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ABSTRACT 24 

Agricultural drought poses a major threat to rice production in Indonesia, highlighting the need 25 
for dynamic prediction to support timely and effective management strategies. This study aims 26 
to develop a new approach for predicting rice drought stress that incorporates the characteristics 27 
of SPI3, emphasizing onset and trends, and to evaluate the model’s accuracy in predicting rice 28 
drought. The onset of SPI3 denotes conditions at the start of the planting season, while the SPI3 29 
trend represents the four-month gradient from planting to harvest. The Normalized Difference 30 
Vegetation Index (NDVI) derived from MODIS was utilized to validate the spatial and temporal 31 
predictions of rice drought using the Proportion Correct (PC) method. The model performs most 32 
reliably in capturing severe droughts during the dry season, with accuracies in the very high 33 
drought category ranging from 60% to 85%. Performance declines in March and August, 34 
highlighting challenges during the transitions between wet and dry seasons.  During the El Niño 35 
year, predictions aligned with observed very high drought (PC: 59–77%), whereas in the La 36 
Niña year, they matched the low drought category (PC: 72–76%). Comparable prediction 37 
accuracies in Indramayu and Bone indicate the feasibility of developing a generalized model 38 
for Indonesia’s diverse rice-producing areas. Future improvements should integrate higher-39 
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resolution data and machine learning, account for local irrigation practices, and expand 40 
validation across regions to enhance model transferability and comprehensively assess its 41 
performance. 42 

Key words: drought; rice; prediction; SPI3, NDVI  43 

Highlights:  44 

• Rice production in Indonesia is highly susceptible to drought, with the damaged areas 45 
increasing sharply during El Niño years.  46 

• The onset and trend of the 3-month Standardized Precipitation Index (SPI3) reflect 47 
drought risk across the growing season, making it a reliable predictor of rice drought.  48 

• Negative SPI3 trends correspond to lower yields, while positive trends indicate higher 49 
yields, demonstrating SPI3’s predictive value for yield variability. 50 

• The higher accuracy in predicting severe rice drought enhances early warning systems 51 
and enables proactive drought mitigation.  52 

 53 
INTRODUCTION 54 

Drought, as a natural disaster, demonstrates a complex and cascading nature, leading to more 55 

severe impacts compared to single-disaster events. Agriculture is significantly affected by 56 

drought hazards, which are a primary cause of crop failures and pose a substantial threat to 57 

global food security (FAO, 2012; Zinat et al., 2020). Prior studies indicate that the duration and 58 

intensity of droughts are expected to increase significantly in the future (Zhou et al., 2023; Li 59 

et al., 2024). These findings confirm that drought represents a considerable future threat, 60 

underscoring the necessity of understanding its patterns and intensity for effective anticipatory 61 

action.  62 

Rice serves as the staple food for over 280 million people in Indonesia. Rice fields cover 63 

approximately 7.4 million hectares across various regions of the country (BPS [Statistics 64 

Indonesia], 2024). Planting generally occurs twice a year, namely during the wet season 65 

planting (WSP) and the first dry-season planting (DSP1), with the possibility of a third planting 66 

in irrigated areas when water resources are sufficient (the second dry-season planting, DSP2). 67 

Rice production in Indonesia is highly susceptible to drought, particularly during the dry-season 68 
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plantings (Naylor et al., 2007; Surmaini et al., 2015). El Niño events are often associated with 69 

droughts that significantly reduce rice production in Indonesia (D’Arrigo and Wilson, 2008; 70 

Surmaini et al., 2015; Boer and Surmaini, 2020). Data from the Ministry of Agriculture of the 71 

Republic of Indonesia indicate that prolonged droughts caused by moderate to strong El Niño 72 

events between 1990 and 2020 resulted in annual rice production losses ranging from 73 

approximately 500,000 to 1.7 million tons.  74 

Droughts are typically classified according to their duration and impacts on various ecological 75 

and social contexts (Mishra and Singh, 2010). Consequently, they are generally categorized 76 

into four types: meteorological, agricultural, hydrological, and socio-economic droughts. The 77 

transition from meteorological drought to agricultural drought is particularly crucial for 78 

developing effective early warning systems for agricultural drought (Xu et al., 2023). Drought 79 

propagation refers to the transition from meteorological drought to other types of drought 80 

