1 DOI: https://doi.org/10.36253/ijam-3656

2

3 Nocturnal Transpiration of Tomato under Deficit Irrigation in

4 Greenhouse Conditions

- 5 Francesco Morbidini¹, Silvia Locatelli¹, Giorgia Raimondi¹*, Antonio C. Barbera², Antonella Iurato²,
- 6 Carlo Nicoletto¹, Carmelo Maucieri¹
- 7 Department of Agronomy, Food, Natural Resources, Animals and Environment DAFNAE, University of
- 8 Padua, Agripolis Campus, Viale dell'Università 16, Legnaro, PD, Italy. *Corresponding author:
- 9 giorgia.raimondi@unipd.it
- 2 Department of Agriculture, Food and Environment (Di3A) University of Catania, Via S. Sofia 100, 95123,
- 11 Catania Italy

12

13

Abstract

- 14 Nocturnal transpiration (E) can reduce water productivity by causing water loss during a period
- 15 without photosynthetic activity. This study quantifies tomato nocturnal E under greenhouse
- 16 conditions, comparing two irrigation managements (full irrigation FI vs. Deficit irrigation –
- DI) and four fertilization treatments (raw compost vs. sieved compost vs. mineral vs. no
- 18 fertilization) under greenhouse conditions, addressing a key gap in understanding potential
- 19 inefficiencies in crop water use. Physiological and environmental parameters were monitored
- weekly from transplanting to harvesting at four different hours each day (06:00, 12:00, 18:00,
- and 24:00). Fruit yield and quality were assessed at harvest to evaluate water productivity. Only
- 22 irrigation significantly affected E, with FI plants exhibiting higher daytime E rates (+11-16%)
- than DI. Stomatal conductance varied by time but was not influenced by irrigation. Nocturnal
- 24 E persisted at ~12–13% of daytime rates, indicating residual stomatal opening. Under FI, E
- 25 positively correlated with leaf temperature and vapor pressure deficit, while under DI, E was
- 26 more influenced by environmental temperature, reflecting tighter environmental control under
- water stress. Neither irrigation nor fertilization significantly affected total (on average 64.1 Mg
- 28 ha⁻¹) or marketable fruit yield (about 77.5% of total yield). Water productivity was significantly

- 29 higher under DI (+14.7%) than FI (21.5 kg m⁻³). DI also increased fruit dry matter content
- 30 (+6.5%) and slightly lowered fruit pH without affecting total soluble solids, titratable acidity,
- 31 or electrical conductivity.
- 32 **Keywords:** Transpiration; Stomatal conductance; Water productivity; Fruits' quality; Fruits'
- 33 yield

35

1. Introduction

Water is a critical and increasingly limited resource for agricultural production, directly 36 37 affecting both crop growth and yield. However, the increase of water productivity (WP) remains a major challenge, particularly in the face of climate change, growing food demand, and the 38 39 increasing frequency of drought events (FAO, 2021; IPCC, 2022; Borin, 2023). Among the physiological processes involved in plant water use, transpiration (E) plays a fundamental role 40 41 in leaf temperature (T_{leaf}) regulation and gas exchange, ensuring the uptake of CO₂ necessary for photosynthesis (Taiz and Zeiger, 2015). Stomata regulate the exchange of gases between the 42 leaf's internal air spaces and the atmosphere, playing a crucial role in balancing CO2 uptake for 43 photosynthesis with the prevention of excessive water loss. Due to this dual function, they have 44 become a key target in strategies aiming to enhance WP in crops (Nguyen et al., 2023). 45 However, under suboptimal environmental conditions, stomatal behavior can result in 46 unproductive water loss. For instance, stomata may remain partially open during periods of 47 water stress to support photosynthesis, leading to a significant reduction in WP (Flexas et al., 48 49 2013). While traditional strategies have focused on steady-state stomatal conductance (gsw), 50 recent attention to stomatal kinetics and responsiveness offers promising alternatives to enhance 51 WP without compromising carbon assimilation (Nguyen et al., 2023). 52 Efficient irrigation systems aim to align water supply with plant water demand to maximize 53 productivity. Irrigation is commonly based on reference evapotranspiration (ET₀) – which 54 depends on environmental variables such as solar radiation, air temperature, vapor pressure deficit (VPD), and crop coefficient (Kc) (Pereira et al., 2025). However, this simple approach 55 56 can fall short of capturing crop-specific physiological responses and developmental stages, needing adjustment, for example, considering the deficit irrigation management (Gong et al., 57 58 2020). To overcome this limitation, crop E models that incorporate factors such as leaf area index (LAI), stomatal resistance, and crop development stage have been proposed (Choi and 59 60 Shin, 2020). Quantifying crop evapotranspiration (ETc) has thus become essential for

