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Abstract. Global honey production is increasing.In Italy, the two predominant mon-
ovarietal honey types are acacia and chestnut . Climate change, with an increase in 
extreme weather events (including droughts, heat waves and late frosts), impacts both 
the phenology of melliferous species andhoneybee activity. The aim of this study was 
to correlate the honey yields of acacia and chestnut in five Italian climatic sub-regions 
with the thermal extremes during the flowering phases of the two melliferous species.
The objective was to understand the impact that these parameters have on yields.The 
results highlighted differing impacts of thermal extremes on honey yields for acacia 
and chestnut, respectively . In the acacia, temperature below 4.3C° in the flowering 
period had a negative impact particularly in the North-West (P<0.01). Instead tem-
peratures above 17.5C° impacted positively in North Italy. In contrast, for chestnut, 
temperatures above 23.5C° negatively affected honey yields in the North-West. Under-
standing the interaction between climate, melliferous species and bees is useful for 
beekeepers towards developing adaptation strategies to climate change with the aim of 
protecting the yields, income, animal welfare and ecosystem services.

Keywords: bees, climate change, agrometeorology, plant phenology, ERA5 land.

1. INTRODUCTION

Honey production is rising on a global level with an 85 % increase in 
the number of managed honeybee colonies reported for the 1961-2017 peri-
od (Phiri et al. 2022). In Italy honey production was 0.026Mt in 2021 and 
according to ISMEA (2020), the increase in the last 10 years was attribut-
able to the growth in the number of professional and amateur beekeepers. 
In 2022 the recorded number of beekeepers was 72020 (Report Osservatorio 
nazionale del miele 2022) with 60 monovarietal honey types. However, annu-
al production is strongly influenced by the weather conditions (Rahimi_2021, 
Delgado et al. 2012, Olvera et al. 2023). Acacia (Robinia pseudoacacia L.) and 
chestnut (Castanea sativa L.) honeys in Italy represent the two main mono-
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varietal types spread over almost the national territory 
(Parri et al. 2014). From both observational and experi-
mental studies, it is well established that climate change 
has been associated with an alteration of phenological 
cycles, resulting in an earlier onset of vegetation activity 
in spring with effects on the related leaf-out and flow-
ering dates (Piao et al. 2019). Strong relationships were 
found between phenological events and early spring 
weather (Sparks and Carey 1995, Linderholm 2006, 
Richardson et al. 2013) with vegetal species respond to a 
rise in temperature by coming into leaf or/and flowering 
earlier. It is projected that in the future, leaf and flower-
ing dates will to be 3-4 weeks earlier than present (IPCC 
2023, Simpson et al. 2023). In Italy there are insufficient 
studies investigating the impact of meteo-climate con-
ditions on honeybee production.  Nonetheless, there 
have been research reports correlating the activity of 
bees, phenological period and resultant honey produc-
tion with climatic factors (Wyver et al. 2023a, Wyver et 
al. 2023b, Blasi et al. 2023). It has been found (Medina 
2018) from simulated bee stress conditions in the labora-
tory thatf high temperatures (<= 40°C) influenced on the 
phenotype and behavior of honey bees under heat stress, 
with potential consequences for colony fitness (Medina 
2018). In two sites in Portugal, Fernandes et al. (2015) 
in Portugal showed that high rainfall and low tempera-
tures advanced vegetative growth and early flowering 
in the northern study site, whereas high temperatures 
with no rainfall advanced growth and ripening phase of 
fruits in the southern site. Previous work demonstrated 
that the increase in average temperatures in winter and 
early spring accelerated the phenological development of 
plants by interacting with the activity of pollinators in 
the various ecosystems (Hung e al 2018, Villagomez et 
al. 2021, Hunichen et al. 2021, Mashilingi et al. 2022,). 
A decrease in honey production under extreme drought 
conditions was also observed in a case study in Cor-
doba, Spain (Flores et al. 2019). Zhao et al. (2021) high-
lighted two temperature values, 5°C and 10°C of daily 
minimum values, which determined the optimal start of 
bee activity inside and outside the hive, respectively In 
China an increase in temperatures and a reduction in 
rainfall, respectively, was shown to alter the phenology 
of plants in general but more specifically honey plants 
(Guo et al. 2013). The growing season expanded by 4.3 
days per decade in Beijing region with the first flower-
ing was advanced by high temperatures between January 
and June, but delayed by warm conditions during the 
chill accumulation phase.

