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Abstract. Recent years have been increasingly characterized by the prevalence of 
extreme weather events due to climate change. Among these events, record-high tem-
peratures and extended periods of drought are challenging the conventional viticulture 
techniques across many traditional grapevine-producing districts worldwide. The pre-
sent study analyzes the data recorded over 16 years (2008-2023) in Chianti Classico, a 
renowned area in Tuscany (Italy) whose economy is based not only on the wine trade 
but also on the induced effects generated, such as wine tourism. The analysis corre-
lated the historical climate patterns with the analytical profiles of the grapes at har-
vest. The results highlighted how increasing temperatures lead to an anticipation of the 
harvest date and, accordingly, a significant variation in grape chemical characteristics. 
This advance is linked mainly to achieving specific sugar concentrations in relation to 
the winery’s oenological objectives. As a result, organic acids and the phenolic fraction, 
along with their extractability, play a less decisive role and remain uncontrolled, poten-
tially making the transformation process more challenging to manage.

Keywords:	 grape quality, time series analysis, ripening trends, Growing Degree Days 
(GDDs), Sangiovese.

1. INTRODUCTION

The rise in temperatures on land, in the atmosphere, and in the oceans, 
combined with the retreating of snow and glaciers, which in turn contribute 
to rising sea levels, makes it hard to deny the phenomenon of global warm-
ing (IPCC, 2015). As these changes in the environmental balance challenge 
the sustainability of agriculture, valuable crops such as grapevines are not 
spared. Climate change, in fact, poses a risk to the cultivation of this plant 
in traditional growing areas and to the entire wine sector that depends on 
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it (Al-Ghussain, 2019; Aydinalp and Cresser, 2008; Ortiz 
et al., 2021; Reidmiller et al., 2018). Vitis vinifera L., with 
80 million tonnes produced annually over 7.3 million 
Hectares is the third most valuable agricultural product 
worldwide (OIV, 2020). Vitis vinifera (L.) is a remark-
ably resilient species, demonstrating impressive adapt-
ability to extremely different climatic conditions (Duch-
êne, 2016). This plant, through human intervention (i.e., 
cultivar and clone selections, grafting, and agricultural 
practices), has been shaped over the centuries to thrive 
in different environments. The species of the genus Vitis 
that are of agricultural interest, thanks to their pheno-
typic plasticity, can be cultivated over a wide range of 
latitudes (50 °N to 40 °S), in 93 different countries and 
up to altitudes exceeding 3,000 meters (OIV, 2017; Van 
Leeuwen et al., 2024). 

According to the current predicted possible climat-
ic scenarios, the future is likely to hold a shift in terms 
of cultivation areas, with new regions becoming suit-
able for grape cultivation and others potentially at risk 
of being abandoned (Cameron et al., 2022; de Cortazar 
Atauri et al., 2017; Duchêne and Schneider, 2005; Van 
Leeuwen et al., 2019). As the novel climatic conditions 
move along the described pattern, grapevine phenol-
ogy is altered, and while the length of the stages tends 
to remain constant, an anticipation of their occurrence 
is observed. Numerous studies have examined this phe-
nomenon (Koch and Oehl, 2018; Dalla Marta et al., 
2010; Tomasi et al., 2011), correlating climatic data with 
vine phenological stages across various production areas 
over the years, arriving at similar conclusions. Since the 
harvest date is primarily determined by the desired tech-
nological maturity of the grapes, climatic changes have 
resulted in an average advancement of 2-3 weeks in most 
wine-growing regions compared to past decades.