- 61 implementing more targeted and water-efficient irrigation strategies (Sharma and Bhambota,
- 62 2022).
- 63 Since E is closely linked to plant physiology, it can serve as a reliable indicator of crop growth
- and development. For this reason, designing irrigation strategies based on E models has become
- an increasingly important approach to improve irrigation efficiency (Jo et al., 2021). Various
- 66 methodologies have been developed to estimate E, including the Penman-Monteith,
- 67 Stanghellini, and Priestley–Taylor models, or to measure E through experimental approaches
- using soil water balance (Strati et al., 2018), gsw via porometers (Toro et al., 2019), sap flow
- 69 (Lascano et al., 2016), and weighing lysimeters (Choi and Shin, 2020).
- 70 Despite these advances, comparatively little attention has been given to the substantial water
- 71 losses that occur during the night. Recent evidence suggests that nocturnal E, though not
- associated with carbon assimilation, may account for a considerable fraction of daily water loss.
- Across a wide range of C₃ and C₄ plant species, nighttime E has been reported to range from
- 74 5% to 15% of daytime E rates, with values reaching as high as 30% under specific
- 75 environmental conditions (Caird et al., 2007a; Fricke, 2019).
- Carbon exchange and water vapor loss through E represent the two major mass flow processes
- in plants during the day. Interestingly, both continue at night to some extent, while E may persist
- through partially open stomata (Fricke, 2019). This phenomenon has also been observed in
- 79 crops grown under artificial lighting and in arid field conditions, suggesting that nighttime E is
- both widespread and environmentally persistent (Resco de Dios et al., 2016; Fricke, 2019).
- The physiological role of nocturnal E remains debated. However, Fricke (2019) suggests that it
- may offer several benefits, including the maintenance of hydraulic conductivity, facilitation of
- 83 nutrients transport, and preservation of leaf water potential. Nighttime water loss may also
- 84 facilitate respiratory CO₂ release through open stomata, a process essential for leaf expansion,
- particularly under stress conditions such as drought and salinity (Fricke, 2019). Under these
- 86 circumstances, leaf expansion at night may represent a more efficient use of absorbed water
- 87 compared to daytime, contributing to stress acclimation mechanisms. In *Solanum lycopersicum*
- 88 (tomato), for instance, Lanoue et al. (2017) observed a modest but measurable increase in
- 89 nighttime E (from 22:00 to 06:00), despite the absence of nocturnal lighting. Although this
- 90 effect was less pronounced than in *Eustoma grandiflorum* (lisianthus), the results suggest that
- 91 tomato exhibits circadian regulation of gsw. Notably, despite similar photosynthetic rates,
- 92 tomato plants acclimated to red-white and red-blue LED lighting showed a reduction in overall
- water use efficiency by 25% and 31%, respectively, compared to those grown under high-
- 94 pressure sodium (HPS) lamps. These findings imply that nocturnal E can substantially impact

- WP, especially under artificial lighting conditions. From an agronomic perspective, nocturnal water loss can lower WP by consuming irrigation resources without contributing to biomass accumulation and carbon assimilation. Nevertheless, variation in nighttime E among species and genotypes suggests opportunities for genetic selection. A survey of wild and cultivated tomato species showed a range of nighttime E from 8% to 33% of daytime values, highlighting substantial intra- and interspecific variability and breeding potential (Caird et al., 2007b).
- Despite the economic importance of tomato, quantitative assessments of nocturnal E in this species remain limited, and no threshold values have been proposed for breeding purposes. In particular, the occurrence of nocturnal E that do not contribute to biomass formation may
- represent a hidden inefficiency in the plant's water balance.
- This study addresses this gap by quantifying nighttime water loss in greenhouse-grown tomato under different fertilization and irrigation management, also assessing the quanti-qualitative tomato response.

110

2. Materials and methods

2.1 Experimental site and materials

- 111 The study was conducted in a tunnel greenhouse at the "L. Toniolo" experimental farm of the
- University of Padova (45°21'00" N, 11°57'02" E; 7 m a.s.l.) from June to September 2022. The
- climate of the area is classified as sub-humid, with an average annual temperature of 13.5 °C.
- The average annual precipitation (1994–2021) is 830 mm, but evapotranspiration typically
- exceeds precipitation from April to September by approximately 260 mm (Berti et al., 2014).
- The soil is classified as Fluvi-Calcaric Cambisol (CMcf) with a silty loam texture (IUSS
- Working Group WRB, 2014). It has a field capacity and wilting point of 34% (v/v) and 13.5%
- (v/v), respectively, a bulk density of 1.45 Mg m⁻³, and a slightly alkaline pH (approximately 8).

119 **2.2 Experimental layout**

- 120 Before transplanting, two soil tillage operations were performed using a rotary tiller.
- Fertilization was applied between the two tillage operations, followed by the installation of a
- drip irrigation system and the transplanting of seedlings. One polyethylene drip line was
- installed for each tomato row. The drip lines (16 mm diameter) had in-line drippers inserted
- along the pipe at 0.5 m spacing, with a discharge of 1.1 L h⁻¹. Tomato (HEINZ 1281 F1 Furia
- Seed) transplanting took place on June 14, 2022, with a planting density of 2.5 plants
- 126 m⁻², whereas harvesting on September 27, 2022.
- 127 The irrigation volume was determined using soil moisture sensors (Teros 10 METER Group,
- Inc., Pullman, WA, USA) placed at three different depths (20 cm, 40 cm, and 60 cm). Irrigation

was applied when in the soil layer explored by the plants' roots, remained the 60% of the available water, restoring soil moisture to field capacity. The seasonal irrigation volume was measured using a water meter.

The experiment followed a split-plot design, with two irrigation management as the main factor (plots of 45 m × 4 m each) and five levels of fertilization as the second factor (subplots of 7.5 m × 4 m each), for a total of 10 plots. The main factor included irrigation at 100% ETc (FI) (for a total irrigation volume of 320 mm) and at 75% ETc (DI) (for a total irrigation volume of 240 mm). The fertilization factor included mineral fertilization, raw compost, fractionated compost (<2 mm), and a control without fertilization. The amount of fertilizers applied provided 150 kg N ha⁻¹, 100 kg P₂O₅ ha⁻¹, and 200 kg K₂O ha⁻¹ to the crop. The characteristics of the compost used in the experiment are reported in Table 1.