(Bhardwaj et al., 2020). Typically, droughts begin with insufficient precipitation, which 81 

subsequently reduces soil moisture and decreases surface and groundwater availability (Hao & 82 

Singh, 2015), ultimately leading to adverse effects on crops (Wu et al., 2020; Li et al., 2024).  83 

The Standardized Precipitation Index (SPI) is widely recognized as one of the most  the 84 

straightforward method for drought analysis and monitoring (McKee et al., 1993). Its 85 

widespread adoption can be attributed to its interpretability, comparability, standardized 86 

calculation methods (Zipper et al., 2016; Leng and Hall, 2019), flexibility, simplicity, and 87 

accessibility of data (Dai et al., 2020). In addition, SPI is easy to compute and demonstrates 88 

strong adaptability across both temporal and spatial scales (Pei et al., 2020).  The SPI at a 3-89 

month scale (SPI3) is particularly suitable for agricultural drought monitoring because it 90 

captures short- to medium-term precipitation deficits that directly affect soil moisture and crop 91 

growth (McKee et al., 1993; Zargar et al., 2011).  Tsige et al. (2019) identified a strong 92 
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relationship between SPI3 and agricultural drought, making it a valuable indicator for 93 

monitoring agricultural drought (Dai et al., 2020).  94 

Although the SPI is a well-established and widely applied indicator for drought assessment, it 95 

frequently categorizes drought events based on static thresholds or classifications. This study 96 

introduces a novel interpretive framework by focusing on the gradual onset and trend dynamics 97 

of SPI3 as a predictive indicator for rice drought.  Our approach emphasizes the temporal 98 

pattern and directionality of SPI3, monitoring how its values evolve before a drought fully 99 

manifests. To our knowledge, few studies examine SPI3 in this dynamic, trend-oriented manner 100 

specifically tailored for agronomic drought prediction in rice systems. The primary rationale 101 

for employing this index as a drought predictor is the recognition that rice growth and yield are 102 

influenced not only by conditions at the onset of planting but also throughout the entire growing 103 

period. By capturing the gradual escalation and directional shifts of SPI3 values, our method 104 

offers earlier detection of emerging drought stress aligned with critical rice growth stages, 105 

enabling a more sensitive and agronomically relevant early-warning tool.  The objective of this 106 

study is to develop a rice drought prediction model that incorporates combined SPI3 107 

characteristics, with an emphasis on the onset and trend dynamics, and to evaluate the model’s 108 

accuracy in predicting rice drought.  109 

 110 

MATERIALS AND METHODS 111 

Study area 112 

The model was constructed using data from two districts, namely Indramayu in West Java 113 

Province, representing the monsoon rainfall pattern, and Bone in South Sulawesi Province, 114 

exemplifying the local rainfall pattern. These regions serve as key centers of rice production 115 
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and are vulnerable to drought occurrences. Indramayu is located in the western region of 116 

Indonesia, whereas Bone is situated in the central region (Figure 1).  117 

 118 

Figure 1.  Study region and distribution of rain gauges  119 

Data 120 

Meteorological Data 121 

Daily meteorological data from 38 rain gauge stations in Indramayu and Bone, including 122 

rainfall, minimum and maximum temperatures, and solar radiation, were collected for the 123 

period 1982–2009. The spatial distribution of the rain gauge stations used in this study is shown 124 

in Figure 1. In addition, gridded rainfall data from the Climate Hazards Group InfraRed 125 

Precipitation with Station (CHIRPS) dataset for the years 2010–2019 were used for the SPI3 126 

model application.  127 

Soil Data 128 
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Soil data samples were collected from study fields in each sub-district of Indramayu and Bone. 129 

The data included drainage class, runoff potential, slope, soil layers, texture, organic carbon, 130 

pH, nitrogen content, bulk density, and cation exchange capacity.  131 

Management Practice Data 132 

In this study, management practice data were obtained through interviews with farmers. The 133 

data included sowing date, sowing density, row width, transplanting date, fertilizer application 134 

rates and dates, as well as irrigation application dates and amounts.  135 

Crop Phenology 136 

Data on crop phenology were obtained from the Book of Variety Description of Rice published 137 

by the Indonesian Center for Food Crops Research and Development (ICFORD). The data 138 

included crop varieties, emergence, flowering, maturity, heat units, biomass at each stage, and 139 

yield.  140 

Vegetation index 141 

The Normalized Difference Vegetation Index (NDVI) was generated from MOD13Q1.061 142 