The current climate change in viticulture also has 
a strong impact on the vines’ physiological behavior 
during the vegetative season and, consequently, on the 
biochemical profile of the grapes (Van Leeuwen & Dar-
riet, 2016). As a matter of fact, the vines spend part of 
the hot season under multiple abiotic stresses, with con-
sequent impact on grape quality, as the latter is strictly 
linked to the environmental conditions (Drappier et al., 
2019; Jackson and Lombard, 1993). An increased cluster 
exposure to solar radiation and a moderate water defi-
cit can be desirable to boost the accumulation of poly-
phenols and aromatic compounds in the berries (Rienth 
et al., 2021; Van Leeuwen et al., 2022; Zarrouk et al., 
2016). On the other hand, the adaptation of the plants to 
irregular hot and dry conditions might result in shrunk 
canopies and reduced photosynthetic activity, associated 
with withered clusters, possible sunburn damage and 

altered grape’s analytical profile (Cataldo et al., 2023; De 
Orduna, 2010; De Rességuier et al., 2023; Keller et al., 
2016; Rustioni et al., 2023; Scholasch and Rienth, 2019). 
In particular, the worst effects of extended exposure of 
grapes to intense solar radiation and heat are lower acid-
ic profiles, increased sugar accumulation (resulting in 
higher alcoholic content), and a general decoupling of 
phenological and technological maturity (Arrizabalaga et 
al., 2018; Kliewer, 1977; Mori et al., 2007).

Indeed, anthocyanins and sugar accumulation are 
closely linked during the early stages of ripening, but 
when the temperature gets over 35 °C, a significant slow-
down in the biosynthesis of phenolic substances is often 
observed (Bergqvist et al., 2001; Gambetta and Kurtural, 
2021; Pastore et al., 2017; Spayd et al., 2002). In most 
cases, when clusters are under intense heat, a delay in 
the onset of anthocyanin accumulation occurs, but once 
started, the rate of anthocyanin synthesis and accu-
mulation remains constant (Sadras and Moran, 2012). 
Because of these unbalanced metabolic processes, when 
berries are long exposed to extreme temperatures, visible 
differences in berry size and color may be observed on 
the opposite sides of the clusters (Castellarin (a), et al., 
2007; Castellarin (b), et al., 2007; Hernández-Montes et 
al., 2021). As the water stress reaches a specific thresh-
old, the plant closes its leaf stomata to prevent damage 
from excessive water losses, consequently limiting the 
CO2 intake and the photosynthetic activity (Flexas et 
al., 1998; Medrano et al., 2003). As this occurs, sugar 
accumulation in berries is also impaired (Intrigliolo and 
Castel, 2010). However, under these conditions, berry 
growth is severely restricted as well, resulting musts 
display higher total final sugar concentration (Dai et 
al., 2009; Gambetta et al., 2020) due to a reduced berry 
weight. In this condition, to compensate for the energy 
deficit the plant speeds up the malate metabolism, caus-
ing a consumption of malic acid as fuel for the cells. As 
this happens, total acidity decreases, and pH rises in the 
musts at harvest (Hewitt et al., 2023; Sweetman et al., 
2009; Van Leeuwen et al., 2009). Finally, water deficit 
may also advance the onset of sugar accumulationGiven 
the complex responses of Vitis vinifera at both plant and 
fruit levels, accurately assessing future possible scenarios 
for growing regions is crucial for planning mitigation 
strategies, as grape and wine production often represent 
the foundation of many agricultural communities. This 
study focuses on the shifts in grapevine ripening timing 
over the past 16 years in Chianti Classico, a key Italian 
wine district producing an average of 36 million bottles 
per year and valued at over 1 billion euros (Nesto and 
Di Savino, 2016). Focusing on Sangiovese, the Tuscan 
most emblematic variety, this research aims to assess 
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the impact of rising temperatures on harvest timing and 
grape quality. By analyzing climatic trends, the findings 
will provide insights into preserving the distinctive char-
acteristics of Sangiovese and suggest adaptive strategies 
for sustainable viticulture and enhanced wine produc-
tion in this prestigious wine-growing area.

