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Abstract: 

Greenhouse management is a fundamental aspect of modern agriculture, as it directly affects crop quality, water 

efficiency, and energy consumption. This study focuses on the regulation of key greenhouse climatic parameters, 

namely indoor temperature and relative humidity. A dynamic greenhouse model was developed to implement and 

compare two control strategies: a Fuzzy Logic Controller (FLC) and a Proportional–Integral–Derivative (PID) 

controller. The main objective of this work is to design a controller capable of simultaneously managing two highly 

correlated variables by adopting variable setpoints for both temperature and humidity. This approach distinguishes 

the proposed methodology from previous studies, which typically focused on temperature control while 

maintaining constant humidity setpoints. In contrast, the proposed strategy regulates both parameters dynamically 

and concurrently. Simulation results under different operating scenarios show that the FLC outperforms the PID 

controller in maintaining a favorable greenhouse microclimate. In particular, the FLC achieved reductions of 

25.1% in average humidification rate and 29.6% in ventilation rate. Moreover, the total energy consumption 

associated with the PID controller was approximately 27% higher than that of the FLC. The error analysis between 

reference setpoints and simulated responses confirms that the dynamic model accurately predicts indoor 

temperature and relative humidity with minimal deviation. Overall, the results demonstrate the robustness and 

efficiency of the FLC in ensuring optimal greenhouse climatic conditions while significantly reducing energy 

consumption.  
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1. Introduction  

The greenhouse industry is among the fastest-growing sectors in modern agriculture due to its ability to protect 

crops from adverse external conditions and to enable precise manipulation of the cultivation environment. By 

creating a controlled microclimate, greenhouses the production of crops that are not feasible in open-field 

conditions, resulting in higher yields, extended production periods, improved crop quality, and reduced pesticide 

use. Consequently, greenhouse crops exhibit a significantly higher added value per unit area compared to open-

field agriculture (Farvardin et al. 2024; Jeevan Nagendra Kumar et al. 2024). 

To fully benefit from these advantages and extend the growing season, it is essential to maintain optimal 

greenhouse microclimatic conditions (Abbood et al. 2023; Wang et al. 2024). This requires accurate regulation of 

key climatic parameters through actuators such as heating systems, humidifiers, and ventilation fans (Adrian et al. 

2019). In this context, the availability of a dynamic greenhouse model capable of accurately describing the 

temporal evolution of indoor climate variables is crucial for control design and performance evaluation (Blasco et 

al. 2007; Guo et al. 2021). Dynamic modeling allows representing the temporal variations of the climatic 

parameters in the greenhouse(Choab et al. 2019; Shamshiri et al. 2020). 

Many agricultural greenhouses are still manually regulated, requiring the grower's assistance. But some have 

implemented smart control devices. (EL AFOU et al. 2015; El AFOU et al. 2018) Among the various climatic 

variables, indoor air temperature and relative humidity are considered the most influential and measurable 
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parameters affecting plant growth (Körner 2015). There are also other important climatic factors such as: 

evaporation, wind speed, CO2 content, lights(Franklin 2009)(Chand Singh et al. 2018). Temperature plays a 

fundamental role in plant physiological processes, while relative humidity directly influences transpiration, disease 

development, and overall plant health (Wahid et al. 2007;(Penfield 2008) ;Lipiec et al. 2013). These two variables 

are strongly coupled, meaning that variations in one significantly affect the other, which makes their simultaneous 

regulation challenging(Chen et al. 2023). As a result, the greenhouse climate system is typically modeled as a 

Multi-Input Multi-Output (MIMO) system (Tao 2014). 

Despite the widespread use of conventional control strategies such as Proportional–Integral–Derivative (PID) 

controllers, their performance is often limited by the nonlinear and coupled nature of greenhouse climate 

dynamics. Furthermore, PID-based approaches may lead to increased energy consumption, particularly during 

heating and ventilation processes. To overcome these limitations, advanced control techniques have been 

proposed, including Fuzzy Logic Controllers (FLCs), which are well suited to handling nonlinear systems and 

uncertain dynamics while improving energy efficiency (El Ghoumari et al. 2005; Bennis et al. 2008; Márquez-

Vera et al. 2016;Yang and Zhang 2024). 