Terra Vegetation Indices of MODIS TERRA, with a spatial resolution of 250 m and a temporal 143 

resolution of 16 days. The MODIS data underwent atmospheric correction to ensure reliable 144 

measurements of vegetation indices over time (de Oliveira and Epiphanio, 2012).  145 

 146 

Methods 147 

The method begins with the simulation of probable rice yields using the Decision Support 148 

System for Agro-technology Transfer (DSSAT) and the development of the SPI3–rice yield 149 

model. The model is implemented with SPI3, informed by gridded rainfall data from CHIRPS, 150 

to assess the spatial prediction of rice drought. The final step involves validating rice drought 151 
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predictions using NDVI obtained from MODIS TERRA and evaluating prediction skill with 152 

the Proportion Correct (PC) method. Figure 2 presents the analysis flowchart.  153 

 154 

Figure 2.  Flowchart outlining the development process of the rice drought prediction model 155 

Crop Simulation Scenario 156 

The CERES-Rice model, a component of DSSAT (Hoogenboom et al., 2023; Jones et al., 157 

2003), was used to simulate rice yield. The model has been validated and shown to provide 158 

high accuracy for the Indonesian region (Boer and Surmaini, 2020), with simulated rice yield 159 

results of R²-adj = 88% (P<0.01). Planting date scenarios were established at 10-day intervals 160 

during the dry season, specifically on the 5th, 15th, and 25th of February, March, April, and 161 

May in Indramayu, and in May, June, July, and August in Bone for the period 1982–2009. The 162 

rice variety used was Ciherang, with a common fertilizer application of 200 kg/ha of urea, 163 

applied twice at 10 and 40 days after planting. Planting distance was set at 25 × 20 cm, and 164 

transplanting was conducted 21 days after seedling emergence.  165 

The Onset and Trend of SPI3 166 

The SPI3 is calculated using the formula proposed by McKee et al. (1993). The SPI3 compares 167 

precipitation over a specific three-month period with historical records for the same period.  168 
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The onset of SPI3 denotes its value at the beginning of the planting season. The SPI3 trend is 169 

defined by the gradient of SPI3 over four months, spanning from planting initiation to harvest, 170 

as shown in Figure 3.  Rice yield predictions were generated one month prior to planting, 171 

providing an early warning of potential yield losses due to drought. 172 

 173 

Figure 3. Plot of SPI3 onset and trend associated with planting and harvesting between April 174 
and July. As illustrated, the onset of SPI3, defined three months in advance (April 2008), is –175 
0.3, while the SPI3 trend from April to July shows a gradient of +0.4.  176 
 177 

Linkage Between the Onset and Trend SPI3 and Rice Yield  178 

The Cartesian plane quadrants were utilized to examine the relationships between the onset and 179 

trend of SPI3 and rice yield (Figure 4). Quadrant (Q) I indicates the emergence of a positive 180 

SPI3 accompanied by an upward trend. Q II demonstrates the commencement of a positive 181 

SPI3, albeit with a declining trend. Q III depicts the onset of a negative SPI3, yet shows an 182 

upward trend. Finally, Q IV denotes the onset of a negative SPI3 with a declining trend.  The 183 

SPI3 trend further provides insights into moisture dynamics, where a positive trend indicates 184 

an increase in moisture levels over time, whereas a negative trend signifies decreasing moisture 185 

levels.  186 
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 195 

 196 
Figure 4. The quadrant illustrates the relationship between SPI3 onset (y-axis), SPI3 trend (x-197 
axis), and rice yield. 198 
 199 

Validation of Rice Drought Prediction  200 

This study employed NDVI to validate the spatial and temporal patterns of rice drought. In rice 201 

cultivation, which is particularly sensitive to variations in water availability, NDVI is 202 

instrumental in detecting early indicators of drought stress (Thapa et al., 2019). The dataset 203 

comprises two primary near-infrared (NIR) bands, which were employed to calculate NDVI 204 

following the formulation in Equation (1):  205 

𝐍𝐃𝐕𝐈 =
𝐍𝐈𝐑 − 𝐑𝐞𝐝
𝐍𝐈𝐑 + 𝐑𝐞𝐝

 (1) 

