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Abstract. Pan evaporation (Epan) of class A pan evaporimeter under local semi-arid 
conditions was modelled in this study based on meteorological observations as input 
data using an integrated regression approach that includes three steps: a) first step: 
appropriate selection of transformations for reducing normality departures of inde-
pendent variables and ridge regression for selecting variables with low collinearity 
based on variance inflation factors, b) second step (RCV-REG): regression (REG) of 
the final model with selected transformed variables of low collinearity implemented 
using an iterative procedure called “Random Cross-Validation” (RCV) that splits multi-
ple times the data in calibration and validation subsets considering a random selection 
procedure, c) robustness control of the estimated regression coefficients from RCV-
REG by analyzing the  sign (+ or -) variation of their iterative solutions using the 95% 
interval of their Highest Posterior Density Distribution (HPD). The iterative procedure 
of RCV can also be implemented on machine learning methods (MLs) and for this 
reason, the ML method of Random Forests (RF) was also applied with RCV (RCV-
RF) as an additional case in order to be compared with RCV-REG. Random splitting 
of data into calibration and validation set (70% and 30%, respectively) was performed 
1,000 times in RCV-REG and led to a respective number of solutions of the regres-
sion coefficients. The same number of iterations and random splitting for validation 
was also used in the RCV-RF. The results showed that RCV-REG outperformed RCV-
RF at all model performance criteria providing robust regression coefficients associ-
ated to independent variables (constant signs of their 95% HPD interval) and better 
distribution of validation solutions in the iterative 1:1 plots from RCV-RF (RCV-RG: 
R2=0.843, RMSE=0.853, MAE=0.642, MAPE=0.081, NSE=0.836, Slope(1:1 plot)=0.998, 
Intercept(1:1 plot)=0.011, and RCV-RF: R2=0.835, RMSE=0.904, MAE=0.689, MAPE= 
0.088, NSE=0.818, Slope(1:1 plot)=1.120, Intercept(1:1 plot)=-1.011, based on the 
mean values of 1,000 iterations). The use of RCV approach in various modelling 
approaches solves the problem of subjective splitting of data into calibration and vali-
dation sets, provides a better evaluation of the final modelling approaches and enhanc-
es the competitiveness of typical regression models against machine learning models.
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1. INTRODUCTION

Evaporation is among the leading components of the 
hydrologic cycle since it transforms liquid water into gas 
form, which is diffused into the atmosphere enriching 
the clouds that regulate precipitation. For this reason, it 
is always a hot research topic especially during the last 
years when the analysis of climate change has become a 
crucial component in developing water resources man-
agement plans (Konapala et al., 2020; Althoff et al., 2020). 
The evaporative water flow rate from large water bodies is 
significant and the simulation of this loss is prerequisite 
to understand the contribution of evaporation to hydro-
logic cycle under varying climatic conditions.

The most common experimental procedure for 
measuring water evaporation is the pan evaporation 
(Epan) method. This method is based on measurements 
of water level fluctuations in evaporimeter tanks (pans), 
which have specific properties. The most common evap-
orimeter types are the class A and the Colorado sunken 
pans (Doorenbos and Pruitt, 1977; Allen et al., 1998). 
Although, pan evaporation observations are not equiv-
alent to evaporation rates of large water bodies (e.g. 
lakes), their values are highly correlated and can be use-
ful in understanding the mechanisms that take place 
between the water surface and the atmosphere, helping 
to find transition methods between the magnitudes of 
the two different evaporation types (i.e. pan, lake evapo-
ration) (Finch and Hall, 2001).

Evaporation measurements are extremely useful for 
researchers and water resources planners, but the instal-
lation and the preservation of evaporation pans exhib-
its a lot of difficulties since their employment cannot be 
fully automated (e.g. water filling, cleaning of pan etc). 
For this reason, pan evaporimeter is not a basic instru-
ment of a meteorological station and this led to many 
efforts for modelling pan evaporation by using mete-
orological parameters (Finch and Hall, 2001). The first 
models that were developed are transformations of 
energy balance equations in combination with terms of 
water vapor removal (Penman, 1948, 1956; Brutsaert and 
Lei Yu, 1968). Later, more comprehensive models were 
developed, which considered more processes involved 
in the procedure of evaporation, through the evaluation 
of existing energy balance models (Xu and Singh, 1998; 
Molina et al., 2006; Valiantzas, 2006). Other models 
were simply based on regression analysis using measure-

ments from typical meteorological stations and evapora-
tion pans under various climates that differ in the num-
ber of required input variables and their form (Irmak 
and Haman, 2003; Konvoor and Nandagiri, 2007; Alme-
deij, 2012).