Moreover, it was reported that from 1956 to 2010, 
the budding of many honey plants, was progressively 
brought forward, up to 13.5 days, with impacts on the 

subsequent phenological stages of many honey spe-
cies (Juknys et al. 2011). This was corroborated by Vis-
ser and Both (2005), demonstrating an advance from 
3 to 11 days in the manifestation of many phenologi-
cal phases of cultivated species during the end of win-
ter and the beginning of spring. Also Dalla Marta_et 
al. (2010) showed that the phenology of Montepulciano 
vine progressively advances for one day every 2 years in 
the budding and flowering phases. Back in 2005 (Peat 
amd Goulson 2005)attention was already drawn to the 
effects of climate change. Those authors pointed out 
that climate change modifies the quality and quantity 
of available nectar and/or pollen, limiting its collection 
by pollinating insects. Southern European countries, 
including Italy, are among the most critically affected by 
climate change in Europe and the situation is expected 
to worsen in the coming decades with an impact both 
temperatures and precipitation distribution (IPCC 2021). 
A variation in the distribution of precipitation regimes 
and temperatures in different Italian areas were evi-
denced (Brunetti et al. 2006)  These variations were also 
highlighted by studies on a regional scale (Bartolini et 
al. 2014) with a decrease in precipitation during winter 
and spring, especially in northwestern areas. Regard-
ing temperatures, an increase was observed during all 
months of the year, also associated with an increase in 
heat waves. More recently, Bartolini et al. (2021) demon-
strated both spatial and temporal changes in dry spells 
in Central Italy during the 1955–2017 period. Given the 
climate changes and impacts on the phenology of hon-
eybee species, the aim of the present study is to correlate 
the honey yields of acacia and chestnut with the thermal 
extremes during the flowering phases of the two spe-
cies, within five Italian climatic sub-regions, in order to 
understand the impact of these environmental param-
eters on yields.

2. MATERIALS AND METHODS

2.1. Climatological dataset (Era5 Land)

Climatological data was obtained by the ERA5 rea-
nalysis dataset from 1950 at a 0.1° resolution.The data 
wasstored in a tridimensional hypercube data store where 
the first two dimensions represented spatial dimensions 
(Longitude and Latitude) and the third, a time dimen-
sion. Taking into account the high heterogeneity in cli-
mate (Martinelli and Matzarakis 2017), Italy divided into 
5 climatic sub-regions (North West, NW; North East, 
NE; Northern Central Tyrrhenian, NCT; Central Adriat-
ic, CA; South, S) (Figure 1), each describing the different 
climatic zones in the April-July period. Recently a simi-
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lar approach was used in studies investigating the impact 
of atmospheric circulations on the crop yields in specific 
Italian sub-areas (Central and North-East Italy) (Salinger 
et al. 2020, Salinger et al. 2022).

2.2. Honey production

The production of acacia and chestnut honey was 
obtained from the  National Honey Observatory annu-
al reports (https://www.informamiele.it/). The database 
reports the average production in kg/hive on a regional 
scale for the period 2015-2022. For each climatic sub-
area, an average was calculated (Figure 2).

2.3. Phenological data

Phenological data for chestnut and acacia were 
acquired from the Italian PHEnology Network (IPHEN) 

database, a national system of monitoring based on com-
prehensive phenological observations for some plant spe-
cies. IPHEN is a cooperative project that started in 2006 
with theaim of producing nationwide maps analysis 
maps and forecasts for the phenological stages of plants 
of  interest to agriculture, health, and environmental 
care. More details about the IPHEN dataset have been 
described by Mariani et al. (2012).

For acacia and chestnut, weekly IPHEN phenologi-
cal maps shows the BBCH phenological stadium (Meier 
2001, Meier 2018) for each vegetative season. The Day Of 
the Year (DOY) when 50% of flowering occurs in most 
of the domain was estimated for each of the Italian cli-
matic sub-regions. DOY was considered as the Annual 
Zonal Peak Flowering (AZPF) in the present study. 
Starting from the AZPF, a temporal flowering window 
(FW) of 16 days (Figure 3) was derived, The FW ranges 
from 7 days before the AZPF to 7 days after.