NDVI anomalies were calculated by comparing the monthly NDVI values for each year with a 206 

baseline period from 2014 to 2020. Negative anomalies indicated vegetation health below 207 

normal levels, suggesting the occurrence of water stress (Nanzad et al., 2019). The formula for 208 

NDVI anomaly is defined by Equation (2):  209 

𝐍𝐃𝐕𝐈	𝐀𝐧𝐨𝐦𝐚𝐥𝐲 = 	𝐍𝐃𝐕𝐈𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝 − 𝐍𝐃𝐕𝐈𝐛𝐚𝐬𝐞𝐥𝐢𝐧𝐞	  (2) 



 

10 

 

Where: NDVIobserved is the monthly median NDVI value for a specific time period. NDVIbaseline 210 

is the monthly median NDVI value over a baseline period. 211 

Vegetation anomalies were classified into four severity levels based on NDVI anomaly values, 212 

determined by predefined thresholds, as shown in Table 1.  213 

Table 1.  NDVI anomaly ranges for drought hazard classification. 214 

Class NDVI Anomaly Range Drought level  Description   

Class 1 Anomaly > 0.05 Low 

Above-normal vegetation growth, 

likely resulting from surplus water 

availability 

  

Class 2 -0.05 ≤ Anomaly ≤ 0.05 Moderate 
Absence of significant water stress 

or drought conditions 

  

Class 3 -0.1 ≤ Anomaly < -0.05 High 

Minor drought conditions, 

characterized by vegetation 

experiencing moderate water stress 

  

Class 4 Anomaly < -0.1 Very High Signify severe drought conditions   

 215 

Performance Measures 216 

Proportion of Correct (PC) is recognized as the most straightforward for assessing the accuracy 217 

of categorical forecast systems. Its simplicity and ease of interpretation make it a useful baseline 218 

for evaluating model performance, particularly when class distributions are balanced (Nurmi, 219 

2003; Wilks, 2019),  and it has been widely used in drought prediction systems where ease of 220 

communication to stakeholders is critical (Wilks, 2019). This measure is derived by calculating 221 

the ratio of accurate predictions to the total number of predictions, as described by Equation 222 

(3). The schematic contingency for categorical forecasts is detailed in Table 2.  223 
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𝐏𝐂 =
𝐚 + 𝐝
𝐧 			 

(3) 

The PC methods commonly applied to analyze categorical data are based on contingency tables 224 

(Mason, 2012). The elements of equation 3 and Table 2 are defined as a (hits) represents the 225 

number of true positives, where the model predicted drought and drought was observed, b (false 226 

alarms) indicates the number of false positive, where the model predicted drought, although no 227 

drought was observed, c (misses) represents the number of false negative, where the model 228 

predicted no drought, but drought was occurred, d (correct rejections) indicates the number of 229 

true negatives, where the model correctly predicted no drought and no drought was observed, 230 

and n expresses the total number of observations. 231 

Table 2.  Schematic contingency table for categorical forecasts of binary events. 232 

 233 

 234 

  235 

 236 

 237 

The model was developed using historical data from 1982 to 2009, which served as the model 238 

construction.   The validation process was conducted using an independent dataset covering the 239 

period 2014 to 2020, applied at monthly intervals. The choice of these periods was determined 240 

by the availability and consistency of reliable data, while the gap years (2010–2013) were 241 

excluded due to data incompleteness. This approach ensured that the model’s performance 242 

could be rigorously evaluated under independent conditions, thereby strengthening the 243 

reliability of its predictive capability. Additional validation was conducted for specific months 244 

in DSP1 (June) and DSP2 (October) during Neutral (2014), El Niño (2015), and La Niña (2017) 245 

years.  246 

Forecast 
Observed 

Yes No Total 

Yes a (Hits) b (False alarms) a+b 

No c (Misses) d (Correct rejections) c+d 

Total  a+c b+d a+b+c+d= n 
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 247 

Results 248 

Association Between SPI3 and Rice Yield 249 

Figure 5 illustrates that the temporal patterns of SPI3 and rice yield anomalies show that periods 250 

of negative and positive rice yield anomalies are interspersed with dry and wet conditions 251 

throughout the study years. In Indramayu, notable drought events, indicated by negative SPI3 252 

values, were recorded in 1982, 1991, and 1997. During these years, rice yield anomalies were 253 

markedly lower than average, reflecting a significant reduction in actual rice yields compared 254 

to typical levels.  These events are associated with reduced wet-season plantings and 255 

production, consistent with the lower-than-average yield anomalies we observe in those years 256 