The last years, artificial intelligence has become very 
popular in many research fields, as well as in hydrology 
and agrometeorology, and the derived machine learning 
(ML) algorithms have significantly improved the perfor-
mance of modelling efforts. Machine learning models do 
not consist of mathematical equations, which describe 
physical processes, but they are data driven models, so 
called black-box models, and their parameterization 
and performance depends on the attributes of the avail-
able data. Since the beginning of 2000, the first Machine 
Learning implementation approaches have been imple-
mented to calculate daily Epan, mainly using artificial 
neural network (ANN) methods and, in general, per-
formed better compared to regression models (Bruton et 
al., 2000; Keskin and Terzi, 2006; Piri et al., 2009; Rahi-
mikhoob, 2009; Shirsath and Singh, 2010; Tabari et al., 
2010; Kim et al., 2012; Alsumaiei, 2020). Except for the 
ANN models, at that time, researchers had developed 
models using fuzzy logic to estimate Epan (Keskin et al., 
2004; Kisi et al., 2005) and other artificial intelligence 
methods (genetic programming, regression trees), along 
with ANN, with adequate performance and in some 
cases with limited available data (Chang et al., 2013; 
Shiri et al., 2014; Kim et al., 2015). Later, many research-
ers attempted to calculate Epan by developing models 
combining machine learning and numerical analysis 
(hybrid models). The developed hybrid models, in gen-
eral, further improved the accuracy of the estimations 
of Epan compared to the machine learning models (Pam-
mar and Deka, 2015; Deo and Samui, 2017; Wang et al., 
2017; Ashrafzadeh et al., 2018; Ghorbani et al., 2018; Seifi 
and Soroush, 2020; Wang et al., 2020). ML models gen-
erally show better performance than regression models, 
but they are highly dependent on the way the data set is 
split into training and test set and consequently they are 
prone to fitting the possible noise of the data set (overfit-
ting) (Dietterich, 1995). 

A recently published work by Babakos et al. (2020) 
provided a new approach for assessing the robustness 
of regression model coefficients but also for comparing 
the predictive power of regression and machine learn-
ing models. The specific approach was a combination of 
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bootstrap and cross-validation techniques that allowed 
to assess the predictive power during the validation 
procedure considering the probabilistic range (based 
on highest posterior density distribution) of regression 
coefficients, statistical metrics (R2, RMSE) and the slope 
and intercept of linear trend line from 1:1 plots between 
observed vs. predicted values. The analysis was based 
on pan evaporation measurements for assessing refer-
ence crop evapotranspiration. The results of the analysis 
showed that a Random Forest model (machine learn-
ing model) showed slightly better statistical metrics (R2, 
RMSE) from a regression model, but it was not balanced 
showing worse slope and intercept values of the trend 
line than the regression model.

The aim of this study is to develop a regression 
model for simulating pan evaporation at local condi-
tions by using only meteorological parameters based on 
the approach of Babakos et al. (2020) and to compare its 
strength versus a machine learning approach (Random 
Forests). The steps presented in this paper could be used 
as example to investigate and compare the proposed 
regression method against machine learning methods 
that use only meteorological data for the simulation of 
pan evaporation. 

2. DATA AND METHODS

2.1. Data

Daily meteorological data of precipitation (P), tem-
perature (T), solar radiation (Rs), relative humidity (RH) 

