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Abstract. Potential evapotranspiration (PET) is the amount of water that evaporates 
from land, surface water and plant transpiration. Based on monthly surface water and 
vegetation cover areas derived from Sentinel-2 imagery and precipitation records from 
Baghdad station for the two years 2018 and 2019, the quantitative relationships such as 
PET versus water area, PET versus vegetation area and PET versus precipitation were 
investigated. Using Origin 9.2 program, a new multiple regression model was derived 
to estimate the monthly mean PET in dry and wet months. To improve the accuracy 
of the model, monthly errors, bias and mean absolute error were calculated to approxi-
mate reasonable estimates of PET. Based on this statistical analysis, the best value of 
about -1 mm/day should be added to the proposed model as a correction term.

Keywords: surface water, vegetation, potential evapotranspiration, statistical analysis, 
Baghdad.

1. INTRODUCTION

Surface water bodies and vegetation cover in urban areas have mostly 
suffered significant impacts in recent decades (Singh and Biswas, 2022) due 
to the effects of the continuous changes in urbanization expansion and cli-
mate conditions (Guo, Westra and Maier, 2017; Zhang et al., 2022). These 
natural resources are the main drivers in the study of potential evapotran-
spiration (PET) (Zhao and Ma, 2021), which is an important process in the 
hydrological cycle especially for non-limited water availability, and can be 
considered as one of the direct indicators of climate change in a given area 
(Li et al., 2022). PET represents the potential maximum amount of water 
that would be released from the Earth’s surface into the atmosphere by the 
combined processes of evaporation and transpiration, if sufficient water were 
available. It is an input for various applications in hydrological models, so 
its estimation plays a key role in agricultural irrigation, dry-wet condition 
assessment, weather variability, water management and climate-related haz-
ard assessment (Kirkham, 2014).
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Baghdad, the capital of Iraq, has been notably suf-
fered from the influence of global climate change and 
increased water demand (Jaber, Al-Saadi and Al-Jiboori, 
2020) and has therefore received increased attention 
from many scientists and the country’s central govern-
ment. PET averages are generally influenced by mete-
orological conditions and the surrounding near-surface 
environment. Therefore, it can vary simultaneously with 
surface changes (Wang and Zheng, 2022).

To date, many studies have been conducted to 
investigate the spatial and temporal analysis of PET in 
watersheds (Zhang and Wang, 2021; Yan et al., 2017). 
In recent years, the trend directions of PET have also 
been investigated by some researchers in Iraq, such as 
Al-Hasani and Shahid (2022), who examined the spatial 
distribution of the trend of annual and seasonal scales 
using the modified classical Mann-Kendall test for the 
period 1981-2021. They found that PET has a significant-
ly increasing trend over most of Iraq, especially in sum-
mer with an average of 0.5 mm/decade. In this paper, it 
is reasonable to hypothesize that PET could be affected 
by changes in the quantitative evolution of vegetation 
cover, surface water and precipitation, which still have 
less knowledge about the connection with the PET.

The relationship between PET and vegetation has 
also been established, for example in a large spatial 
banana plantation in Venezuela (Olivares et al., 2021). 
The relationship between precipitation and PET has 
been used to verify the possible climate type (dry or 
wet) and was found to vary greatly between seasons (Ste-
fanidis and Alexandridis, 2021). Unfortunately, most 
empirical methods for estimating PET depend on sev-
eral meteorological factors: air temperature, solar radia-
tion, relative humidity, sunshine duration, and wind 
speed. These methods have shown that the weight of 
these variables on the estimation of PET varies between 
regions and spatial and temporal scales. However, it is 
known that vegetation, soil water content, and precipi-
tation are directly correlated with PET as the primary 
causes of combined evaporation and transpiration. The 
main research gap is a lack of knowledge about link-
age between ground-based PET estimates with cumu-
lative precipitation, vegetation cover area and surface 
water area, which are jointly derived from remote sens-
ing technologies in this paper. Therefore, the overall 
objective of this paper is to explore a multiple regres-
sion model formulated to estimate the mean PET in 
the Tigris River basin of Baghdad as a function of these 
variables at interannual scales in arid and semi-arid con-
ditions. Prior to this relationship, the monthly relation-
ships between PET estimates and influencing factors 
during the two years (2018 and 2021) characterized by 

different conditions were investigated. Finally, some sta-
tistical parameters such as bias and mean absolute error 
were tested to improve this model.

