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Abstract. Solar radiation (H) is a critical factor in Earth’s surface processes, influenc-
ing climate, ecosystems, agriculture, and energy fluxes. Accurate prediction of daily 
H is essential for advancing solar power as a sustainable energy source. This study 
evaluates the effectiveness of machine learning (ML) models-support vector regres-
sion (SVR), extreme gradient boosting (XGBoost), boosted regression forest (BRF), 
and k-nearest neighbors (K-NN)-in predicting daily H in Gadarif, Sudan, a semi-arid 
region with limited prior research on solar radiation. The models were developed 
using daily climatic variables, including temperature and a binary precipitation vari-
able (Pt) to account for cloud cover effects. The dataset was split into training (80%) 
and testing (20%) subsets, with model performance evaluated using key metrics: coef-
ficient of determination (R²), root mean square error (RMSE), and mean absolute 
error (MAE). BRF achieved the best performance with an R² of 0.963 and RMSE of 
4.38 (MJ m⁻² d⁻¹) during training. However, model performance decreased during test-
ing, with XGBoost and K-NN showing higher error margins. Including Pt improved 
the models’ ability to account for cloud cover effects, particularly on overcast days. 
Despite these improvements, challenges remained in predicting H under extreme cli-
matic conditions, highlighting the need for more advanced approaches. These findings 
suggest that ML models can be effectively adapted for H prediction in other semi-arid 
and arid regions. The results underscore the importance of considering precipitation 
and cloud cover in H predictions, which is crucial for optimizing solar energy systems 
and enhancing agricultural planning.

Keywords:	 solar radiation, machine learning, renewable energy, semi-arid climate, 
comprehensive evaluation.

HIGHLIGHTS

–	 Machine learning models, including SVR, XGBoost, BRF, and K-NN, 
were applied to predict daily solar radiation (H).
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–	 BRF outperformed the other models, achieving the 
highest performance with an R2 of 0.963 and RMSE 
of 4.38 (MJ m⁻² d⁻¹) during training.

–	 Incorporating a precipitation variable (Pt) improved 
the models’ accuracy by accounting for cloud cover 
effects.

–	 Testing showed a performance drop, though BRF 
maintained strong generalization, needing refine-
ment for extreme conditions.

–	 The methodology, applied in Gadarif, Sudan, can 
be adapted for other semi-arid and arid regions for 
solar energy optimization.

NOMENCLATURE

Parameters

C	 penalty parameter of the error
H	 global solar radiation (MJ m-2 day-1)
H0	 extra-terrestrial solar radiation (MJ m-2 day-1)
K	 kernel function
I	 loss function
n	 number of observations
N	 sunshine duration
ΔT	 diurnal temperature range (°C)
Pt	 transformed precipitation
Tmax	 daily maximum temperature (°C)
Tmin	 daily minimum temperature (°C)
Xmin	 minimum observed value in the dataset
Xmax	 maximum observed value in the dataset
Xmean	  mean observed value in the dataset
Cs	 Skewness coefficient
SD	 Stander deviation
Ck	 Kurtosis coefficient
φ	 higher-dimensional feature space
ω	 weights vector
ɛ	 tube size	
λ	 regularization parameter
γ	 minimum loss
Ω	 regularization term

Constants

a, b, and c empirical coefficients

Abbreviation

ANN	 Artificial Neural Networks
MLP	 Multi-layer Perceptron
SVM	 Support Vector Machine
XGBoost	 Extreme Gradient Boosting
ANFIS	 adaptive neuro-fuzzy inference system
RF	 Random Forest
AI	 Artificial Intelligence
BRF 	 Boosted Regression Forests
ML 	 Machine Learning

1. INTRODUCTION

Solar radiation (H) plays a crucial role in Earth’s 
surface processes, influencing climate systems, hydrol-
ogy, and ecosystems (Caldwell, M.M., Bornman, J.F., 
Ballaré, 2007). Its accurate estimation is particularly 
critical in semi-arid regions where environmental and 
agricultural systems heavily depend on it. Solar radiation 
directly impacts photosynthesis, making it a vital vari-
able in crop modeling, where agronomic applications are 
essential for optimizing yield predictions (Holzman et 
al., 2018). Precise H forecasts are essential for improving 
agricultural planning and water resource management, 
especially in regions with limited resources.

This study addresses the gap in H prediction for 
semi-arid regions, focusing on Gadarif, Sudan, by 
employing advanced machine learning (ML) techniques 
support vector machines (SVM), extreme gradient boost-
ing (XGBoost), boosted regression forest (BRF), and 
k-nearest neighbors (K-NN). While traditional stud-
ies have focused on temperate climates using statisti-
cal models, this research applies ML models to capture 
complex, non-linear interactions in semi-arid condi-
tions. SVM and XGBoost were selected for their robust-
ness and ability to generalize well across varying data-
sets, BRF for its ensemble method, which reduces bias 
and variance, and K-NN for its effectiveness in mod-
eling local relationships. By utilizing a daily temporal 
scale, this study provides precise short-term H forecasts, 
enhancing prediction accuracy for agricultural applica-
tions in resource-challenged regions like Gadarif.

ML approaches have been increasingly applied to esti-
mate H in various climates. (Wang et al., 2016) conducted 
a comparative study in China, estimating daily H using 
models such as multilayer perceptron (MLP), radial basis 
function (RBF), and generalized regression neural net-
works (GRNN). The study found that GRNN underper-
formed compared to MLP and RBF, highlighting the need 
for more robust models in H prediction. Similarly, (Bel-
mahdi et al., 2020) forecasted daily H one month ahead 
using ARIMA and ARMA models, with ARIMA demon-
strating superior accuracy over a persistence model.

