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Solar radiation (H) is a critical factor in Earth's surface processes, influencing climate, 17 

ecosystems, agriculture, and energy fluxes. Accurate prediction of daily H is essential for 18 

advancing solar power as a sustainable energy source. This study evaluates the effectiveness 19 

of machine learning (ML) models-support vector regression (SVR), extreme gradient boosting 20 

(XGBoost), boosted regression forest (BRF), and k-nearest neighbors (K-NN)-in predicting 21 

daily H in Gadarif, Sudan, a semi-arid region with limited prior research on solar radiation. 22 

The models were developed using daily climatic variables, including temperature and a binary 23 

precipitation variable (Pt) to account for cloud cover effects. The dataset was split into training 24 

(80%) and testing (20%) subsets, with model performance evaluated using key metrics: 25 

coefficient of determination (R²), root mean square error (RMSE), and mean absolute error 26 

(MAE). BRF achieved the best performance with an R² of 0.963 and RMSE of 4.38 (MJ m⁻² 27 

d⁻¹) during training. However, model performance decreased during testing, with XGBoost and 28 

K-NN showing higher error margins. Including Pt improved the models' ability to account for 29 

cloud cover effects, particularly on overcast days. Despite these improvements, challenges 30 
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remained in predicting H under extreme climatic conditions, highlighting the need for more 31 

advanced approaches. These findings suggest that ML models can be effectively adapted for H 32 

prediction in other semi-arid and arid regions. The results underscore the importance of 33 

considering precipitation and cloud cover in H predictions, which is crucial for optimizing solar 34 

energy systems and enhancing agricultural planning. 35 
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HIGHLIGHTS 38 

-   Machine learning models, including SVR, XGBoost, BRF, and K-NN, were applied to   39 

predict     daily solar radiation (H). 40 

-   BRF outperformed the other models, achieving the highest performance with an 𝑅2 of 41 

0.963 and RMSE of 4.38 (MJ m⁻² d⁻¹) during training. 42 

-   Incorporating a precipitation variable (Pt) improved the models' accuracy by accounting 43 

for cloud cover effects. 44 

-   Testing showed a performance drop, though BRF maintained strong generalization, 45 

needing refinement for extreme conditions. 46 

-  The methodology, applied in Gadarif, Sudan, can be adapted for other semi-arid and arid 47 

regions for solar energy optimization. 48 

 49 

Nomenclature  

Parameters Abbreviation 

C penalty parameter of the error ANN Artificial Neural Networks 

H global solar radiation (MJ m-2 day-1) MLP Multi-layer Perceptron 

H0 extra-terrestrial solar radiation (MJ m-2 day-1) SVM Support Vector Machine 

K kernel function XGBoost Extreme Gradient Boosting 

I loss function ANFIS adaptive neuro-fuzzy inference system 

n number of observations RF Random Forest 



 

 

1. INTRODUCTION 50 

Solar radiation (H) plays a crucial role in Earth’s surface processes, influencing climate 51 

systems, hydrology, and ecosystems (Caldwell, M.M., Bornman, J.F., Ballaré, 2007). Its 52 

accurate estimation is particularly critical in semi-arid regions where environmental and 53 

agricultural systems heavily depend on it. Solar radiation directly impacts photosynthesis, 54 

making it a vital variable in crop modeling, where agronomic applications are essential for 55 

N sunshine duration AI Artificial Intelligence 

ΔT diurnal temperature range (°C) BRF           Boosted Regression Forests 

Pt transformed precipitation ML              Machine Learning  

Tmax daily maximum temperature (°C)   

Tmin daily minimum temperature (°C)   

Xmin minimum observed value in the dataset   

Xmax maximum observed value in the dataset   

Xmean  mean observed value in the dataset   

Cs Skewness coefficient   

SD Stander deviation   

Ck Kurtosis coefficient   

φ higher-dimensional feature space   

ω        weights vector   

ɛ        tube size   

λ        regularization parameter   

γ        minimum loss   

Ω       regularization term   

Constants   

a, b, and c, empirical coefficients   



 

 

optimizing yield predictions (Holzman et al., 2018). Precise H forecasts are essential for 56 

improving agricultural planning and water resource management, especially in regions with 57 

limited resources. 58 

This study addresses the gap in H prediction for semi-arid regions, focusing on Gadarif, 59 

Sudan, by employing advanced machine learning (ML) techniques support vector machines 60 

(SVM), extreme gradient boosting (XGBoost), boosted regression forest (BRF), and k-nearest 61 

neighbors (K-NN). While traditional studies have focused on temperate climates using 62 

statistical models, this research applies ML models to capture complex, non-linear interactions 63 

in semi-arid conditions. SVM and XGBoost were selected for their robustness and ability to 64 

generalize well across varying datasets, BRF for its ensemble method, which reduces bias and 65 

variance, and K-NN for its effectiveness in modeling local relationships. By utilizing a daily 66 

temporal scale, this study provides precise short-term H forecasts, enhancing prediction 67 

accuracy for agricultural applications in resource-challenged regions like Gadarif. 68 

ML approaches have been increasingly applied to estimate H in various climates. (Wang et 69 

al., 2016) conducted a comparative study in China, estimating daily H using models such as 70 

multilayer perceptron (MLP), radial basis function (RBF), and generalized regression neural 71 

networks (GRNN). The study found that GRNN underperformed compared to MLP and RBF, 72 

highlighting the need for more robust models in H prediction. Similarly, (Belmahdi et al., 2020) 73 

forecasted daily H one month ahead using ARIMA and ARMA models, with ARIMA 74 

demonstrating superior accuracy over a persistence model. 75 

Most previous studies focused on a specific timescale or component of H. For instance, 76 

(Belmahdi et al., 2022) introduced a new optimization method to predict hourly H, comparing 77 

several models, including feed-forward backpropagation (FFBP), ARIMA,   k-NN, and SVM. 78 

