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Abstract:

Greenhouse management is a fundamental aspect of modern agriculture, asg p quality, water
efficiency, and energy consumption. This study focuses on the regulation of atic parameters,
namely indoor temperature and relative humidity. A dynamic greenhouse mo loped to implement and

controller. The main objective of this work is to design a controller caf
correlated variables by adopting variable setpoints for both temp
the proposed methodology from previous studies, which
maintaining constant humidity setpoints. In contrast, the prop

aneously managing two highly
. This approach distinguishes
on temperature control while
gs both parameters dynamically

and concurrently. Simulation results under different op, ow that the FLC outperforms the PID
controller in maintaining a favorable greenhouse mi rticular, the FLC achieved reductions of
25.1% in average humidification rate and 29.6% ate. Moreover, the total energy consumption
associated with the PID controller was approxi than that of the FLC. The error analysis between

reference setpoints and simulated
temperature and relative humidity
efficiency of the FLC in ensuring op
consumption.

at the dynamic model accurately predicts indoor

Keywords: state-space

ng the fastest-growing sectors in modern agriculture due to its ability to protect
1 conditions and to enable precise manipulation of the cultivation environment. By
icroclimate, greenhouses the production of crops that are not feasible in open-field
higher yields, extended production periods, improved crop quality, and reduced pesticide
y, greenhouse crops exhibit a significantly higher added value per unit area compared to open-
Farvardin et al. 2024; Jeevan Nagendra Kumar et al. 2024).

To fully benefit from these advantages and extend the growing season, it is essential to maintain optimal
greenhouse microclimatic conditions (Abbood et al. 2023; Wang et al. 2024). This requires accurate regulation of
key climatic parameters through actuators such as heating systems, humidifiers, and ventilation fans (Adrian et al.
2019). In this context, the availability of a dynamic greenhouse model capable of accurately describing the
temporal evolution of indoor climate variables is crucial for control design and performance evaluation (Blasco et
al. 2007; Guo et al. 2021). Dynamic modeling allows representing the temporal variations of the climatic
parameters in the greenhouse(Choab et al. 2019; Shamshiri et al. 2020).

Many agricultural greenhouses are still manually regulated, requiring the grower's assistance. But some have
implemented smart control devices. (EL AFOU et al. 2015; El AFOU et al. 2018) Among the various climatic
variables, indoor air temperature and relative humidity are considered the most influential and measurable
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parameters affecting plant growth (Korner 2015). There are also other important climatic factors such as:
evaporation, wind speed, CO2 content, lights(Franklin 2009)(Chand Singh et al. 2018). Temperature plays a
fundamental role in plant physiological processes, while relative humidity directly influences transpiration, disease
development, and overall plant health (Wahid et al. 2007;(Penfield 2008) ;Lipiec et al. 2013). These two variables
are strongly coupled, meaning that variations in one significantly affect the other, which makes their simultaneous
regulation challenging(Chen et al. 2023). As a result, the greenhouse climate system is typically modeled as a
Multi-Input Multi-Output (MIMO) system (Tao 2014).

Despite the widespread use of conventional control strategies such as Proportional-Integral-Derivative (PID)
controllers, their performance is often limited by the nonlinear and coupled nature of greenhouse climate
dynamics. Furthermore, PID-based approaches may lead to increased energy consumption, particularly during
heating and ventilation processes. To overcome these limitations, advanced control techniques have been
proposed, including Fuzzy Logic Controllers (FLCs), which are well suited to handling nonli@ear systems and
uncertain dynamics while improving energy efficiency (El Ghoumari et al. 2005; Bennis et al. Q@l8; Marquez-
Vera et al. 2016;Yang and Zhang 2024).

proposes a control strategy that simultaneously regulates indoor temperature and rel i ng variable
setpoints for both parameters within a dynamic greenhouse model. The pro ated under

different operating scenarios, including seasonal variations and external clim.
robustness and energy efficiency.