Most previous studies focused on a specific timescale 
or component of H. For instance, (Belmahdi et al., 2022) 
introduced a new optimization method to predict hourly 
H, comparing several models, including feed-forward 
backpropagation (FFBP), ARIMA, k-NN, and SVM. FFBP 
and ARIMA models exhibited the highest accuracy, as 
confirmed by regression plots under clear-sky conditions.

Fan et al. (2018a) employed SVM and extreme gra-
dient boosting (EGB) models to predict H in humid 
regions with limited data. They found that SVM outper-
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formed EGB and traditional empirical models in terms 
of prediction stability. Similarly, (Belaid and Mellit, 
2016) explored the use of SVM and artificial neural net-
works (ANN) for predicting daily and monthly H, con-
cluding that SVM produced better correlations between 
predicted and observed values at both timescales.

Geographical and meteorological data have also 
been extensively utilized in H modeling. For example, 
(Sözen et al., 2008) employed an artificial neural net-
work (ANN) model to estimate H in Turkey, achiev-
ing highly accurate predictions. In Algeria, (Mellit et 
al., 2008) applied both ANN and adaptive neuro-fuzzy 
inference system (ANFIS) models, also producing reli-
able results for H estimation. (Chen et al., 2011) found 
that SVM were dependable model for H predictions 
across multiple stations, while (Ahmed and Adam, 2013) 
demonstrated that ANN models outperformed empirical 
models in predicting H in Qena, Egypt, achieving higher 
correlations between predicted and observed values.

While these studies have significantly advanced 
the field of H prediction, they often lack comprehensive 
evaluations of model performance in semi-arid climates. 
Furthermore, few studies have incorporated precipitation 
data to account for cloud cover, a critical factor affecting 
H in these regions. (He et al., 2020) highlighted the vari-
ability of H across different geographic regions; however, 
the unique climatic conditions of semi-arid areas like 
Gadarif remain underexplored.

The primary objective of this study is to predict daily 
H in Gadarif, Sudan, using advanced ML models. This 
is the first study to apply the Boosted Regression Forest 
(BRF) model for H prediction in this region. Addition-
ally, the study incorporates precipitation data as a key 
variable to account for the influence of cloud cover on H, 
which an aspect that has not been extensively explored.

The novelty of this research lies in its application of 
BRF, an underutilized yet powerful ensemble method, 
for H estimation in semi-arid regions. By integrating 
precipitation as a binary variable, the study enhances the 
accuracy of solar radiation predictions and agricultural 
modeling, providing new insights into the interaction 
between precipitation, cloud cover, and H in Gadarif. 
This tailored approach fills gaps in existing research and 
contributes to improving forecasting in resource-con-
strained environments.

2. MATERIALS AND METHODS

2.1 Study area and data collection 

Figure 1 illustrates the study area, Gadarif, located in 
eastern Sudan, which experiences a hot semi-arid climate 

(BSh according to the Köppen-Geiger classification). 
This region faces significant agricultural challenges due 
to harsh environmental conditions, including high tem-
peratures, erratic rainfall, and limited water resources. 
These factors contribute to substantial yield variability 
and increased vulnerability to drought and heat stress. 
Moreover, the scarcity of reliable water sources and the 
fluctuating solar radiation levels emphasize the need for 
accurate solar radiation predictions, which are essential 
for effective water management and crop planning.

The study area is primarily agricultural, with sor-
ghum and sesame as the main crops. These crops 
depend on consistent solar radiation (H) and sufficient 
water availability, emphasizing the importance of this 
study for local agricultural management.

Daily meteorological data were collected from 2010 
to 2022, covering a 12-year period. The data were obtained 
from the Sudan Meteorological Authority (SMA) at the 
Gadarif weather station, a well-established station that 
records key climatic variables. Equipped with modern weath-
er instrumentation, the station measures H, temperature, 
and precipitation. This data were supplemented with satel-
lite-derived information from NASA’s POWER Data Access 
Viewer, ensuring the completeness and accuracy of the data-
set used in this study. The combined dataset includes daily 
observations of H, temperature (Tmax, Tmin), and precipitation 
(Pt), which were essential inputs for the ML models.

These data were recorded at daily intervals, which 
enabling for high -resolution training of the model. 
However, in scenarios where daily data are not avail-
able, the model can be adapted by means of a weekly or 
monthly average, such as low-ceiling input. In addition, 
proxy dataset from satellite sources, such as MODIS and 
CHIRPS precipitation estimate, can serve as a viable 
alternative to support Modi’s estimate and application.

2.2 Machine learning models 

The dataset comprises 4,380 daily records collected 
over a 12-year period (2010–2022). For the purposes 
of model development, the data were divided into a 
training set (80%) and a testing set (20%). The dataset 
includes daily measurements of H, extraterrestrial radia-
tion (H0), Tmax, Tmean, Tmin, and Pt. These variables were 
used as inputs for the machine learning models to pre-
dict H more accurately.

2.2.1 Support vector machines (SVM) 

The support vector machine (SVM) model, devel-
oped by Vapnik and outlined in (Vapnik, 2006), stands as 
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a widely used supervised AI model for tasks such as data 
analysis and pattern recognition, particularly in applica-
tions involving regression and prediction. The SVM algo-
rithm functions by predicting regression through a series 
of kernel functions. To ensure methodological clarity, it 
is important to explain the kernel function in support 
vector machines (SVM). The kernel function defines the 
operations and transformations applied to the input data. 
By addressing the non-linear characteristics of SVM and 
the approaches it utilizes to define appropriate decision 
boundaries, this explanation enhances the understanding 
of SVM. This understanding, in consequence, empow-
ers them to make well-informed decisions when applying 
SVM to diverse datasets (Wu, 1999; Tay and Cao, 2001).