FFBP and ARIMA models exhibited the highest accuracy, as confirmed by regression plots 79 

under clear-sky conditions. 80 

(Fan et al., 2018a) employed SVM and extreme gradient boosting (EGB) models to predict 81 

H in humid regions with limited data. They found that SVM outperformed EGB and traditional 82 

empirical models in terms of prediction stability. Similarly, (Belaid and Mellit, 2016) explored 83 

the use of SVM and artificial neural networks (ANN) for predicting daily and monthly H, 84 

concluding that SVM produced better correlations between predicted and observed values at 85 

both timescales. 86 



 

 

Geographical and meteorological data have also been extensively utilized in H modeling. 87 

For example, (Sözen et al., 2008) employed an artificial neural network (ANN) model to 88 

estimate H in Turkey, achieving highly accurate predictions. In Algeria, (Mellit et al., 2008) 89 

applied both ANN and adaptive neuro-fuzzy inference system (ANFIS) models, also producing 90 

reliable results for H estimation. (Chen et al., 2011)  found that SVM were dependable model 91 

for H predictions across multiple stations, while (Ahmed and Adam, 2013) demonstrated that 92 

ANN models outperformed empirical models in predicting H in Qena, Egypt, achieving higher 93 

correlations between predicted and observed values. 94 

While these studies have significantly advanced the field of H prediction, they often lack 95 

comprehensive evaluations of model performance in semi-arid climates. Furthermore, few 96 

studies have incorporated precipitation data to account for cloud cover, a critical factor 97 

affecting H in these regions. (He et al., 2020) highlighted the variability of H across different 98 

geographic regions; however, the unique climatic conditions of semi-arid areas like Gadarif 99 

remain underexplored. 100 

The primary objective of this study is to predict daily H in Gadarif, Sudan, using advanced 101 

ML models. This is the first study to apply the Boosted Regression Forest (BRF) model for H 102 

prediction in this region. Additionally, the study incorporates precipitation data as a key 103 

variable to account for the influence of cloud cover on H, which an aspect that has not been 104 

extensively explored. 105 

The novelty of this research lies in its application of BRF, an underutilized yet powerful 106 

ensemble method, for H estimation in semi-arid regions. By integrating precipitation as a 107 

binary variable, the study enhances the accuracy of solar radiation predictions and agricultural 108 

modeling, providing new insights into the interaction between precipitation, cloud cover, and 109 

H in Gadarif. This tailored approach fills gaps in existing research and contributes to improving 110 

forecasting in resource-constrained environments. 111 

 112 
2. MATERIALS AND METHODS 113 

2.1. Study area and data collection  114 

Figure 1 illustrates the study area, Gadarif, located in eastern Sudan, which experiences a 115 

hot semi-arid climate (BSh according to the Köppen-Geiger classification). This region faces 116 

significant agricultural challenges due to harsh environmental conditions, including high 117 

temperatures, erratic rainfall, and limited water resources. These factors contribute to 118 



 

 

substantial yield variability and increased vulnerability to drought and heat stress. Moreover, 119 

the scarcity of reliable water sources and the fluctuating solar radiation levels emphasize the 120 

need for accurate solar radiation predictions, which are essential for effective water 121 

management and crop planning. 122 

The study area is primarily agricultural, with sorghum and sesame as the main crops. These 123 

crops depend on consistent solar radiation (H) and sufficient water availability, emphasizing 124 

the importance of this study for local agricultural management. 125 

Daily meteorological data were collected from 2010 to 2022, covering a 12-year period. 126 

The data were obtained from the Sudan Meteorological Authority (SMA) at the Gadarif 127 

weather station, a well-established station that records key climatic variables. Equipped with 128 

modern weather instrumentation, the station measures H, temperature, and precipitation. This 129 

data were supplemented with satellite-derived information from NASA’s POWER Data Access 130 

Viewer, ensuring the completeness and accuracy of the dataset used in this study. The 131 

combined dataset includes daily observations of H, temperature (Tmax, Tmin), and precipitation 132 

(Pt), which were essential inputs for the ML models. 133 

These data were recorded at daily intervals, which enabling for high -resolution training of 134 

the model. However, in scenarios where daily data are not available, the model can be adapted 135 

by means of a weekly or monthly average, such as low-ceiling input. In addition, proxy dataset 136 

from satellite sources, such as MODIS and CHIRPS precipitation estimate, can serve as a 137 

viable alternative to support Modi’s estimate   and application. 138 



 

 

 139 

Figure 1. Geographical location of the meteorological station in semi-arid climate region in 140 
Sudan.   141 

 142 
2.2. Machine learning models  143 

The dataset comprises 4,380 daily records collected over a 12-year period (2010–2022). 144 

For the purposes of model development, the data were divided into a training set (80%) and a 145 

testing set (20%). The dataset includes daily measurements of H, extraterrestrial radiation (H0),   146 

Tmax,   Tmean,   Tmin, and Pt. These variables were used as inputs for the machine learning models 147 

to predict H more accurately. 148 

2.2.1. Support vector machines (SVM)  149 

The support vector machine (SVM) model, developed by Vapnik and outlined in (Vapnik, 150 

2006), stands as a widely used supervised AI model for tasks such as data analysis and pattern 151 

recognition, particularly in applications involving regression and prediction. The SVM 152 

algorithm functions by predicting regression through a series of kernel functions. To ensure 153 

methodological clarity, it is important to explain  the kernel function in support vector machines 154 

(SVM). The kernel function defines the operations and transformations applied to the input 155 



 

 

data. By addressing the non-linear characteristics of SVM and the approaches it utilizes to 156 

define appropriate decision boundaries, this explanation enhances the understanding of SVM. 157 

This understanding, in consequence, empowers them to make well-informed decisions when 158 

applying SVM to diverse datasets (Wu, 1999; Tay and Cao, 2001). 159 

The SVM algorithm expresses the approximated function as depicted in the subsequent 160 

equation: 161 

F (x) = ω.φ(x) + b.                                                (1) 