2.3 Tomato monitoring

From June 28 to September 6, 2022, physiological (E, gsw, quantum yield of photosystem II-PhiPS2, VPD_{leaf}, T_{leaf}) and environmental (T_{ref}) parameters were manually measured weekly in six plants per plot using a porometer-fluorometer (LI-600, LI-COR Biosciences, Lincoln, NE, USA). Measurements were taken at four different hours of the day (06:00, 12:00, 18:00, and 00:00). The choice to measure six plants per plot was made to allow the assessment of 60 plants (six plants across ten plots) within approximately one hour, thereby minimizing the potential influence of time on the measured parameters. Additionally, leaves' chlorophyll content (SPAD index) was measured at 12:00 using a portable chlorophyll-meter (SPAD-502, Minolta, Japan). On September 13, 2022, three plants per plot were sampled to determine the fruit quality by measuring dry matter content after oven drying at 65 °C, total soluble solids (TSS) content (°Brix), electrical conductivity, and pH. Yield was quantitatively assessed two weeks later, on September 27, 2022, by harvesting five plants per plot. At the end of the growing season the WP was calculated using the following equation:

$$WP = \frac{Cumulative\ fruits\ production\ (kgha^{-1})}{Irrigation\ volume\ (m^3ha^{-1})}$$

2.4 Statistical analyses

Descriptive statistics were calculated for all datasets to assess the main characteristics of the data distribution. The normality and homoscedasticity of residuals were evaluated using the Shapiro-Wilk test (Shapiro & Wilk, 1965) and the Bartlett test (Snedecor & Cochran, 1989). When these assumptions were not satisfied, Z-score normalization was applied (Cheadle et al., 2003).

- A linear model was fitted using the 'lm()' function in R software (Bates et al., 2015) to evaluate
- 162 E as a function of irrigation regime and sampling hour, including their interaction, across the
- full dataset. The same approach was used to assess crop yield, WP, and fruits' quality-related
- parameters—dry matter content, TSS content, electrical conductivity, and pH—as functions of
- irrigation and sampling hour, including their interaction, using the complete dataset.
- Post hoc analyses were conducted using the 'emmeans' package (Lenth et al., 2021) to estimate
- marginal means, in combination with the 'rstatix' or 'multcomp' packages (Kassambara, 2019),
- applying the Sidak method for multiple comparisons.
- The correlation between all variables analyzed and T was examined by calculating Spearman's
- rank correlation coefficients using the R function 'cor' with method = "Spearman".

172 3.Results and discussion

3.1 Crop's physiological traits

- 174 The analysis of fertilization and irrigation effects revealed that neither fertilization nor the
- interaction between the two factors significantly influenced E and gsw. Therefore, based on
- these results, we focused exclusively on irrigation, excluding fertilization from subsequent
- analyses.

171

- 178 Considering the entire growing cycle, we observed that E varied significantly over time and
- between irrigation regimes. The analysis of the irrigation management × sampling hour
- interaction across the full dataset revealed significant effects on E (Figure 1). At 12:00, the
- highest E rates were recorded, with FI showing significantly higher values (+11.1%) than the
- DI. At 12:00 the solar radiation usually peaks as well as the VPD, which might have driven
- stomatal opening and E, as previously suggested (Grossiord et al., 2020). The higher E observed
- in FI might have been related to the greater water availability and higher gsw (Chaves et al.,
- 185 2002).
- By 18:00, E decreased in both irrigation managements, although it was still significantly higher
- in FI (+15.8%) than DI. This finding is consistent with the natural decline in light intensity and
- air temperature. The higher values registered in FI, confirm the relationship between E and
- water supply even in the afternoon. Throughout the daytime, as reported in literature (Flexas et
- al., 2006), DI might have induced partial stomatal closure to conserve water, thereby reducing
- 191 E rate. In addition, the higher relative difference at 18:00 than 12:00 might suggest a cumulative
- effect of water stress over the day under DI.
- No significant effect was instead monitored during the night measurements (6:00 and 24:00)
- when E was low, but consistently above zero, confirming the findings of previous studies (Caird

et al., 2007a; Resco de Dios et al., 2016). The absence of treatment effects at night may suggest 195 196 that the two compared irrigation managements in our experimental greenhouse conditions have 197 less impact on stomatal behavior during nocturnal periods. On average across the growing 198 season, nighttime measurements showed that E at 06:00 was 1.4 times higher than at 24:00, reaching 0.5 mmol H₂O m⁻² s⁻¹. This might be related to a pre-dawn stomatal opening in 199 anticipation of light, as suggested by the findings of Resco et al. (2009). 200 On average, the daytime E values (12:00 and 6:00) were 7.7 mmol H₂O m⁻² s⁻¹ and 6.8 mmol 201 H₂O m⁻² s⁻¹ for FI and DI managements, respectively. The nighttime E values were the 12.0% 202 and 12.9% of the daytime E values for FI and DI managements, respectively. Our findings agree 203 204 with Caird et al. (2007b), who measured with a portable photosynthesis system a nocturnal E of 10% of maximal daytime E. The observed nighttime water loss represents a substantial 205 206 amount of water being lost without simultaneous carbon fixation through photosynthesis. 207 Although this reduction in WP was observed, further physiological assessments are needed to determine possible positive effects, such as lower T_{leaf}, that may enable faster and more effective 208 209 recovery from daytime stress, particularly under DI management. The gsw was significantly influenced by the sampling time, but not by the irrigation 210 211 management (Table 2). This suggests that the differences observed in E were not only or 212 primarily due to stomatal behavior. It reached its peak at 12:00, with a value of 0.75 mmol H₂O m^{-2} s⁻¹. It then decreased by about 25% at 18:00, 75% at 06:00, and 87.5% at 24:00. The higher 213 gsw registered at 12:00, followed by 18:00, confirms the maximal stomatal opening under 214 optimal light conditions, which might explain the corresponding peak in E. The gsw decrease 215 216 registered at 18:00 coincides with the decrease in E, reinforcing that stomatal aperture is the primary driver of daytime E variation (Flexas et al., 2006). The values of gsw registered at 6:00 217 218 and 24:00 reflect a slight residual stomatal conductance corresponding to the non-zero E registered. These findings align with studies showing that nocturnal gsw, while low, can be 219 220 physiologically meaningful and may contribute to hydraulic redistribution, nutrient uptake, or cooling (Caird et al., 2007b; Resco de Dios et al., 2019). 221 222 PhPS2 was significantly affected by the hours, exhibiting the highest values at 24:00 (0.81) and the lowest at 12:00 and 18:00 (0.71). Intermediate values were recorded at 6:00, which did not 223