The SVM algorithm expresses the approximated 
function as depicted in the subsequent equation:

F (x) = ω.φ(x) + b� (1)

In this equation, φ (x) denotes the transformation 
of the input vector x into a higher-dimensional feature 
space. The parameters ω and b represent the weight vec-
tor and a threshold, respectively. These values can be 
obtained by reducing the regularized risk function, as 
defined below:

� (2)

where C represents the error factor,  is the desired out-
put value, n signifies the amount of observations, and 

 represents the empirical error, where-
in the function Lε (d, y) can be defined as follows: 

� (3)

where,  ||ω||² serves as the regularization term, and ε 
defines the size of the tube, which is maintained to be 

Figure 1. Geographical location of the meteorological station in semi-arid climate region in Sudan. 
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nearly equal to achieve approximate accuracy during 
training.
εi and  to estimation parameters W and d, expressed 
as 2

� (4)

Upon introducing Lagrange multipliers and incor-
porating optimal constraints, we obtain the subsequent 
decision function from equation (1):

� (5)

where K ( ) denotes the kernel function, equal to the 
internal product of vectors  and  within the charac-
teristic space u ( ) and u ( ), expressed as K ( ) = 
u ( ) * -u ( ). The kernel function offers the benefit of 
handling feature spaces with any dimension, eliminating 
the need for an explicit mapping process. (Scholkopf et 
al., 1999) provided a comprehensive description of the 
SVM model.

2.2.2 Extreme Gradient Boosting (XGBoost) 

XGBoost is a highly efficient, flexible, and portable 
gradient-boosting library designed for distributed envi-
ronments. Built on the Gradient Boosting framework, 
it uses parallel tree boosting to apply ML algorithms to 
solving various data science problems with speed and 
precision. XGBoost extends gradient-boosted decision 
trees (GBDT), focusing on enhancing processing speed 
and performance. This algorithm has been success-
fully applied to predict solar power with minimal error, 
as demonstrated by (Cai et al., 2020), who found that 
XGBoost outperformed other machine learning methods.

The additive learning process in XGBoost is as fol-
lows: Initially, the first learner is fitted to the entire input 
data space, and subsequently, a second model is trained 
on the residuals, addressing the limitations of the initial 
weak learner. This fitting process continues iteratively 
until a predefined stopping criterion is met. The ultimate 
prediction of the model is the sum of predictions from 
each individual learner. The general prediction function 
at steps ‘is formulated as follows:

� (6)

where xi refers to the training data, and ft (x) denotes the 
learner fitted incrementally at stage t, with simple regres-
sion trees typically serving as the foundational learners. 
The cumulative training process aims to minimize the 
subsequent regularized objective function.

� (7)

This aims to strike a balance between two key objec-
tives: reducing empirical training error, quantified by 
the loss function l (yi, i) which compares predicted  
i to the target yi values, and managing model complexity 
through the regularization term Ω (f) (Chen and Wang, 
2007). The regularization term Ω (f) is defined as fol-
lows:

� (8)

where T represents the count of leaves, ω corresponds 
to the weights associated with each leaf, and λ and γ 
are parameters that control the extent of regularization. 
This constraint limits the complexity of individual tree 
models, mitigating the risk of overfitting. XGBoost’s 
ability to handle missing values internally without the 
need for imputation further enhances its robustness and 
applicability across different scenarios. However, tuning 
XGBoost can be complex due to the numerous hyperpa-
rameters involved, and while optimized for efficiency, it 
can still be computationally intensive and require signifi-
cant memory, especially with very large datasets. Addi-
tionally, the model can be difficult to interpret compared 
to simpler models, such as linear regression.

2.2.3 Boosted regression forests (BRF) 

Boosted Regression Forests (BRFs) represent a 
sophisticated ensemble modeling technique that com-
bines regression trees in a boosting framework along 
with the random forest algorithm. This combination 
leads to exceptional predictive performance across a 
wide range of scientific applications (Wu and Levin-
son, 2021). The BRF algorithm builds regression tree 
models in a sequential manner, with each successive 
model learning from the prediction errors of the preced-
ing model, to incrementally improve accuracy (Masrur 
Ahmed et al., 2021). Specifically, BRF training initiates 
with a basic regression tree, and subsequently, additional 
trees are incorporated to fit the residuals from the ini-
tial model and minimize the loss function. This process 
continues, with each tree focusing on reducing residuals, 
until it reaches convergence or the predefined number of 
trees. The final BRF model comprises an additive combi-
nation of the sequentially trained regression trees. 

The boosting mechanism improves predictions 
by concentrating on misclassified instances, while the 
random forest component ensures robustness against 
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overfitting. These combined features enable BRFs to 
effectively capture complex data relationships, render-
ing them essential for predictive modeling in various 
scientific fields. The BRF model predicts the target vari-
able based on a set of input features by aggregating the 
predictions from each tree in the ensemble, each with its 
own individual weight. This prediction can be expressed 
mathematically as:

� (9)

where,  represents the comprehensive prediction, 
 denotes the number of trees,  signifies the weight 

assigned to the m-th tree, and  denotes the predic-
tion made by the  -th tree. The high predictive pow-
er of BRFs, due to the combination of boosting (which 
reduces bias) and random forests (which reduce vari-
ance), makes them highly effective for both regression 
and classification tasks. However, training BRFs can be 
computationally expensive and time-consuming due to 
the iterative nature of boosting. Additionally, the model 
can be complex and difficult to interpret compared to 
single-tree models, requiring careful tuning of multiple 
hyperparameters, which can be both challenging and 
time-intensive.