2. MATERIALS AND METHODS

2.1. Vineyard conditions

The study was carried out in the Chianti Classi-
co district (Tuscany, Italy), in a 22 ha vineyard (43 ° 23 
‘ 02 “N, 11 ° 26 ‘ 04 “E, 320 meters a.s.l.) of Sangiovese 
(grafted on 110 Richter rootstock), over a 16-year peri-
od, from 2008 to 2023. The vineyard is located at the 
Barone Ricasoli Farm, the largest winery of the Chianti 
Classico district, having 240 ha of vineyards, displaying 
the pedological and climatological characteristics best 
suited for quality wine production. The farm has under-
gone several studies over the years, resulting in the crea-
tion of a zoning map. Moreover, the vineyard selected is 
the one closest to the weather control unit and has also 
been zoned, ensuring that all its soil characteristics are 
well-documented. The vines of the experimental vine-
yard are spaced 2.00 m between and 0.80 m within the 
rows, with parallel NW - SE orientation and an average 
6 ° slope. The vines are trained on a vertical shoot posi-
tioned trellis, with spur cordon pruning (2 buds per spur, 
4 spurs per vine). The soil has a clay-loam texture with 
high stoniness (up to 40 % limestone fragments) and a 
high calcium carbonate content (20-30 %). It has moder-
ate water retention capacity, fast internal drainage due to 
rock fragments, low organic matter and nitrogen content, 
and a pH of 8.1-8.3. According to WRB classification, it is 
a Skeletic Calcaric Cambisol (Costantini, 2013). 

2.2. Weather data

The area has a predominantly temperate climate 
with hot-dry summer (Peel et al., 2007), characterized by 
wet winters and dry summers, with temperatures rang-
ing from warm to extremely hot. During the growing 

seasons from 2008 to 2023, climate data were collected 
using an automated control unit (METOS ® by Pessl 
Instruments) located near the experimental vineyard. 
The parameters measured included daily maximum tem-
perature (°C), daily average temperature (°C), daily min-
imum temperature (°C), and daily precipitation (mm), 
covering the period from April 1 to October 31, the con-
ventional growing season for vines. Based on this data, 
the Growing Degree Days (GDDs) were calculated using 
the method described by (Winkler, 1974), with a temper-
ature threshold of 10 °C. Essentially, GDDs represent the 
cumulative daily temperatures above a certain threshold 
that support active vine growth during the vegetative 
season. For each year, the focus was set on the growing 
period leading up to the Day Of Harvest (DOH, accord-
ing to the Day-of-year calendar), assessing the GDDs 
from April 1 to the DOH, which varies in each single 
vintage (Table 1).

2.3. Grape maturity parameters

Every year, at DOH, 15 samples constituted of 200 
berries each were randomly collected in the experimen-
tal vineyard and screened to assess the analytical param-
eters of the grape. Half of the berries were manually 
pressed, and the obtained juice was analyzed to assess 
the technological parameters: reducing sugars, pH, and 
total acidity. Analyses were directly performed on the fil-
tered must samples using Fourier Transform Near-Infra-
red Spectrometry (FT-NIR) with the WineScan FT 120 
system (Foss Italia S.r.l., Italy). All the above-mentioned 
parameters need to fall into specific ranges dictated by 
the Chianti Classico D.O.C.G. production regulations, in 
order to the wine to present the typical sensorial profile 
and claim the appellation. The second half of the sam-
ples were analyzed as described by Ribéreau-Gayon et 
al. (1965) and Saint Cricq de Gaulejac et al. (1998) to 
determine phenolic maturity indices: Total Anthocya-
nins, Extractable Anthocyanins, and the Cellular Matu-
rity Index. All these indices are related to the phenolic 
composition of the wines allow to evaluate both their 
quantity and color. In detail, Total Anthocyanins are 
obtained by analyzing an extract prepared with a highly 
acidic buffer (pH 1.00) and represent the total anthocya-

Table 1. Harvest day expressed as day of the year (DOH) and reported as conventional month and day, for the period of the years 2008-
2023.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