In this equation, φ (x) denotes the transformation of the input vector x into a higher-162 

dimensional feature space. The parameters ω and b represent the weight vector and a 163 

threshold, respectively. These values can be obtained by reducing the regularized risk 164 

function, as defined below: 165 

𝑅!"#(𝐶) = 𝐶 $
%
∑  %
&'$ 𝐿(𝑑& , 𝑦&) +

	$
(
𝑤 ∥(                                                 

(2) 

where C represents the error factor, 𝑑& is the desired output value, n signifies the amount of 166 

observations, and 𝐶 $
%
∑  %
&'$ 𝐿(𝑑& , 𝑦&) represents the empirical error, wherein the function Lε 167 

(d, y) can be defined as follows:   168 

𝐿𝜀(𝑑, 𝑦) = 1|𝑑 − 𝑦| − 𝜀|𝑑 − 𝑦| ≥ 𝜀
 0  otherwise     (3) 

where, $
(
||ω||² serves as the regularization term, and ε defines the size of the tube, which is 169 

maintained to be nearly equal to achieve approximate accuracy during training. 170 

εi and 𝜀&∗   to estimation parameters W and d, expressed as 2 171 

Upon introducing Lagrange multipliers and incorporating optimal constraints, we obtain the 172 

subsequent decision function from equation (1): 173 

           𝑓(𝑥, 𝑎& , 𝑎&∗) = ∑  %
&'$ (𝑎& − 𝑎&∗)𝐾 ∗ :𝑥& , 𝑥*; + 𝑏                                                               
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where K (𝑥& , 𝑥*) denotes the kernel function, equal to the internal product of vectors 𝑥& and 𝑥* 174 

within the characteristic space u (𝑥&) and u (𝑥*), expressed as K (𝑥& , 𝑥*) = u (𝑥&) * -u (𝑥*). The 175 

kernel function offers the benefit of handling feature spaces with any dimension, eliminating 176 

the need for an explicit mapping process.  (Scholkopf et al., 1999) provided a comprehensive 177 

description of the SVM model. 178 

2.2.2 Extreme Gradient Boosting (XGBoost)   179 

XGBoost is a highly efficient, flexible, and portable gradient-boosting library designed for 180 

distributed environments. Built on the Gradient Boosting framework, it uses parallel tree 181 

boosting to apply ML algorithms to solving various data science problems with speed and 182 

precision. XGBoost extends gradient-boosted decision trees (GBDT), focusing on enhancing 183 

processing speed and performance. This algorithm has been successfully applied to predict 184 

solar power with minimal error, as demonstrated by (Cai et al., 2020), who found that XGBoost 185 

outperformed other machine learning methods. 186 

The additive learning process in XGBoost is as follows: Initially, the first learner is fitted 187 

to the entire input data space, and subsequently, a second model is trained on the residuals, 188 

addressing the limitations of the initial weak learner. This fitting process continues iteratively 189 

until a predefined stopping criterion is met. The ultimate prediction of the model is the sum of 190 

predictions from each individual learner. The general prediction function at steps 'is formulated 191 

as follows: 192 

                    𝑓&
(.) = ∑  .

/'$ 𝑓/(𝑥&) =

𝑓&
(.0$) + 𝑓.(𝑥&) 

                                               (6) 

where 𝑥𝑖 refers to the training data, and ft (x) denotes the learner fitted incrementally at stage 193 

t, with simple regression trees typically serving as the foundational learners. The cumulative 194 

training process aims to minimize the subsequent regularized objective function. 195 

                𝑂𝑏𝑗(.) = ∑  %
/'$ 𝑙(𝑦A& , 𝑦&) +

∑  .
/'$ Ω(𝑓&) 

                                              (7) 

 

This aims to strike a balance between two key objectives: reducing empirical training error, 196 

quantified by the loss function l (yi, 	𝑦Ai) which compares predicted 𝑦Ai to the target yi values, 197 



 

 

and managing model complexity through the regularization term Ω (f) (Chen and Wang, 2007). 198 

The regularization term Ω (f) is defined as follows: 199 

                         Ω(𝑓) = 𝛾𝑇 + $
(
𝜆 ∥

𝜔 ∥( 

                                                              (8) 

where T  represents the count of leaves, ω  corresponds to the weights associated with each 200 

leaf, and  λ  and  γ  are parameters that control the extent of regularization. This constraint 201 

limits the complexity of individual tree models, mitigating the risk of overfitting. XGBoost's 202 

ability to handle missing values internally without the need for imputation further enhances its 203 

robustness and applicability across different scenarios. However, tuning XGBoost can be 204 

complex due to the numerous hyperparameters involved, and while optimized for efficiency, it 205 

can still be computationally intensive and require significant memory, especially with very 206 

large datasets. Additionally, the model can be difficult to interpret compared to simpler models, 207 

such as linear regression. 208 

2.2.3 Boosted regression forests (BRF)   209 

Boosted Regression Forests (BRFs) represent a sophisticated ensemble modeling 210 

technique that combines regression trees in a boosting framework along with the random forest 211 

algorithm. This combination leads to exceptional predictive performance across a wide range 212 

of scientific applications (Wu and Levinson, 2021). The BRF algorithm builds regression tree 213 

models in a sequential manner, with each successive model learning from the prediction errors 214 

of the preceding model, to incrementally improve accuracy (Masrur Ahmed et al., 2021). 215 

Specifically, BRF training initiates with a basic regression tree, and subsequently, additional 216 

trees are incorporated to fit the residuals from the initial model and minimize the loss function. 217 

This process continues, with each tree focusing on reducing residuals, until it reaches 218 

convergence or the predefined number of trees. The final BRF model comprises an additive 219 

combination of the sequentially trained regression trees.  220 

The boosting mechanism improves predictions by concentrating on misclassified instances, 221 

while the random forest component ensures robustness against overfitting. These combined 222 

features enable BRFs to effectively capture complex data relationships, rendering them 223 

essential for predictive modeling in various scientific fields. The BRF model predicts the target 224 

variable based on a set of input features by aggregating the predictions from each tree in the 225 