2. STUDY AREA AND DATA SOURCES

2.1. Briefly description of study area

This study was carried out in an urban area such as 
Baghdad (see Fig. 1), the capital of Iraq, which is a medi-
um-density city and part of the Tigris River basin with 
several meanders, i.e. it is a low-lying and alluvial plain. 
It covers an area of 894.3 km2, has an average elevation 
of 34 m above sea level and is located at 33° 21’ N lati-
tude and 44° 20’ E longitude. Baghdad’s climate is hot 
and dry in summer and cold in winter. The rainy season 
lasts from October to May, with an average annual rain-
fall of 140 mm. The vegetation cover often consists of 
palm orchards in the north, farms, parks, and domestic 
gardens. In addition to the Tigris, there are small per-
manent ponds on both sides of the river.

2.2.Briefly description of data

Monthly weather data for air temperature (Ta), solar 
radiation (SR), relative humidity (RH) and evaporation 
rates were obtained from the Baghdad meteorological 
station belonging to the Iraqi Meteorological Organiza-
tion for two years 2018 and 2021. The reason for select-
ing these years was that they were characterized by com-
pletely different conditions, with 2018 being semi-arid 
and 2021 being severely arid (Abd Al Rukabie, Naif and 
Al-Jiboori, 2024). In addition, Sentinel-2 satellite images 
(downloaded from https://scihubcopernicus.eu) were 
used to identify urban surface water and vegetation by 

Figure 1. Study area of the paper: left (Iraq) and right (Baghdad) 
in which green (vegetation), blue (water bodies) and other colours 
(housing districts and barren land).

https://scihubcopernicus.eu
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calculating spectral indices for Modified Normalized 
Difference Water Index (MNDWI) and Normalized 
Difference Vegetation Index (NDVI). For more details, 
pre- and post-processing of the satellite images, such as 
clipping, compositing, merging bands and extraction of 
the study area, are explained through the two references 
Ahmed et al. (2024) and Mahdi, Tawfeek and Al-Jiboori 
(2024), respectively.

3. METHODOLOGY

3.1. PET estimation 

To execute the objectives of this paper, the Turc 
method for two different ranges of relative humid-
ity, wet: 50-100% and dry: 0-49%, was widely used to 
estimate PET because it is a simple and more accurate 
empirical equation to (Turc, 1961; Jensen, Burman and 
Allen, 1990). Furthermore, several studies have shown 
that the Turc equation is the most appropriate and has 
been consistently well implemented in many places 
around the world due to its justification for local cli-
matic conditions (Trajkovic and Stojnic, 2007; Fisher 
and Pringle III, 2013; Santos et al., 2019). It is also the 
second best method after the Penman-Monteith method 
when compared to the other available methods.  Howev-
er, the Turc method depends on the mean Ta (in °C), SR 
(in MJ.m-2.day-1) and RH (in %) given by the following 
equation:

PET = 0.01333((239000 * RS) + 50)  
for RH>50% 

(1)

PET = 0.01333((239000 * RS) + 50)

       for RH<50% 
(2)

3.2. Spectral indices of surface water and vegetation

Modified Normalized Difference Water Index 
(MNDWI) is a power method used to classify the urban 
scenes into two categories consisted of water and non-
water objects given as (Chen et al., 2020)

 (3)

While the NDVI is defined as the ratio of the spectral 
difference between the red and near infrared (NIR) bands 
divided by their sum, as given by (Bannari et al., 1995):

 (4)

Both MNDWI and NDVI have values ranging from 
-1 to +1, with higher values corresponding to increased 
water bodies and vegetation (Abdullah et al., 2019), 
respectively. In this study after extracting digital images 
of MNDWI and NDVI, all pixels were classified into only 
two groups for each index separately. Pixesl with MDWI 
greater than 0.5 where considered surface water areas 
and, similarly, pixels with NDVI greater than 0.2 were 
considered as vegetated areas. Therefore, surface water 
and vegetation areas in km2 were extracted using the 
r.report function in the toolbox of the QGIS program.