3.2 Physiological parameters' correlation

224

225

226

The correlation matrices for both night (18:00, 24:00) and day hours (6:00, 12:00) in the two irrigation managements are presented in Figure 2. Only significant correlations (p < 0.05) are

found among managements for the leaf SPAD values (56 on average).

differ significantly from those at 12:00 and 18:00 (Table 2). No significant differences were

described below. E was significantly positively correlated with gsw under both FI and DI 229 managements during both daytime and nighttime. The results are consistent with previous 230 231 studies showing that increased gsw facilitates water vapor loss from the leaf surface, thereby enhancing plants' E (Flexas et al., 2012). 232 Similarly, a recent study (Savvides et al., 2022) documented a positive relationship between 233 234 gsw and E under water-stress conditions, although they observed lower E values under DI, a 235 trend not detected in the present study. Although gsw typically decreases at night, the positive 236 nocturnal relationship between gsw and E observed in this study may be explained by residual E, as it did not drop to zero. This pattern aligns with the findings of Caird et al. (2007). In the 237 nighttime, E was also significantly negatively correlated with VPD_{leaf} under both irrigation 238 managements. This suggests that nocturnal E was more strongly controlled by residual stomatal 239 behavior than by atmospheric water demand. At nighttime, E was significantly negatively 240 241 correlated with T_{leaf} and T_{ref}. During daytime, E was positively correlated with T_{leaf} under FI and with T_{ref} under both irrigation managements. Additionally, E and VPD_{leaf} were significantly 242 243 negatively correlated at nighttime under both irrigation managements, while a positive correlation was observed under FI during daytime. The correlations between E and T_{leaf}, T_{ref}, 244 and VPD_{leaf} highlight the role of E in regulating plant thermal balance and vapor pressure 245 dynamics. As reported, E rate drives evaporative cooling, which might affect T_{leaf} (Gates, 1968). 246 During the night period, without solar radiation input, T_{leaf} is mainly influenced by T_{ref}, and E-247 induced evaporative cooling should be minimal. However, in the present study, plants exhibited 248 a non-zero nocturnal E (with related incomplete stomatal closure), which might have caused 249 water loss, consistently with previous observations (Coupel-Ledru et al., 2016), promoting 250 slight evaporative cooling and thereby lowering T_{leaf} (Caird et al., 2007 b). This is consistent 251 252 with the observed strong positive correlations between T_{ref} and T_{leaf} during the night under both 253 FI and DI conditions, suggesting that T_{ref} might determine T_{leaf} at night. At the same time, the 254 cooling effect on T_{leaf} caused by residual nocturnal E lowers VPD_{leaf}, since VPD_{leaf} depends on 255 air temperature, T_{leaf}, and ambient humidity, as described by Monteith and Unsworth (2013). 256 Indeed, nocturnal VPD_{leaf} was strongly positively correlated with both T_{ref} and T_{leaf}, reinforcing the idea that T_{leaf} plays a key role in nocturnal vapor pressure dynamics in greenhouse 257 258 conditions (Caird et al., 2007a; Coupel-Ledru et al., 2016). Thus, the nocturnal E, by promoting 259 leaf cooling, might have led to a lower VPD_{leaf}, explaining the observed negative E-VPD_{leaf} 260 correlation under both FI and DI. 261 During the day, the dynamics shift due to incoming solar radiation, which significantly 262 increases T_{leaf}. Under FI, high E through open stomata enhances evaporative cooling, helping to counteract heat buildup (Gates, 1968; Jones, 1999). Across the diurnal cycle E and T_{leaf} are often positively covarying because they share a common driver (increased solar radiation and air temperature): during the midday radiation peak both T_{leaf} and E can rise together even though E acts to reduce T_{leaf} relative to the no-transpiration case. This distinction between causal effect (evaporative cooling) and covariation (common forcing by radiation and air temperature) helps explain E-T_{leaf} positive correlations. Moreover, as daytime temperatures rise and humidity drops, VPD_{leaf} increases, and well-watered plants can respond by increasing stomatal opening, thus sustaining high E. This pattern explains the positive E-VPD_{leaf} correlation observed during daytime under FI. In well-watered, non-stressed conditions, stomata behave passively, responding directly to the evaporative demand driven by increasing VPD rather than actively regulating to conserve water, as described by Monteith (1995) and Jones (2014). In this context, the positive correlations of VPD_{leaf} with T_{ref} and T_{leaf} observed under FI further support the role of air temperature increases in driving vapor pressure dynamics during the day. Additionally, the strong positive correlation between T_{ref} and T_{leaf} during the daytime under FI highlights that T_{leaf} was largely controlled by T_{ref}, even under well-watered conditions. Regarding T_{ref}, the absence of correlation with E under FI conditions indicates that when water is not limiting, temperature alone is not sufficient to influence E. This suggests that, under FI, E might be controlled by stomatal and internal plant hydraulic factors by higher extent than external temperatures alone, as suggested by the study of Chaves et al. (2002) and Medrano et al. (2002), that reported how, under water-limited conditions, E is primarily regulated by stomatal responses and internal hydraulic constraints (e.g., xylem conductance, water potential), much more than being a direct reaction to external factors like temperature or VPD. In contrast, under DI conditions, plants tend to close their stomata to conserve water. This reduces evaporative cooling, making the relationship between E and T_{leaf} weaker, as registered in the present study where it didn't result statistically significant. Instead of helping cool the leaf, E might become more influenced by the T_{ref}. This is consistent with the observed positive correlations between T_{ref} and E and the strong positive T_{ref}-T_{leaf} correlation under daytime DI conditions, suggesting a tighter environmental control of T_{leaf} and E rates under water deficit. Under DI, plants can be more sensitive to factors like T_{ref} and VPD_{leaf}, which might explain the significant relationships between T_{ref} and E, consistently with the findings of Patakas et al. (2005) reporting that when soil water is limited, plants cannot maintain full stomatal control, making E more tightly linked to external environmental factors like T_{ref} and VPD_{leaf}, especially during daytime when evaporative demand is highest.