 

 

ensemble, each with its own individual weight. This prediction can be expressed 226 

mathematically as: 227 

                    𝑓(𝑥) = ∑ 	𝑤1	.		𝑓1#
1'$ (𝑥) (9) 

where, 𝑓(𝑥)  represents the comprehensive prediction, 𝑚  denotes the number of trees, 𝑤1 228 

signifies the weight assigned to the m-th tree, and 𝑓1(𝑥) denotes the prediction made by the 𝑚 229 

-th tree. The high predictive power of BRFs, due to the combination of boosting (which reduces 230 

bias) and random forests (which reduce variance), makes them highly effective for both 231 

regression and classification tasks. However, training BRFs can be computationally expensive 232 

and time-consuming due to the iterative nature of boosting. Additionally, the model can be 233 

complex and difficult to interpret compared to single-tree models, requiring careful tuning of 234 

multiple hyperparameters, which can be both challenging and time-intensive. 235 

2.2.4 K-nearest neighbors (K-NN)   236 

The KNN method, first introduced by (Fix and Hodges, 1989) and later expanded upon by 237 

(Kramer, 2013), is a nonparametric classification technique. It is used for both classification 238 

and regression tasks. The approach utilizes a dataset in either scenario and the 'k' closest 239 

training samples are considered as the input. The K-NN method involves querying a database 240 

to identify data points that closely resemble the observed data, which are commonly mentioned 241 

as referred to as the nearest neighbors of the current data (Peterson, 2009). In this study, K-NN 242 

is applied to predict the most closely related testing stations based on the training station. The 243 

following provides a summary of the K-NN regression function: 244 

                           𝑓233(𝑥4) =
$
2
∑  &∈3!(6") 𝑦& 

(10) 

In K-NN regression, when confronted with an unknown pattern represented as	𝑥4 , the 245 

algorithm computes the mean of the function values obtained from its K-closest neighbors. The 246 

set NK (𝑥4) includes the indices of these nearest K neighbors of	𝑥4. The concept of localized 247 

functions in both the data and label spaces forms the core principle underpinning the averaging 248 

process in K-NN Essentially, within the close vicinity of xi, it is expected that patterns like 249 

𝑥4are expected to exhibit similar continuous labels, with f (𝑥& ) approximating 𝑦&.(Kramer, 250 

2013). 251 



 

 

The simplicity and ease of implementation of K-NN make it an accessible choice for various 252 

applications. Its non-parametric nature eliminates the need for assumptions about the 253 

underlying data distribution, allowing flexibility in handling different types of data. 254 

However, K-NN's computational inefficiency during the prediction phase, especially with 255 

large datasets, and its high memory usage due to storing all training data can be significant 256 

drawbacks. Additionally, K-NN's performance can degrade with high-dimensional data if 257 

irrelevant features are present, necessitating careful feature selection. Moreover, the method is 258 

sensitive to the scale of the data, requiring normalization or standardization of features to 259 

ensure optimal performance. 260 

2.2.5 Models development 261 

In contrast, the second scenario (SVM2, XGBoost2, BRF2, and K-NN2) incorporated a 262 

more comprehensive set of input variables: daily Tmin, Tmax, a binary variable Pt indicating the 263 

presence of rainfall, where Pt = 1 for rainfall greater than 0 mm and Pt = 0 for no rainfall, and 264 

daily extraterrestrial radiation (H0). The inclusion of  Pt aimed to assess the influence of 265 

precipitation on daily H, while H0, determined using a mathematical equation proposedby 266 

(Pereira et al., 2015), , accounted for extraterrestrial radiation, by considering factors such as 267 

the day of the year, latitude, and solar angle. 268 

This approach enabled a comparative analysis of how additional climatic and radiative 269 

factors affect model accuracy and robustness, providing deeper insights into the factors 270 

influencing daily H estimations. 271 

2.2.6 Hyper-Parameters Tuning 272 

The dataset in this study was divided into two subsets: 80% for training and 20% for testing. 273 

This split allows the model to be trained on a substantial portion of the data, while reserving a 274 

smaller, unseen portion is reserving a smaller, unseen portion to evaluate the model’s 275 

generalization capability. The training set (80%) is used to develop the machine learning 276 

models and fine-tune hyperparameters, while the test set (20%) was used to assess model 277 

performance on unseen data. 278 

In addition to the standard random 80/20 split, an alternative test set selection strategy was 279 

implemented to account for temporal autocorrelation. Specifically, the final 28 months of the 280 

12-year dataset (equivalent to 20% of the total 144 months) were selected as a contiguous block 281 



 

 

to serve as the test set. This approach prevents overlap between highly autocorrelated data 282 

points in the training and testing sets, offering a more realistic assessment of the models’ ability 283 

to generalize to temporally distinct conditions. The models were retrained using the initial 116 284 

months of data and tested on the final 28 months. Performance metrics were then recalculated 285 

to compare results under both random and temporally split scenarios. To ensure the robustness 286 

of the evaluation under random splitting, the train-test split was repeated 10 times, and the 287 

performance metrics were averaged to minimize randomness effects and provide stable 288 

estimates. 289 

All ML models were implemented and evaluated using Python (version 3.8) in a Jupyter 290 

Notebook environment, running on a 2.3 GHz Intel Core i7 quad-core processor with 16 GB 291 

of RAM. Libraries used include scikit-learn (version 0.24.2) for SVM and K-NN, XGBoost 292 

(version 1.4.2), and lightgbm (version 3.2.1) for BRF. Data preprocessing was performed using 293 

Pandas (version 1.2.4) and Numpy (version 1.20.3), with visualizations generated using 294 

Matplotlib (version 3.4.2) and Seaborn (version 0.11.1). The use of these tools ensures the  295 

reproducibility of the study and highlights the rigor of the analysis. 296 

2.2.7 Comparison of models and statistical indices 297 

The accuracy and effectiveness of the selected machine learning models for predicting daily 298 