Previous studies have primarily focused on temperature control using variable setpoints while maintaining 

constant relative humidity references(Huang et al. 2024; Riahi et al. 2024). In contrast, the present work 

proposes a control strategy that simultaneously regulates indoor temperature and relative humidity using variable 

setpoints for both parameters within a dynamic greenhouse model. The proposed approach is evaluated under 

different operating scenarios, including seasonal variations and external climatic disturbances, to assess its 

robustness and energy efficiency. 

The main contribution of this study lies in the development and comparative evaluation of a Fuzzy Logic Controller 

and a PID controller for greenhouse climate control. By adopting variable setpoints for both temperature and 

relative humidity, the proposed strategy provides a more realistic and adaptive approach to greenhouse 

microclimate management while aiming to reduce energy consumption and improve overall control performance. 

The present study introduces variable setpoints for both temperature and relative humidity under diverse climatic 

scenarios, including: 

– Different setpoint values; 

– Distinct seasonal conditions that generate varying external disturbances in temperature and humidity; 

– Simulations conducted over four days during the spring season (April) with a sampling time of 5 seconds, and a 

second simulation extending over one week during the autumn season (September). The key innovation of this 

work lies in the ability to simultaneously regulate temperature and relative humidity using variable setpoints, 

thereby providing a more realistic and adaptable control approach for greenhouse climate management. 

The proposed model was experimentally validated using real meteorological data collected during two key periods: 

one corresponding to the spring season and another to the autumn season. The selection of these two seasons is 

motivated by the strong correlation between temperature and relative humidity, which makes the simultaneous 

control of these parameters more complex and therefore represents a significant challenge. 

In contrast, during the summer season, which is characterized by a sustained increase in temperature, the control 

strategy mainly focuses on temperature regulation. Similarly, the winter season is marked by high relative humidity 

levels, allowing the control process to primarily target humidity regulation. Consequently, spring and autumn 

conditions constitute the most demanding scenarios for evaluating the performance and robustness of the proposed 

control model. 

This article is structured as follows: Section 1 is dedicated to the presentation of the greenhouse model system and 

the input parameters. Section presents the controls used, which are the dynamic PID controller and the fuzzy logic 

controllers (FLC): we used 2 blocks of the controllers, one for temperature and the other for humidity. A discussion 

on the measurement and simulation results as well as the comparison between the two controllers are presented in 

Section 4. Then, the internal temperature and humidity is simulated using MATLAB software. The perspectives 

and conclusion are discussed in the last part. 

2. Materials and Methods 

In this study, a physical model of temperature and relative humidity is employed, as it adequately describes the 

behavior of these variables in a real greenhouse. It is assumed that the air inside the greenhouse is uniformly 

distributed. Heating, ventilation systems and humidifiers, and other switching devices provide the control inputs. 

External environmental factors, including sun radiation, relative humidity, and air temperature, are considered as 

disturbance inputs. The feedback effects of crop growth on temperature are neglected. 



 

 

 

Fig.  1The interaction between greenhouse components and heat transmission.  

2.1. Greenhouse model 

Maintaining the greenhouse under optimal operating conditions throughout the different phases of crop growth 

requires an understanding of the greenhouse microclimate and its characteristics(Bhujel et al. 2020). Since these 

factors have a major impact on the greenhouse energy and mass balances, accurate estimation of solar radiation, 

mass transfer coefficients, and heat transfer coefficients is essential for developing a reliable physical model(Choab 

et al. 2019; Kadirov et al. 2023). 

In this work, we adopt a dynamic greenhouse model proposed by (Kaida et al. 2024),which considers two kinds 

of input data: 

- The disturbances (external climate variables): external relative humidity, external temperature, solar radiation. 

- Actuators (controls): humidification system, ventilation and heating system. 

 The expressions of the internal heat balance and internal water balance equations are given in Eq. (1) and Eq. (2), 

respectively. The resulting model is a multi-input / multi-output (MIMO) system, which can be described as 

follows:  

                         

,int

int int

1 10
( . ) .( ) ( )

. . 36 . .

v mHeater Hum

ext ext

air air gr gr air air gr

VdT UA
Q R H T T T T

dt C V V C V


 
= + − + − − −

                       (1) 

                   

,int

ext int int

1 1 1
(H ) .

