mates, the trend of increasing mean temperature was 
observed during four seasons. In general, during the last 
30 years, in humid, semi dry, dry and very dry climates, 
about 75, 86, 81 and 89 percent of precipitation, respec-
tively, occurs in autumn and winter, respectively. There-
fore, the study of this climatic parameter has a very 
important role in better assessment and understanding 
of drought indicators. Accordingly, in all studied cli-
mates, a trend of reduced precipitation was observed, 
especially in winter; however, in semi dry and dry cli-
mates, this declining trend was more severe. Also, a 
decrease in precipitation in spring season was observed 
for stations in humid climate. On the other hand, in 
most semi dry and very dry climates, the amounts of 
increase in precipitation were reported in autumn sea-
son, although these values were not significant. Accord-
ing to the results of preliminary studies, ETref values in 
most of the stations studied in different climates have an 
increasing trend, which had an increasing and signifi-
cant trend in winter and summer. The difference in ETref 
values in humid and very dry climates is about 2452 mm 
per year (Table 2). 

GCM scenario

Three basic scenarios evaluate climate change 
impact: delta perturbation, analogue, and GCM. To a 
certain degree, they reflect the history of climate con-
struction since the construction method was recognized 
in line with the types of available data. Delta perturba-
tion and analogue have the simplest scenarios, whereas 
the GCMs are the most complex. For synthetic sce-
narios, a random alteration in a particular weather 
parameter is applied to an obtained time series. Pres-
ently, GCMs are the only reliable methods accessible for 
simulating the physical processes that detect the global 
climate situation (IPCC, 2014). Researchers depend on 
weather data that can be derived from GCM, which 
needs to be converted to a local scale using statistical 
or dynamical downscaling methods (Mukherjee & Sid-
dique, 2019). 

The UKMO (Version 3.0) GCM was developed at 
the Hadley Centre for Climate Prediction and Research, 
which is a part of the UK Meteorological Office. The 

model is one of a breed of coupled Ocean–Atmosphere 
GCMs (OAGCM) that require no flux corrections to be 
made. The GCM consists of a linked atmospheric model, 
ocean model and sea ice model. However, for the pre-
sent study we used only the atmospheric component of 
the model. By implementing UKMO-GCM for the years 
2025, 2050, 2075, and 2100, the monthly values of mini-
mum and maximum temperature, wind speed, and pre-
cipitation for different stations were calculated and the 
effects of climate change were determined based on the 
scenario defined in the model on these climatic param-
eters (Nassiri et al., 2006). Then, using the results of the 
implementation of GCM of all ACIs calculated in the 
current situation, again for the years 2025, 2050, 2075, 
and 2100, the values were calculated and by comparing 
these values and their differences with the current con-
ditions, the effects of climate change on the indicators 
were determined (Antle, 1996).

ACI

In general, the weight of the parameters is estimat-
ed based on the relative importance of the parameters. 
Most of the qualitative indicators developed for the 
parameters used are considered unequal weights with a 
sum equal to one (Sarkar and Abbasi, 2006). According 
to an aggregation function used to calculate ACIs, the 
weight of each parameter has a large effect on the cal-
culated final number (Sutadian et al., 2017; Sarkar and 
Abbasi, 2006; Uddin et al. 2021). In order to determine 
the weight for agricultural climate parameters, PCA 
method was used. In this method, by considering the 
mean values of specific vectors (αi) related to the first 5 
principal components, the weight vector related to quali-
tative parameters i to j (Ωi) was calculated using Equa-
tion (5):

 (5)

Where λi is the variance of the principal compo-
nent of i and P(j) is the cumulative variance (Eq. 6) to the 
principal component of j.

 (6)

The final weight of the parameters was calculated 
according to the calculated Ωi values for each parameter 
i (Casillas-García et al. 2021). The aggregation of ACI 
is the last stage in the development of an index. In this 
step, using the sub-indexed parameters and the weights 
related to each parameter, a number was obtained as a 
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Tab 2. Seasonal climatic trends at the selected weather stations over Iran.

Class Station
Tmean Precipitation ETref

Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. Aut. Win. Spr. Sum.