H were assessed and compared using four widely recognized statistical metrics (Despotovic et 299 

al., 2015; Lu et al., 2018; Fan et al., 2018b; Ma et al., 2019). These measurements include the 300 

mean bias error (MBE, as shown in Eq. (14)), the mean absolute error (MAE, as defined in Eq 301 

(13)), the root mean square error (RMSE, per Eq. (12)), and the coefficient of determination 302 

(R2, described in Eq. (11)). Detailed explanations and mathematical expressions for these 303 

metrics are provided in the following section. 304 
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In evaluating model performance, the Normalized Root Mean Square Error (NRMSE) was 308 

used to account for the Normalized Root Mean Square Error (NRMSE), calculated by 309 

normalizing the Root Mean Square Error (RMSE) with the standard deviation of the observed 310 

solar radiation. In this context, 𝐻&,1, 𝐻&,9, 𝐻J&,1, and 𝓃 represent the measured, estimated, mean, 311 

and number of observations for global solar radiation, respectively. This approach ensured 312 

consistent model comparisons across datasets with varying levels of variability. The 313 

Coefficient of  Determination (R²) measured how well the models captured variance in 314 

observed values, with higher R² values (closer to 1) indicating a better fit and alignment of the 315 

regression line with the data. Additionally, RMSE values quantified the differences between 316 

model estimates and measured values, where lower RMSE values signifying superior model 317 

performance. Mean Bias Error (MBE) highlighted estimation tendencies, with positive values 318 

representing overestimation and negative values indicating underestimation of global solar 319 

radiation. Together, these metrics provided a comprehensive evaluation of model accuracy, 320 

addressing both variance and potential biases in prediction. 321 

Table 1 presents descriptive statistics for key meteorological variables, including 322 

maximum temperature (Tmax), mean temperature (Tmean), minimum temperature (Tmin), 323 

precipitation (Pt), extra-terrestrial solar radiation (H0), and solar radiation (H). Additionally, 324 

co-skewness and co-kurtosis values to provide insights into the distributional characteristics 325 

and relationships among these variables. These statistics offer a comprehensive overview of 326 

the meteorological conditions in the study area, facilitating an understanding of the data’s 327 

central tendencies and variability. 328 

Table 1. provides a statistical summary of key meteorological variables, including minimum 329 

(Xmin), mean (Xmean), maximum (Xmax), standard deviation (SD), skewness (Cs), and kurtosis 330 

(Ck), essential for evaluating variability and distribution characteristics in model training and 331 

testing datasets. 332 

Variables       Xmin.              Xmean.            Xmax.             SD.                 Cs.                 Ck. 



 

 

Tmax (°C) 1.000    37.458    46.700 3.843 -0.333    1.450 

Tmean(°C) 11.300    29.941   38.900   3.152  0.042    0.106 

Tmin(°C) 10.500    22.376    33.000   3.089 -0.116   0.593 

Pt(mm) 0.000     1.630   73.300 6.405  5.746   39.505 

H (MJ m-2 d-1.) 60.000 178.333 226.700   2.299 -0.540  0.827 

H0(MJ m-2d-1) 90.300 356.455  453.000   4.557 -0.536   0.985 

  333 

The flowchart in (Figure 2) outlines the process the process of data collection, processing, 334 

and model evaluation. After splitting the data into training (80%) and testing (20%) sets, the 335 

models are evaluated under two scenarios. The best-performing model is either selected or 336 

further refined through iterative improvements, if necessary. The finalized model is then used 337 

to generate predictions, completing the analysis. 338 

 339 

Figure 2. Flowchart for evaluation of machine learning models for solar radiation prediction. 340 

3.  RESULTS AND DISCUSSION 341 



 

 

This study aimed to predict solar radiation (H) at meteorological stations in Sudan's semi-342 

arid region using four machine learning models: support vector machines (SVM), extreme 343 

gradient boosting (XGBoost), boosted regression forest (BRF), and K-Nearest Neighbors (K-344 

NN). Table 2 summarizes the values of four commonly used statistical indicators for these 345 

models, including the mean and standard deviation (SD) calculated across 10 repeated training-346 

test procedures to evaluate uncertainty in model performance. 347 

Table 2. Model Performance with Uncertainty Estimation for Scenario 1 and Scenario 2 348 

(Training and Test Phases) 349 

 Training     

   Model R2  RMSE  MAE MBE 
 (Mean ± SD) (Mean ± SD) (Mean ± SD) (Mean ± SD) 

SVM1 0.953 ± 0.010 4.937 ± 0.143 0.510 ± 0.083 -0.298 ± 0.021 
XGB1 0.952 ± 0.009 4.967 ± 0.156 1.475 ± 0.091 -0.007 ± 0.016 
BRF1 0.963 ± 0.010 4.383 ± 0.128 0.996 ± 0.081 -0.017 ± 0.022 

  K-NN1    0.964 ± 0.012    4.329 ± 0.147    0.609 ± 0.079     0.003 ± 0.018 
SVM2 0.964 ± 0.011 4.629 ± 0.130 0.470 ± 0.074 -0.278 ± 0.019 
XGB2 0.965 ± 0.012 4.500 ± 0.141 1.356 ± 0.085 -0.005 ± 0.018 
BRF2 0.967 ± 0.013 4.200 ± 0.135 0.879 ± 0.072 -0.012 ± 0.017 

   K-NN2    0.966 ± 0.011    4.202 ± 0.139    0.590 ± 0.077     0.002 ± 0.015 
 Testing  

  
SVM1 0.929 ± 0.012 6.204 ± 0.176 0.874 ± 0.105 -0.258 ± 0.028 
XGB1 0.926 ± 0.014 6.337 ± 0.189 1.819 ± 0.112 0.048 ± 0.032 
BRF1 0.924 ± 0.011 6.453 ± 0.162 1.508 ± 0.097 0.105 ± 0.030 