. . . .

v mHum

T

air gr air gr air gr air gr

VdH
H R H H

dt V V V V




    
= + + − −

                                      (2) 

With:  

 𝜌air : Air density [kg.m-3].  

Cair: Specific heat capacity of air [J.kg-1. K-1].  

Vgr: Greenhouse volume (m3) 

Vv,m: Ventilation airflow rate (m3/s).  

The variables Text, Hext and R represent disturbances outside the greenhouse which determine the atmospheric 

influence on Tint and Hint. 

 QHeater, Vv, m and HHum: are commands for the heater, ventilation, and humidifying system respectively. 

Tint: The output of indoor temperature  

Hint: The output of indoor relative humidity. 

Modern control theory of dynamical systems relies heavily on the concept of state and its associated state-space 

representation. For nonlinear systems, this representation is commonly expressed in the form of Eq. (3) (Fliess et 

al. 2004).  



 

 

Accordingly, the proposed greenhouse model can be described by the following system of equations : 
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With: 

X € Rn   : state vector ,   U € Rm   :controls inputs,  y € Rp   : outputs 

After identifying the state, input, disturbance, and output variables, the greenhouse climate can be described by a 

nonlinear, strongly coupled state-space model. The indoor air temperature and relative humidity are selected as the 

state variables and are denoted by the dynamic states X1(t) and X2(t), respectively. For summer operating 

conditions, the heating power is set to zero ( QHeater = 0 ). Consequently , the control inputs of the system are 

defined as the ventilation rate and the humidity generation rate provided by the fogging system, denoted by U1(t) 

and U2(t), respectively. The external disturbances acting on the greenhouse are the solar radiation heat transfer rate 

Vl(t), the outside air temperature V2(t), and the outside relative humidity V3 (t). All state variables, control inputs 

and disturbances are summarized as follows: 
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So, we can express Eq. (1) and Eq. (2) in the following form: 
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we based on these two Eq. (4) and Eq. (5) for writing the state representation of our system in the form of Eq. (3) 

and we obtained the following result: 
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Our greenhouse has a volume of Vgr = 4000 m3 (20 x 20 x10) and the cover reduces the sunshine by 60%, the heat 

transfer coefficient UA = 25 kW.K-1, and the air density 𝜌air =1.2 Kg.m- 3 with specific heat Cair = 1006 j .Kg-1.K-1. 

These inputs parameters are summarized in the following Table 1. (Kaida et al. 2024). 

 

 

 

 

 



 

 

Table 1. The values of the inputs that were employed in the simulation  

Symbol  
Numerical 

value 
Units 

Description               

UA 25000 W.K-1 
The coefficient of heat transfer of the cover  

 

Vgr 4000 m-3 Volume of the greenhouse 

ρ 1.2 Kg.m-3 Density of internal air 

Cair 1006 J. Kg -1. K-1 Specific heat of air 

    

R 700 W The heat produced by the Solar radiation 

 A number of plants generate heat; their temperature can exceed 40°C above that of the surrounding air. 

Consequently, at thermal equilibrium, the heat generated by plants is often ignored in relation to the heating system 

generator and within a large greenhouse. (Lamprecht et al.). 

2.2. The Proportional Integral Derivative (PID)   

The Proportional Integral Derivative (PID) is a control mechanism used to perform closed-loop regulation of an 

industrial system. It is the most widely used regulator in the industry and allows for the control of a large number 

of processes. The observed error is the difference between the setpoint and the measurement. The PID controller 

allows for three actions based on this error: 

1.Proportional: the error is multiplied by a gain G. 

2.Integral: the error is integrated over a time interval ss and then divided by a gain Ti. 

3.Derivative: the error is differentiated with respect to time ss and then multiplied by a gain Td. 

There are several possible architectures to combine these three effects (series, parallel, or mixed). 

Tuning a PID controller involves determining the parameters G, Td and Ti in order to achieve a satisfactory control 

and regulation performance(Paolino et al. 2024). The main objectives are robustness, fast dynamic response,and 

high accuracy. To meet these requirements, overshoot(s) must be minimized (Schiavo et al. 2021). 