and wind speed at 2 m above ground (u2) covering the 
warm-dry periods (May to September) of 2008 and 2009 
were obtained from the meteorological station located in 
the Aristotle University Farm (~1 m a.s.l., 40°32’08” Ν, 
22°59’18” Ε) in Thessaloniki (Greece). The daily values of 
the meteorological parameters were calculated as mean 
values of hourly observations of a 24-h period. Moreo-
ver, a class A pan evaporimeter made by Monel metal 
with fetch distance F = 1 m (green upwind fetch - Case 
A) was used for obtaining daily Epan measurements dur-
ing the same periods of 2008 and 2009. The climate and 
evaporation data are representative of the warm-dry 
season conditions of the Thessaloniki Plain in Greece, 
where the climate is considered as semi-arid Mediter-
ranean environment (Hastie et al., 2009). The 5-month 
period of May–September is the period for cultivating 
summer crops, and it is responsible for more than 70% 
of the annual reference evapotranspiration in the study 
area (Aschonitis et al., 2018). The meteorological data 
were used in this study for building models that estimate 
daily Epan. The records of rainfall days (P > 0) during 
May–September were excluded from the analysis, lead-
ing to a final number of 212 daily records of meteoro-
logical and Epan data. The statistical properties and dis-
tribution characteristics of the data are given in Table 1 
and in Figs. 1,2. 

2.2. Methods of analysis 

The methodological steps that are going to be fol-
lowed are provided in the following subsections and in 
the flowchart presented in Fig. 3.

Table 1. Statistical properties and distribution characteristics of daily measured Class A pan evaporation (Epan), temperature (T), incident 
solar radiation (Rs), relative humidity (RH), and wind speed at 2 m above ground surface (u2) after excluding rainfall days.

Parameter T (°C) Rs (MJ m-2 d-1) RH (%) u2 (m s-1) Epan (mm d-1)

Minimum 16.70 7.41 31.55 0.85 2.53
Lower quartile 23.79 21.46 47.94 1.20 6.80
Average 25.56 23.87 54.91 1.43 8.14
Median 26.07 24.91 54.99 1.36 8.45
Upper quartile 27.75 27.26 62.10 1.50 9.33
Maximum 31.01 30.04 81.14 3.34 14.85
Range 14.32 22.63 49.58 2.49 12.32
Standard deviation 2.95 4.30 9.65 0.43 2.15
Coeff. of variation 11.56% 18.03% 17.56% 30.32% 26.42%
Stnd. skewness -3.95 -6.56 0.05 15.26 -0.12
Stnd. kurtosis 0.26 3.66 -1.07 23.09 1.24
Kolmogorov-Smirnov Norm. Test (p-value)* 0.099 <0.05 0.93 <0.05 0.14
Shapiro-Wilk Norm. Test (p-value)* <0.05 <0.05 0.82 <0.05 <0.05

* p-values <0.05 indicate that data do not follow a normal distribution at 95% confidence level (for both normality tests).
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2.2.1. Transformation of variables and Ridge regression 

A common problem when building models based 
on meteorological parameters is the high multicollin-

earity that may appear among some parameters (e.g. 
temperature and solar radiation). High multicollinear-
ity among independent variables leads to imprecise esti-
mates of the regression model coefficients using ordinary 

Figure 1. Frequency histograms for daily class A pan evaporation (Epan) data and for daily meteorological parameters of temperature (T), 
incident solar radiation (Rs), relative humidity (RH) and wind speed at 2 m above ground (u2).

Figure 2. Box-Whisker plots for daily class A pan evaporation (Epan) data and for daily meteorological parameters of temperature (T), inci-
dent solar radiation (Rs), relative humidity (RH) and wind speed at 2 m above ground (u2).
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least squares, whereas the final model tends to overfit 
the data. A solution to this problem is the use of Ridge 
regression analysis, which is based on the idea that the 
variance of the slope estimates can be greatly reduced by 
introducing some bias into them. Ridge regression anal-
ysis also includes the estimation of the variance infla-
tion factor (VIF) of each independent variable, which is 
a valuable indicator of multicollinearity among them. 
Α large VIF has not been universally defined, but it is 
commonly considered large when exceeds the threshold 
value 10; however, some use 4 as threshold value (Kutner 
et al., 2004; O’brien, 2007; Vatcheva et al., 2016; Helsel et 
al., 2020).