(Siswanto et al., 2022).  In contrast, in Bone, yield declines occur only during extreme or 257 

prolonged drought, reflecting local hydroclimatic and management differences (Sunusi et al., 258 

2024). This spatial heterogeneity in drought–yield relationships highlights a broader pattern 259 

seen across Indonesia, where rice yield responses to SPI-based drought indicators vary 260 

considerably depending on local agroclimatic conditions (Hendrawan et al., 2023). 261 

 262 
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Figure 5. Evolution of SPI3 from 1982 to 2000, with a comparison to rice yield anomalies in 263 
Indramayu and Bone. 264 

The Onset and Trend SPI3 - Rice Yield Model 265 

Figure 6 was generated by combining data from the two study areas, Indramayu and Bone. 266 

These data were used to develop a prediction model designed to robustly capture agricultural 267 

drought events in distinct rainfall regimes, specifically the monsoonal rainfall in Indramayu 268 

and the local rainfall in Bone. 269 

This figure reveals a clear association between the onset and trend of SPI3 and rice yields. Rice 270 

yields below 2 t/ha appear more frequently in Quadrants II and III, which are characterized by 271 

negative SPI3 trends indicating drier conditions during the growing season, consistent with 272 

other regional findings that SPI3 effectively captures drought-induced reductions in rice 273 

productivity (Surmaini et al., 2019). In contrast, Quadrants I and IV - marked by positive SPI3 274 

trends and therefore wetter conditions show a higher incidence of rice yields exceeding 4 t/ha,  275 

suggesting improved moisture availability significantly mitigates drought-induced yield losses. 276 

 277 

Figure 6. Rice yields are displayed in a Cartesian plot with the SPI3 onset value on the y-axis 278 
and the SPI3 trend on the x-axis. Positive SPI3 onset values correspond to wet conditions, 279 
whereas negative values indicate dryness. Similarly, a positive SPI3 trend represents rising 280 
moisture availability, while a negative trend reflects a decline. Quadrants represent onset–trend 281 
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combinations: QI = wet/wetter, QII = wet/drier, QIII = dry/drier, QIV = dry/wetter.  The color 282 
of the circle in the quadrat indicates different rice yields. 283 
 284 
The Cumulative Distribution Function (CDF) offers a compelling visualization of the 285 

probability distribution of rice yields under the corresponding conditions in each quadrant. 286 

Figure 7 shows the CDF curves for QII and QIII, which demonstrate a gradual increase up to 287 

less than 4 t/ha, indicating that lower rice yields are more prevalent when both SPI3 trends are 288 

negative. In contrast, in QI and QIV, the CDF curves exhibit a steep increase once rice yields 289 

exceed 4 t/ha, suggesting that higher rice yields are more common when both the onset and 290 

trend of SPI3 are positive.  291 

 292 

Figure 7.  The CDF of rice yield for each quadrant 293 

The rice drought category in each quadrant is assessed using a score based on a rice yield 294 

threshold of 2 t/ha, under the assumption that drought conditions result in yields falling below 295 

this level. The score is calculated by multiplying the percentage of rice yields below 2 t/ha in 296 

each quadrant by the probability of these yields occurring in that quadrant, relative to the total 297 

sample across all quadrants. The rice drought categories are classified into four levels, as 298 

presented in Table 3.  299 
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 300 

Table 3.  Criteria for rice drought levels 301 

Quadrant  Sample (%) Rice 

yield < 2 ton/ha (a) 

Probability of rice 

yield < 2 ton/ha (b) 

Score (axb) drought level 

I 15.194 0.034 0.005 Low 

II 24.734 0.276 0.068 High 

III 50.707 0.328 0.166 Very high 

IV 9.364 0.130 0.012 Moderate 

 302 

Skill of Rice Drought Prediction 303 

The performance of rice drought prediction across four drought categories from 2014 to 2020 304 

is shown in Figure 8. The analysis was conducted monthly from January to December, 305 

comparing the model’s predictions with observed conditions using NDVI data from the 306 