H
um

id

Babolsar 0.07△ 0.26▲ 0.11▲ 0.23▲ -0.05▽ -0.06 -0.07▽ 0.02● 0.00● 0.14▲ 0.04● 0.12▲

Bandar Anzali 0.05● 0.23▲ 0.07△ 0.16▲ -0.05▽ -0.14▼ -0.07▽ 0.05△ -0.03○ 0.11▲ -0.01○ -0.01○

Ramsar 0.07△ 0.27▲ 0.10△ 0.29▲ 0.04● 0.09△ -0.04○ 0.03● -0.01○ 0.16▲ 0.05● 0.15▲

Rasht 0.07△ 0.20▲ 0.09△ 0.19▲ -0.03○ -0.04○ -0.08▽ 0.03● -0.03○ 0.11▲ 0.02● 0.04●

Gorgan -0.05▽ 0.09△ 0.07△ 0.12▲ -0.11△ -0.09 -0.14△ -0.06▽ 0.01● 0.19▲ 0.15▲ 0.24▲

Se
m

i d
ry

Urmia 0.02● 0.19▲ 0.12▲ 0.13▲ 0.02● 0.02● -0.08▽ 0.04● 0.04● 0.21▲ 0.14▲ 0.18▲

Nowzheh 0.07△ 0.18▲ 0.07△ 0.13▲ 0.05△ -0.18▼ -0.03○ 0.06△ 0.04● 0.18▲ 0.05△ 0.15▲

Sanandej 0.06△ 0.20▲ 0.13▲ 0.18▲ 0.00● -0.26▼ -0.03○ 0.14▲ 0.05△ 0.20▲ 0.12▲ 0.23▲

Saqez 0.00● 0.11▲ -0.06▽ -0.05○ 0.01● -0.15△ -0.12△ 0.10△ -0.01○ 0.14▲ 0.03● -0.01○

Arak 0.03● 0.12▲ 0.07△ 0.02● -0.01○ -0.22▼ 0.01● 0.06△ -0.02○ 0.13▲ 0.02● 0.08△

Kermanshahan 0.09△ 0.17▲ 0.14▲ 0.24▲ 0.01● -0.11▼ -0.01○ 0.07△ 0.08△ 0.18▲ 0.14▲ 0.28▲

Khoramabad -0.02○ 0.04● 0.04● 0.13▲ 0.04● -0.12 ▼ 0.02● 0.08△ -0.01○ 0.06△ 0.07△ 0.18▲

Ilam 0.03● 0.10△ 0.09△ 0.19▲ 0.03● -0.11 ▼ 0.01● 0.08△ 0.03● 0.12▲ 0.10△ 0.23▲

ShahreKurd -0.06▽ 0.09△ -0.11▼ -0.16▼ 0.04● -0.08▼ 0.03● 0.16▲ -0.06 0.11▲ -0.07▽ -0.16▼

Qazvin 0.04● 0.18▲ 0.08△ 0.12▲ 0.06△ -0.05○ -0.01○ 0.08△ 0.04● 0.20▲ 0.09△ 0.12▲

Zanjan 0.04● 0.22▲ 0.06△ 0.09△ 0.05● -0.06 -0.02○ 0.12▲ 0.04● 0.23▲ 0.07△ 0.13▲

D
ry

Khoy 0.07△ 0.15▲ 0.15▲ 0.27▲ -0.03○ -0.15▼ -0.09▽ 0.10△ 0.07△ 0.16▲ 0.13▲ 0.26▲

Tabriz 0.04● 0.18▲ 0.11▲ 0.17▲ -0.06 -0.14▼ -0.10▼ 0.08△ 0.05△ 0.19▲ 0.11▲ 0.18▲

Dezful 0.00● 0.07△ 0.08△ 0.16▲ 0.03● -0.24▼ -0.02○ 0.15▲ 0.19▲ 0.39▲ 0.26▲ 0.39▲

Birjand 0.01● 0.10△ 0.05● 0.04● 0.06△ -0.06▽ 0.05△ 0.10△ 0.01● 0.12▲ 0.05● 0.05●

Fassa 0.04● 0.10△ 0.05● 0.04● -0.01○ -0.05○ -0.01○ 0.02● -0.20▼ -0.24▼ -0.18▼ -0.26▼

Isfahan 0.05● 0.13▲ 0.09△ 0.11▲ 0.00● -0.05○ 0.04● 0.02● 0.05● 0.14▲ 0.09△ 0.10△

Qom 0.00● 0.09△ 0.03● 0.03● 0.02● -0.07▽ 0.04● 0.06△ 0.01● 0.11▲ 0.04● 0.06△

Mashhad 0.12▲ 0.24▲ 0.16▲ 0.26▲ -0.01○ -0.05○ 0.05● 0.18▲ 0.09△ 0.23▲ 0.14▲ 0.28▲