Considering the above, ridge regression to fit the Epan 
data using the T, Rs, RH and u2 parameters was consid-
ered a crucial step to detect if multicollinearity exists 
among the independent variables. Before ridge regres-
sion, the normality tests of Shapiro-Wilk and Kolmog-
orov-Smirnov (STATGRAPHICS Centurion XV soft-
ware, StatPointTechnologies Inc.) were used to identiy 
normality divergences of Epan, T, Rs, RH and u2 data for 
p<0.05 (Table 1). Rs and u2 data failed to pass both nor-
mality tests, T and Epan succeeded to pass only the test o 
Kolmogorov-Smirnov while RH succeeded to pass both 
tests. To reduce normality divergences, different trans-
formations were employed according to the rules of Hel-

Figure 3. Flowchart of the methodological steps.
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sel (2020) that are based in data skewness. T and Rs data 
were negatively skewed (Fig.1b,c) and for this reason the 
square transformation (x2) was used. On the other hand, 
u2 data were positively skewed (Fig.1e) and for this rea-
son the logarithmic transformation ln(x+1) was used. Epan 
was not transformed because different tested transforma-
tions did not improve the results of the normality tests. 
Thus, the final form of the ridge regression model with 
transformed variables was the following:

Epan = a + b · T2 + c · Rs
2 + d · RH + e · ln(u2 + 1) (1)

where Epan is the measured evaporation from the evap-
orimeter (mm d−1), T is the mean daily air temperature 
(°C), Rs is the incident solar radiation (MJ m−2 d−1), u2 
is the mean daily wind speed at 2 meters height (m s−1), 
RH is the mean daily relative humidity (%), u2 is the 
mean daily wind speed at the height of 2 m (m s-1). The 
ridge regression is used as a preliminary control proce-
dure to assess multicollinearity before proceeding to the 
modelling approach of RCV-REG, which is described in 
the next section. In case of high multicollinearity, the 
indipedent variables of Eq. 1 are reduced in order to 
reach an acceptable VIF value of the remaining param-
eters before their use in RCV-REG.  

2.2.2. Regression with Random Cross-Validation (RCV-
REG)

The Epan model (Eq. 1) contains non-linear transfor-
mations of the independent variables and its predictive 
power was investigated using a random cross-validation 
regression (RCV-REG) analysis based on the concept of 
Babakos et al. (2020). The RCV-REG analysis performs 
a random splitting of the initial dataset into a calibra-
tion set (70% of the records) and a validation set (30% 
of the records). This random splitting is performed 
1000 times (number adusted by the user), leading to a 
respective number of calibration and validation pairs of 
datasets. The calibration procedure leads to 1000 esti-
mations of the regression coefficients of Eq. 1. The esti-
mated coefficients of each calibration set were used to 
validate the model based on the respective validation set. 
The RCV-REG was built in R software using the “nls.
lm” function of the {minpack.lm} package (Guan et al., 
2020), which includes the Levenberg-Marquardt non-
linear least-squares algorithm. The range of 1000 solu-
tions of each regression coefficient from calibration and 
validation procedures was respectively defined by the 
95% confidence interval of the highest posterior den-
sity (HPD) distribution. The 2.5% and 97.5% thresholds 
(HPD thresholds) containing the central 95% interval 

of the HPD distribution were estimated in R software 
using the “p.interval” function of the {LaplacesDemon} 
package (Majhi et al., 2020). This function returns uni-
modal or multimodal HPD intervals depending on the 
form of the probability distributions. The HPD intervals 
are extremely valuable since they can provide informa-
tion about the robustness of regression coefficients, the 
robustness of the independent variables associated to 
them and consequently the robustness of the overall 
model. The following robustness rule was suggested by 
Babakos et al. (2020) based on the results of the com-
plete RCV-REG procedure: “a model is robust only when 
the 95% HPD intervals of all its regression coefficients 
associated to independent variables preserve a constant 
sign (+ or -)”. When a 95% HPD interval of a regression 
coefficient contains positive and negative values, then 
it indicates a non-robust coefficient (non clear effect of 
the indipedent variable) that can significantly affect the 
robustness of the model.

2.2.3. Random Forests with Random Cross-Validation 
(RCV-RF)

Random forests (RF) is among the most important 
machine-learning methods (Breiman, 2001), which is an 
improvement of the Classification and Regression Trees 
(CART) method (also called decision trees). RF employs 
a modification of the bootstrap aggregating technique 
(bagging), where a large collection of decorrelated, noisy, 
approximately unbiased trees are constructed and aver-
aged in order to minimize the model variance and insta-
bility problems (Hastie et al., 2009). RF is an ensemble 
method where the aggregation of multiple trees increases 
the prediction accuracy, with results described by both 
low bias and low variance (Breiman, 2001; Diaz-Uriarte 
and De Andres, 2006). Advantages of RF are the ability 
of modeling high-dimensional nonlinear relationships 
with few user-defined parameters, relative robustness 
with resistance to overfitting and estimation of impor-
tance of the variables (Dietterich, 1995; Breiman, 2001; 
Hastie et al., 2009; Diaz-Uriarte and De Andres, 2006; 
Strobl et al., 2009).