For the summer operation, ( QHeater =0) the greenhouse model has two control inputs: ventilation and humidification 

system. Two PID controllers are employed, one for indoor air temperature control and one for relative humidity 

regulation. The overall control architecture is implemented in MATLAB/Simulink and illustrated in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2 Greenhouse model controlled by a Proportional Integral Derivative (PID) controller. 

The coefficients G, Td et Ti of the PID controller of the indoor relative humidity and indoor temperature are given 

in Table 2.  

 

 



 

 

Table 2. Coefficients of Proportional Integral Derivative (PID) controllers used in the two blocks  

Coefficients of PID 

controllers  
Indoor temperature  

Indoor relative 

humidity  

Proportional (G) 0.0567 338.775 

Integral (Ti) 0.0002 9.435 

Derivative (Td) 1.6660 1163.453 

 

2.3. Fuzzy Logic Controller 

A Fuzzy Logic Controller (FLC) is a control system that mimics human reasoning by using fuzzy rules instead of 

precise mathematical formulas. It is particularly useful for managing complex systems where it is difficult to 

establish precise equations. A fuzzy controller is composed of three blocks: fuzzification, inference, and 

defuzzification as shown in Fig.  3. 

 

Fig.  3 Operation of a fuzzy controller. 

› Fuzzification: transforming real input variables into fuzzy variables (also called linguistic variables).  

› Fuzzy inference: constructing rules (and results) based on linguistic variables, assigning a truth value to each 

rule, and then aggregating the rules to obtain a single (linguistic) result to decide the action to take.  

› Defuzzification: transforming the fuzzy output into a precise value usable by the system. For the defuzzification 

method, we used the Center of Gravity (CoG), also known as the centroid method. This method calculates the 

center of the area under the curve of the fuzzy set. It is widely used due to its accuracy and simplicity.  

Using the MATLAB/Simulink environment, a dynamic greenhouse microclimate model controlled by a Fuzzy 

Logic Controller (FLC) was developed, as shown in Fig. 4. 

 

 

 
Fig.  4 greenhouse model controlled by the Fuzzy Logic Controller (FLC). 

 



 

 

The Fuzzy Logic Controller (FLC) is initialized using the membership functions associated with air temperature.  

 The fuzzy rules governing the indoor temperature fuzzy controller are showing in Table 3. 

 

Table 3. The base fuzzy rules of the temperature control 

Temperature_Error  Heater rate  Ventilation rate 

NB NA LA 

NM NA SA 

Z NA NA 

PM SA NA 

PB LA NA 

The input variable of the air temperature fuzzy controller is the Temperature_Error ΔT, where: 

ΔT= Tsetpoint −Tint 

where:  

PB: Positive Big.  

PM: Positive Medium.  

Z: Zero.  

NM: Negative Medium. 

NB: Negative Big. 

The output variables are the ventilation and the heating rate, where:  

NA: No Action.  

SA: Short Action.  

LA: Long Action 

To achieve the desired indoor air temperature, a set of temperature-based fuzzy rules has been defined. When the 

indoor temperature exceeds the reference value, a ventilation system is activated to reduce it. Conversely, when 

the temperature is below the desired level, a heating system is used to increase it. Figure 5 shows the membership 

functions of the input variable, namely the temperature error. 

 

 
Input variable ‘‘Temperature_Error’’ 

Fig.  5 Membership function of the temperature error. 

The membership functions of the output variables, the heating rate and the ventilation, respectively, are plotted in 

Figure 6. 

 

 

 

 



 

 

 
Output variable ‘‘Heater_rate’’ 

 
Output variable ‘‘Ventilation_rate’’ 

Fig.  6 Membership functions of the heating rate and the ventilation. 

In order to achieve the required interior relative humidity, the same method was used. Table 4 presents the fuzzy 

rules for relative humidity control. 

Table 4. Fuzzy rules base of the relative humidity control 

ΔH                   Hext VL  L M H VH 

NB NA SA SA LA LA 

NM NA NA LA LA LA 

Z SA NA NA NA LA 

PM SA SA NA NA NA 

PB SA SA SA NA NA 

The input variables of the indoor relative humidity fuzzy controller are the Humidity_Error ΔH, and outside 

relative humidity Hext, where: 

ΔH= Hsetpoint − Hint 

VH : Very High.  