DOH
276 268 271 264 276 269 273 260 268 264 269 269 261 265 257 262

10/02 09/25 09/28 09/21 10/02 09/26 09/30 09/17 09/24 09/21 09/26 09/26 09/17 09/22 09/14 09/19



98 Marco Ammoniaci et al.

nin content in the berries, expressed in mg/L of must. 
Extractable Anthocyanins, also expressed in mg/L of 
must, refer to the amount of anthocyanins measured in 
an extract obtained with a buffer at pH 3.20, similar to 
that of the wine. This fraction represents the bulk of pig-
ments that are subject to the technological winemaking 
process. The Cellular Maturity Index reflects the ability 
of the berry skin to release anthocyanins and was deter-
mined using the following ratio:

Given the structure of the formula, lower index values 
correspond to a higher proportion of extractable anthocy-
anins, indicating a more advanced maturity stage.

2.4. Data analysis

The data collected and organized were analysed 
using the R program (R Core Team, 2023, https://
www.R-project.org/) inside RStudio environmental. 
To evaluate the interactions between both weather and 
oenological parameters, a statistical analysis was per-
formed using Pearson correlation coefficient (r) and 
evaluated its p-value. These two values together allow 
to understand how strong the relationship between two 
variables is, and whether it is statistically significant. 
These statistical results are shown within the graphs 
developed through the graphical tool ggplot2 (Wickham 
and Wickham, 2016).

3. RESULTS 

3.1. Weather conditions

The data processed from the weather station (Table 
2) between April 1 and October 31 in 2008-2023 shown 

an average GDDs accumulation of 1907. The year with 
the lowest GDDs was 2010, with a total of 1605, while 
the highest was recorded in 2022, with 2136 GDDs. 
Over the same period, rainfall averaged 414 mm, with 
the lowest amount of water fed occurring in 2011 at 213 
mm and the highest in 2016 at 586 mm. Events of tem-
peratures dropping below 0 °C after 1st April (after bud 
burst) occurred in the following years: 2012 (2 days), 
2015 (2 days), 2017 (2 days), 2020 (3 days), 2021 (4 days), 
2022 (5 days), and 2023 (3 days), with all occurrences 
happening in the first half of April. The increasing fre-
quency of late frosts after 1st April could increased the 
risk of damage to the newly sprouted vegetation. Addi-
tionally, GDDs data processed specifically from April to 
harvest day, revealed an average GDDs accumulation of 
1692. Lowest annual GDDs over the years occurred in 
2010 (1501 GDDs), and the highest was in 2017 (1842 
GDDs). Mean precipitation for this period was 301 mm, 
with the lowest value in 2020 and the highest in 2010 
with 135 mm 450 mm respectively. An additional metric 
of interest for long-term grape analysis was the frequen-
cy of days with temperatures exceeding 35 °C, which 
averaged 17 days per year.

As shown in Figure 1, the correlation between the 
year and the GDDs from April to October (r =0.71, 
p-value < 0.01), suggested that, over the years, there had 
been a significant increase in the heat units accumulated 
during the growing season. With the rise in tempera-
tures over the years, a direct correlation was observed 
between the year and the number of days with tempera-
tures exceeding 35 °C (r =0.56, p-value < 0.05). The sig-
nificant correlation between the year and the DOH was 
explained by the fact that as the years progressed, the 
harvest dates occured in advance (r =-0.65, p-value < 
0.01), indicating a significant tendency. Despite the pro-
gressively earlier harvest, which reduced the number of 
days from April 1 to harvest, GDDs at DOH continued 
to increase (r = 0.49, p-value > 0.05).

Table 2. Climate parameters 2008 - 2023. Growing Degree Days (GDDs) from April 1 to October 31, and from April 1 to the DOH; Rain-
fall (mm) from April 1 to October 31, and from April 1 to the DOH; Yearly number of days with maximum temperatures exceeding 35 °C 
(T max > 35 °C).