The hyperparameters of the RF model signifi-
cantly affect model’s performance. The hyperparam-
eters that were considered in this study are the number 
of the regression trees (num.trees), the proportion of 
train set that was used for building the model (sample.
fraction), the number of candidate predictors that were 
randomly sampled (mtry), and the minimum number 
of points in the terminal nodes of the regression trees 
(min.node.size). Different combinations of various val-
ues of hyperparameters was built, and by executing the 

http://nls.lm
http://nls.lm
http://minpack.lm
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“ranger” package (Wright et al., 2020), their optimal set 
of values was determined (mtry = 2, num.trees = 1000, 
sample.fraction = 0.7, and min.node.size = 5). The vali-
dation set was set to 30% of the initial dataset in order 
to be comparable with the RCV-REG. RF also includes 
an iterative process (Out-Of-Bag - OOB) during training 
(calibration) by using different sets of the training data-
set (the rest 70%), which is used to reduce the variance 
without changing the bias of the complete ensemble. RF 
also estimates the predictor variables’ importance, which 
is calculated as the mean-across all trees-decrease (%) of 
accuracy, expressed by the % change in Mean Squared 
Error - MSE (%) of the Out-of-Bag (OOB) sample when 
the variable is not considered by permuting its values 
randomly and maintaining the others as they were. 

The internal random procedures in RF lead every 
time to different solutions using constant optimal values 
of hyperparameters (Hastie et al., 2009). For this reason, 
1000 RF iterations (RCV-RF) were also made in order to 
make comparisons with the RCV-REG model (Eq. 1). RF 
is not restricted by the limitations of a predefined non-
linear form and can be used as a benchmark model for 
evaluating the predictive accuracy of typical regression 
models but, also, for assessing the relative importance of 
the predictor meteorological variables to affect Epan. The 
main reason for selecting the Random Forests approach 
is that it does not consider assumptions regarding nor-
mality, linearity, homoscedasticity, and collinearity. It 
also does not demand a high sample-to-predictor ratio, 
it is very suitable to interaction effects (including non-
linearity) and it is recognized as one of the state-of-
theart methods in terms of prediction accuracy (Flach 
2012; Geurts et al., 2009; Golino and Gomes, 2016). The 
RCV-RF analysis was performed using all the same pre-
dictor variables of RCV-REG without transforming the 
variables since RF does not consider assumptions of nor-
mality.

2.2.4. Models’ performance criteria and evaluation of 
required number of iterations used in RCV-REG and 
RCV-RF

The models’ performance criteria of R2, the root 
mean square error (RMSE), the mean absolute error 
(MAE), the mean absolute percentage error (MAPE), 
and the Nash–Sutcliffe efficiency were estimated: a) for 
each calibration and validation dataset of the RCV-REG 
analysis for Eq. 1, and b) for the OOB and validation 
dataset of the RCV-RF analysis; leading to 1000 respec-
tive estimations of their values for each model. Moreo-
ver, the 1000 estimations of slope and intercept of the 
trend line in the 1:1 plot of observed vs. predicted Epan 

models only using the validation sets were also made 
(for both RCV-REG or RCV-RF) as complementary cri-
teria. The 1000 estimations of the criteria were also ana-
lyzed through the computation of HPD intervals. 

The evaluation of the selected number of iterations 
(i.e. 1000) used in RCV-REG and RCV-RF was per-
formed using individual graphs of the mean regression 
coefficients (only for RCV-REG) and of the mean cri-
teria values (for both RCV-REG and RCV-RF) versus 
the number of iterations. Based on these graphs, it was 
assumed that the required number of iterations is suc-
ceeded when the mean value of a regression coefficient 
or a criterion reaches a stablized plateau.