2.4. Data processing and statistical analysis

For each macro-climatic area, average daily tem-
perature data was obtained from each pixel (0.1° x 0.1°, 
Lat/Lon). During FW, the number of days (occurrence) 
for different thermal extremes were calculated. These 
extremes were identified with the following percentile 
classes: 2,10,15, 25, 75, 80, 85, 90 and 98 respectively. The 
occurrence was calculated during the period 1950-2022. 
The data obtained was than related to the honey produc-
tion for the two melliferous species using a linear cor-
relation.

Statistical analyses were carried out in the Conda 
4.2 open source, using the Python 3.8 programming 
language, related temporal and statistical analysis (XAr-
ray, SciPy, Statistics, Numpy, Pandas) and visualization 
(Matplotlib) modules.

3. RESULTS AND DISCUSSION

3.1. Effects of low temperature on honey production

The effect of low temperature anomalies had a sig-
nificant negative impact only on acacia honey yields in 
Northern Italy (Table 1).

The NW Italian area showed the highest significance 
(p<0.01) with a negative impact of low temperatures for all 
percentile classes except for the most extreme one (2th).

This result can be explained by the fact that during 
the acacia flowering period (May) the low air tempera-
tures impacted negatively on bee activity. The present 
work corroborated a recent study carried out on Rho-

Figure 1. Italian climatic sub-regions used in the study. North West, 
NW; North East, NE; Northern Central Tyrrhenian, NCT; Central 
Adriatic, CA; South, S.

https://www.informamiele.it/
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des Island, from 2015 to 2019, showing a link between 
wildflower honey production and the main microcli-
matic parameters (air temperature and humidity). The 
results showed that the optimal temperature values for 
the daily production of honey in spring were around 
17°C, while below 14°C the balance between the honey 
produced and consumed became negative (Gounari et 
al. 2022). This was also confirmed in an earlier study 
demonstrating that bee foraging activity was reduced 
to the point of cessation at 6.5°C (Oshi and Joshi 2010). 
Instead, foraging activity was shown to increase at 
higher temperatures reaching a maximum peak around 
20°C (Tan et al. 2012).

Furthermore, as is well-documented, air tempera-
ture is a determining factor of the plant species phenol-
ogy (Alilla et al. 2022). Robinia pseudacacia was shown 
to be particularly damaged by late frosts which nega-
tively impact young leaves, shoots and flowers  thereby 
reducing the availability of food for the bee (Vítková et 
al. 2017). Of note, it is important to take into considera-
tion that the low percentiles in northern Italy had lower 

values than the temperatures obtained in central and 
southern Italy.

As far as the chestnut honey yields are concerned, 
the analysis did not show statistical significance as 
regards the low temperatures. The chesnut f lowering 
period (June) occurrs one month later than Acacia, and 
for this reason low temperatures are not conditioning 
chesnut flowering.

3.2. Effects of high temperature on honey production

The effect of positive temperature anomalies on aca-
cia honey yields was positive in most macro-areas (Table 
2) with statistical significance in NW, NE, NCT, CA.

In North Italy and in NCT, the greatest significance 
occurred in the less extreme percentiles. The highest sig-
nificances (P<0.001) were observed in North Italy in the 
75th percentile class.

The positive effect of high temperature is in agree-
ment with that shown by Tan et al. (2012) who identi-
fied that the maximum bee foraging activity occurred 

Figure 2. Production in kg/hive for each climatic sub-area in the period 2015-2022.
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in the spring with temperatures close to 20°C. This tem-
perature also has a positive effect on the nectar charac-
teristics which becomes more available to the insects and 
contained a higher sugar content (Bertsch 1983, Kim et 
al. 2020). Furthermore, Alilla et al. (2022) found a greater 
nectar quantity in the advanced stages of flowering in Rob-
inia pseudacacia a greater nectar quantity with maximum 
availability starting from the second week. The higher 
temperatures were also shown to allow a faster opening of 

the inflorescences, reducing the time period needed by the 
bees to obtain nectar (Giovannetti et al. 2013).