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Average

GDDs from 1 April to 31 October 1763 1883 1605 1880 1917 1749 1748 1959 1877 2064 2076 1975 1913 1904 2136 2070 1907
Rainfall (mm) from 1 April to 31 
October 476 411 523 213 474 539 399 429 586 421 417 325 261 219 477 460 414

GDDs from April to DOH 1600 1715 1501 1663 1758 1545 1555 1731 1685 1842 1831 1746 1714 1694 1831 1666 1692
Rainfall (mm) from April to DOH 393 316 450 157 308 304 382 273 435 408 345 247 135 181 199 282 301
Yearly number of days Tmax > 35 °C 9 13 1 12 23 6 0 25 3 40 7 21 19 20 37 31 17
Yearly number of days Tmin < 0 °C 0 0 0 0 2 0 0 5 0 2 0 0 3 4 5 3 1.5

https://www.R-project.org/
https://www.R-project.org/
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3.2. Berry composition

As shown in Table 3, the oenological parameters 
obtained from grape samples collected at the DOH pre-
sented the following average values: reducing sugars, 
234 g/L; pH, 3.27; and total acidity, 6.57 g/L. The year 
2011 exhibited notably high levels of reducing sugars 
and low pH values, while 2016 and 2020 showed high 
levels of both sugars and pH. In contrast, the 2014 sea-
son recorded the lowest mean sugar concentration (209 
g/L) and pH (3.13), along with the highest total acidity 
value (8.30 g/L). On the contrary, the lowest total acidity 
(5.20 g/L) was observed in 2020. Total Anthocyanin lev-
els averaged 1093 mg/L, while Extractable Anthocyanins 
averaged 644 mg/L, resulting in a mean extractability of 
41 %. Significant variations in anthocyanin levels were 
observed, with the higher concentrations noted in 2011, 
2016, and 2020, while the lower levels were recorded in 
2012, 2014, and 2017.

In Figure 2, although the correlation between reduc-
ing sugars and DOH was not statistically significant (p 
value = 0.07), it emerged that reducing sugars decreased 
as DOH increased, with a near-significant trend. The 
reducing sugars shown no statistically significant corre-
lations with the other variables considered. A significant 
negative correlation was found between total acidity and 
GDDs (r = -0.62, p-value <0.05). For pH, both a positive 

trend over the years (r = 0.64, p-value <0.01) and with 
the GDDs (r = 0.55, p-value <0.05) are observed, while a 
significant negative correlation was found with DOH (r 
= -0.50, p-value <0.05).

As illustrated in Figure 3, there was no correlation 
among Total Anthocyanins and the other parameters 
considered. Anyway, the extractable anthocyanins pre-
sented a significant correlation only with the DOH (r 
= -0.57, p-value <0.05), showing a decrease as this vari-
able increased and indicating that a later harvest reduced 
the amount of Extractable Anthocyanins. Despite these 
results, a significant correlation was found between the 
Cell Maturity Index and DOH (r = 0.51, p-value <0.05), 
showing an increase with later harvest dates and decreas-
ing GDDs at harvest (r = -0.52, p-value <0.05). This indi-
cated that a late harvest promoted higher cellular matura-
tion, while greater heat accumulation could reduce it.

4. DISCUSSION 

The increasing frequency of enduring high temper-
atures and heat waves determines a growing economic 
impact on cultivated species, including Vitis vinifera.. 
In the area of ​​investigation, Chianti Classico, a lead-
ing wine-growing district in the Italian panorama, the 
impact on grape quality (reducing sugar, acidity, pH, 
anthocyanins) in Sangiovese (the main black-berried 
cultivar in Italy) was evaluated over 16 consecutive 
growing seasons, from 2008 to 2023. The study here 
proposed helps to define what the possible future sce-
narios might be. Results highlight a significant rise in 
temperatures during the considered growing seasons 
(GDDs from April 1st to October 31th), with an aver-
age of 1649 GDDs from 2008 to 2012, leading to a 8 
days advance in the harvest date compared to the peri-
od from 2019 to 2023, which had an average of 1729 
GDDs. Along with the correlation between years and 
the increase in GDDs, there is an increase in days with 
extreme temperatures (>35 °C). To counter this trend, 
harvest is increasingly anticipated, which helps main-
tain relatively constant levels of total soluble solids and 
total phenolics at harvest. On the other hand, late frosts 
became more frequent after the 1st April , hence, late 
pruning was carried out to delay the vegetative awak-
ening of the vines, without significantly compromising 
yield or grape quality (Poni et al., 2022).