The main contribution of this study lies in the development and compag@ tion of a Fuzzy Logic Controller
and a PID controller for greenhouse climate control. By adopti ints for both temperature and
relative humidity, the proposed strategy provides a more #etptive approach to greenhouse
microclimate management while aiming to reduce energy con mpiave overall control performance.

The present study introduces variable setpoints for bot ivehumidity under diverse climatic
scenarios, including:

— Different setpoint values;

— Distinct seasonal conditions that ge | disturbances in temperature and humidity;

— Simulations conducted over four d i ason (April) with a sampling time of 5 seconds, and a
second simulation extending over ong i utumn season (September). The key innovation of this
work lies in the ability to simultaneotk a@emperature and relative humidity using variable setpoints,

#ble control approach for greenhouse climate management.

The proposed model was pted using real meteorological data collected during two key periods:
one corresponding to the eason and another to the autumn season. The selection of these two seasons is
motivated by the stro ween temperature and relative humidity, which makes the simultaneous
control of these parangi@ier ex and therefore represents a significant challenge.

In contrast, duri ason, which is characterized by a sustained increase in temperature, the control
strategy mainly fo rature regulation. Similarly, the winter season is marked by high relative humidity
| process to primarily target humidity regulation. Consequently, spring and autumn
ost demanding scenarios for evaluating the performance and robustness of the proposed

This article 1 ctured as follows: Section 1 is dedicated to the presentation of the greenhouse model system and
ers. Section presents the controls used, which are the dynamic PID controller and the fuzzy logic
controllers (FLC): we used 2 blocks of the controllers, one for temperature and the other for humidity. A discussion
on the measurement and simulation results as well as the comparison between the two controllers are presented in
Section 4. Then, the internal temperature and humidity is simulated using MATLAB software. The perspectives
and conclusion are discussed in the last part.

2. Materials and Methods

In this study, a physical model of temperature and relative humidity is employed, as it adequately describes the
behavior of these variables in a real greenhouse. It is assumed that the air inside the greenhouse is uniformly
distributed. Heating, ventilation systems and humidifiers, and other switching devices provide the control inputs.
External environmental factors, including sun radiation, relative humidity, and air temperature, are considered as
disturbance inputs. The feedback effects of crop growth on temperature are neglected.
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Fig. 1The interaction between greenhouse components and heat transmission

2.1. Greenhouse model

Maintaining the greenhouse under optimal operating conditions throughout the diff p growth
requires an understanding of the greenhouse microclimate and its characteristics(B . 2020). Since these
factors have a major impact on the greenhouse energy and mass balances,
mass transfer coefficients, and heat transfer coefficients is essential for develo i ical model(Choab
et al. 2019; Kadirov et al. 2023).

In this work, we adopt a dynamic greenhouse model proposed by (I& B24),which considers two kinds

of input data:
- The disturbances (external climate variables): external relati [€ihal temperature, solar radiation.
- Actuators (controls): humidification system, ventilati em.

r‘ / mult

The expressions of the internal heat balance an
respectively. The resulting model is a multi-i
follows:

nce equations are given in Eq. (1) and Eq. (2),
t (MIMO) system, which can be described as

dT, 1 /A
— = Heﬂ " ) + V - mt t U (Ti'nt - Text )
dt pazr Cazr Vgr pa” Catr Vgr (1)
V = ext mt ) ﬂ T H int
atr gr p air *" gr (2)

Cair: Sp ty of air [J.kg!. K.
Vgr: Greenh volume (m?)
Vym: Ventilati®n airflow rate (m?/s).

The variables Tex, Hext and R represent disturbances outside the greenhouse which determine the atmospheric
influence on Tin and Hiy.

QHeater v, 1 and H™™: are commands for the heater, ventilation, and humidifying system respectively.
Tine: The output of indoor temperature
Hin:: The output of indoor relative humidity.

Modern control theory of dynamical systems relies heavily on the concept of state and its associated state-space
representation. For nonlinear systems, this representation is commonly expressed in the form of Eq. (3) (Fliess et
al. 2004).