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

E was negatively correlated with PhiPS2 in both irrigation managements during nighttime and 296 297 in DI during daytime. At night, while the E decreases, in both irrigation managements, PhiPS2 298 might have undergone basal photochemical and repair activities as previously observed by 299 Flexas et al. (2004) and Baker (2008). Under DI, water stress conditions might have altered photosynthetic efficiency, including the regulation of electron transport rates and 300 photochemical efficiency (Flexas et al., 2004). During daytime, under DI, the negative 301 302 correlation between E and PhiPS2 might reflect how limited CO2 uptake under water-limited 303 conditions, together with the light energy, might have caused photochemical impairments, 304 including reduced PhiPS2, as demonstrated in previous studies (Flexas et al., 2004; Chaves et 305 al., 2009; Lawlor and Tezara, 2009). Differently, under FI, adequate water availability might have maintained photosynthetic efficiency, preventing a significant PhiPS2 relationship. 306

3.3 Crop yield and water productivity

307

318

325

- Neither fertilization and irrigation, nor their interaction had a statistically significant effect on 308 309 total fruits yield, which showed an overall average of 64.1 Mg ha⁻¹. These results are consistent 310 with those reported by Bekele (2017), who found that a 25% reduction in irrigation volume did not significantly affect tomato yield, while improving water productivity. 311
- 312 In the present study, the proportion of marketable yield remained high and comparable between 313 irrigation managements, with values of 77.6% under FI and 77.4% under DI. This suggests that a moderate reduction in irrigation did not compromise fruit yield (Nigatu et al., 2024). Similar 314 findings were reported by Patanè et al. (2011), who demonstrated that deficit irrigation 315 strategies, including a 50% reduction in ETc applied during part or all of the growing season, 316 317 did not significantly reduce the marketable yield. Conversely, Lahoz et al. (2016) observed that deficit irrigation at 75% of ETc led to a 28.2% reduction in water use but also resulted in a
- 319 16.4% decrease in marketable yield.
- Fruits' production was significantly enhanced under DI, with a 14.7% increase compared to FI 320
- 321 (21.5 kg m⁻³) (Figure 3A). A similar trend was reported by Gragn et al. (2023), who noted a
- progressive increase in WP as irrigation levels decreased from 100% to 50% ETc. In their study, 322
- 323 the highest WP (20.4 kg m⁻³) was achieved at 50% ETc, while the lowest (12.0 kg m⁻³) was
- recorded at 100% ETc, which was statistically comparable to 75% ETc. 324

3.4 Marketable fruits' quality

- 326 The application of DI increased the fruits dry matter content (+6.5%) compared to the FI, which
- 327 recorded 4.9% (Figure 3B). This parameter is particularly relevant for the tomato processing
- 328 industry, as lower fruit water content is associated with improved processing efficiency (Xu et
- 329 al., 2024). Instead, no statistically significant differences were observed between irrigation

managements for TSS, titratable acidity, or electrical conductivity, with average values of 4.2 °Brix, 6.16, and 4.24 µS/cm, respectively. However, fruits pH was slightly but consistently lower under DI (4.1) than under FI (4.3). Previous studies have highlighted the potential of regulated DI to enhance fruit quality in processing tomatoes by increasing TSS and other compositional attributes (Xu et al., 2024). For instance, Lahoz et al. (2016) reported an 8.4% increase in TSS and a 2.4% rise in the Hunter a/b ratio, an indicator of improved fruit redness, under DI. However, they did not observe significant changes in pH, contrasting with the slight decrease detected in our study. Our results agree with the findings of Zhang et al. (2017), who found no significant differences in TSS between 70% and 100% ETc irrigation managements, with values ranging from 5.78% to 5.62%. Their findings suggest that moderate water reductions can conserve resources without compromising key fruit quality traits. These improvements are particularly important for the processing sector, as elevated TSS levels contribute to increased product yield and reduced processing costs (Johnstone et al., 2005).

342 343

344

351

353

356

330

331

332

333

334

335

336

337

338

339

340

341

4. Conclusions

Nocturnal E in tomato plants, although of low magnitude, was consistently detected at 24:00 345 and 06:00 under both FI and DI, indicating that nocturnal water loss is not negligible. This 346 residual E, likely driven by incomplete stomatal closure, represents a hidden component of the 347 348

crop's water balance. Its potential physiological roles, such as contributing to nocturnal leaf

349 cooling, warrant further investigation.

350 Irrigation management significantly affected daytime E but not nocturnal values. FI resulted in

higher E and gsw during peak irradiance (12:00 and 18:00), reflecting passive stomatal behavior

352 under high atmospheric evaporative demand. In contrast, DI induced partial stomatal closure

and reduced E, particularly in the afternoon, showing greater dependence on T_{ref} due to limited

354 stomatal control.