Despite, GDDs show a tendency to continue to 
increase at DOH. This finds justification on the fact 
that temperature has a controversial effect on plant and 
cluster’s metabolism, where sugar and organic acids are 
both subject to anabolic and catabolic processes accord-

Figure 1. Relationship among Year with Growing Degree Days 
(GDDs) from April to October (A), number of days with Tempera-
ture max > 35 °C (B), day of harvest (DOH) (C) and GDDs from 
April to harvest (D).
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ingly to the temperature’s range. Sugar accumulation 
is indeed most efficient in the range of 22 - 28 °C but 
comes to a complete stop when 35 °C is reached (Kel-
ler, 2020). Grapes directly exposed to extreme heat and 
solar radiation may experience a blockage in sugar 
accumulation, although berries in the shade remain 
active (Kliewer and Lider, 1968). In general, extreme 
heat interrupts ripening, slows physiological processes 
and extends the time required to reach maturity. Ris-
ing GDDs at DOH, combined with heat-induced inter-
ruptions, complicate ripening management by increas-
ing thermal accumulation during the growing period, 
disrupting the balance between metabolic and ripening 
processes. Reducing sugars remain the main decision 
parameter to start the harvest, as supported by the rela-
tively constant levels over time. This decision, however, 
often comes at the expense of other analytical param-
eters of the grapes.

For the above-described earlier occurrence of the 
date of harvest, a reduction of the total acidity meas-
ured on must is observed, when compared with GDDs at 
DOH. Also measured a higher pH as sun-exposed ber-
ries tend to have a significantly lower amount of malate 
(Kliewer and Lider, 1968; Reynolds et al., 1986). This 
phenomenon is likely to be caused by the reduced photo-
chemical activity of the plants under heat stress, and the 
consequent use of malic acid as a source of energy by the 
plant (Ribéreau-Gayon et al., 2021). These increasing pH 

levels in the berries are likely to rise further, with poten-
tial impacts on the typicity of the final wine, as the num-
ber of extreme-heat-days continue to grow.

Concerning total anthocyanins in the musts, final 
concentrations have shown to remain relatively sta-
ble. Is indeed acquired that intense heat may decou-
ple the onset of phenolics and sugar accumulation but, 
once started, phenolics synthesis might catch up. The 
lack of association between the total anthocyanin con-
tents and the other parameters detected can be there-
fore explained by the fact that total phenolic substances 
are influenced more by genetics rather than by climate 
except in the case of prohibitive environmental condi-
tions. This fact is supported by other authors who have 
correlated the phenological stages to a constant amount 
of GDDs in different grape cultivars (Zapata et al., 
2015). In this respect, it was significant to observe that 
the general trend of grapes harvested earlier produced 
musts with higher amounts of extractable phenolic 
compounds due to the possible effects of the intense 
heat and light exposure on berry tissues. Anthocyanin 
production peaks at an optimal berry temperature of 
approximately 30 °C but declines when temperatures 
exceed 35 °C (Kliewer, 1977; Spayd et al., 2002). Pro-
longed exposure to excessive heat and excessive light 
radiation can induce oxidative stress, which not only 
inhibits anthocyanin synthesis but also contributes to 
its degradation (Mori et al., 2007). The Cell Maturity 

Table 3. Oenological parameters measured in the grape samples collected from 2008 to 2023. Reducing sugars (g/L), pH, Total acidity (g/L 
tartaric acid), Total Anthocyanins (mg/L), Extractable Anthocyanins (mg/L), and Cell Maturity Index (%).