Sabzevar 0.05● 0.18▲ 0.08△ 0.11▲ -0.03○ -0.13▼ 0.04● 0.06△ 0.05● 0.18▲ 0.08△ 0.13▲

Semnan 0.01● 0.12▲ 0.09△ 0.09△ 0.03● -0.08▽ 0.00● 0.07△ -0.02○ 0.10△ 0.06△ 0.05●

Shahroud 0.06△ 0.17▲ 0.11▲ 0.12▲ -0.05▽ -0.07▽ -0.11▼ 0.11▲ 0.03● 0.15▲ 0.09△ 0.10△

Shiraz 0.06△ 0.13▲ 0.10△ 0.13▲ 0.04● -0.06▽ 0.01● 0.13▲ 0.07△ 0.14▲ 0.11▲ 0.16▲

Tehran 0.05△ 0.20▲ 0.10△ 0.13▲ 0.03● -0.08▽ -0.02○ 0.13▲ -0.01○ 0.13▲ 0.03● 0.03●

Torbat Heydarieh 0.00● 0.09△ 0.03● 0.01● 0.01● -0.10▽ 0.02● 0.10△ -0.02○ 0.09△ 0.02● 0.00●

Kerman 0.12▲ 0.17▲ 0.09△ 0.14▲ 0.05● -0.15 ▼ -0.01○ 0.03● 0.12▲ 0.19▲ 0.09△ 0.15▲

Ve
ry

 d
ry

Bam 0.07△ 0.17▲ 0.13▲ 0.21▲ -0.01○ -0.07▽ -0.02○ -0.08▽ 0.02● 0.15▲ 0.10△ 0.21▲

Iranshahr 0.05● 0.10△ 0.06△ 0.07△ 0.01● -0.04○ 0.01● 0.00● 0.02● 0.08△ 0.03● 0.06△

Tabass 0.11▲ 0.17▲ 0.17▲ 0.21▲ 0.02● 0.04● 0.01● 0.04● 0.11▲ 0.15▲ 0.17▲ 0.23▲

Yazd 0.11▲ 0.20▲ 0.12▲ 0.16▲ 0.03● -0.13▼ 0.04● 0.15▲ 0.11▲ 0.20▲ 0.11▲ 0.18▲

Zabol 0.05● 0.11▲ 0.10△ 0.19▲ 0.00● -0.09▽ 0.06△ -0.06▽ 0.03● 0.14▲ 0.09△ 0.18▲

Zahedan 0.06△ 0.14▲ 0.10△ 0.09△ 0.00● -0.05▽ 0.02● 0.14▲ 0.05△ 0.15▲ 0.07△ 0.09△

Abadan 0.07△ 0.15▲ 0.15▲ 0.31▲ 0.01● -0.14▼ 0.03● -0.02○ 0.06△ 0.14▲ 0.16▲ 0.34▲

Ahwaz 0.09△ 0.17▲ 0.17▲ 0.27▲ -0.03○ -0.12▼ -0.01○ -0.04○ -0.04○ 0.05△ -0.02○ -0.15▼

Bandar Abbas 0.03● 0.08△ 0.03● 0.02● 0.10△ -0.06▽ 0.05● 0.11▲ -0.28▼ -0.30▼ -0.31▼ -0.35▼

Bandar Lengeh 0.12▲ 0.20▲ 0.12▲ 0.26▲ 0.09△ -0.10▼ 0.03● 0.02● 0.05● 0.13▲ 0.07△ 0.22▲

Bushehr 0.07△ 0.16▲ -0.01○ 0.00● 0.05● -0.08▽ 0.03● 0.30▲ 0.02● 0.12▲ -0.17 ▼ -0.31▼

Chabahar 0.06△ 0.13▲ 0.06△ 0.00● -0.02○ -0.08▽ -0.01○ -0.05○ -0.13▼ -0.09▽ -0.18▼ -0.25▼

Jask 0.11▲ 0.21▲ 0.10△ 0.08△ 0.05● -0.14 ▼ 0.14▲ -0.06▽ 0.17▲ 0.25▲ 0.14▲ 0.14▲

C○l○ur map 
Kendall’s Tau (τ) 
▲, significant at 1% with increasing trend; ▼, significant at 1% with decreasing trend; △, significant at 5% with increasing trend; ▽, signifi-
cant at 5% with decreasing trend; ●, not significant with increasing trend; ○, not significant with decreasing trend.
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score for the quality of the parameter. The aggregation 
function of ACI can be additive functions, multiplicative 
functions or a combination of these two functions (Suta-
dian et al., 2016).