2.2.4 K-nearest neighbors (K-NN) 

The KNN method, first introduced by (Fix and 
Hodges, 1989) and later expanded upon by (Kramer, 
2013), is a nonparametric classification technique. It is 
used for both classification and regression tasks. The 
approach utilizes a dataset in either scenario and the 
‘k’ closest training samples are considered as the input. 
The K-NN method involves querying a database to iden-
tify data points that closely resemble the observed data, 
which are commonly mentioned as referred to as the 
nearest neighbors of the current data (Peterson, 2009). 
In this study, K-NN is applied to predict the most closely 
related testing stations based on the training station. The 
following provides a summary of the K-NN regression 
function:

� (10)

In K-NN regression, when confronted with an 
unknown pattern represented as , the algorithm com-
putes the mean of the function values obtained from its 
K-closest neighbors. The set NK ( ) includes the indices 
of these nearest K neighbors of . The concept of local-
ized functions in both the data and label spaces forms 
the core principle underpinning the averaging process 

in K-NN Essentially, within the close vicinity of xi, it 
is expected that patterns like  are expected to exhibit 
similar continuous labels, with f ( ) approximating  
(Kramer, 2013).

The simplicity and ease of implementation of K-NN 
make it an accessible choice for various applications. Its 
non-parametric nature eliminates the need for assump-
tions about the underlying data distribution, allowing 
flexibility in handling different types of data.

However, K-NN’s computational inefficiency dur-
ing the prediction phase, especially with large datasets, 
and its high memory usage due to storing all training 
data can be significant drawbacks. Additionally, K-NN’s 
performance can degrade with high-dimensional data if 
irrelevant features are present, necessitating careful fea-
ture selection. Moreover, the method is sensitive to the 
scale of the data, requiring normalization or standardi-
zation of features to ensure optimal performance.

2.2.5 Models development

In contrast, the second scenario (SVM2, XGBoost2, 
BRF2, and K-NN2) incorporated a more comprehensive 
set of input variables: daily Tmin, Tmax, a binary variable 
Pt indicating the presence of rainfall, where Pt = 1 for 
rainfall greater than 0 mm and Pt = 0 for no rainfall, 
and daily extraterrestrial radiation (H0). The inclusion of 
Pt aimed to assess the influence of precipitation on daily 
H, while H0, determined using a mathematical equation 
proposed by (Pereira et al., 2015), accounted for extrater-
restrial radiation, by considering factors such as the day 
of the year, latitude, and solar angle.

This approach enabled a comparative analysis of 
how additional climatic and radiative factors affect mod-
el accuracy and robustness, providing deeper insights 
into the factors influencing daily H estimations.

2.2.6 Hyper-Parameters Tuning

The dataset in this study was divided into two sub-
sets: 80% for training and 20% for testing. This split 
allows the model to be trained on a substantial portion 
of the data, while reserving a smaller, unseen portion is 
reserving a smaller, unseen portion to evaluate the mod-
el’s generalization capability. The training set (80%) is 
used to develop the machine learning models and fine-
tune hyperparameters, while the test set (20%) was used 
to assess model performance on unseen data.

In addition to the standard random 80/20 split, an 
alternative test set selection strategy was implemented 
to account for temporal autocorrelation. Specifically, 
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the final 28 months of the 12-year dataset (equivalent to 
20% of the total 144 months) were selected as a contigu-
ous block to serve as the test set. This approach prevents 
overlap between highly autocorrelated data points in the 
training and testing sets, offering a more realistic assess-
ment of the models’ ability to generalize to temporally dis-
tinct conditions. The models were retrained using the ini-
tial 116 months of data and tested on the final 28 months. 
Performance metrics were then recalculated to compare 
results under both random and temporally split scenarios. 
To ensure the robustness of the evaluation under random 
splitting, the train-test split was repeated 10 times, and 
the performance metrics were averaged to minimize ran-
domness effects and provide stable estimates.

All ML models were implemented and evaluated 
using Python (version 3.8) in a Jupyter Notebook envi-
ronment, running on a 2.3 GHz Intel Core i7 quad-core 
processor with 16 GB of RAM. Libraries used include 
scikit-learn (version 0.24.2) for SVM and K-NN, XGBoost 
(version 1.4.2), and lightgbm (version 3.2.1) for BRF. Data 
preprocessing was performed using Pandas (version 1.2.4) 
and Numpy (version 1.20.3), with visualizations gener-
ated using Matplotlib (version 3.4.2) and Seaborn (version 
0.11.1). The use of these tools ensures the reproducibility 
of the study and highlights the rigor of the analysis.

2.2.7 Comparison of models and statistical indices

The accuracy and effectiveness of the selected 
machine learning models for predicting daily H were 
assessed and compared using four widely recognized sta-
tistical metrics (Despotovic et al., 2015; Lu et al., 2018; 
Fan et al., 2018b; Ma et al., 2019). These measurements 
include the mean bias error (MBE, as shown in Eq. (14)), 
the mean absolute error (MAE, as defined in Eq (13)), 
the root mean square error (RMSE, per Eq. (12)), and the 
coefficient of determination (R2, described in Eq. (11)). 
Detailed explanations and mathematical expressions for 
these metrics are provided in the following section.