H    : High.  

M   : Medium.  

L    : Low.  

VL : Very Low.  

The membership functions of the input variables, which are the humidity error and the outside relative humidity, 

are plotted in Fig. 7. 



 

 

 
Input variable ‘‘Humidity_Error’’ 

Input variable ‘‘outside relative humidity’’ 

Fig.  7 The membership function of the humidity error and outside relative humidity. 

 

The membership functions of the output variable, the humidifying rate is shown in Fig. 8. 

 

Fig.  8 Membership functions of the humidifying rate. 

 

3. Results and discussions 

The simulation utilized two weather databases of real greenhouse. The first weather database covers four days 

during the spring season (April) with a sampling interval of 5 seconds, while the second spans one week during 

the autumn season (September). These weather databases include the recorded outdoor temperature and relative 

humidity values corresponding to each season. 

 

 

 

 



 

 

3.1. Results of PID controller  

Based on the measurements and the simulation results obtained using the equation model Eq. (4) and Eq. (5), the 

simulated air temperature without the PID controller is presented in Fig. 9. The graph on the left corresponds to 

the spring season, while the one on the right represents the autumn season. It was observed that the indoor 

temperature varies according to the outdoor meteorological conditions, indicating that the internal climate is not 

always optimal for crop growth. 

Fig.  9 The results simulation of the indoor temperature without control. 

The difference between the outdoor and indoor temperature is mainly due to the greenhouse cover; however, this 

difference alone is not sufficient to ensure optimal plant production. In addition, the need to minimize disturbances 

motivated the adoption of advanced techniques to monitor the system. For this reason, actuators for the heating 

and ventilation systems are implemented and managed by an effective controller block, such as a PID controller, 

in order to achieve the desired indoor climate.  Fig. 10 presents the simulation result.  

Fig.  10 The simulation results of the air temperature with the PID controller. 

 

A daytime setpoint of 28 °C and a nighttime setpoint of 18 °C were selected, as most plants exhibit optimal growth 

within a temperature range of 17 °C to 27 °C (Li et al. 2018). 

To further evaluate the robustness and adaptability of the controller under diverse climatic scenarios, an 

additional setpoint configuration of 32 °C during the day and 22 °C at night was used, incorporating realistic 

atmospheric variations during another season (autumn) over an extended simulation period (one week). 

The temperature error, calculated as ΔT = Tsetpoint – Tsimulated, was found to be ΔT = 1.631 °C between the setpoint 

and simulated values. The simulated temperature values effectively followed the reference setpoints, with a 

slight overshoot of approximately 3 °C, which remains within acceptable limits and does not adversely affect 

crop growth. 

The evolution of relative humidity without any control is illustrated in Fig. 11, while the simulation results with a 

PID controller are presented in Fig. 12. 



 

 

Fig.  11 The progression without control of the indoor and outdoor relative humidity. 

 

The indoor relative humidity changes in accordance with the external environment; however, the resulting internal 

climate is not always favorable. During the night, both indoor and outdoor humidity levels increase, reaching peak 

values of approximately 85%, thereafter declining during the day to a minimum value. To regulate the indoor 

relative humidity at the appropriate set point, a PID controller is employed to manage the operation of the 

humidification actuator. The results of the simulation are presented in Figure 12. 

Fig.  12 Evolution with PID controller of the indoor relative humidity. 

The relative humidity setpoint was defined as 40% during the night and 60% during the day for both seasons. The 

humidification system successfully maintained the indoor relative humidity close to the reference values, with an 

error of ΔH = Hsetpoint – Hsimulated = 0.1982% and a slight overshoot of approximately 3%, which has no significant 

impact on crop growth. 

 

 

 

 

Fig. 13 Boxplots of the simulated temperature and relative humidity distributions with PID controller. 

 

 

 

 

 



 

 

For temperature, the median values in autumn (27.97 °C) and spring (27.20 °C) are very close, indicating 

consistent central behavior across both transitional seasons. The interquartile range is slightly larger in autumn 

(7.16 °C) than in spring (6.67 °C), reflecting higher variability during autumn due to more pronounced 

fluctuations in external climatic conditions. For relative humidity the median value is 58.32 %. 