Accordingly, the proposed greenhouse model can be described by the following system of equations :

X=f(X)+ ZE g XU,

y=hX) o)
With:
X €R" :state vector, U € R™ :controls inputs, y € RP : outputs

After identifying the state, input, disturbance, and output variables, the greenhouse climate can be described by a
nonlinear, strongly coupled state-space model. The indoor air temperature and relative humidity are selected as the
state variables and are denoted by the dynamic states X;(t) and Xs(t), respectively. Foggummer operating
conditions, the heating power is set to zero ( Q" = (). Consequently , the control inpu the system are
defined as the ventilation rate and the humidity generation rate provided by the fogging systei pted by Ui (t)
and Ux(t), respectively. The external disturbances acting on the greenhouse are the solar radia nsfer rate
Vi(t), the outside air temperature V»(t), and the outside relative humidity V3 (t). All state varia inputs
and disturbances are summarized as follows:

X 1 Ti'nt Ul Vv m
X= = U= =" \Y
X 2 H int U2 H fam

So, we can express Eq. (1) and Eq. (2) in the following form:

X
T w)+_ 4)
dt paeraergr
dX
: 0 X,)- b x,
atrVg)

we based on these two Eq. (4) and Eq.
and we obtained the follo

104
v Xi=V)p., - U
):| + 1 ( 1 Z)pa:r 36Cal-,, |: 1 :| (6)
4 V) puir gr 2
V,-X,) 1
-+ vA v, and  f,(X,V)=- Pr X, +—2 f
'Cair °ogr pair 'Cair 'I/gr pmr Cauf Vgr pair 'Vgr pa[r 'Vgr A‘

as a volume of Vg = 4000 m® (20 x 20 x10) and the cover reduces the sunshine by 60%, the heat
transfer coefficient UA = 25 kW.K"!, and the air density p.i =1.2 Kg.m"3 with specific heat C,; = 1006 j Kg'.K'!.
These inputs parameters are summarized in the following Table 1. (Kaida et al. 2024).



Table 1. The values of the inputs that were employed in the simulation

Symbol Nu‘rllgflll';cal Units Description
UA 25000 WK The coefficient of heat transfer of the cover
Ve 4000 m Volume of the greenhouse
p 1.2 Kgm? Density of internal air
Cair 1006 J.Kg L. K! Specific heat of air
R 700 W The heat produced by the Solar radiation

A number of plants generate heat; their temperature can exceed 40°C above that of the surrounding air.
Consequently, at thermal equilibrium, the heat generated by plants is often ignored in relation heating system
generator and within a large greenhouse. (Lamprecht et al.).

2.2. The Proportional Integral Derivative (PID)

The Proportional Integral Derivative (PID) is a control mechanism used to perform ion of an
industrial system. It is the most widely used regulator in the industry and allows for 1 of a large number
of processes. The observed error is the difference between the setpoint and PID controller
allows for three actions based on this error:

1.Proportional: the error is multiplied by a gain G.

2.Integral: the error is integrated over a time interval ss and then dividgg
3.Derivative: the error is differentiated with respect to time ss and the
There are several possible architectures to combine these three g lel, or mixed).

gr to achieve a satisfactory control
ess, fast dynamic response,and
high accuracy. To meet these requirements, overshoot( ii7cd (Schiavo et al. 2021).
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solar Tin

Tsetpoint )4—‘ { N
External air || .
e
> ) . s [

'\ij > PID(s) P{Text, Hext) || H - i
- ] eating
PID confroler of Tint / uG"”’ System \ indoor temerature

Tsetpoint 4 .

Temperature result

indoor air —
—\ (Tin,Hin) (i

Cooling
(ine Systeme @_'
» PID(s) [—o—» n
, pe
PID controller of Hint (P /A " indoor humidity @—>

{} Humidity result
Q system |
\ ) humidifying

Greenhouse

»{ Hin

F)

Hsetpoint

It

Hsetpoint

Fig. 2 Greenhouse model controlled by a Proportional Integral Derivative (PID) controller.