MOD13Q1 product.  307 

Figure 8 (a) displays rice drought predictions in Indramayu. In the low drought category, 308 

accuracy typically ranges from 50% to 80%. In the moderate category, accuracy varies between 309 

40% and 70%, with reduced error bars indicating increased confidence. However, significant 310 

declines are observed in March and August, highlighting difficulties during the transitions 311 

between wet and dry seasons. The high category exhibits marginally higher accuracy (50–75%) 312 

compared to the moderate category, albeit with greater error margins. In the very high category, 313 

accuracy ranges from 60% to 85%, peaking in June and July during the dry season. These 314 

findings suggest that the model is more effective in predicting severe droughts during the dry 315 

season, while its performance diminishes during the wet and transitional seasons.  316 
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 317 

Figure 8.  Accuracy of rice drought predictions for the 2014–2020 period in a) Indramayu and 318 
b) Bone. 319 

 320 

Figure 8 (b) displays the efficacy of rice drought prediction in Bone. In the Low drought 321 

category, accuracies vary between 50% and 75%, with large error bars indicating high 322 

variability. In the Moderate drought category, accuracies range from 40% to 60%, with 323 

narrower error margins, suggesting a higher level of confidence. The model’s accuracy for the 324 

High drought category ranges from 40% to 80%, with reduced performance observed during 325 

the wet season (October to December). This indicates challenges in accurately identifying 326 

severe drought events during the transitional dry–wet season. In the Very High category, 327 

accuracy improves across the months, ranging from 60% to 85%, suggesting enhanced 328 

performance. However, substantial uncertainty remains in predicting extreme drought 329 

conditions in April and September, highlighting challenges during transitions between the dry 330 

and wet seasons.  331 
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 332 

Figure 9 depicts the spatially predicted and observed rice drought for June (DSP1) and 333 

October (DSP2) in 2014, 2015, and 2017, corresponding to Neutral, El Niño, and La Niña 334 

years. The impact of ENSO on rice drought categories in the Indramayu and Bone regions 335 

shows a comparable pattern. During El Niño years, rice drought levels are typically higher 336 

than in Neutral years, whereas La Niña years generally exhibit lower levels.  337 

 338 

Figure 9.  Map of the predicted and observed rice drought in a) Indramayu and b) Bone for 339 

June (DSP1) and October (DSP2) during 2014, 2015, and 2017, corresponding to Neutral, El 340 

Niño, and La Niña years. Shaded areas denote rice field regions, while color variations indicate 341 

the corresponding drought categories. The SPI row indicates predicted rice drought, while the 342 

NDVI row represents observed conditions. 343 

Predictions for October (DSP2) in the Neutral year (2014) and the El Niño year (2015) indicate 344 

very high rice drought categories, with the highest PC at 64% for Indramayu and 76% for Bone. 345 

In the La Niña year (2017), predictions for June (DSP1) and October closely aligned with the 346 

observed low drought category, with the PC for both regencies ranging from 72% to 76%.  347 

Observations, however, revealed areas with varying hazard levels from low to high. Rice 348 

!" #"
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drought prediction for October shows higher accuracy compared to June, indicating improved 349 

model performance during the peak of the dry season. This discrepancy reflects the 350 

complexities of local conditions influencing vegetation resilience during drought periods. 351 

Discussion 352 

Figure 5 highlights the link between SPI3 and rice yield anomalies. In Indramayu, prolonged 353 

severe negative SPI3 values are associated with reduced rice yields, as evidenced in 1982, 1991, 354 

and 1997. This aligns with the findings of Prabnakorn et al. (2018), which indicate that SPI 355 

values below -1 often lead to significant yield reductions. Furthermore, Rejekiningrum et al. 356 

(2022) emphasized that regions experiencing increased drought frequency and duration are 357 

likely to experience substantial agricultural losses, which underscores the sensitivity of rice 358 

cultivation in Indramayu to persistent climate stress.  Conversely, in Bone, episodes of negative 359 

SPI3 tend to be shorter and less severe,  reflecting milder drought conditions with relatively 360 

limited impacts on rice productivity. This divergence underscores the role of regional climatic 361 

variability in shaping drought risk and agricultural outcomes. It also suggests that while 362 