Table 5 summarizes the distributional characteristics of the simulated temperature and relative humidity using 

boxplot statistical indicators. 

 

 

Table 5. Statistical summary of the simulated temperature and relative humidity distributions  

with PID controller 

Boxplot Statistical 

Indicators  

Temperature ( °C ) 

Relative Humidity (%) Simulation results 

in autumn 

Simulation results in 

spring 

MIN 10,170 10,633 5,000 

Q1 23,425 22,915 40,000 

Q2 27,972 27,200 58,322 

Q3 30,583 29,571 59,999 

MAX 37,363 37,210 63,071 

IQR 7,1581 6,665 19,999 

Upper Limit  41,321 39,554 89,999 

Lower Limit  12,688 12,931 10,000 

The calculated upper and lower limits indicate that most simulated temperature values lie well within the non-

outlier range, with only occasional extreme values occurring during periods of rapid environmental change. For 

relative humidity, a wider interquartile range (19.99%) is observed, highlighting stronger variability compared to 

temperature. This behavior is expected due to the sensitivity of humidity to both temperature variations and 

ventilation dynamics. 

Overall, this distribution-based analysis confirms that the proposed model maintains stable median behavior while 

appropriately capturing seasonal variability and rare extreme events. Such results demonstrate the robustness of 

the simulation beyond mean error metrics and provide a more comprehensive understanding of model performance 

under real operating conditions. 

3.2. Results of Fuzzy Logic Controller (FLC) controller  

The results of simulation without FLC of the indoor air temperature are presented in Fig. 9. The indoor air 

temperature varies depending on the outdoor conditions, which makes the indoor climate unfavorable for the 

plant. For this reason, we need to install actuators for the heating and ventilation system, which are controlled by 

a smart controller such as the Fuzzy Logic Controller (FLC), in order to achieve the desired indoor climate. Fig. 

14 gives the results of the simulation. 

Fig.  14 The evolution of the indoor air temperature with Fuzzy Logic Controller (FLC). 

 

A temperature setpoint of 28 °C during the day and 18 °C at night was selected. During the spring season, the 

indoor air temperature fluctuated around 18 °C (nighttime setpoint) due to the heating system, while it reached 

approximately 28 °C during the day under the effect of the ventilation system. For the autumn season, a 

temperature setpoint of 32 °C during the day and 22 °C at night was applied, and the simulation was repeated as 



 

 

shown in the right-hand graph of Fig. 14. The calculated error between the setpoint and simulated temperature 

values was ΔT = Tsetpoint – Tsimulated = 1.051 °C, confirming the model’s accuracy. 

The simulation results of the indoor relative humidity without control are illustrated in Fig. 11, whereas the 

results with the Fuzzy Logic Controller (FLC) are presented in Fig. 15. 

 

Fig.  15 The evolution representation of the indoor relative humidity with Fuzzy Logic Controller (FLC). 

 

The simulation results indicate that, without the Fuzzy Logic Controller (FLC), both indoor and outdoor relative 

humidity reach their maximum values of approximately 85% during the night, and decrease to their minimum 

levels during the daytime. However, to maintain the indoor relative humidity at the desired setpoint, a Fuzzy Logic 

Controller (FLC) was implemented on the actuator to monitor and control the operation of the humidification 

system, as illustrated in Fig. 15. The humidity error was then calculated as ΔH = Hsetpoint – Hsimulated, yielding a 

value of ΔH = 1.005 × 10⁻¹⁵ %, confirming the high precision of the controller.  
Figure 16 and Table 6 present a statistical summary of the simulated temperature and relative humidity with FLC 

controller distributions using boxplot-based indicators. This analysis provides insight into the dispersion, central 

tendency, and extreme values of the simulated climatic variables, going beyond traditional mean-based 

performance metrics. 

Fig. 16 Boxplots of the simulated temperature and relative humidity distributions with FLC controller. 

The boxplot analysis demonstrates that both temperature and relative humidity exhibit stable median behavior with 

controlled variability, despite occasional extreme values. The limited number of outliers indicates that extreme 

climatic deviations are infrequent and mainly occur during rapid weather transitions. 