In Southern Italy, high temperatures did not have a 
significant effect on honey yields. 

In contrast, for Chestnut honey yields, the positive 
temperature anomalies were generally shown to have 
a negative impact, significant in the NW climatic sub-
region, with a reduction especially for the 85th and 90th 
percentile (Table 3).

Figure 3. Acacia and chestnut flowering windows for each Italian climatic sub-region.
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This result can probably be explained by the 
change in nectar characteristics with air temperature. 
In a recent study on Castanea sativa, it has highlighted 
that a higher sugar content was present in the nectar 
with average daily air temperatures between about 22 
and 25°C but that the sugar content tended to rapidly 
decrease with higher air temperatures (Kim et al. 2020).

In addition, studies have highlighted a positive role 
of high air humidity levels in the nectar characteristics.  
In particular, an increase in the sugar content produced 
by numerous herbaceous flowers, shrubby and tree spe-
cies with high air humidity was reported Corbet et al. 
(1979). Therefore, if we consider that over the last few 
decades, the northern Italian areas have experienced 

Table 1. Correlation coefficient (r) and significance (sig) of the correlations between low temperatures and Acacia honey production. NS 
Not significant; * P<0.05; ** P < 0.01; *** = P<0.001%; NW = North West; NE = Nord East; NCT = Northern Central Tyrrhenian; CA = 
Central Adriatic; S =South. tt= average temperature of the percentile for each Italian climatic sub-regions.

Acacia

Climatic sub-regions

NW NE NCT CA S

r sig tt r sig tt r sig tt r sig tt r sig tt

pe
rc

en
til

e

2 -0.49 NS 1.0 0.00 NS 1.3 0.00 NS 4.4 0.00 NS 2.2 0.00 NS 5.2
10 -0.70 ** 2.7 -0.51 NS 3.2 -0.49 NS 6.0 -0.38 NS 4.0 -0.38 NS 6.4
15 -0.82 ** 3.3 -0.61 NS 3.8 -0.49 NS 6.4 -0.35 NS 4.5 -0.55 NS 6.9
20 -0.79 ** 3.9 -0.63 NS 4.4 -0.51 NS 6.9 -0.47 NS 5.0 -0.51 NS 7.3
25 -0.88 *** 4.3 -0.67 * 4.8 -0.60 NS 7.2 -0.58 NS 5.5 -0.56 NS 7.7

Table 2. Correlation coefficient (r) and significance (sig) of the correlations between high temperatures and Acacia honey yields. NT Not 
significant; * P<0.05; ** P < 0.01; *** = P<0.001%; NW = North West; NE = Nord East; NCT = Northern Central Tyrrhrenian; CA = Cen-
tral Adriatic; S =South. tt= average temperature of the percentile for each Italian climatic sub-region.

Acacia

Climatic sub-regions

NW NE NCT CA S

r sig tt r sig tt r sig tt r sig tt r sig tt

pe
rc

en
til

e

75 0.89 *** 17.5 0.93 *** 18.0 0.76 * 20.2 0.66 * 19.4 0.23 NS 20.4
80 0.84 ** 18.0 0.92 *** 18.5 0.83 ** 20.6 0.74 * 20.0 0.16 NS 20.9
85 0.71 * 18.5 0.89 *** 19.0 0.83 ** 21.0 0.69 * 20.5 0.15 NS 21.5
90 0.78 * 19.2 0.86 ** 19.7 0.84 ** 21.6 0.73 * 21.2 0.01 NS 22.3
98 0.76 * 21.2 0.63 NS 21.5 0.86 ** 23.8 0.63 NS 23.4 0.08 NS 24.7

Table 3. Correlation coefficient (r) and significance (sig) of the correlations between high temperatures and Chestnut honey yields. NE = 
Not significant ; * P<0.05; ** P < 0.01; *** = P<0.001%; NW = North West; NE = Nord East; NCT = Northern Central Tyrrhrenian; CA = 
Central Adriatic; S =South. tt= average temperature of the percentile for each Italian climatic sub-region.