DI improved WP by 14.7% without reducing yield. Furthermore, DI enhanced fruit dry matter 355

content by 6.5%, an important quality attribute for processing tomatoes, without negatively

357 affecting TSS, acidity, or electrical conductivity. These results highlight the potential of

358 moderate water-saving irrigation strategies to improve WP and fruit quality without yield

penalties.

- 361 **Acknowledgments:** This experiment was supported by "Deficit irrigation del pomodoro da
- 362 industria nell'areale veneto" (prot. BIRD 227047) funded by the University of Padova -
- 363 Department of Agronomy Food Natural resources Animals and Environment (DAFNAE).

References

- Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev.
- 367 Plant Biol., 59(1), 89-113.
- Barbour, M. M., & Buckley, T. N. (2007). The stomatal response to evaporative demand persists
- at night in Ricinus communis plants with high nocturnal conductance. Plant, Cell &
- 370 Environment, 30(6), 711-721.
- 371 Bekele, S. (2017). Response of tomato to deficit irrigation at Ambo, Ethiopia. Journal of Natural
- 372 Sciences Research, 7(23).
- Berti, A., Tardivo, G., Chiaudani, A., Rech, F., & Borin, M. (2014). Assessing reference
- 374 evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water
- 375 Management, 140, 20-25.
- Borin, M. (2023). A wise irrigation to contribute to integrated water resource management.
- 377 Italian Journal of Agrometeorology, (2), 5-19.
- Caird, M. A., Richards, J. H., & Donovan, L. A. (2007a). Nighttime stomatal conductance and
- 379 transpiration in C3 and C4 plants. Plant Physiology, 143(1), 4–10.
- 380 https://doi.org/10.1104/pp.106.092940
- Caird, M.A., Richards, J.H., & Hsiao, T.C. (2007b). Significant transpirational water loss occurs
- throughout the night in field-grown tomato. Functional Plant Biology, 34(3), 172–177.
- Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L.,
- Carvalho, I., Faria, T., Pinheiro, C. (2002). How plants cope with water stress in the field?
- Photosynthesis and growth. Annals of botany, 89(7), 907.
- Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress:
- regulation mechanisms from whole plant to cell. Annals of botany, 103(4), 551-560.
- Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of microarray data
- using Z score transformation. The Journal of molecular diagnostics, 5(2), 73-81.
- Choi, Y. B., & Shin, J. H. (2020). Development of a transpiration model for precise irrigation
- control in tomato cultivation. Scientia Horticulturae, 267, 109358.
- Coupel-Ledru, A., Lebon, E., Christophe, A., Gallo, A., Gago, P., Pantin, F., ... & Simonneau,
- 393 T. (2016). Reduced nighttime transpiration is a relevant breeding target for high water-use

- efficiency in grapevine. Proceedings of the National Academy of Sciences, 113(32), 8963-
- 395 8968.
- 396 FAO (2021). The State of the World's Land and Water Resources for Food and Agriculture –
- 397 Systems at breaking point. Food and Agriculture Organization of the United Nations.
- Flexas, J., Bota, J., Cifre, J., Mariano Escalona, J., Galmés, J., Gulías, J., Medrano, H. (2004).
- 399 Understanding down-regulation of photosynthesis under water stress: future prospects and
- searching for physiological tools for irrigation management. Annals of applied Biology, 144(3),
- 401 273-283.
- Flexas J., Bota J., Galmés J., Medrano H. & Ribas-Carbó M. (2006). Keeping a positive carbon
- balance under adverse conditions: responses of photosynthesis and respiration to water
- 404 stress. *Physiologia Plantarum* 127, 343–352.
- Flexas, J., Barbour, M. M., Brendel, O., Cabrera, H. M., Carriquí, M., Díaz-Espejo A., Douthe
- 406 C., Dreyer E., Juan F. P., Gago J., Gallé A., Galmés J., Kodama N., Medrano H., Niinemets Ü.,
- 407 Peguero-Pina J. J., Pou A., Ribas-Carbó M., Tomás M., Tosens T., Warren, C. R. (2012).
- 408 Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis.
- 409 Plant Science, 193, 70-84.
- 410 Flexas J., Niinemets Ü., Gallé A., Barbour M.M., Centritto M., Diaz-Espejo A., Medrano
- 411 H. (2013) Diffusional conductances to CO₂ as a target for increasing photosynthesis and
- 412 photosynthetic water-use efficiency. *Photosynthesis Research* 117, 45–59.
- 413 Fricke, W. (2019). Night-time transpiration favouring growth? Trends in Plant Science, 24(4),
- 414 311–317.
- Gates, David Murray. "Energy exchange in the biosphere." (1968): 33-43.
- Gong, X., Qiu, R., Sun, J., Ge, J., Li, Y., & Wang, S. (2020). Evapotranspiration and crop
- 417 coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agricultural
- 418 Water Management, 235, 106154.
- Gragn, T., Mamo, A., & Wolde, O. (2023). Evaluation of tomato (Solanum Lycopersicum L.)
- response to deficit irrigation at Adola District, Guji Zone, Southern Ethiopia. Science Research,
- 421 11(5), 117-122.
- 422 Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W.,
- Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New
- 424 Phytologist, 226(6), 1550-1566
- 425 IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II
- 426 Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate
- 427 Change.