Table 6. Statistical summary of the simulated temperature and relative humidity distributions 

 with FLC controller 

Boxplot Statistical 

Indicators  
Temperature (°C)  Relative Humidity (%) 

MIN 10,555 10,947 

Q1 25,102 41,849 

Q2 33,152 41,969 

Q3 33,500 60,000 

MAX 35,427 62,306 

IQR 8,397 18,150 

Upper Limit  46,096 87,225 

Lower Limit  12,505 14,623 



 

 

 

 

For temperature, the median value (Q2 = 33.15 °C) is positioned closer to the upper quartile (Q3 = 33.50 °C), 

indicating a slightly right-skewed distribution. The interquartile range (Q3 − Q1 = 8.40 °C) reflects moderate 

variability, demonstrating that the control system maintains temperature within a relatively narrow operational 

band under most conditions. The minimum temperature (10.56 °C) and the presence of lower-end outliers indicate 

occasional cold events, associated with abrupt external temperature drops or transient control delays. Nevertheless, 

the maximum value (35.43 °C) remains within acceptable operational limits, highlighting the effectiveness of the 

control strategy in preventing overheating. 

In the case of relative humidity, the median value (Q2 = 41.97%) lies closer to the lower quartile (Q1 = 41.85%) 

than to the upper quartile (Q3 = 60.00%), suggesting a distribution with higher dispersion toward elevated humidity 

levels. The wider interquartile range (18.15%) compared to temperature confirms that relative humidity is more 

sensitive to environmental disturbances and ventilation dynamics. The observed minimum value (10.95%) 

corresponds to dry conditions that may occur during high-temperature periods or increased ventilation, while the 

maximum value (62.31%) reflects high-humidity events associated with reduced ventilation or external moisture 

influx. 

3.3. Comparison between PID controller and Fuzzy Logic Controller (FLC) 

Based on the simulation results, it was observed that the Fuzzy Logic Controller (FLC) provides an effective 

approach for achieving the desired greenhouse environment, as the simulated signal closely follows the setpoint 

with higher accuracy and a smaller overshoot. For temperature control, the error obtained with the PID controller 

(ΔT = 1.631 °C) was higher than that achieved with the FLC (ΔT = 1.051 °C). Similarly, for indoor relative 

humidity, the error obtained with the FLC (ΔH = 1.005 × 10⁻¹⁵ %) was significantly lower than that observed with 

the PID controller (ΔH = 0.1982%). Also based on the comparison of the boxplot-based results obtained using the 

FLC controller and those obtained with the PID controller, the superiority of the FLC approach is clearly 

demonstrated. The distributions associated with the FLC controller exhibit narrower interquartile ranges, more 

stable median values, and fewer outliers, indicating improved regulation performance and a stronger ability to 

cope with climatic variability and external disturbances. In contrast, the PID controller shows larger dispersion 

and increased variability, particularly during transitional seasons, reflecting its higher sensitivity to rapid changes 

in environmental conditions. 

These results clearly demonstrate the superior precision and stability of the FLC in regulating both temperature 

and humidity within the greenhouse environment. 

At the level of energy, the Humidifying rate and Ventilation rate for PID controller and Humidifying rate and 

Ventilation rate for Fuzzy Logic Controller (FLC) are represented respectively in Figure 17 and Figure 18. 

 

 

 

Fig.  17 Humidifying rate and Ventilation rate for PID controller. 



 

 

 

Fig.  18 Humidifying rate and Ventilation rate for Fuzzy Logic Controller (FLC). 

The simulation results shown in Figure 17 indicate that, with the PID controller, the ventilation rate varies between 

2 and 3.18, while the humidification rate ranges from 0 to 170, occasionally reaching a maximum of 8900. Figure 

18 shows that, when using with FLC, the ventilation rate ranges from 0 to 1.3 with a maximum of 2.5, while the 

humidification rate varies between 0 and 150, occasionally peaking at 420.To optimize energy efficiency, the 

energy consumption associated with both control strategies was calculated. The results show that the average 

humidification rate is 164.8 for PID controller, compared to 41.36 for the FLC, while the average ventilation rate 

is 2.01 for the PID and 0.595 for the FLC. These findings demonstrate that the PID controller leads to significantly 

higher energy consumption than the FLC, thereby validating the choice of the FLC due to its superior control 

performance, faster response, and improved energy efficiency. 