In order to evaluate 67 agricultural climate indica-
tors, 36 temperature variables including; the minimum 
temperature in winter (12 variables), the maximum tem-
perature in winter (12 variables), winter precipitation (6 
variables), summer precipitation (6 variables), the maxi-
mum temperature in spring, summer, and autumn (12 
variables), ETref (12 variables) in different seasons, degree 
of growth days in spring and winter (4 variables) and 
forest day in spring, fall and winter seasons (3 variables) 
(Appendix 1). The PCA technique was used to evalu-
ate ACIs at 44 stations in Iran. SAS software (V.13.1) 
was used to perform PCA (Rosenzweig et al., 1995). 
For this purpose, 67 ASCII data files were first placed 
in a set. The PRIN COMP PROC command was used 
to provide principal components of the data. The prin-
cipal components were implemented in the correlation 
matrix because the analyzed variables had very different 
numerical values and their mean and standard devia-
tion were very different due to measurement in different 
units. It should be noted that the application of PCA on 
the coefficient of determination matrix is equivalent to 
the application of this technique on standardized data 
(Fovell & Fovell, 1993). According to the PCA results, 
eigenvalues and eigenvectors related to each of the prin-
cipal components were calculated and evaluated (Nassiri 
et al., 2006). ACIs of different stations, calculated based 
on the results of the GCM model under climate change 
conditions, were also exposed to PCA after becoming 
67 indicators and their principal components under cli-
mate change conditions were determined. Finally, all 
ACIs calculated under the current conditions and differ-
ent scenarios of climate change along with their princi-
pal components were compared and the effect of climate 
change on these indicators was evaluated (Appendix 1).

RESULTS AND DISCUSSION

Statistical analysis of ACIs

Having implemented PCA, the first 5 principal com-
ponents explained about 100 percent of the total vari-
ance. In general, statistically speaking, there is no spe-
cific method for selecting the number of components 
that should be retained, so selecting 5 components in 
this study was a judgment call. Note, however, that the 
simplest criterion for selecting the number of compo-
nents is to retain a number that can explain 95 percent 
of the total variance. Accordingly, the presence of 4 

principal components was sufficient to explain 95 per-
cent of the total variance. Further analysis showed that 
it is not necessary to add a new component because by 
excluding the fifth component, the statistical accuracy 
of the next analysis was not much reduced. Table 2 pre-
sents the eigenvalues of the coefficient of the determina-
tion matrix and the part of the total variance explained 
by each of the 5 principal components. According to the 
results, the first component with an eigenvalue of 41.15 
alone explained more than 75 percent of the total vari-
ance. These values are reduced in subsequent compo-
nents, respectively, and finally the fifth component, with 
an eigenvalue less than one, explained a small amount of 
the total variance percentage. Furthermore, the first four 
principal components can explain 98.85 percent of the 
total variance; however, as mentioned earlier, the pres-
ence of the fifth component only improved the accuracy 
of this analysis and subsequent analysis (Table 3).

Appendix 1 presents eigenvalues for each of 67 vari-
ables in 5 principal components. As shown, the first 
principal component is filled with load temperature 
variables (variables 1 to 36 of Appendix 1). Load or load-
ing is the power (with values from -1 to +1) of the coef-
ficients related to each of the variables integrated into 
a principal component. The highest load of the second 
principal component is related to the winter minimum 
temperature, the winter precipitation, and the variables 
of autumn, winter and spring precipitation and ETref 
(variables 4, 12, and 37-60 of Appendix 1). The maxi-
mum load of the third principal component is the winter 
minimum, average, and maximum temperature (vari-
ables 16, 20, and 24 of Appendix 1). The fourth princi-
pal component showed its highest load for the summer 
minimum, average, and maximum temperature, the 
spring maximum temperature, and the winter mini-
mum, average, and maximum precipitation and ETref 

Table 3. Eigenvalues of the correlation matrix and amount of vari-
ance described by each of the 5 principal components.

PCA Eigenvalue Difference* Ratio of total 
variance

Cumulative 
ratio of total 

variance**

PCA 1 0.7689 0.7358 32.0756 40.8927
PCA 2 0.9265 0.1563 6.2138 9.3025
PCA 3 0.9734 0.0542 2.0022 3.0531
PCA 4 0.9814 0.0191 0.2093 1.0526
PCA 5 0.9991 0.0148 0.1208 0.8409

* The difference between the eigenvalues of two successive compo-
nents.
** The cumulative value of the ratio of variance described by suc-
cessive components.
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(variables 17, 18, 22, 17, 17, 40, 44, 48, 52, 56 and 60 in 
Appendix 1). The fifth principal component had a posi-
tive load for variable degree of growth days in winter 
and spring, and the spring minimum, maximum, and 
average precipitation (variables 32, 38, 39, 42, 46, 50, 54, 
and 58 of Appendix 1). Accordingly, Table 4 summarizes 
the information integrated into each of the 5 principal 
components, which together explain 99 percent of the 
total variance in agricultural climate data.