3. RESULTS

Ridge regression analysis was performed on the 
transformed variables of Eq. 1 to detect any multicollin-
earity among them and the VIF results of the variables 
are shown in Table 2. The VIF values of all the variables 
were below the threshold value 4, suggesting low mul-
ticollinearity degree and low overfitting effects by their 
combined use. For this reason, indipedent variables were 
not removed from Eq. 1 and it was used as it is in the 
RCV-REG approach. 

The mean, standard error, minimum, maximum 
and 2.5% and 97.5% HPD quantiles of the coefficients of 
the RCV-REG approach for Eq. 1 are given in Table 3. 
The statistical metrics and the robustness rule of Baba-
kos et al. (2020) based on the 1000 iterations (Table 3) 
showed that the form of Eq. 1 is robust considering that 
all the estimated coefficients associated to independent 
variables have stable sign between 2.5% and 97.5% HPD 
thresholds. Only the regression coefficient of intercept 
(coefficient a in Eq. 1) does not follow the rule of robust-
ness, but it is not associated to an independent variable. 
The regression model’s performance is described by the 
statistical criteria given in Table 4 for both the calibra-
tion and validation subsets. 

Table 2. VIF values of Ridge regression analysis on transformed 
data.

Value of the coefficient VIF

Constant -0.51 -
T2 0.005 1.54
ln(u2+1) 4.03 1.63
RH -0.027 1.87
RS

2 0.006 1.47
R2 of the regression 0.852  
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The mean, standard error, minimum, maximum 
and 2.5% and 97.5% HPD thresholds of the importance 
indicator of the variables from the RCV-RF method are 
given in Table 5, where the importance of independent 
variables showed the following ranking Rs>RH>u2>T. 

As regards the implementation of RCV-RF approach, 
the statistical metrics for both the OOB set and the vali-
dation set are given in Table 6.  

Considering the mean values of metrics for the 
validation datasets (1,000 iterations) of RCV-REG and 
RCV-RF (Table 4 and 6), it is observed that RCV-REG 
outperformed RCV-RF in all criteria indicating that the 
proposed regression approach can compete the accuracy 
of machine learning methods for building evaporation 
models. 

Finally, for the evaluation of the selected number 
of iterations (i.e. 1000) used in RCV-REG and RCV-RF, 
the individual graphs of the mean regression coeffi-
cients (only for RCV-REG) and of the mean criteria val-

ues from the validation procedure (for both RCV-REG 
and RCV-RF) versus the number of iterations are given 
in Fig. 4 and 5. Based on these graphs, it is evident that 
the all the regression coefficients and perfromance crite-
ria reached a stablized plateau even after 500 iterations. 
Thus, the number of 1000 iterations is considered more 
than enough for assuming a robust analysis using both 
approaches.

4. DISCUSSION

4.1. Performance of the models

The most possible reason to justify why RCV-REG 
showed better performance from RCV-RF in the exter-
nal validation (metrics denoted as pred. in Tables 4 and 
6) is probably due to the normality improvement of the 
data based on proper selection of transformations used 
in RCV-REG. Transformed variables were not used in 

Table 3. Highest posterior density distributions of 1000 estimations 
of coefficients of independent variables for the RCV-REG model 
(Eq. 1).

a b c d e

Mean -0.458 0.005 4.019 -0.028 0.006
St.Error 0.022 0.000 0.012 0.000 7.14E-06
Min -2.542 0.003 2.611 -0.048 0.005
HPD thres. 2.5% -1.995 0.004 3.131 -0.040 0.005
median -0.453 0.005 4.018 -0.028 0.006
HPD thres. 97.5% 0.788 0.006 4.707 -0.017 0.006
Max 1.970 0.006 5.272 -0.008 0.006

Table 4. Performance criteria for the RCV-REG model. 