The coefficients G, Td et Ti of the PID controller of the indoor relative humidity and indoor temperature are given
in Table 2.



Table 2. Coefficients of Proportional Integral Derivative (PID) controllers used in the two blocks

Coefficients of PID Indoor temperature Indoor relative
controllers P humidity
Proportional (G) 0.0567 338.775
Integral (T1) 0.0002 9.435
Derivative (Td) 1.6660 1163.453

2.3. Fuzzy Logic Controller

A Fuzzy Logic Controller (FLC) is a control system that mimics human reasoning by using rules instead of
precise mathematical formulas. It is particularly useful for managing complex systems whe
establish precise equations. A fuzzy controller is composed of three blocks: fuzzificat ence, and

defuzzification as shown in Fig. 3.
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method, we used the iy (CoQG), also known as the centroid method. This method calculates the

center of the area un he fuzzy set. It is widely used due to its accuracy and simplicity.
Using the MAT / vironment, a dynamic greenhouse microclimate model controlled by a Fuzzy
Logic Controller wa loped, as shown in Fig. 4.
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Fig. 4 greenhouse model controlled by the Fuzzy Logic Controller (FLC).



The Fuzzy Logic Controller (FLC) is initialized using the membership functions associated with air temperature.
The fuzzy rules governing the indoor temperature fuzzy controller are showing in Table 3.

Table 3. The base fuzzy rules of the temperature control

Temperature Error Heater rate Ventilation rate
NB NA LA
NM NA SA
Z NA NA
PM SA NA
PB LA NA

The input variable of the air temperature fuzzy controller is the Temperature_Error AT, where:

AT= Tsetpoint —Tine

where:

PB: Positive Big.

PM: Positive Medium.
Z: Zero.

NM: Negative Medium.
NB: Negative Big.

The output variables are the ventilation and the heating rate, where:

NA: No Action.

SA: Short Action.
LA: Long Action
To achieve the desired indoor air temperature, a set of temager: ascgdifuzz es has been defined. When the
indoor temperature exceeds the reference value, a ven on s ctivated to reduce it. Conversely, when
the temperature is below the desired level, a heating sy: is usgd to increase it. Figure 5 shows the membership
functions of the input variable, namely the temp e
A

-
>

HaT

Input variable “Temperature_Error”

Fig. 5 Membership function of the temperature error.

The memb
Figure 6.

funCtions of the output variables, the heating rate and the ventilation, respectively, are plotted in
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In order to achieve the required interior relative humidity, the is used. Table 4 presents the fuzzy

rules for relative humidity control.

Table 4. Fuzzy rules base e relagivetumidity control
N VL M H VH
NB NA SA LA LA
NM LA LA LA
Z NA NA NA LA
PM SA NA NA NA
SA SA SA NA NA

oor relative humidity fuzzy controller are the Humidity Error AH, and outside

H :High.

M : Medium.
L :Low.

VL : Very Low.

The membership functions of the input variables, which are the humidity error and the outside relative humidity,
are plotted in Fig. 7.
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Fig. 7 The membership function of the humidi elative humidity.

The membership functions of the output variable, iﬁ ate is shown in Fig. 8.
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1. 8 Membership functions of the humidifying rate.

3. Res ssions

humidifying rate

The simulati tilized two weather databases of real greenhouse. The first weather database covers four days
during the spring season (April) with a sampling interval of 5 seconds, while the second spans one week during
the autumn season (September). These weather databases include the recorded outdoor temperature and relative
humidity values corresponding to each season.



3.1. Results of PID controller

Based on the measurements and the simulation results obtained using the equation model Eq. (4) and Eq. (5), the
simulated air temperature without the PID controller is presented in Fig. 9. The graph on the left corresponds to
the spring season, while the one on the right represents the autumn season. It was observed that the indoor

temperature varies according to the outdoor meteorological conditions, indicating that the internal climate is not
always optimal for crop growth.
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Fig. 9 The results simulation of the indoor temperature

se cover; however, this

difference alone is not sufficient to ensure optimal plant production. If§ need to minimize disturbances

motivated the adoption of advanced techniques to monitor the
and ventilation systems are implemented and managed by an
in order to achieve the desired indoor climate. Fig. 10 pregent
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Fig. 10 The gimul mthe air temperature with the PID controller.