3.3. Statistical analysis

It is conventional to test our empirical relationship 
with statistical analysis. First, scatter plots were used to 
show the variation between PET, surface water, vegeta-
tion, precipitation and evaporation. Once the nature of 
the relationship was established, R2 (or goodness of fit) 
was calculated, which is a statistical measure of how 
well the regression line approximates the real data if it 
follows the regression equation. Meanwhile, the Pearson 
correlation coefficient (r) with a range of -1 to 1 and the 
p-value were calculated by Student t-test to assess the 
level of significance at 0.95. The standard deviation (SD), 
represented by vertical lines and defined as a measure of 
the dispersion of a dataset relative to its mean, was also 
calculated. Overall accuracy measures the quality of the 
prediction by comparing the actual values with the pre-
dicted values. Other measures of accuracy were chosen, 
such as bias and mean absolute error (MAE). Bias refers 
to deviations that are not due to chance alone and MAE 
is a measure of how close a fitted line to the data points, 
which is a common measure of prediction error in time 
series analysis. However, they were calculated as (Al-
Jiboori et al., 2020):

 (5)

 (6)

where ε is the error due to the difference between 
observed and estimated values and n the total number.
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4. RESULTS

4.1. Inter-annual variations of PET estimations, MNDWI 
and NDVI areas

Table 1 shows monthly variation of PET in the two 
years: 2018 and 2021 characterized with semiarid and 
dry conditions, respectively. Also, quantitative areas 
for both surface water and vegetation represented by 
the calculation of spectral indices for both MNDWI 
and NDVI respectively were displayed in this table. In 
addition, in order to see the annual differences in these 
variables between the two years, the annual means with 
their SD were calculated, as shown in the last row of 
Table 1. During the two years, the highest values of PET 
are found in the summer months and the lowest val-
ues in the winter months. Under arid conditions, PET 
has high values in the months of 2021 compared to the 
semi-arid year of 2018. 

In general, the surface water areas in 2018 are rela-
tively larger than those in 2021, especially in the six 
months (i.e., February, March, April, May, June and 
November). While in summer (i.e., July, August and 
September) the areas are about the same with an aver-
age value of 18 km2. The only exception is January and 
December, where more water areas were recorded, espe-
cially in January. This distribution of water areas was 
mostly reflected in the growth of vegetation in Bagh-
dad, where the total area of pixels for vegetation (NDVI) 
in months: January, March, April, June, October and 
December of 2018 were larger than those of 2021. The 

remaining months have almost the same NDVI areas, 
especially in May.

4.2. Relationship among PET, MNDWI, and NDVI, pre-
cipitation

To explore the nature of the relationship, the PET 
estimates were plotted separately against MNDWI and 
NDVI, and the best line fit was derived using Origin 9.2. 
Before that, we explored the relationship between two 
related parameters, monthly PET estimates with evapo-
ration rates (Fig. 2a) and with surface water area meas-
urements (Fig. 2b). They are represented by different 
symbols, with green and red dots representing semi-arid 
(2018) and arid (2021) conditions, respectively, as shown 
in the panel of the figures below. Monthly means of PET 
cannot exceed free water evaporation under the same 
weather conditions.

There is no significant difference between the two 
years and they have almost the same behaviour, except 
for a slightly higher value occurred in 2018 due to the 
high rainfall received in 2018 (284.2 mm). This was also 
explained through the annual means of PET and SD 
reported in Table 1, which are almost similar to values 
of 4.8±2.6 and 5.1±2.9 mm/day in 2018 and 2021, respec-
tively. However, the monthly PET values and evapora-
tion rates were very well correlated and found to have a 
positive relation with r=0.95 and p<0.00001. The fitted 
curve has been passed through the data points, which 
obey the exponential polynomial function with an excel-
lent correlation (R2=0.95).

PET = EXP(0.23 + 0.0071 * evaporation rate – 6.6 * 10-6) (7)

Fig. 2b shows the relationship between PET and sur-
face water area (Aw) derived from MNDWI, where the 
highest PET values were concentrated around small water 
areas found during the non-wet months (May to Octo-
ber), while the lowest PET values were found in large sur-
face water areas. Despite this decreasing behaviour, these 
two variables were negatively well correlated (r=-0.68) 
and p<0.00001. The decreasing exponential function 
could fit these data points with an R2=0.7, given as

PET = 1.02 + 28.1 * EXP(–Aw/13.2) (8)

where Aw is the surface water area. Ahemd et al. (2024) 
have recently investigated the relationship between PET 
and vegetation area (Av) represented by NDVI for the 
same Sentinel-2 images, time period, and study area. 
They were linearly correlated and expressed by the 
regression model with a R2=0.72.