  K-NN1    0.922 ± 0.016    6.532 ± 0.151    1.066 ± 0.110   -0.056 ± 0.025 
SVM2 0.953 ± 0.014 5.940 ± 0.153 0.782 ± 0.098 -0.217 ± 0.025 
XGB2 0.949 ± 0.011 5.875 ± 0.146 1.612 ± 0.101 0.052 ± 0.029 
BRF2 0.948 ± 0.013 5.819 ± 0.141 1.386 ± 0.089 0.098 ± 0.027 

   K-NN2    0.945 ± 0.015    6.042 ± 0.149    0.978 ± 0.096   -0.042 ± 0.023 
 350 

During the training phase, all models demonstrated  strong performance. For example, 351 

SVM achieved an R² of 0.953 ± 0.010, an RMSE of 4.937 ± 0.143( MJ m⁻² d⁻¹), and a minimal 352 

MAE of 0.510 ± 0.083 (MJ m⁻² d⁻¹). These metrics suggest that the model was well-calibrated 353 

during training. XGBoost followed closely with an R² of 0.952 ± 0.009, although it showed a 354 

higher MAE of 1.475 ± 0.091 (MJ m⁻² d⁻¹). BRF outperformed the others, achieving the highest 355 

R² 0.963 ± 0.010 and the lowest RMSE 4.383 ± 0.128 (MJ m⁻² d⁻¹), indicating superior training 356 

performance. K-NN also performed well, achieving an R² of 0.964 ± 0.012 and a low MAE of 357 



 

 

0.609 ± 0.079 (MJ m⁻² d⁻¹). The inclusion of uncertainty metrics (standard deviation) provides 358 

a clearer view of the model's consistency, reinforcing the reliability of these results across 359 

different training-test splits. 360 

However, the transition to the testing phase revealed a decline in performance for all 361 

models, indicating reduced generalization capability. For example, SVM achieved an R² of 362 

0.929 ± 0.01 on the testing set, with an elevated RMSE of 6.204 ± 0.176 (MJ m⁻² d⁻¹) and a 363 

moderate MAE of 0.874 ± 0.105 (MJ m⁻² d⁻¹). XGBoost, despite its strong training 364 

performance, showed a reduced in R² 0.926 ± 0.014 along with an increased RMSE 6.337 ± 365 

0.189 (MJ m⁻² d⁻¹) and MAE 1.819 ± 0.112 (MJ m⁻² d⁻¹). BRF maintained competitive 366 

performance achieving an R² of 0.924 ± 0.011 and the lowest RMSE 6.453 ± 0.162 (MJ m⁻² 367 

d⁻¹) among the models, demonstrating better generalization. K-NN, although performing 368 

relatively well, exhibited a decline in R² 0.922 ± 0.016 with an increased RMSE 6.532 ± 0.151 369 

(MJ m⁻² d⁻¹) and MAE 1.066 ± 0.110 (MJ m⁻² d⁻¹) during testing. 370 

By incorporating standard deviation as an uncertainty measure, the analysis offers a more 371 

nuanced understanding  of model performance, While the models performed well overall, there 372 

is variability in their ability to generalize to unseen data. This variability underscores the 373 

importance of accounting for data sampling and training-test splits when evaluating machine 374 

learning models. 375 

The findings of this study are consistent with previous research conducted in similar 376 

climatic regions or using comparable methodologies. For example, (Hai et al., 2020) 377 

investigated solar radiation prediction in a semi-arid region using machine learning techniques 378 

and reported comparable performance trends among the models evaluated. Like this study, 379 

their results also emphasized the superior generalization capability of ensemble methods, such 380 

as BRF. The inclusion of uncertainty metrics in the current analysis reinforces these 381 

conclusions, confirming that BRF consistently outperforms other models in terms of predictive 382 

accuracy and robustness. 383 

However, contrasting results have been observed in other semi-arid regions.  (Jamei et al., 384 

2023) found that SVM models outperformed ensemble methods like BRF, highlighting the 385 

influence of local climatic conditions and the inherent complexity of solar radiation patterns. 386 

These differences underscore the need for tailored modeling approaches that account for the 387 

specific characteristics of each region. The uncertainty analysis performed in this study further 388 



 

 

supports this, showing that even within a single semi-arid region, revealing that even within a 389 

single semi-arid region, performance can vary across different data subsets. 390 

Including precipitation as a binary variable (Pt) enhanced the models' ability to account for 391 

cloud cover effects on solar radiation patterns. This aligns with findings by (Jallal et al., 2020), 392 

who showed that integrating relevant meteorological variables can significantly improve model 393 

performance, especially during testing. In this study, the models incorporating Pt achieved 394 

better results in both scenarios, with reduced RMSE and MAE values, suggesting that 395 

precipitation data serves as an essential proxy for cloud cover in H prediction models. 396 

To evaluate the impact of temporal autocorrelation on model performance, a second round 397 

of model testing was conducted using a temporally structured data split, where the final 28 398 

months (20%) of the dataset were used as a contiguous test block. This method provided a more 399 

conservative and realistic estimate of generalization performance, minimizing the influence of 400 

autocorrelated training-test overlaps. As expected, the models exhibited a slight decline in 401 

accuracy under this scenario. For instance, the BRF2 model's R² decreased modestly, and 402 

RMSE increased by approximately 5–7% compared to the random split approach, reflecting 403 

the increased challenge of predicting temporally distant data. Despite this, BRF2 remained the 404 

top-performing model, demonstrating strong resilience and predictive capacity even under 405 

more stringent validation settings. Table 3 presents the performance results of the four machine 406 

learning models under the temporally structured data split scenario, maintaining the same 407 

format as Table 2 for consistency. Both training and testing results are included, along with 408 

uncertainty estimates (standard deviation). Compared to the random split scenario, a slight 409 

performance drop is observed in the test phase, as expected due to the greater challenge of 410 

predicting temporally distant data. Among the models, BRF2 again demonstrated the most 411 

robust generalization capability, maintaining strong accuracy and low variability. These results 412 

confirm the value of evaluating ML models under realistic, temporally structured scenarios to 413 

better reflect operational forecasting conditions in environmental modeling. These findings 414 

affirm the importance of evaluating model robustness using temporally structured testing, 415 

especially in environmental time series applications where autocorrelation is prevalent. 416 