A daytime se

t of 28 °C and a nighttime setpoint of 18 °C were selected, as most plants exhibit optimal growth
within a te

ture range of 17 °C to 27 °C (Li et al. 2018).

To further evaluate the robustness and adaptability of the controller under diverse climatic scenarios, an
additional setpoint configuration of 32 °C during the day and 22 °C at night was used, incorporating realistic
atmospheric variations during another season (autumn) over an extended simulation period (one week).

The temperature error, calculated as AT = Tsetpoint — Tsimutated, Was found to be AT = 1.631 °C between the setpoint
and simulated values. The simulated temperature values effectively followed the reference setpoints, with a
slight overshoot of approximately 3 °C, which remains within acceptable limits and does not adversely affect
crop growth.

The evolution of relative humidity without any control is illustrated in Fig. 11, while the simulation results with a
PID controller are presented in Fig. 12.



Relative Humidity (%)

The indoor relative humidity changes in accordance with the external environment; however,
climate is not always favorable. During the night, both indoor and outdoor humidity levels in

relative humidity at the appropriate set point, a PID controller is employed to
humidification actuator. The results of the simulation are presented in Figur”
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For temperature, the median values in autumn (27.97 °C) and spring (27.20 °C) are very close, indicating
consistent central behavior across both transitional seasons. The interquartile range is slightly larger in autumn
(7.16 °C) than in spring (6.67 °C), reflecting higher variability during autumn due to more pronounced
fluctuations in external climatic conditions. For relative humidity the median value is 58.32 %.

Table 5 summarizes the distributional characteristics of the simulated temperature and relative humidity using
boxplot statistical indicators.

Table 5. Statistical summary of the simulated temperature and relative humidity distributions
with PID controller

. Temperature (°C)
Boxi)lot. Statistical Simulation results Simulation results in Relative Humidity (%)
ndicators . .

in autumn spring

MIN 10,170 10,633 5,0

Ql 23,425 22,915 40

Q2 27,972 27,200
Q3 30,583 29,571
MAX 37,363 37,210
IQR 7,1581 6,665
Upper Limit 41,321 39,554
Lower Limit 12,688 12,931

The calculated upper and lower limits indicate that most simulated tgi
outlier range, with only occasional extreme values occurring during 1
relative humidity, a wider interquartile range (19.99%) is obse
temperature. This behavior is expected due to the sensitivi
ventilation dynamics.

Overall, this distribution-based analysis confirms that tR@propos el maintains stable median behavior while
appropriately capturing seasonal variability and X ey@its. Such results demonstrate the robustness of
the simulation beyond mean error metrics and pr@fide a mo rehensive understanding of model performance
under real operating conditions.

3.2. Results of Fuzzy Logic Contro

The results of simulation without FLC o indoor air temperature are presented in Fig. 9. The indoor air
temperature varies depen onditions, which makes the indoor climate unfavorable for the
plant. For this reason, we install actuators for the heating and ventilation system, which are controlled by
a smart controller suc
14 gives the results o
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Fig. 14 The evolution of the indoor air temperature with Fuzzy Logic Controller (FLC).

A temperature setpoint of 28 °C during the day and 18 °C at night was selected. During the spring season, the
indoor air temperature fluctuated around 18 °C (nighttime setpoint) due to the heating system, while it reached
approximately 28 °C during the day under the effect of the ventilation system. For the autumn season, a
temperature setpoint of 32 °C during the day and 22 °C at night was applied, and the simulation was repeated as



shown in the right-hand graph of Fig. 14. The calculated error between the setpoint and simulated temperature
values was AT = Tsetpoint — Tsimulated = 1.051 °C, confirming the model’s accuracy.