Table 1. Monthly values for PET, surface water area, and vegetation 
area in two years 2018 and 2021.

Months

PET  
(mm/day)

MNDWI area 
(km2)

NDVI  
area (km2)

2018 2021 2018 2021 2018 2021

Jan. 1.9 1.7 37 77.2 120.1 115.7
Feb. 3.2 2.2 36.9 35.4 107 118
Mar. 4.2 3.5 29 24 187.7 84.9
Apr. 4.3 5.6 28.5 22.8 201.7 150.4
May 6.3 8 29.6 19.5 197.8 197.8
June 8.8 8.9 28.5 18.7 163.5 119.3
July 8.3 8.7 18.7 20 120.1 124.8
Aug. 7.5 8.3 20 21 162.8 124.3
Sep. 6.2 6.6 18.7 21.8 122.9 139.4
Oct. 3.3 4.5 21.3 23.1 172.8 129.2
Nov. 2 2 40.7 32.1 147.4 154.8
Dec. 1.6 1.5 39.9 47.1 291.8 138.8
Aver.±SD 4.8±2.6 5.1±2.9 29.1±8.2 30.2±17 166.3± 50.9133.1± 27.4
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PET = 1.8 + 0.03 * Av (9)

where Av is the vegetation cover area. Al Rukabie, Salwa 
and Al-Jiboori (2024) have studied the impact of month-
ly precipitation (P) on PET for the same site, data and 
period and found an empirical relation describing its 
behavior (R2=0.69) given below

PET = 2.9 + 1.5 * (EXP(–76.2 * P)) (10) 

From the above discussions, an integrated multiple 
regression model for PET in arid and semi-arid regions 
can be derived as follows: 

PET ∝ F(Aw,Av,P)
PET = β + F (Aw,Av,P) ∓ ε (11)

where b is a general empirical constant based on the 
above independent variables. As there are no directly 
measured observations for PET, the PET values in this 
paper were considered more reliable when testing this 
model, as shown in the next section. To obtain the mean 
PET predictions resulting from the ecological param-
eters studied in this paper, we substitute Eqs. (8), (9) 
and (10) in Eq. (5) with summation constants in the first 
terms.

 =  * [5.72 + 28.1 * EXP(–Aw/13.2) + 0.03 * 
Av + 1.5 * EXP(–76.2*P)] 

(12)

When P approaches zero as in dry months as shown 
in Fig. 2, Eq. 6 becomes

 =  * (7.22 + 28.1 * EXP(–Aw / 13.2) + 0.03 * Av) (13)

The three-dimensional graph in Fig. 3 shows the 
combined effect of monthly water and vegetation on PET 
due to free precipitation. In general, PET values were 
higher in 2018 due to water availability than in the dry 
year 2021. The highest PET values were associated with 
small water areas (~18 km2) and large vegetation areas. 
Meanwhile, the lowest PET values were found in large 
water areas and low vegetation areas.
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Figure 2. Monthly variations between (a) PET and evaporation, and (b) PET and surface water area.
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Figure 3. Monthly variation of cumulative precipitation during two 
years (2018 and 2021) observed at meteorological Baghdad station.
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4. DISCUSSION

This study is not the only attempt to estimate PET 
using remote sensing measurements, which is an alter-
native approach to estimating PET, but there have been 
several studies describing the spatial distribution of PET 
over a given region at different time scales (Rossato et 
al., 2005; Olivares et al., 2021; Gebremedhin et al., 2022). 
Rossato et al. (2005) in Brazil found a linear correlation 
between monthly PET and NDVI over the period 1981-
2000. Olivares et al. (2021) also studied the Spearman 
coupling of NDVI with PET in a banana plantation in 
Venezuela under drought conditions and found that the 
influence of PET on NDVI was more evident with a lag 
of 1 month. 