In this study, using the geographic information sys-
tem related to the country’s stations, after implemen-
tation of the program and based on the variables inte-
grated into the 5 principal components, the stations were 
placed in seven climatic areas. Fig. 2 shows the location 
of these areas based on the first and second principal 
components, which together explain about 91 percent 
of the total variance among the data (Table 3). There-
fore, according to the set of indicators of agricultural 
climatology used in this study, stations with the maxi-
mum climatic similarity were placed in a group. It is not 
possible to group the studied stations based on 67 indi-
cators at a stage. Therefore, as mentioned earlier, at the 
first stage the indicators of agricultural climatology were 
placed in 5 principal components, and then, by the geo-
graphic information system based on the principal com-
ponents, the stations of the same climate were placed in 
the same area.

Statistical analysis of agricultural climatic indices under 
conditions of climate change

The results of statistical analysis showed that under 
the conditions of climate change, 4 principal compo-
nents will explain more than 96 percent of the total data 
variance, while in the current situation, to explain the 
variance of agricultural climate data, 5 principal com-
ponents were defined (Table 3). The properties of the 4 
components related to climate change conditions are 

presented in Table 5. Also, the first and the second, are 
the same in the current situation and under climate 
change conditions, but the other components are differ-
ent (Table 5). Various researchers have cited tempera-
ture, precipitation, and the climatic indicators of their 
crops (e.g. the duration of the growing season or of the 
dry season) as the most important variables affecting 
crop growth and development.

The results show that under climate change condi-
tions, the set of information about temperature, pre-
cipitation, and the indicators obtained from them will 
be the principal climatic components in Iran; however, 
the contribution of these components to explaining the 
properties of the studied stations compared with dif-
ferent current conditions is somehow different. These 
results are consistent with the study results of Solaymani 
et al. (2018), who examined the effects of climate change 
on Malaysian food security. Table 6 presents the eigen-
values and the amount of variance explained by each of 
the principal components under climate change condi-
tions. Comparing these results with the values presented 
in Table 6 shows that under climate change conditions, 
the contribution of the first principal component (tem-
perature information) to the explanation of total has 
declined and in contrast, the role of the second princi-
pal component (precipitation information) in overall 
variance has increased; in addition, the second princi-
pal component for 2050 has been much more effective 
than 2025 and 2100. In other words, the second princi-
pal component will have a decreasing trend of precipita-
tion and an increasing trend of temperature. Therefore, 
it seems that under future climate change conditions of 
the country, the amount of precipitation and agricultural 
climate indicators related to it will be more important 
compared to the current situation, and in contrast to 
the role of temperature and its indicators, will be some-
what reduced compared to specific conditions. Accord-
ingly, it can be concluded that although the increase in 
temperature in many parts of the country will prolong 
the growing season, at the same time an increase in the 

Table 4. The description of information for each of the 5 principal 
components.

PCA Description information

PCA 1 The sum information of temperature (min, max, and mean)
PCA 2 The winter minimum temperature and ETref 
PCA 3 The winter minimum and average ETref, the winter 

minimum temperature
PCA 4 The winter precipitation, the summer ETref, the spring, 

summer, and autumn maximum temperature 
PCA 5 Growth degree days (GDD) in spring and winter, the 

summer precipitation

Table 5. The description of information for each of the 5 principal 
components of climate change (2025, 2050, 2075, and 2100).

PCA Description information

PCA 1
The summed information of temperature (min, max, and 
mean, respectively)

PCA 2
The summed information of precipitation, the summer 
ETref  

PCA 3
The autumn minimum temperature, the summer maximum 
temperature 

PCA 4 The winter ETref, growing degree days in spring
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duration of the dry season will create limitations for new 
agricultural climate indicators that are not very obvious 
in the current situation. Confirmation of this conclusion 
requires further studies on the growth and development 
responses of crops under the expected future climatic 
conditions of Iran.