Criterion Mean St.Error Min HPD thres. 2.5% Median HPD thres. 
97.5% Max

C
al

ib
ra

tio
n

R2 0.854 0.000 0.801 0.827 0.854 0.880 0.893
RMSE 0.817 0.001 0.715 0.746 0.822 0.887 0.914
MAE 0.615 0.001 0.544 0.571 0.616 0.669 0.692

MAPE 0.078 0.000 0.068 0.072 0.078 0.084 0.088
NSE 0.854 0.000 0.801 0.827 0.854 0.880 0.893

Va
lid

at
io

n

R2 0.843 0.001 0.675 0.777 0.845 0.907 0.926
RMSE 0.853 0.003 0.570 0.703 0.846 1.020 1.073
MAE 0.642 0.002 0.456 0.526 0.640 0.751 0.850

MAPE 0.081 0.000 0.057 0.067 0.081 0.096 0.110
NSE 0.836 0.001 0.660 0.770 0.838 0.903 0.919

Intercept* 0.011 0.015 -1.493 -0.853 0.005 1.059 1.288
Slope* 0.998 0.002 0.836 0.875 0.998 1.116 1.197

*Estimated only for the validation set.

Table 5. Importance indicators of indipedent variables based on the 
RCV-RF approach.

Imp. Indicator T u2 RH Rs

Mean 75.992 84.319 88.730 204.366
St.Error 0.395 0.418 0.412 0.529
Min 36.362 49.824 50.894 152.022
HPD thres. 2.5% 51.118 60.887 63.887 170.893
median 76.208 84.023 87.980 204.772
HPD thres. 97.5% 98.923 111.048 113.947 234.927
Max 111.194 132.797 142.721 264.168
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Random forest method because this approach over-
comes problems of normality, linearity, homoscedas-
ticity and collinearity (Flach 2012; Geurts et al., 2009; 
Golino and Gomes, 2016) since it doesn’t use metric 
distances between data points but applies splits along 
a tree. Another possible reason is the difference in the 
degrees of freedom of the two models (associated to the 
number of coefficients that are free to vary) in combi-
nation with the number of records used in this study. 
Models that have low degrees of freedom (e.g. linear 
or non linear regression such as RCV-REG) are not 
usually so flexible to fit the data. Thus, the lower the 
degrees of freedom of a model the lower is the effect of 
the noise/bias in the data included in the final model 
(e.g. noise/bias in the data may come from other sourc-
es such as errors associated to the observer). Moreo-
ver, when the number of data records to calibrate the 
model is low, the larger is the effect of the noise/bias 
included in the final calibration. Based on the above, 
machine learning models that are generally used to 
solve problems using Big Data and they have much 
more degrees of freedom, may not be the proper choice 
for typical modelling applications, where the number 
of data is small, because they “absorb” a large portion 
of the data noise. This may lead to a lower performance 
of a machine learning model compared to a regres-
sion model during external validation. In this study, 
the number of records were 212 and they are not in the 
category of Big Data but they are enough for the typical 
regression analysis. This was an additional reason for 
including the RCV approach of iterations in both mod-
elling approaches. 

4.2. Limitations of RCV-REG approach

The RCV-REG iterative procedure in combination 
with the preliminary analyses of the Ridge regression 
and the tranformation of variables can be considered a 
complete methodology that takes into account all the 
nessecary elements for building a robust model. On 
the other hand, the final form of the model is based on 
the experience of the user, which may not be adequate 
to achieve the maximum potential of the methodol-
ogy. Moreover, RCV-REG approach is limited to pro-
vide a graphical representation of the results. For exam-
ple, it is typical in modelling approaches to provide 1:1, 
quantile:quantile (Q:Q) plots of observed vs. predicted 
data, 2D plots of the respective joint probability distri-
bution etc. The problem of the RCV-REG is that there 
are 1,000 iterations that neither can be plotted seperately 
(due to the large number) nor to merge the results of all 
iterations in one graphic type. The second case is feasible 
for 1:1 plot but leads to clouds of points that come from 
different 30% of the initial data. 

4.3. Reasons for excluding records of cold season and rain-
fall days

The reason for not including pan evaporation meas-
urements of the cold season and of the rainy days was 
because these measurements have a lot of bias. During 
the six-month cold season in this location, Epan is low 
and generally falls in the range 0-2 mm/day not only due 
to the lower temperature but also due to high relative 
humidity with a lot of foggy days and condensed mois-
ture (dew) in the leaves of the surrounding vegetation 

Table 6. Performance criteria for the RCV-RF model.