4. Conclusion 

Agricultural greenhouses represent complex systems due to the presence of significant external disturbances and 

the large number of input parameters that strongly influence the internal climate. Consequently, farmers and 

researchers continuously seek optimal control strategies to enhance greenhouse productivity. Despite the strong 

coupling between temperature and relative humidity, the PID controller leads to significantly higher energy 

consumption than the Fuzzy Logic Controller (FLC). Two control strategies were implemented: a conventional 

PID controller and a Fuzzy Logic Controller (FLC), with the objective of creating a favorable greenhouse 

microclimate through appropriate activation of the installed actuators. 

Weather variability represents a major external source of uncertainty, particularly due to fluctuations in solar 

radiation, ambient temperature, wind speed, and relative humidity. These factors directly affect the greenhouse 

microclimate and may lead to discrepancies between simulated and real conditions, especially during transitional 

seasons such as spring and autumn, when temperature and relative humidity are strongly coupled and highly 

variable. Despite these challenges, the proposed model demonstrates robust performance under diverse weather 

conditions, maintaining acceptable accuracy during both stable (summer and winter) and highly variable climatic 

scenarios. This confirms that the proposed control strategy is resilient to weather-induced disturbances. To evaluate 

energy optimization, the energy consumption of the PID controller was compared with that of the Fuzzy Logic 

Controller (FLC). The results reveal that: 

• The calculated temperature error between the setpoint and simulated values obtained with the Fuzzy Logic 

Controller (FLC) (ΔT = 1.051 °C) was lower than that obtained with the PID controller (ΔT = 1.631 °C). 

• Similarly, the relative humidity error achieved with the FLC (ΔH = 1.005 × 10⁻¹⁵ %) was significantly lower than 

that calculated with the PID controller (ΔH = 0.1982%). 

• The average humidification rate with the FLC is reduced by 25.1% compared to the PID controller. 

• The average ventilation rate with the FLC is 29.6% lower than that of the PID controller. 

• Actuator fluctuations are 27.35% lower with the FLC than with the PID controller. 

 



 

 

• The distributions associated with the FLC controller exhibit narrower interquartile ranges, more stable median 

values, and fewer outliers, indicating improved regulation performance and a stronger ability to cope with climatic 

variability and external disturbances. 

• In contrast, the PID controller shows larger dispersion and increased variability, particularly during transitional 

seasons, reflecting its higher sensitivity to rapid changes in environmental conditions. 

These findings demonstrate that the overall energy consumption associated with the PID controller is 

approximately 27% higher than that of the FLC. This confirms the effectiveness of the FLC in achieving more 

precise regulation, faster dynamic response, and significant energy savings. Additionally, the simulation results 

confirm the effectiveness of the proposed dynamic model in accurately predicting indoor relative humidity and 

indoor air temperature with a low margin of error. The comparison between the PID and the FLC responses further 

highlights the FLC as an efficient and robust solution for optimizing greenhouse microclimate conditions. This 

work makes several original contributions that address key limitations identified in the existing literature on 

automatic greenhouse climate management. 

First, unlike most existing studies that evaluate control strategies under limited or single-season conditions, this 

work proposes and validates a control framework using real meteorological data collected during the most 

challenging climatic periods, namely spring and autumn, where strong coupling between temperature and relative 

humidity occurs. Second, a coupled multivariable control strategy is developed to simultaneously regulate 

temperature and humidity, explicitly accounting for their dynamic interaction, whereas many existing approaches 

treat these variables independently or rely on simplified assumptions. Third, the proposed model is experimentally 

validated under real operating conditions, demonstrating its robustness and effectiveness compared to conventional 

control strategies typically reported in the literature. Finally, this work provides a comprehensive comparative 

analysis highlighting the trade-offs between control performance, energy consumption, and environmental 

stability, thereby offering practical insights for the deployment of intelligent greenhouse control systems. 

Future work will focus on extending the control strategy to cover all four seasons by investigating advanced control 

techniques such as sliding mode control and backstepping. In addition, the development of a smart greenhouse 

management system based on Internet of Things (IoT) technologies is planned. 
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