Year Reducing sugars 
(g/L) pH Total acidity (g/L 

tartaric acid)
Total Anthocyanins 

(mg/L)

Extractable 
Anthocyanins 

(mg/L)

Cell Maturity Index 
(%)

2008 220 3.20 7.20 1162 516 56
2009 219 3.19 6.30 1199 613 49
2010 235 3.20 6.94 1059 643 45
2011 252 3.21 6.60 1289 891 31
2012 223 3.28 5.98 736 426 42
2013 228 3.22 6.87 1129 585 48
2014 210 3.13 8.30 817 478 41
2015 230 3.26 7.08 1002 659 34
2016 252 3.42 5.74 1583 873 45
2017 251 3.23 6.59 754 593 21
2018 243 3.37 6.49 1123 698 38
2019 238 3.30 6.37 933 565 39
2020 261 3.41 6.41 1359 842 38
2021 232 3.21 6.21 1066 557 48
2022 234 3.46 5.20 1140 678 40
2023 225 3.34 6.92 1112 689 38
Average 235 3.27 6.57 1093 644 41
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Index confirms that the percentage of extractable antho-
cyanins is higher in the grapes harvested earlier. More-
over, the significant correlation between GDDs to har-
vest highlights the influence of climate on grape matu-
rity. This supports the observation that warmer condi-
tions during the vegetative growth phase led to higher 
extractable anthocyanin percentages. 

5. CONCLUSION

The data collected over a prolonged period, 16 years 
(2008 – 2023), analyzed in this study allow us to conclude 
that there is evidence of an overall increase in tempera-
tures during the grapevine growing season, leading, in gen-
eral, to an earlier harvest date within every year. Events of 

Figure 2. Relationship among reducing sugars (g/L) with year (A day of harvest (DOH) (B), and Growing Degree Days (GDDs) (C) from 
April to harvest, among total acidity (g/L tartaric acid) with year (D), DOH (E), and GDDs from April to Harvest (F) and among pH with 
year (G), DOH (H) and GDDs from April to harvest (J).
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extreme heat are also occurring with increasing frequency. 
Sugar level remains the main factor in determining the har-
vest day for a winery, while total acidity has been decreas-
ing over the years. While the grape total anthocyanin con-
tent has not significantly changed over time, the concentra-
tions of extractable anthocyanins increased, likely due to 
the grapes experiencing more thermal stress. 

Advance the harvest impacts the balance of sugars, 
acidity, and aromas, altering the wines’ flavour profile, 
and at the same time, it brings on logistical and eco-
nomic challenges, such as managing seasonal labour and 
adapting production cycles.

Although the advancement of the harvest in 
response to the accelerated plant’s metabolism is main-

Figure 3. Relationship among total anthocyanins (mg/L) with year (A), day of harvest (DOH) (B), and Growing Degree Days (GDDs) 
from April to Harvest (C), among extractable anthocyanins (mg/L) with year (D), DOH (E), and GDDs from April to harvest (F) and 
among Cell Maturity Index (%) with year (G), DOH (H) and GDDs from April to harvest (J).
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ly driven by the need to maintain constant the sugar 
level, to predict a future scenario remains difficult as 
extreme-heat-days are also occurring more frequently. 
As plant physiological processes are an articulated sys-
tem, and different metabolic pathways get involved in 
response to combined stresses, is rightful to assume, as 
one of the possible scenarios, that extreme heat events 
may prevent further advancements delaying the ripen-
ing by halting photochemical activity. This underscores 
the complex relationship between climate change and 
agricultural practices, emphasizing the need for sustain-
able farming methods (e.g., optimized irrigation, canopy 
management, shading nets, reflective clays) and ongoing 
research to address these challenges while preserving the 
wine sector’s quality and stability.
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