The simulation results of the indoor relative humidity without control are illustrated in Fig. 11, whereas the
results with the Fuzzy Logic Controller (FLC) are presented in Fig. 15.
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Fig. 15 The evolution representation of the indoor relative humidity with Fuzzy

The simulation results indicate that, without the Fuzzy Logic Controller (F r an@outdoor relative
0 their minimum
levels during the daytime. However, to maintain the indoor relative humidity at't ired setpoint, a Fuzzy Logic
g of the humidification
system, as illustrated in Fig. 15. The humidity error was then calcu Haetpoint — Hsimutated, yielding a
value of AH = 1.005 % 107'* %, confirming the high precision of, ]
Figure 16 and Table 6 present a statistical summary of the si
controller distributions using boxplot-based indicators. This a ideS\@ ght into the dispersion, central
tendency, and extreme values of the simulated clj ing beyond traditional mean-based
performance metrics.
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Table 6. Statistical summary of the simulated temperature and relative humidity distributions
with FLC controller

B"Xi’lll‘;tics;:‘;;sst‘cal Temperature °C)  Relative Humidity (%)

MIN 10,555 10,047

Q1 25.102 41,849

Q2 33152 41,969

Q3 33,500 60,000

MAX 35.427 62.306

IQR 8,397 18,150

Upper Limit 46,096 87,225

Lower Limit 12,505 14,623




For temperature, the median value (Q2 = 33.15 °C) is positioned closer to the upper quartile (Q3 = 33.50 °C),
indicating a slightly right-skewed distribution. The interquartile range (Q3 — Q1 = 8.40 °C) reflects moderate
variability, demonstrating that the control system maintains temperature within a relatively narrow operational
band under most conditions. The minimum temperature (10.56 °C) and the presence of lower-end outliers indicate
occasional cold events, associated with abrupt external temperature drops or transient control delays. Nevertheless,
the maximum value (35.43 °C) remains within acceptable operational limits, highlighting the effectiveness of the
control strategy in preventing overheating.

In the case of relative humidity, the median value (Q2 = 41.97%) lies closer to the lower quartile (Q1 = 41.85%)
than to the upper quartile (Q3 = 60.00%), suggesting a distribution with higher dispersion toward elevated humidity
levels. The wider interquartile range (18.15%) compared to temperature confirms that relative humidity is more
sensitive to environmental disturbances and ventilation dynamics. The observed mini value (10.95%)
corresponds to dry conditions that may occur during high-temperature periods or increased ve ion, while the
maximum value (62.31%) reflects high-humidity events associated with reduced ventilation moisture
influx.

3.3. Comparison between PID controller and Fuzzy Logic Controller (FLC)

es an effective
llows the setpoint
with the PID controller
arly, for indoor relative
lower than that observed with
the PID controller (AH = 0.1982%). Also based on the comparig § Dased results obtained using the
FLC controller and those obtained with the PID controlle iofigyef the FLC approach is clearly
demonstrated. The distributions associated with the FL @Bwer interquartile ranges, more
stable median values, and fewer outliers, indicating ififoved rog performance and a stronger ability to
cope with climatic variability and external disturbanc confiiast, the PID controller shows larger dispersion
and increased variability, particularly during tra nal eflecting its higher sensitivity to rapid changes
in environmental conditions.

These results clearly demonstrate t
and humidity within the greenhouse €
At the level of energy, the Humidifyi
Ventilation rate for Fuzzy Logic Control
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Based on the simulation results, it was observed that the Fuzzy Logic C
approach for achieving the desired greenhouse environment, as the simulat
with higher accuracy and a smaller overshoot. For temperature control,
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Fig. 17 Humidifying rate and Ventilation rate for PID controller.
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Fig. 18 Humidifying rate and Ventilation rate for Fuzzy Logic Controller (
The simulation results shown in Figure 17 indicate that, with the PID controller, the ventilatiog ics between
2 and 3.18, while the humidification rate ranges from 0 to 170, occasionally reaching a maxi S900. Figure
18 shows that, when using with FLC, the ventilation rate ranges from 0 to 1.3 with a s while the
humidification rate varies between 0 and 150, occasionally peaking at 420.To op SEfiCicncy, the
energy consumption associated with both control strategies was calculate csults s hat the average

humidification rate is 164.8 for PID controller, compared to 41.36 for the FL
is 2.01 for the PID and 0.595 for the FLC. These findings demonstrate that the
higher energy consumption than the FLC, thereby validating the choi
performance, faster response, and improved energy efficiency.