Chestnut

Climatic sub-regions

NW NE NCT CA S

r sig tt r sig tt r sig tt r sig tt r sig tt

pe
rc

en
til

e

75 -0.73 * 23.5 0.19 NS 24.2 -0.26 NS 27.1 -0.19 NS 26.2 -0.25 NS 28.3
80 -0.72 * 24.1 0.23 NS 24.8 -0.26 NS 27.5 -0.15 NS 26.9 -0.19 NS 28.9
85 -0.84 ** 24.8 0.07 NS 25.4 -0.30 NS 28.1 -0.14 NS 27.5 -0.12 NS 29.6
90 -0.79 ** 25.6 -0.05 NS 26.2 -0.23 NS 28.8 -0.13 NS 28.4 -0.01 NS 30.3
98 -0.508 NS 27.9 0.333 NS 28.2 -0.679 * 30.8 -0.01 NS 30.6 0.11 NS 32.7
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negative rainfall anomalies (Caloiero et al. 2021) and an 
increase in drought episodes (Baronetti et al. 2020), the 
decrease in honey production could also be explained by 
low air humidity.

However, this result cannot be generalized to all 
melliferous species. In fact, a study on the evaluation of 
the sugar content in the nectar of Epilobium angustifo-
lium (Bertsch 1983) did not show significant differences 
at different air humidity rates (50%, 78%, 94%).

The main strength of the present study was to draw 
cognitive awareness to the complex interaction of plant, 
insect, man and climate. To date, correlation studies 
between honey production and meteorological param-
eters are still scarce, especially in the Mediterranean 
Basin.However, these correlation studies can provide a 
very useful tool for beekeepers to understand produc-
tion dynamics. Furthermore, the use of ERA5 Land spa-
tialized data can also be very useful in instances where 
ground meteorological stations are not sufficiently near 
apiaries.

This preliminary study must is to be considered as 
a starting point for understanding the dynamics corre-
lating climate with bee activity and phenology of mel-
liferous species. However, some limitations were shown 
to exist. The first limitation was the represented by the 
limited sample size. The number of years of production 
is in fact rather limited and does not allow for a suffi-
cient comparison with the thermal extremes. Further-
more, the climatic data was calculated as an average of 
the macro-area, also including information from pixels 
of areas not suitable for the two honey species. Probably, 
a comparison with the Corine Land Cover could help in 
better defining the thermal characteristics of the areas.

Future studies are aimed at increasing the sample 
size, extending the study to other honey types, thereby 
including other melliferous species. This would also 
make it possible to increase the honey production win-
dow to the entire summer. In addition, overwintering 
conditions, effects of pests on hive health conditions 
should be taken into account in future studies.

Furthermore, the correlation analysis could also be 
extended to other meteorological parameters (e.g. wind, 
air humidity), which which also may play an impor-
tant role in both bee activity and nectar availability. 
For this reason, a cross-disciplinary research in envi-
ronmental sciences that make available long historical 
series of climatic-environmental data (for example Itin-
eris Project,Italian Integrated Environmental Research 
Infrastructures System), colud be very useful in order to 
improve this type of research by including case studies 
on honey yields in specific sites.

4. CONCLUSION

Our study showed that air temperature was able to 
describe the trend of acacia and chestnut honey yields 
in Italy under many situations. Above all, high tempera-
tures (higher percentiles) were shown to exert a positive 
impact on the spring acacia honey yields, especially in 
the more northern latitudes (North and central Italy) 
where cold spells are generally more likely during the 
spring. In contrast, the chestnut honey yields seemed 
to be negatively influenced by the higher air tempera-
ture which impacted on both honeybee activity and on 
the phenology of the melliferous species. These results, 
especially in the contest of climate change, could be 
very useful in understanding the mechanisms of inter-
action between climate, melliferous species and bees. In 
particular, the integration of the results obtained using 
models for estimating honey production as a function 
of the expected climatic conditions could allow for an 
early estimation of honey production in the various Ital-
ian climatic macro-areas. Moreover, the use of seasonal 
forecasts assist beekeepers in choosing the locations in 
which to carry out nomadism. The study was performed 
with a view to provide to beekeepers a tool that allows to 
adopt adaptation strategies to counteract climate change 
effects and consequently to protect production, income, 
animal welfare and ecosystem services. 
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