Criterion Mean St.Error Min HPD thres. 2.5% Median HPD thres. 
97.5% Max

O
O

B

R2 0.823 0.001 0.761 0.791 0.824 0.852 0.881
RMSE 0.902 0.001 0.788 0.842 0.903 0.968 1.002
MAE 0.685 0.001 0.599 0.636 0.684 0.737 0.758

MAPE 0.088 0.000 0.076 0.081 0.088 0.094 0.097
NSE 0.821 0.001 0.760 0.790 0.823 0.851 0.880

Va
lid

at
io

n

R2 0.835 0.001 0.673 0.775 0.838 0.896 0.910
RMSE 0.904 0.003 0.649 0.744 0.896 1.093 1.267
MAE 0.689 0.002 0.481 0.564 0.687 0.820 0.918

MAPE 0.088 0.000 0.061 0.071 0.088 0.107 0.117
NSE 0.818 0.001 0.663 0.759 0.821 0.881 0.892

Intercept* -1.011 0.020 -3.236 -2.299 -1.021 0.120 0.657
Slope* 1.120 0.002 0.898 0.963 1.121 1.260 1.378

 *Estimated only for the validation set.
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Figure 4. Variation of mean values of regression coefficients of Eq. 1 and performance criteria from the validation procedure versus the 
number of iterations for RCV-REG.
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during the morning. During these months, even during 
April or October, it was observed the occurrence of neg-
ative Epan measurements due to condensed dew input in 
the pan. The rainfall days during the warm season were 
also excluded because the temperature of rainfall is quite 
different from the water temperature in the pan (even 
10oC) and their mixing changes the evaporative energy 
demand. The records of rainfall days could only be used 
in the case of deterministic modelling approaches based 
on energy budget where the water temperature is used as 
input parameter.     

Another reason for not including the data from 
the six-month cold season is that the seasonal varia-
tion of temperature and solar radiation between sum-
mer and winter leads the two variables to be collinear 
and thus the one should be removed from the modelling 

approach. Using only the data of the warm season, the 
two variables present lower collinearity that allows their 
combined use in the models. 

The general concept and methodological steps pre-
sented in this study are valid for all areas that have dis-
tinct warm and cold seasons. If cold season does not 
exist (e.g. tropical environments), data from all seasons 
can be included. Rainfall days can also be included but it 
is expected to lead to a reduction in the predictive accu-
racy of the final model. The larger the proportion of the 
rainfall days in the final record, the larger is expected to 
be the reduction of the predictive accuracy. For the inclu-
sion of rainfall days, it is proposed the inclusion of rain-
fall variable in Eq. 1 or the use of a categorical variable 
for splitting the records in rainfall and no-rainfall days. 
The second case is considered as categorical regression. 

Figure 5. Variation of mean values of performance criteria from the validation procedure versus the number of iterations for RCV-RF.
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5. CONCLUSIONS

The implementation of the RCV-REG method, 
which includes regression with transformed variables of 
low collinearity and analysis of the 95% HPD of regres-
sion coefficients, was found to be an extremely power-
ful approach for Epan analysis that can compete machine 
learning methods and can provide a complete evaluation 
of the regression coefficients robustness. As it was shown 
from the results of this study for modelling Epan using 
meteorological variables, the specific method succeed-
ed to outperform RCV-RF in all performance criteria. 
Moreover, RCV-REG gave a better aspect and evaluation 
of the robust effect of the indipedent variables (through 
the HPD analysis on the regression coefficients associ-
ated to the indipedent variables) in comparison to RCV-
RF that is able to provide only a relative ranking of indi-
pedent variables’ importance.

Moreover, the use of the RCV data splitting 
approach in various modelling approaches solves the 
problem of subjective splitting of data into calibration 
and validation sets, provides a better evaluation of the 
final modelling approaches and enhances the competi-
tiveness of typical regression models against machine 
learning models. Despite the fact that machine learn-
ing methods are more advanced in comparison to typi-
cal regression methods, mostly by handling better Big 
Data, they still face the problem of transferability from 
the developer to the user for various reasons, such as 
non-availability of the calibrated code or its form (since 
it is a black box) and lack of users’s expertise to handle 
such models. On the other hand, the resulting models 
through typical regression approaches do not require 
advanced skills and can be used  in other studies either 
by adopting the entire calibrated model or by adopting 
the general form of the model. 

Future studies should focus on (a) the investigation 
of Epan models with the inclusion of records of rainfall 
days and (b) the investigation of new graphical methods 
for representing different elements of the results of the 
RCV-REG method.
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