� (11)

� (12)

� (13)

� (14)

In evaluating model performance, the Normalized 
Root Mean Square Error (NRMSE) was used to account 

for the Normalized Root Mean Square Error (NRMSE), 
calculated by normalizing the Root Mean Square Error 
(RMSE) with the standard deviation of the observed 
solar radiation. In this context, , , , and n 
represent the measured, estimated, mean, and number of 
observations for global solar radiation, respectively. This 
approach ensured consistent model comparisons across 
datasets with varying levels of variability. The Coeffi-
cient of Determination (R²) measured how well the mod-
els captured variance in observed values, with higher 
R² values (closer to 1) indicating a better fit and align-
ment of the regression line with the data. Additionally, 
RMSE values quantified the differences between model 
estimates and measured values, where lower RMSE val-
ues signifying superior model performance. Mean Bias 
Error (MBE) highlighted estimation tendencies, with 
positive values representing overestimation and negative 
values indicating underestimation of global solar radia-
tion. Together, these metrics provided a comprehensive 
evaluation of model accuracy, addressing both variance 
and potential biases in prediction.

Table 1 presents descriptive statistics for key mete-
orological variables, including maximum temperature 
(Tmax), mean temperature (Tmean), minimum temperature 
(Tmin), precipitation (Pt), extra-terrestrial solar radiation 
(H0), and solar radiation (H). Additionally, co-skewness 
and co-kurtosis values to provide insights into the dis-
tributional characteristics and relationships among these 
variables. These statistics offer a comprehensive overview 
of the meteorological conditions in the study area, facili-
tating an understanding of the data’s central tendencies 
and variability.

The flowchart in (Figure 2) outlines the process the 
process of data collection, processing, and model evalu-
ation. After splitting the data into training (80%) and 
testing (20%) sets, the models are evaluated under two 
scenarios. The best-performing model is either selected 
or further refined through iterative improvements, if 

Table 1. provides a statistical summary of key meteorological vari-
ables, including minimum (Xmin), mean (Xmean), maximum 
(Xmax), standard deviation (SD), skewness (Cs), and kurtosis 
(Ck), essential for evaluating variability and distribution character-
istics in model training and testing datasets.

Variables Xmin. Xmean. Xmax. SD. Cs. Ck.

Tmax (°C) 1.000 37.458 46.700 3.843 -0.333 1.450
Tmean(°C) 11.300 29.941 38.900 3.152 0.042 0.106
Tmin(°C) 10.500 22.376 33.000 3.089 -0.116 0.593
Pt(mm) 0.000 1.630 73.300 6.405 5.746 39.505
H (MJ m-2 d-1.) 60.000 178.333 226.700 2.299 -0.540 0.827
H0(MJ m-2d-1) 90.300 356.455 453.000 4.557 -0.536 0.985
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necessary. The finalized model is then used to generate 
predictions, completing the analysis.

3. RESULTS AND DISCUSSION

This study aimed to predict solar radiation (H) 
at meteorological stations in Sudan’s semi-arid region 
using four machine learning models: support vector 
machines (SVM), extreme gradient boosting (XGBoost), 
boosted regression forest (BRF), and K-Nearest Neigh-
bors (K-NN). Table 2 summarizes the values of four 

commonly used statistical indicators for these models, 
including the mean and standard deviation (SD) calcu-
lated across 10 repeated training-test procedures to eval-
uate uncertainty in model performance.

During the training phase, all models demonstrat-
ed strong performance. For example, SVM achieved an 
R² of 0.953 ± 0.010, an RMSE of 4.937 ± 0.143( MJ m⁻² 
d⁻¹), and a minimal MAE of 0.510 ± 0.083 (MJ m⁻² d⁻¹). 
These metrics suggest that the model was well-calibrated 
during training. XGBoost followed closely with an R² 
of 0.952 ± 0.009, although it showed a higher MAE of 
1.475 ± 0.091 (MJ m⁻² d⁻¹). BRF outperformed the oth-

Figure 2. Flowchart for evaluation of machine learning models for solar radiation prediction.
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ers, achieving the highest R² 0.963 ± 0.010 and the low-
est RMSE 4.383 ± 0.128 (MJ m⁻² d⁻¹), indicating supe-
rior training performance. K-NN also performed well, 
achieving an R² of 0.964 ± 0.012 and a low MAE of 0.609 
± 0.079 (MJ m⁻² d⁻¹). The inclusion of uncertainty met-
rics (standard deviation) provides a clearer view of the 
model’s consistency, reinforcing the reliability of these 
results across different training-test splits.

However, the transition to the testing phase revealed 
a decline in performance for all models, indicating 
reduced generalization capability. For example, SVM 
achieved an R² of 0.929 ± 0.01 on the testing set, with 
an elevated RMSE of 6.204 ± 0.176 (MJ m⁻² d⁻¹) and a 
moderate MAE of 0.874 ± 0.105 (MJ m⁻² d⁻¹). XGBoost, 
despite its strong training performance, showed a 
reduced in R² 0.926 ± 0.014 along with an increased 
RMSE 6.337 ± 0.189 (MJ m⁻² d⁻¹) and MAE 1.819 ± 0.112 
(MJ m⁻² d⁻¹). BRF maintained competitive performance 
achieving an R² of 0.924 ± 0.011 and the lowest RMSE 
6.453 ± 0.162 (MJ m⁻² d⁻¹) among the models, demon-
strating better generalization. K-NN, although perform-
ing relatively well, exhibited a decline in R² 0.922 ± 0.016 
with an increased RMSE 6.532 ± 0.151 (MJ m⁻² d⁻¹) and 
MAE 1.066 ± 0.110 (MJ m⁻² d⁻¹) during testing.