Fig. 1 shows the zoning of stations by PCA in terms 
of agricultural climate indicators (1990-2019). Based on 
this, the studied stations are located in 6 classes but the 
second class was not located in any of the climatic zones. 
The northern regions of the country were located in 
class 7 and the southern, southwestern, and southeastern 
regions were located in class 1. There is climatic diversity 
in the western and northwestern regions of the country. 
By crossing the northwest and west of the country to 
the central, southern, northern, and eastern regions, cli-
mate diversity is reduced and the country is divided into 
two parts including humid (class 7) and very dry (south, 
center, and east) climates. The southern coastal region, 
due to rising temperatures and lack of suitable vegeta-
tion, and despite its high relative humidity, was located 
in class 1 (Table 7).

Agricultural climate data for the studied stations 
were reclassified after determining the PCA under cli-
mate change conditions. The position of the stations 
under climate change conditions is shown in Fig. 2 for 
the years 2025 (6 zones), 2050 (7 zones), 2075 (6 zones), 
and 2100 (5 zones) (Table 8). According to these results, 
under future climatic conditions of the country, the 
similarity between the climates will increase in terms of 
ACIs, and in fact, the climatic diversity of the country’s 
agriculture will decline compared to current conditions. 
Also, with the intensification of future climate change, 
as shown in Fig. 2, the density of stations within each 
area increase, confirming the uniformity of conditions 
in that climate.

Although the effect of climate change on Iran’s cli-
mate is not certain, the study results of various research-
ers confirm this (Nassiri et al., 2006). On the one hand, 
the effect of climate change on agricultural climatic 

indicators and finally the displacement of agricultural 
climatic areas has been reported by some research-
ers (Antle, 1996; Rosenzweig et al., 1995). For exam-
ple, Holden and Brereton (2004) and Araya et al. (2010) 
showed that future climate change would affect agricul-

Table 6. The eigenvalues and described variance for each of the 5 principal components in the situation of climate change (2025, 2050, 2075, 
and 2100) based on the results of the general circulation model (GCM).

PCA
Eigenvalues Ratio of total variance Cumulative ratio of total variance*

2025 2050 2075 2100 2025 2050 2075 2100 2025 2050 2075 2100

PCA 1 0.49207 0.50396 0.54910 0.60579 0.49207 0.50396 0.54910 0.60579 25.8314 27.1001 31.020 37.1914
PCA 2 0.94048 0.87647 0.89778 0.89174 0.44841 0.37251 0.34868 0.28595 24.1833 22.1990 20.1212 17.3120
PCA 3 0.96177 0.90782 0.94274 0.94443 0.02129 0.03135 0.04496 0.05269 2.8616 2.0312 2.4511 3.0824
PCA 4 0.97871 0.92186 0.95802 0.95998 0.01694 0.01404 0.01528 0.01555 1.0281 0.8817 0.9142 0.9101

* The cumulative value of the ratio of variance described by successive components.

Fig. 1. Map showing the zoning of stations based on PCA (1990-
2019).

Table 7. The classification of stations based on PCA (1990-2019).

Class Stations 

1

Abadan, Ahwaz, Bam, Birjand, Bandar Abbas, Bushehr, 
Chabahar, Ilam, Jask, Qom, Kerman, Sabzevar, Semnan, 
Shahroud, Shiraz, Tehran, Torbat Heydarieh, Yazd, Zabol, 
Zahedan, Iranshahr, Isfahan

3 Arak, Khoy, Mashhad, Tabriz
4 Bojnord, Nozheh, Kermanshah, Qazvin, Zanjan
5 Ardabil, Urmia, Saqez, Sanandej, ShahreKurd
6 Gorgan, Khoramabad
7 Bandar Anzali, Rasht, Nowshahr
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tural climate climates, reducing potential crop produc-
tion in Ireland and Ethiopia, respectively. Solaymani 
(2018) also showed that climate variables reduce the food 
security and well-being of poor families, especially in 
rural areas of Malaysia. Accordingly, and considering 
the results obtained in the case of Iran, it seems that the 
effects of climate change on a regional scale along with 
studies on the physiological consequences of this phe-
nomenon are important and should be considered.

Vaghefi et al. (2019) used five climate models to pro-
ject temperature and precipitation distribution across 
Iran. They confirmed that compared to the period of 
1980–2004, in the period of 2025–2049, Iran is likely to 
experience more extended periods of extreme tempera-
tures in the dry and very dry climates (for ≥120 days: 
precipitation <2 mm, Tmax ≥30°C) as well as humid 
climates (for ≤3 days: total precipitation ≥110 mm) con-
ditions. Also, Panahi et al. (2020) evaluated data time 

series of temperature, precipitation, runoff, ETref, and 
water storage change, to determine their situation and 
variations in Iran (1986–2016). They found that the 
country warmed, precipitation typically decreased, while 
ETref increased in dry and very dry climates. Overall, 
the extra water provided from primarily groundwater 
depletion has fed and kept ETref at levels beyond those 
sustained by the annually renewable water input from 
precipitation. Therefore, this shows unsustainable water 
consumption for maintaining and expanding human 
activities, such as irrigated agriculture. 