- 428 IUSS Working Group, (2014). World reference base for soil resources 2014. International soil
- 429 classification system for naming soils and creating legends for soil maps.
- 430 Jo, W. J., & Shin, J. H. (2021). Development of a transpiration model for precise tomato
- 431 (Solanum lycopersicum L.) irrigation control under various environmental conditions in
- greenhouse. Plant Physiology and Biochemistry, 162, 388-394.
- Johnstone, P. R., Hartz, T. K., LeStrange, M., Nunez, J. J., & Miyao, E. M. (2005). Managing
- fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato
- 435 production. HortScience, 40(6), 1857-1861.
- Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a
- possible aid to irrigation scheduling. Agricultural and forest meteorology, 95(3), 139-149.
- Jones, H. G. (2014). Plants and microclimate: a quantitative approach to environmental plant
- 439 *physiology*. Cambridge university press.
- Lahoz, I., Pérez-de-Castro, A., Valcárcel, M., Macua, J. I., Beltrán, J., Roselló, S., & Cebolla-
- 441 Cornejo, J. (2016). Effect of water deficit on the agronomical performance and quality of
- processing tomato. Scientia Horticulturae, 200, 55-65.
- Lanoue, J., Leonardos, E. D., Ma, X., & Grodzinski, B. (2017). The Effect of Spectral Quality
- on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and
- Lisianthus: An Assessment of Whole Plant Measurements. Frontiers in Plant Science, 8, 1076.
- 446 https://doi.org/10.3389/fpls.2017.01076
- Lascano, R. J., Goebel, T. S., Booker, J., Baker, J. T., & Gitz III, D. C. (2016). The stem heat
- balance method to measure transpiration: Evaluation of a new sensor. Agricultural Sciences,
- 449 7(9), 604-620.
- Lawlor, D. W., Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic
- 451 capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of
- 452 processes. Annals of botany, 103(4), 561-579.
- 453 Medrano, H., Escalona, J. M., Bota, J., Gulías, J., & Flexas, J. (2002). Regulation of
- 454 photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a
- reference parameter. Annals of botany, 89(7), 895-905.
- 456 Monteith, J.L. (1995). "A reinterpretation of stomatal responses to humidity." Plant, Cell &
- 457 Environment, 18(4), 357–364.
- 458 Monteith, J.L., Unsworth, M.H. (2013). Principles of Environmental Physics (4th ed.).
- 459 Academic Press.

- Nguyen, T. B. A., Lefoulon, C., Nguyen, T. H., Blatt, M. R., & Carroll, W. (2023). Engineering
- stomata for enhanced carbon capture and water-use efficiency. Trends in Plant Science, 28(11),
- 462 1290-1309.
- Nigatu, B., Getu, D., Getachew, T., & Getaneh, B. (2024). Effect of irrigation regime on yield
- 464 component and water use efficiency of tomato at Ataye irrigation scheme, Ataye Ethiopia.
- Italian Journal of Agrometeorology, (2), 89-100.
- Patakas, A., Noitsakis, B., & Chouzouri, A. (2005). Optimization of irrigation water use in
- grapevines using the relationship between transpiration and plant water status. Agriculture,
- 468 Ecosystems & Environment, 106(2-3), 253-259.
- Patanè, C., Tringali, S., & Sortino, O. (2011). Effects of deficit irrigation on biomass, yield,
- 470 water productivity and fruit quality of processing tomato under semi-arid Mediterranean
- climate conditions. Scientia Horticulturae, 129(4), 590-596.
- Resco, V., Hartwell, J., & Hall, A. (2009). Ecological implications of plants' ability to tell the
- 473 time. *Ecology letters*, 12(6), 583-592.
- 474 Resco de Dios, V., Loik, M. E., Smith, R., Aspinwall, M. J., & Tissue, D. T. (2016). Genetic
- 475 variation in circadian regulation of nocturnal stomatal conductance enhances carbon
- assimilation and growth. Plant, Cell & Environment, 39(1), 3-11.
- Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales,
- 478 M. A., Romero, L., & Ruiz, J. M. (2010). Genotypic differences in some physiological
- parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant
- 480 Science, 178(1), 30–40. https://doi.org/10.1016/j.plantsci.2009.10.002
- Pereira, L.S., Allen, R.G., Paredes, P., López-Urrea, R., Raes, D., Smith, M., Kilic, A. &
- 482 Salman, M. 2025. Crop evapotranspiration Guidelines for computing crop water
- requirements. Second edition, revised 2025. FAO Irrigation and Drainage Paper, No.56 Rev.1.
- 484 Rome, FAO. https://doi.org/10.4060/cd6621en
- Savvides, A. T., Trouvelot, S., Ruelle, P., & Villemant, C. (2022). Challenging the water stress
- index concept A synthesis of plant gas-exchange responses under drought and salinity. *Plant*,
- 487 *Cell & Environment*, 45(8), 2302-2319.
- Sharma, V., & Bhambota, S. (2022). Strategies to Improve Crop-Water Productivity. In Food,
- Energy, and Water Nexus: A Consideration for the 21st Century (pp. 149-172). Cham: Springer
- 490 International Publishing.
- 491 Strati, V., Albéri, M., Anconelli, S., Baldoncini, M., Bittelli, M., Bottardi, C., Mantovani, F.
- 492 (2018). Modelling soil water content in a tomato field: proximal gamma ray spectroscopy and
- soil–crop system models. Agriculture, 8(4), 60.

494 Toro, G., Flexas, J., & Escalona, J. M. (2019). Contrasting leaf porometer and infra-red gas

analyser methodologies: an old paradigm about the stomatal conductance measurement.

Theoretical and Experimental Plant Physiology, 31(4), 483-492.

497 Xu, J., Li, X., Wan, W., Zhu, X., Li, C., Zhao, X., Pang, S., Diao, M. (2024). Impact of regulated

deficit irrigation on the dynamics of quality changes in processing tomato fruits during

499 ripening. Agricultural Water Management, 304, 109068.