By incorporating standard deviation as an uncer-
tainty measure, the analysis offers a more nuanced 
understanding of model performance, While the models 
performed well overall, there is variability in their abil-

ity to generalize to unseen data. This variability under-
scores the importance of accounting for data sampling 
and training-test splits when evaluating machine learn-
ing models.

The findings of this study are consistent with previ-
ous research conducted in similar climatic regions or 
using comparable methodologies. For example, (Hai 
et al., 2020) investigated solar radiation prediction in a 
semi-arid region using machine learning techniques and 
reported comparable performance trends among the mod-
els evaluated. Like this study, their results also empha-
sized the superior generalization capability of ensemble 
methods, such as BRF. The inclusion of uncertainty met-
rics in the current analysis reinforces these conclusions, 
confirming that BRF consistently outperforms other mod-
els in terms of predictive accuracy and robustness.

However, contrasting results have been observed in 
other semi-arid regions. (Jamei et al., 2023) found that 
SVM models outperformed ensemble methods like BRF, 
highlighting the influence of local climatic conditions 
and the inherent complexity of solar radiation patterns. 
These differences underscore the need for tailored mod-
eling approaches that account for the specific character-
istics of each region. The uncertainty analysis performed 
in this study further supports this, showing that even 
within a single semi-arid region, revealing that even 
within a single semi-arid region, performance can vary 
across different data subsets.

Table 2. Model Performance with Uncertainty Estimation for Scenario 1 and Scenario 2 (Training and Test Phases)

Model R2  

(Mean ± SD)
RMSE  

(Mean ± SD)
MAE 

(Mean ± SD)
MBE 

(Mean ± SD)

Training
SVM1 0.953 ± 0.010 4.937 ± 0.143 0.510 ± 0.083 -0.298 ± 0.021
XGB1 0.952 ± 0.009 4.967 ± 0.156 1.475 ± 0.091 -0.007 ± 0.016
BRF1 0.963 ± 0.010 4.383 ± 0.128 0.996 ± 0.081 -0.017 ± 0.022
 K-NN1  0.964 ± 0.012  4.329 ± 0.147  0.609 ± 0.079  0.003 ± 0.018
SVM2 0.964 ± 0.011 4.629 ± 0.130 0.470 ± 0.074 -0.278 ± 0.019
XGB2 0.965 ± 0.012 4.500 ± 0.141 1.356 ± 0.085 -0.005 ± 0.018
BRF2 0.967 ± 0.013 4.200 ± 0.135 0.879 ± 0.072 -0.012 ± 0.017
K-NN2  0.966 ± 0.011  4.202 ± 0.139  0.590 ± 0.077  0.002 ± 0.015

Testing
SVM1 0.929 ± 0.012 6.204 ± 0.176 0.874 ± 0.105 -0.258 ± 0.028
XGB1 0.926 ± 0.014 6.337 ± 0.189 1.819 ± 0.112 0.048 ± 0.032
BRF1 0.924 ± 0.011 6.453 ± 0.162 1.508 ± 0.097 0.105 ± 0.030
 K-NN1  0.922 ± 0.016  6.532 ± 0.151  1.066 ± 0.110  -0.056 ± 0.025
SVM2 0.953 ± 0.014 5.940 ± 0.153 0.782 ± 0.098 -0.217 ± 0.025
XGB2 0.949 ± 0.011 5.875 ± 0.146 1.612 ± 0.101 0.052 ± 0.029
BRF2 0.948 ± 0.013 5.819 ± 0.141 1.386 ± 0.089 0.098 ± 0.027
K-NN2  0.945 ± 0.015  6.042 ± 0.149  0.978 ± 0.096  -0.042 ± 0.023
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Including precipitation as a binary variable (Pt) 
enhanced the models’ ability to account for cloud cover 
effects on solar radiation patterns. This aligns with find-
ings by (Jallal et al., 2020), who showed that integrat-
ing relevant meteorological variables can significantly 
improve model performance, especially during testing. In 
this study, the models incorporating Pt achieved better 
results in both scenarios, with reduced RMSE and MAE 
values, suggesting that precipitation data serves as an 
essential proxy for cloud cover in H prediction models.

To evaluate the impact of temporal autocorrelation 
on model performance, a second round of model test-
ing was conducted using a temporally structured data 
split, where the final 28 months (20%) of the dataset 
were used as a contiguous test block. This method pro-
vided a more conservative and realistic estimate of gen-
eralization performance, minimizing the influence of 
autocorrelated training-test overlaps. As expected, the 
models exhibited a slight decline in accuracy under this 
scenario. For instance, the BRF2 model’s R² decreased 
modestly, and RMSE increased by approximately 5–7% 
compared to the random split approach, reflecting the 
increased challenge of predicting temporally distant 
data. Despite this, BRF2 remained the top-performing 
model, demonstrating strong resilience and predictive 
capacity even under more stringent validation settings. 
Table 3 presents the performance results of the four 
machine learning models under the temporally struc-
tured data split scenario, maintaining the same format 
as Table 2 for consistency. Both training and testing 
results are included, along with uncertainty estimates 
(standard deviation). Compared to the random split 
scenario, a slight performance drop is observed in the 
test phase, as expected due to the greater challenge of 
predicting temporally distant data. Among the models, 
BRF2 again demonstrated the most robust generaliza-
tion capability, maintaining strong accuracy and low 

variability. These results confirm the value of evaluating 
ML models under realistic, temporally structured sce-
narios to better reflect operational forecasting conditions 
in environmental modeling. These findings affirm the 
importance of evaluating model robustness using tempo-
rally structured testing, especially in environmental time 
series applications where autocorrelation is prevalent.