This paper could present a comprehensive analysis 
to estimate the monthly PET by using a multi-regression 
model of Eq. (12) or (13) including more possible factors 
related to the PET. The proposed model will of course 
improve the results of PET estimation as it depends 
on several factors rather than one variable, e.g., veg-
etation, surface water or precipitation. Also, this model 
can enhance the policy makers to set the relevant plans 
to monitor monthly or seasonal changes, especially in 
semi-arid environments that are characterized by low 
precipitation, high evaporation rates that exceed precipi-
tation, and wide temperature ranges both daily and sea-
sonally. 

The monthly correlation analysis between PET and 
its factors (surface water, vegetation cover and precipita-
tion) has a different shape depending on the prevailing 

climate type in a given year. For the dry year (2021), 
PET showed the high values especially in the sum-
mer months due to the permanent water available in 
the Tigris River and other water ponds, as reported by 
Mahdi et al. (2024), and the high amounts of solar radia-
tion received by the surface, which primarily provides 
heat (or energy) for evaporation. The proposed multi-
ple regression models (Eq. 8 and Eq. 9) reflect the com-
bined effect of the above variables on PET estimates. It 
should be noted that wind speed can play a relative role 
in exceeding PET values (Zhang and Wang, 2021), but 
it is not included in this paper because the urban envi-
ronments are characterized by low wind due to the high 
surface roughness, while it was found to be 1.2 m as 
reported in Haraj and Al-Jiboori (2021).

Eqs. (8) and (9) were multiplied by factors of 1/3 
and ½, respectively, depending on the number of terms 
contributing to PET in the atmosphere. For further 
discussion, we divided the months of both years into 
two groups: wet months (14 in total) with precipita-
tion activity (from October to May), and dry months 
that never have precipitation (June-September), with no 
rain even in two months (May and October) of 2021, as 
shown in Fig. 2.

Now we turn to discuss the statistical parameters 
such as bias or error with standard deviation, mean 
square deviation and root mean square deviation. Using 
the results of MNDWI, NDVI and precipitation pre-
sented in the previous section, the predictions of mean 
PET were obtained from Eqs. (8) and (9) for wet and 
dry months respectively. In order to improve the perfor-
mance of these equations, the monthly errors between 
the PET values obtained from Eqs. (8) and (9) and their 
predictions were averaged to find the bias (using Eq. 
(1)) with standard deviation for both wet and dry peri-
ods. The negative bias values were 1.04 mm/day with 
SD=±1.3 mm/day in dry period and 1.16 mm/day with 
SD=±1.2 mm/day in wet period. With these results, the 
bias in dry months was slightly less than that in wet 
months. These negative values should be subtracted from 
the mean monthly predictions obtained by Eqs. (8) and 
(9) to obtain better results.  To check the accuracy of 
these predictions, the results of the monthly MAE were 
also obtained from Eq. (2) for the same period, which 
were found to be 1.3 mm/day with SD=1.2 mm/day and 
1.4 mm/day with SD=0.9 mm/day, respectively. This 
means that the accuracy of equation (9) has less predict-
able error compared to that of equation (8). This small 
difference between the outputs of these equations reflects 
the weak role of precipitation in enhancing evaporation 
and transpiration in arid urban environments, where 
high rainfall variability is a significant feature. 

Figure 4. Monthly variations of PET with surface water and vegeta-
tion areas during 2018 and 2021.
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5. CONCLUSION

This study used monthly digital areas for both MND-
WI and NDVI derived from the Sentinel-2 products 
reported in Mahdi et al. (2024) and Ahmed et al. (2024), 
respectively, for the same study area (Baghdad) and time 
period (2018 and 2021) associated with completely dif-
ferent wet and dry conditions. In addition to the month-
ly cumulative evaporation and precipitation rates, the 
monthly PET estimates calculated by the Truc method 
using the ground-based data for solar radiation, tempera-
ture and relative humidity were combined with the above 
areas to establish empirical relationships. PET estimates 
were closely related to evaporation with an exponen-
tial polynomial function and to MNDWI areas with a 
decreasing exponential function. The results showed that 
PET values were linearly correlated with vegetation and 
non-linearly correlated with evaporation, precipitation 
and surface water. This study could also derive a general 
relationship for estimating mean PET including all the 
above variables together. Understanding this relationship 
would allow for better planning of natural resources, sug-
gesting relevant and applicable adaptation strategies to 
avoid adverse environmental impacts in the future.
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