Table 3. Model Performance with Uncertainty Estimation for Temporally Structured Data Split 417 
(Training and Test Phases) 418 

Phase Model R² 
(Mean ± SD) 

RMSE (Mean 
± SD) 

MAE 
(Mean ± SD) 

MBE 
(Mean ± SD) 



 

 

Training SVM2 0.964 ± 0.010 4.61 ± 0.13 0.48 ± 0.07 -0.27 ± 0.02 

  XGB2 0.962 ± 0.011 4.56 ± 0.12 1.36 ± 0.09 -0.01 ± 0.02 

  BRF2 0.965 ± 0.012 4.29 ± 0.11 0.91 ± 0.08 -0.01 ± 0.01 

  K-NN2 0.963 ± 0.011 4.33 ± 0.13 0.59 ± 0.07 0.00 ± 0.01 

Testing SVM2 0.940 ± 0.015 6.20 ± 0.18 0.92 ± 0.09 -0.25 ± 0.03 

  XGB2  0.938 ± 0.013 6.13 ± 0.17 1.68 ± 0.10 0.06 ± 0.02 

  BRF2  0.941 ± 0.012 6.00 ± 0.16 1.42 ± 0.08 0.09 ± 0.02 

   K-NN2 0.936 ± 0.014 6.25 ± 0.17 1.02 ± 0.09 -0.05 ± 0.02 

Note: Results based on temporally structured split, where the last 28 months of the 12-year dataset were used as a 419 
contiguous test set. 420 

While this study contributes valuable insights into H prediction in semi-arid regions, there 421 

is room for further exploration. Future research focus on hybrid models that combine the 422 

strengths of different machine learning techniques or integrate additional meteorological 423 

variables, such as satellite-based data, to improve predictive accuracy. The inclusion of 424 

uncertainty measures in future studies will also be essential for ensuring the reliability of results 425 

and refining model performance across different climatic regions. 426 

In conclusion, the boosted regression forest (BRF) model emerged as the most reliable and 427 

robust across both training and testing phases, demonstrating consistent performance and lower 428 

variability compared to other models. However, the findings highlight the importance of 429 

employing tailored machine learning approaches that consider the specific climatic and 430 

geographical characteristics of the study area. The integration of uncertainty estimation adds 431 

depth to the analysis, ensuring that the conclusions are based on statistically sound comparisons 432 

and robust model evaluations. 433 

The performance of several machine learning models for predicting H during the training 434 

phase is illustrated in the scatter plot in (Figure 3), showing high predictive accuracy across all 435 

models with R² values approximately at 0.96. This indicates strong correlations between 436 

observed and predicted solar radiation values. The SVM models perform comparably, with 437 

SVM2 achieving a lower RMSE of 4.08 ± 0.15 (MJ m-² d⁻¹) compared to SVM1's RMSE of 438 

4.93 ± 0.18 (MJ m-² d⁻¹). The slight variability  as indicated by the standard deviation highlights 439 

the model's consistent performance across different iterations. Similarly, XGB1 and XGB2 440 

produced strong results, with XGB2 slightly surpassing XGB1, showing RMSE values of 4.39 441 



 

 

± 0.14 (MJ m-² d⁻¹) and 4.64 ± 0.17 (MJ m-² d⁻¹), respectively. Among the ensemble methods, 442 

the BRF models demonstrated excellent effectiveness, with BRF2 outperforming BRF1 RMSE 443 

of 4.29 ± 0.13 (MJ m-² d⁻¹) compared to 4.42 ± 0.12 (MJ m-² d⁻¹). The K-NN models, though 444 

slightly less accurate than the other models, still show solid performance, with K-NN2 445 

achieving an RMSE of 4.01 ± 0.14 (MJ m-² d⁻¹), while K-NN1 recorded an RMSE of 4.95 ± 446 

0.16 (MJ m-² d⁻¹). The standard deviations reflect the stability of the models and their minimal 447 

variability across different training-test splits, indicating reliable training-phase performance. 448 



 

 

 449 



 

 

 450 

Figure 3.  Scatter plots showing actual versus predicted solar radiation values for SVM1, 451 
SVM2, XGB1, XGB2, BRF1, BRF2, K-NN1, and K-NN2 models during the training phase. 452 

 453 

During the testing phase (Figure 4), a slight decline in predictive accuracy was observed, 454 

with R² values ranging from 0.92 to 0.93, reflecting reduced in generalization capabilities. 455 

RMSE values increase for all models compared to the training phase, indicating some degree 456 

of overfitting. Consistent with the training phase, SVM2 continued to outperform SVM1, with 457 

RMSE values of 6.05 ± 0.17 (MJ m-2 d⁻¹) and 6.29 ± 0.19 (MJ m-² d⁻¹), respectively. The XGB 458 

models exhibited similar performance during testing, with XGB1 and XGB2 achieving RMSE 459 

values of 5.92 ± 0.15 (MJ m-² d⁻¹) and 6.04 ± 0.16 (MJ m-² d⁻¹), respectively. BRF2 again 460 

proved to be more robust than BRF1, with RMSE values of 5.63 ± 0.14 (MJ m-² d⁻¹) versus 461 

5.94 ± 0.15 (MJ m-² d⁻¹). Similarly, the K-NN models demonstrated reliable performance, with 462 