Zhang, H., Xiong, Y., Huang, G., Xu, X., & Huang, Q. (2017). Effects of water stress on

processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation

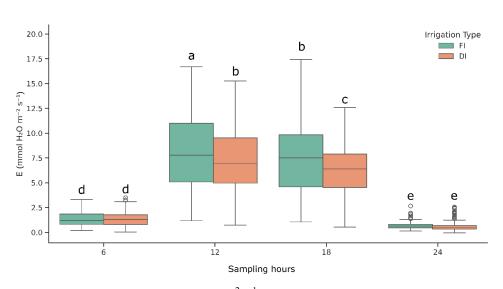
in sandy soil of the Hetao Irrigation District. Agricultural Water Management, 179, 205-214.

504 Highlights

505

498

501

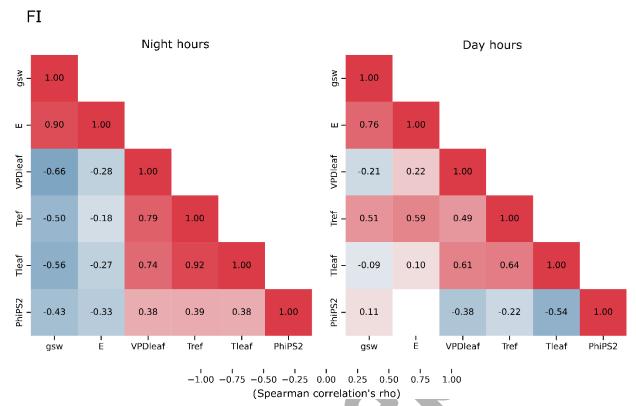

503

- 506 Nighttime transpiration was ~12–13% of daytime, unaffected by irrigation management
- 507 Deficit irrigation improved water productivity by 14.7% without yield loss
- 508 Deficit irrigation increased fruits dry matter without altering quality traits

509

510

FIGURES


511512

513

514

515

Figure 1. Crop transpiration (E) (mmol H_2O m⁻² s⁻¹) (A) measured in two irrigation management, one with s with 100% ETc irrigation (FI) and the other with 75% ETc irrigation (DI) assessed at four sampling hours (6:00 – 6, 12:00 - 12, 18:00 - 18, and 24:00 - 24). Different lowercase letters indicate significant differences between irrigation managements (p-value \leq 0.05). The box shows the quartiles of the dataset, while the whiskers extend to show the rest of the distribution.

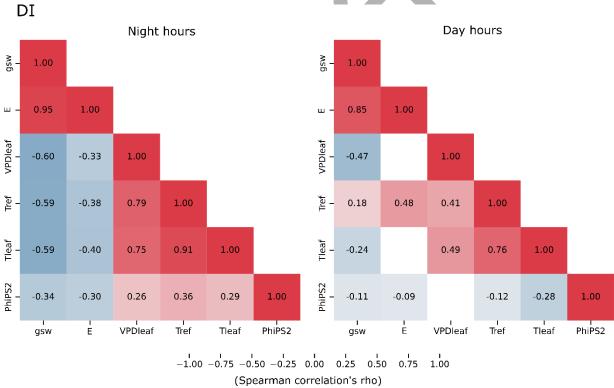


Figure 2. Spearman correlation heatmap showing relationships between all analyzed variables (stomatal conductance – gsw; chlorophyll fluorescence – PhiPS2; reference temperature – Tref; leaf temperature – Tleaf; vapor pressure deficit - VPD) and transpiration (E) within the 100% ETc irrigation management (FI) and the 75% ETc irrigation management (DI), assessed at night (6:00h, 24:00h) and day (12:00, 18:00h) sampling hours. Statistical differences are marked with * (p< 0.05). rho-values are displayed in different colors, and the blank space indicate the absent of statistically significant correlations.

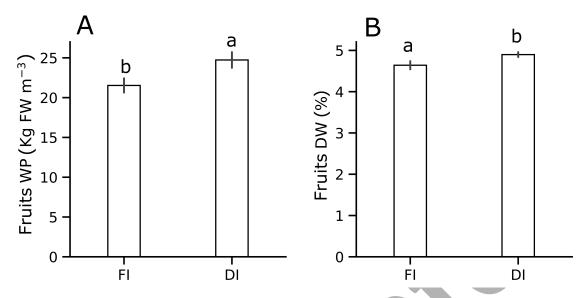


Figure 3. Average fruits' water productivity (WP) (kg FW m⁻³) \pm SE (A), and average fruits' dry weight (DW) (%) \pm SE (B) measured in two experimental managements with 100% ETc irrigation (FI) and the 75% ETc irrigation (DI). Different lowercase letters indicate significant differences between managements (n = 5; p-value \leq 0.05, Sidak post-hoc test).

TABLES

Table 1. Chemical properties of compost used

Element	Content
Total N	2.0 %
Total C	22.4%
P	6373 mg kg ⁻¹
K	26549 mg kg ⁻¹
Cd	0.74 mg kg ⁻¹
Cr	36.96 mg kg ⁻¹
Cu	104.64 mg kg ⁻¹
Pb	37.37 mg kg ⁻¹
Zn	247.55 mg kg ⁻¹

Table 2. Crop physiological parameters: stomatal conductance (gsw) (mmol H_2O m⁻² s⁻¹) and quantum yield of photosystem II – (PhiPS2) measured in all treatments at the same four different sampling hours (6:00; 12:00; 18:00; 24:00). Different lowercase letters indicate significant differences between treatments (p-value \leq 0.05).

Sampling hours	Physiologic	Physiological parameters	
	gsw	PhiPS2	
6:00	0.20 с	0.77 ab	
12:00	0.75 a	0.71 b	
18:00	0.58 b	0.71 b	
24:00	0.07.4	0.81 a	