While this study contributes valuable insights into 
H prediction in semi-arid regions, there is room for fur-
ther exploration. Future research focus on hybrid models 
that combine the strengths of different machine learn-
ing techniques or integrate additional meteorological 
variables, such as satellite-based data, to improve predic-
tive accuracy. The inclusion of uncertainty measures in 
future studies will also be essential for ensuring the reli-
ability of results and refining model performance across 
different climatic regions.

In conclusion, the boosted regression forest (BRF) 
model emerged as the most reliable and robust across 
both training and testing phases, demonstrating consist-
ent performance and lower variability compared to other 
models. However, the findings highlight the importance 
of employing tailored machine learning approaches that 
consider the specific climatic and geographical charac-
teristics of the study area. The integration of uncertainty 
estimation adds depth to the analysis, ensuring that the 
conclusions are based on statistically sound comparisons 
and robust model evaluations.

The performance of several machine learning mod-
els for predicting H during the training phase is illus-
trated in the scatter plot in (Figure 3), showing high 
predictive accuracy across all models with R² values 
approximately at 0.96. This indicates strong correla-
tions between observed and predicted solar radiation 
values. The SVM models perform comparably, with 
SVM2 achieving a lower RMSE of 4.08 ± 0.15 (MJ m-² 
d⁻¹) compared to SVM1’s RMSE of 4.93 ± 0.18 (MJ m-² 

Table 3. Model Performance with Uncertainty Estimation for Temporally Structured Data Split (Training and Test Phases)

Phase Model R²
(Mean ± SD)

RMSE  
(Mean ± SD)

MAE
(Mean ± SD)

MBE
(Mean ± SD)

Training SVM2 0.964 ± 0.010 4.61 ± 0.13 0.48 ± 0.07 -0.27 ± 0.02
  XGB2 0.962 ± 0.011 4.56 ± 0.12 1.36 ± 0.09 -0.01 ± 0.02
  BRF2 0.965 ± 0.012 4.29 ± 0.11 0.91 ± 0.08 -0.01 ± 0.01
  K-NN2 0.963 ± 0.011 4.33 ± 0.13 0.59 ± 0.07 0.00 ± 0.01

Testing SVM2 0.940 ± 0.015 6.20 ± 0.18 0.92 ± 0.09 -0.25 ± 0.03
  XGB2  0.938 ± 0.013 6.13 ± 0.17 1.68 ± 0.10 0.06 ± 0.02
  BRF2  0.941 ± 0.012 6.00 ± 0.16 1.42 ± 0.08 0.09 ± 0.02
   K-NN2 0.936 ± 0.014 6.25 ± 0.17 1.02 ± 0.09 -0.05 ± 0.02

Note: Results based on temporally structured split, where the last 28 months of the 12-year dataset were used as a contiguous test set.



61Solar radiation prediction in semi-arid regions: A machine learning approach and comprehensive evaluation in Gadarif, Sudan

d⁻¹). The slight variability as indicated by the standard 
deviation highlights the model’s consistent performance 
across different iterations. Similarly, XGB1 and XGB2 
produced strong results, with XGB2 slightly surpass-
ing XGB1, showing RMSE values of 4.39 ± 0.14 (MJ m-² 
d⁻¹) and 4.64 ± 0.17 (MJ m-² d⁻¹), respectively. Among 
the ensemble methods, the BRF models demonstrated 
excellent effectiveness, with BRF2 outperforming BRF1 
RMSE of 4.29 ± 0.13 (MJ m-² d⁻¹) compared to 4.42 ± 
0.12 (MJ m-² d⁻¹). The K-NN models, though slightly less 
accurate than the other models, still show solid perfor-
mance, with K-NN2 achieving an RMSE of 4.01 ± 0.14 
(MJ m-² d⁻¹), while K-NN1 recorded an RMSE of 4.95 ± 
0.16 (MJ m-² d⁻¹). The standard deviations reflect the sta-
bility of the models and their minimal variability across 
different training-test splits, indicating reliable training-
phase performance.

During the testing phase (Figure 4), a slight decline 
in predictive accuracy was observed, with R² values rang-
ing from 0.92 to 0.93, reflecting reduced in generaliza-
tion capabilities. RMSE values increase for all models 
compared to the training phase, indicating some degree 
of overfitting. Consistent with the training phase, SVM2 
continued to outperform SVM1, with RMSE values of 
6.05 ± 0.17 (MJ m-2 d⁻¹) and 6.29 ± 0.19 (MJ m-² d⁻¹), 
respectively. The XGB models exhibited similar perfor-
mance during testing, with XGB1 and XGB2 achieving 
RMSE values of 5.92 ± 0.15 (MJ m-² d⁻¹) and 6.04 ± 0.16 
(MJ m-² d⁻¹), respectively. BRF2 again proved to be more 
robust than BRF1, with RMSE values of 5.63 ± 0.14 (MJ 
m-² d⁻¹) versus 5.94 ± 0.15 (MJ m-² d⁻¹). Similarly, the 
K-NN models demonstrated reliable performance, with 
K-NN2 outperforming K-NN1 RMSE of 5.54 ± 0.13 (MJ 
m-² d⁻¹ versus 5.65 ± 0.14 (MJ m-² d⁻¹). These testing-
phase results align with previous studies such as (Yu, 
2023) ), further validating the models’ predictive potential.

Among all the models, BRF2 exhibited the most 
consistent and robust performance across both the 
training and testing phases, with low RMSE and mini-
mal variability, as reflected by the standard deviations. 
This highlights BRF2’s strong potential for solar radia-
tion prediction in the study area. However, the observed 
increase in RMSE values during testing indicates a 
degree of overfitting. Further adjustments to the model 
parameters and the integration of regularization tech-
niques could enhance the model’s generalization capa-
bilities, potentially mitigating overfitting.