K-NN2 outperforming K-NN1 RMSE of 5.54 ± 0.13 (MJ m-² d⁻¹ versus 5.65 ± 0.14 (MJ m-² 463 

d⁻¹). These testing-phase results align with previous studies such as (Yu, 2023) ), further 464 

validating the models' predictive potential. 465 

Among all the models, BRF2 exhibited the most consistent and robust performance across 466 

both the training and testing phases, with low RMSE and minimal variability, as reflected by 467 

the standard deviations. This highlights BRF2's strong potential for solar radiation prediction 468 

in the study area. However, the observed increase in RMSE values during testing indicates a 469 

degree of overfitting. Further adjustments to the model parameters and the integration of 470 

regularization techniques could enhance the model's generalization capabilities, potentially 471 

mitigating overfitting. 472 
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Figure 4. Scatter plots depicting the actual and predicted solar radiation values for the SVM1, 474 
SVM2, XGB1, XGB2, BRF1, K-NN1, SVM2, XGB2, BRF2, and K-NN2 models during the 475 
testing phase are provided. 476 

The Taylor diagram in (Figure 5) illustrates that boosted regression forest (BRF2) and 477 

extreme gradient boosting (XGB2) are the top-performing models for predicting daily solar 478 

radiation. Both models demonstrate high correlation coefficients (close to 0.99) and standard 479 

deviations closely aligned with the reference, indicating strong predictive accuracy and a 480 

reliable ability to capture data variability. Other models, such as k-nearest neighbors (K-NN2) 481 

and support vector machine (SVM2), also exhibit commendable performance, though with 482 

slightly less alignment to the reference variability. Overall, the analysis highlights BRF2 and 483 

XGB2 as the most effective models for capturing complex meteorological patterns, 484 

emphasizing their suitability for solar radiation prediction in semi-arid regions. This finding is 485 

consistent with the results of (Chen and Kartini, 2017). 486 

 487 

 488 
Figure 5. Taylor diagram illustrating model performance in predicting daily solar radiation.  489 



 

 

BRF2 and XGB2 exhibit the highest correlation and closest alignment to the reference 490 

standard deviation, indicating strong predictive accuracy. 491 

In (Figure 6), BRF2 and XGB2 exhibit lower error distributions and tighter interquartile 492 

ranges, indicating greater precision and stability. The error values shown in the box plots 493 

represent the absolute differences between the predicted and observed daily solar radiation 494 

values. Each error was calculated using the formula H predicted – H observed| for every day 495 

in the test dataset. These values are expressed in MJ m⁻² d⁻¹. This approach offers a clear and 496 

direct way to assess model accuracy and the range of prediction deviations. 497 

The box plots reveal that BRF produces smaller errors and fewer outliers, demonstrating 498 

its effectiveness in capturing solar radiation variability. In contrast, models like K-NN and 499 

SVM exhibit greater error variability. While BRF2 achieves the highest accuracy, it also 500 

requires more extensive hyperparameter tuning, including adjustments to tree depth, learning 501 

rate, and the number of estimators. This reflects its greater model complexity. Despite the 502 

additional computational effort, BRF’s tuning process allows it to model complex data patterns 503 

more effectively. These findings highlight key performance differences among the models and 504 

illustrate the trade-offs between simplicity and predictive power. 505 

 506 

 507 

Figure 6. Box plots and error diagram compare the error distributions and accuracy of 508 

different modeling methods in estimating daily H using the same input variables. 509 

Figure 7(A) highlights the relative importance of the meteorological variables used in the 510 

ML models. Pt (35%) and Tmax (30%) are the most significant contributors to model 511 



 

 

performance, underscoring their influence in predicting H and agricultural yields. The 512 

importance of Pt aligns with its critical role in water availability and evapotranspiration, which 513 

directly affect plant growth and H absorption in semi-arid regions. Tmax, which influences 514 

evapotranspiration rates and heat stress, follows closely. Other features, such asTmin, (15%) and 515 

H0 (10%), while less impactful, still contribute to shaping the model’s predictions. These 516 

findings align with well-established meteorological principles, emphasizing the importance of 517 

temperature extremes and precipitation variability in determining model accuracy. 518 

Figure 7(B) presents a correlation matrix between selected meteorological variables and 519 

the performance of the four machine learning models used in this study BRF, SVM, XGBoost, 520 

and K-NN. exhibits a strong positive correlation, particularly with the BRF (0.50) and K-NN 521 

(0.50) models, highlighting its significant role in enhancing prediction accuracy. This 522 

correlation reflects the influence of Pt on soil moisture and atmospheric conditions, which are 523 

crucial for crop yield in semi-arid climates. Tmax also shows moderate positive correlations, 524 

particularly with K-NN (0.40), reinforcing the importance of accounting for heat stress and 525 

evapotranspiration effects in the models. Other variables, such as Tmin and H0, exhibit weaker 526 

yet meaningful correlations, indicating their supplementary roles in improving model 527 

performance. 528 

This analysis clearly demonstrates that precipitation and temperature extremes are the 529 

primary drivers of model performance, with more complex models like BRF and K-NN 530 

showing better adaptability to these factors. These findings align with existing literature, which 531 

highlights the critical role of climate variables in predictive modeling for semi-arid regions. 532 

 533 



 

 

 534 

Figure 7.  Variable importance values in base models (A) vs. variable importance in the 535 

proposed ML model (B) for interpreting the ML model on solar radiation 536 

4. CONCLUSION 537 

 This study comprehensively evaluated the performance of four machine learning models 538 

SVM, XGBoost, BRF, and K-NN in predicting H in the semi-arid region of Gadarif, Sudan. 539 

While all models performed well during training, BRF1 and K-NN1 achieved the highest 540 

accuracy. However, slight performance declines during the testing phase highlighted the need 541 

for improved generalization. Models in Scenario 2, which incorporated additional climatic 542 

variables such as precipitation, demonstrated more robust performance during testing 543 

compared to Scenario 1, emphasizing the benefits of using a broader range of meteorological 544 

data. The findings confirmed the potential of machine learning approaches, particularly BRF, 545 

in accurately predicting H, supporting the initial hypothesis. These insights contribute to 546 

optimizing solar energy systems and improving climate modeling in semi-arid regions. Future 547 

research could focus on enhancing model generalization through hybrid approaches or 548 

integrating additional data sources, such as remote sensing, to improve predictive accuracy. 549 
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