troller leads to significantly
to its superior control

4. Conclusion

Agricultural greenhouses represent complex systems d f sigiitticant external disturbances and
the large number of input parameters that strongly i al climate. Consequently, farmers and
researchers continuously seek optimal control st e greenhouse productivity. Despite the strong
coupling between temperature and relative h i ontroller leads to significantly higher energy
consumption than the Fuzzy Logic . control strategies were implemented: a conventional
PID controller and a Fuzzy Logic
microclimate through appropriate acti pstalled actuators.

Weather variability repres al source of uncertainty, particularly due to fluctuations in solar
radiation, ambient tempe nd relative humidity. These factors directly affect the greenhouse
microclimate and may lea repancies between simulated and real conditions, especially during transitional
seasons such as spri hen temperature and relative humidity are strongly coupled and highly
variable. Despite the ¢ proposed model demonstrates robust performance under diverse weather
conditions, main cepf@le accuracy during both stable (summer and winter) and highly variable climatic
i proposed control strategy is resilient to weather-induced disturbances. To evaluate
ergy consumption of the PID controller was compared with that of the Fuzzy Logic

temperature error between the setpoint and simulated values obtained with the Fuzzy Logic
Controller ( (AT =1.051 °C) was lower than that obtained with the PID controller (AT = 1.631 °C).

* Similarly, the relative humidity error achieved with the FLC (AH = 1.005 x 107'* %) was significantly lower than
that calculated with the PID controller (AH = 0.1982%).

* The average humidification rate with the FLC is reduced by 25.1% compared to the PID controller.
* The average ventilation rate with the FLC is 29.6% lower than that of the PID controller.

 Actuator fluctuations are 27.35% lower with the FLC than with the PID controller.



* The distributions associated with the FLC controller exhibit narrower interquartile ranges, more stable median
values, and fewer outliers, indicating improved regulation performance and a stronger ability to cope with climatic
variability and external disturbances.

* In contrast, the PID controller shows larger dispersion and increased variability, particularly during transitional
seasons, reflecting its higher sensitivity to rapid changes in environmental conditions.

These findings demonstrate that the overall energy consumption associated with the PID controller is
approximately 27% higher than that of the FLC. This confirms the effectiveness of the FLC in achieving more
precise regulation, faster dynamic response, and significant energy savings. Additionally, the simulation results
confirm the effectiveness of the proposed dynamic model in accurately predicting indoor relative humidity and
indoor air temperature with a low margin of error. The comparison between the PID and the FLC responses further

automatic greenhouse climate management.

First, unlike most existing studies that evaluate control strategies under limited or si ns, this
work proposes and validates a control framework using real meteorological dat: the most
challenging climatic periods, namely spring and autumn, where strong coupli re and relative
humidity occurs. Second, a coupled multivariable control strategy is de eously regulate
temperature and humidity, explicitly accounting for their dynamic interaction existing approaches

treat these variables independently or rely on simplified assumptions. T odel is experimentally
validated under real operating conditions, demonstrating its robustnesg c&ilicness compared to conventional

analysis highlighting the trade-offs between control perfo
stability, thereby offering practical insights for the deploymenl

onsumption, and environmental
ghouse control systems.

Future work will focus on extending the control strategy#@ cover a easons by investigating advanced control
techniques such as sliding mode control and bac In g@llition, the development of a smart greenhouse
management system based on Internet of Thing T) tec s is planned.
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