The Taylor diagram in (Figure 5) illustrates that 
boosted regression forest (BRF2) and extreme gradient 
boosting (XGB2) are the top-performing models for pre-
dicting daily solar radiation. Both models demonstrate 
high correlation coefficients (close to 0.99) and standard 

deviations closely aligned with the reference, indicating 
strong predictive accuracy and a reliable ability to cap-
ture data variability. Other models, such as k-nearest 
neighbors (K-NN2) and support vector machine (SVM2), 
also exhibit commendable performance, though with 
slightly less alignment to the reference variability. Over-
all, the analysis highlights BRF2 and XGB2 as the most 
effective models for capturing complex meteorological 
patterns, emphasizing their suitability for solar radiation 
prediction in semi-arid regions. This finding is consist-
ent with the results of (Chen and Kartini, 2017).

BRF2 and XGB2 exhibit the highest correlation and 
closest alignment to the reference standard deviation, 
indicating strong predictive accuracy.

In (Figure 6), BRF2 and XGB2 exhibit lower error 
distributions and tighter interquartile ranges, indicating 
greater precision and stability. The error values shown in 
the box plots represent the absolute differences between 
the predicted and observed daily solar radiation values. 
Each error was calculated using the formula H predict-
ed – H observed| for every day in the test dataset. These 
values are expressed in MJ m⁻² d⁻¹. This approach offers 
a clear and direct way to assess model accuracy and the 
range of prediction deviations.

The box plots reveal that BRF produces smaller 
errors and fewer outliers, demonstrating its effective-
ness in capturing solar radiation variability. In con-
trast, models like K-NN and SVM exhibit greater error 
variability. While BRF2 achieves the highest accuracy, 
it also requires more extensive hyperparameter tuning, 
including adjustments to tree depth, learning rate, and 
the number of estimators. This reflects its greater model 
complexity. Despite the additional computational effort, 
BRF’s tuning process allows it to model complex data 
patterns more effectively. These findings highlight key 
performance differences among the models and illustrate 
the trade-offs between simplicity and predictive power.

Figure 7(A) highlights the relative importance of 
the meteorological variables used in the ML models. Pt 
(35%) and Tmax (30%) are the most significant contribu-
tors to model performance, underscoring their influence 
in predicting H and agricultural yields. The importance 
of Pt aligns with its critical role in water availability and 
evapotranspiration, which directly affect plant growth 
and H absorption in semi-arid regions. Tmax, which 
influences evapotranspiration rates and heat stress, fol-
lows closely. Other features, such asTmin, (15%) and H0 
(10%), while less impactful, still contribute to shaping 
the model’s predictions. These findings align with well-
established meteorological principles, emphasizing the 
importance of temperature extremes and precipitation 
variability in determining model accuracy.
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Figure 3. Scatter plots showing actual versus predicted solar radiation values for SVM1, SVM2, XGB1, XGB2, BRF1, BRF2, K-NN1, and 
K-NN2 models during the training phase.
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Figure 4. Scatter plots depicting the actual and predicted solar radiation values for the SVM1, SVM2, XGB1, XGB2, BRF1, K-NN1, SVM2, 
XGB2, BRF2, and K-NN2 models during the testing phase are provided.
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Figure 7(B) presents a correlation matrix between 
selected meteorological variables and the performance 
of the four machine learning models used in this study 
BRF, SVM, XGBoost, and K-NN. exhibits a strong posi-
tive correlation, particularly with the BRF (0.50) and 
K-NN (0.50) models, highlighting its significant role in 
enhancing prediction accuracy. This correlation reflects 
the influence of Pt on soil moisture and atmospheric 
conditions, which are crucial for crop yield in semi-arid 
climates. Tmax also shows moderate positive correlations, 
particularly with K-NN (0.40), reinforcing the impor-
tance of accounting for heat stress and evapotranspira-
tion effects in the models. Other variables, such as Tmin 

and H0, exhibit weaker yet meaningful correlations, indi-
cating their supplementary roles in improving model 
performance.

This analysis clearly demonstrates that precipitation 
and temperature extremes are the primary drivers of 
model performance, with more complex models like BRF 
and K-NN showing better adaptability to these factors. 
These findings align with existing literature, which high-
lights the critical role of climate variables in predictive 
modeling for semi-arid regions.

4. CONCLUSION

 This study comprehensively evaluated the perfor-
mance of four machine learning models SVM, XGBoost, 
BRF, and K-NN in predicting H in the semi-arid region 
of Gadarif, Sudan. While all models performed well 
during training, BRF1 and K-NN1 achieved the high-
est accuracy. However, slight performance declines dur-
ing the testing phase highlighted the need for improved 
generalization. Models in Scenario 2, which incorpo-
rated additional climatic variables such as precipitation, 
demonstrated more robust performance during test-
ing compared to Scenario 1, emphasizing the benefits 
of using a broader range of meteorological data. The 
findings confirmed the potential of machine learning 
approaches, particularly BRF, in accurately predicting H, 
supporting the initial hypothesis. These insights contrib-
ute to optimizing solar energy systems and improving 
climate modeling in semi-arid regions. Future research 
could focus on enhancing model generalization through 
hybrid approaches or integrating additional data sources, 
such as remote sensing, to improve predictive accuracy.

Figure 5. Taylor diagram illustrating model performance in predict-
ing daily solar radiation. 

Figure 6. Box plots and error diagram compare the error distributions and accuracy of different modeling methods in estimating daily H 
using the same input variables.
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