CONCLUSIONS

The study results show that the PCA method under 
climate change conditions explained more than 96 per-
cent of the observed changes among the climatic data 

Fig. 2. The predicated maps of climate classification based on PCA for 2025, 2050, 2075, and 2100 in Iran.



26 Saeed Sharafi

of the 44 weather nation-wide stations studied. Note 
that the first two principal components, i.e. tempera-
ture and precipitation information and their associated 
climatic indicators (especially ETref, which is a combi-
nation of all climatic parameters) explained more than 
90 percent of the change in the current situation and 
climate change. However, if future changes occur, the 
contribution of precipitation to the current situation 
will increase and the role of the temperature will reduce 
relatively. According to the results, it seems that under 
these conditions, Iran’s climatic diversity has already 
been reduced to some extent and the climatic similar-
ity between the areas is increasing. Therefore, given the 
climatic stability of the country’s very dry climates till 
2050 and the addition of stations located in dry climate 
to a very dry climate by 2100, the central, western, and 
northwestern, eastern, and southeastern regions are 
expected to be under very dry conditions. 

It is necessary to mention that each developed index 
has advantages and disadvantages and can be used in a 

limited situation and for specific purposes. High uncer-
tainty, specific and limited application, and overestima-
tion or underestimation are among the most important 
disadvantages of most agro-climatological indicators. 
Therefore, confirmation of these results requires more 
extensive studies (review of more diverse models), espe-
cially the growth response of plants in the future climat-
ic conditions of Iran. Given that only one general circu-
lation model was used in the present study, it is suggest-
ed that more models be used in future research.
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Appendix 1. The special vectors of the main components.

Variable Variable description PC 1 PCA 2 PCA 3 PCA 4 PCA 5

Temperature
VAR1 tmin_minsp 0.16450 0.14441 0.02848 -0.12959 -0.00295
VAR2 tmin_minsu 0.12960 0.05561 0.00245 0.08367 0.04738
VAR3 tmin_minf 0.14060 0.12796 -0.03723 -0.04595 -0.02857
VAR4 tmin_minw 0.11160 0.21297 0.04838 -0.22508 -0.09398
VAR5 tmin_maxsp 0.15854 0.09397 -0.21826 -0.18485 0.00927
VAR6 tmin_maxsu 0.13953 0.02859 -0.22820 -0.00255 0.04716
VAR7 tmin_maxf 0.11035 0.09375 -0.21926 -0.16883 0.01272
VAR8 tmin_maxw 0.13504 0.15051 0.03738 -0.23938 -0.03640
VAR9 tmin_avgsp 0.13949 0.12921 -0.12072 0.00945 -0.00616

VAR10 tmin_avgsu 0.16554 0.02086 -0.26172 -0.01299 0.02835
VAR11 tmin_avgf 0.12383 0.11950 -0.13281 -0.16266 -0.01949
VAR12 tmin_avgw 0.10964 0.22985 0.00949 -0.14321 0.00272
VAR13 tmax_minsp 0.11360 0.01850 0.12050 0.07398 0.00650
VAR14 tmax_minsu 0.16348 -0.05825 0.03838 0.21946 0.09288
VAR15 tmax_minf 0.15027 -0.06380 0.12942 0.08409 -0.01628
VAR16 tmax_minw 0.12897 0.04636 0.21245 -0.07848 -0.03858
VAR17 tmax_maxsp 0.17035 -0.03850 0.03988 0.19298 0.01848
VAR18 tmax_maxsu 0.14478 -0.13740 0.00949 0.20209 0.01949
VAR19 tmax_maxf 0.13894 -0.08450 0.04848 0.18939 0.01849
VAR20 tmax_maxw 0.13034 0.04738 0.31949 -0.01748 -0.00140
VAR21 tmax_avgsp 0.18043 0.00187 0.09844 0.13938 0.02385
VAR22 tmax_avgsu 0.13222 -0.08056 0.02848 0.21041 0.01295
VAR23 tmax_avgf 0.14006 -0.07521 0.09387 0.13939 -0.03925
VAR24 tmax_avgw 0.14039 0.02815 0.34939 -0.02646 -0.04848
VAR25 tavg_minsp 0.14887 0.08386 0.06851 -0.01285 -0.00464
VAR26 tavg_minsu 0.16941 -0.00221 -0.06816 0.12948 0.04839
VAR27 tavg_minf 0.18247 0.04840 0.08738 0.09359 -0.04921
VAR28 tavg_minw 0.11841 0.12960 0.20195 -0.20849 -0.04849
VAR29 tavg_maxsp 0.14847 0.00066 -0.06386 0.12249 0.02858
VAR30 tavg_maxsu 0.11048 -0.04816 -0.11027 0.12939 0.02859
VAR31 tavg_maxf 0.14354 0.08285 -0.07382 0.07377 0.02858
VAR32 tavg_maxw 0.11588 0.11941 0.19384 -0.13939 -0.04849
VAR33 tavg_avgsp 0.13570 0.04840 -0.05463 0.02783 0.02858
VAR34 tavg_avgsu 0.14942 0.02046 -0.02027 0.11409 0.02906
VAR35 tavg_avgf 0.16247 0.01295 -0.00112 0.01946 -0.00927
VAR36 tavg_avgw 0.12360 0.11951 0.11782 -0.09387 -0.10395

Precipitation
VAR37 ppt_minsp -0.08707 0.26999 0.04887 0.14991 0.03001
VAR38 ppt_minsu -0.11046 0.13127 -0.03981 -0.06542 0.26653
VAR39 ppt_minf -0.103 0.25092 0.02090 0.12942 0.00538
VAR40 ppt_minw -0.09034 0.25978 -0.01092 0.27551 -0.04027
VAR41 ppt_maxsp -0.12041 0.24091 0.02219 0.13090 0.03639
VAR42 ppt_maxsu -0.13914 0.16592 0.06048 -0.00776 0.19442
VAR43 ppt_maxf -0.07797 0.22092 -0.00337 0.22082 -0.00548
VAR44 ppt_maxw -0.07806 0.26507 0.01093 0.25047 -0.06542
VAR45 ppt_avgsp -0.12313 0.25082 0.03129 0.13092 0.00438
VAR46 ppt_avgsu -0.13423 0.12002 -0.00897 0.06199 0.23693
VAR47 ppt_avgf -0.01865 0.27227 -0.00598 0.12783 -0.00819
VAR48 ppt_avgw -0.09995 0.25548 0.00167 0.25582 -0.09694
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ETref

VAR49 eto-minsp -0.01805 0.24907 0.03588 0.11597 0.03247
VAR50 eto-minsu -0.14730 0.11586 -0.06691 0.25955 0.23687
VAR51 eto-minf -0.11508 0.22580 0.01577 0.11162 0.08666
VAR52 eto-minw -0.10114 0.21505 -0.00797 0.00996 -0.07724
VAR53 eto-maxsp -0.11319 0.30377 0.03476 0.14958 0.05143
VAR54 eto-maxsu -0.12194 0.17147 0.06266 0.22705 0.19068
VAR55 eto-maxf -0.08000 0.25199 -0.03264 0.20395 -0.07998
VAR56 eto-maxw -0.09242 0.24250 0.01213 0.00977 -0.08323
VAR57 eto-avgsp -0.11526 0.23413 0.04426 0.14934 0.04450
VAR58 eto-avgsu -0.13722 0.17167 -0.01058 0.27614 0.22394
VAR59 eto-avgf -0.10516 0.24775 -0.00915 0.16213 -0.01096
VAR60 eto-avgw -0.07662 0.22288 0.00303 -0.05244 -0.09554

GDD
VAR61 gddsp 0.11312 0.00599 -0.03034 0.13090 0.21253
VAR62 gddsu 0.17077 -0.01446 -0.01383 0.10592 0.08954
VAR63 gddf 0.15094 0.01208 -0.06947 0.08581 0.09602
VAR64 gddw 0.07279 0.07002 0.09964 -0.12650 0.09951

Frosty days
VAR65 frz_free 0.11368 0.11417 -0.14843 -0.09487 -0.09497
VAR66 frz_fall 0.13310 0.10408 -0.09587 -0.12554 -0.08497
VAR67 frz_spr -0.13050 -0.11077 0.12722 0.01679 0.04943

* t; temperature, ppt; precipitation, eto; reference evapotranspiration, min; minimum, max; maximum, avg; average, sp; spring, su; summer, 
f; fall, w; winter, gdd; growth degree days, frz-free; frostless days, frz-fall; fall frost days, frz-spr; spring frost days.
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