Indramayu requires more robust drought-mitigation strategies,  Bone may benefit from adaptive 363 

practices that focus on maintaining resilience during shorter-term drought.  364 

Figure 6 illustrates that rice yields exhibit a specific response to SPI3, particularly in relation 365 

to the onset and trends, and their progression throughout the growing season. Negative SPI3 366 

values in the early growing season may hinder crop establishment, whereas moisture deficits 367 

during the reproductive phase often lead to pronounced yield reductions as a result of water 368 

stress during grain development (Ray et al., 2015). In contrast, positive SPI3 values reflect 369 

favorable moisture availability, which promotes crop growth and has the potential to enhance 370 

yields (Gebrehiwot et al., 2011; Forootan et al., 2019). Our analysis strengthens earlier 371 



 

19 

 

conclusions by indicating that SPI3 is effective not only in identifying drought occurrence but 372 

also in forecasting rice yield anomalies. 373 

The accuracy of rice drought prediction varies across the four drought categories throughout 374 

the year, with higher accuracy observed in the low and very high drought categories. These 375 

observations align with the findings of Mohseni et al. (2021), who reported that satellite-based 376 

NDVI data, such as MOD13Q1, are effective in predicting both low and high drought events 377 

by clearly distinguishing between normal vegetation and stressed conditions.  In contrast, the 378 

moderate drought category often shows reduced accuracy. This limitation arises because 379 

vegetation stress during moderate drought is relatively subtle, and the associated spectral 380 

changes may overlap with those observed under normal conditions. Consequently, NDVI alone 381 

may fail to discriminate intermediate drought intensities with sufficient precision (Zhang et al., 382 

2016. Lee et al. (2021) further noted that incorporating additional variables, such as soil 383 

moisture or land surface temperature, enhances the accuracy of moderate drought detection by 384 

utilizing diverse datasets.  Moreover, research using higher-resolution imagery, such as 385 

Landsat, has demonstrated improved accuracy in identifying severe droughts (Yang et al., 386 

2023). Nevertheless, MOD13Q1 remains one of the most widely used products due to its 387 

temporal frequency and long historical record, even though its relatively coarse spatial 388 

resolution introduces challenges in capturing localized extreme drought events. 389 

From an evaluation perspective, the PC method is widely used in drought monitoring because 390 

it provides an intuitive measure of correctly classified drought categories and offers a simple 391 

means of communicating forecast performance to stakeholders in early warning systems. 392 

However, PC has notable limitations, since missing an actual drought (miss) often carries more 393 

severe consequences than issuing a false alarm, leading to an overly optimistic view of forecast 394 

reliability. For this reason, PC is most effective when used in combination with additional skill 395 
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scores that capture event-specific performance. Metrics such as the Heidke Skill Score, Cohen’s 396 

Kappa, and the Brier Score offer more comprehensive evaluations of categorical forecasts, 397 

allowing for a more balanced assessment of model reliability (Mason, 2003; Wilks, 2019). 398 

The discrepancy between drought predictions and NDVI observations in Indramayu during 399 

DSP2 (October) of the Neutral year 2014, as well as DSP1 (June) and DSP2 (October) of the 400 

El Niño year 2015 (Figure 9a), can largely be explained by the dominance of irrigation 401 

infrastructure in the western part of the regency. While the model-based predictions classified 402 

these periods into higher drought categories, NDVI values suggested a relatively low drought 403 

category in certain areas.  This divergence highlights the buffering effect of irrigation systems, 404 

which can sustain vegetation health even under negative SPI3 conditions by providing a reliable 405 

water supply. (Xiao et al., 2023). Consequently, NDVI may underestimate drought severity in 406 

irrigated regions, as vegetation remains green and photosynthetically active despite underlying 407 

hydrological stress (Rembold et al., 2019; Satapathy et.al, 2024). 408 

In Bone, the accuracy of drought prediction is enhanced by its extensive rainfed rice fields, 409 

which enable SPI3 to effectively capture NDVI patterns. Unlike irrigated systems, rainfed 410 

agriculture is directly influenced by rainfall anomalies, linking meteorological drought indices 411 

and vegetation dynamics more apparent (Rojas et al., 2011; Chen et al., 2025).  However, 412 

predictive accuracy decreases during transitional months, such as the shift between the dry and 413 

wet seasons, when rainfall patterns become highly variable and less predictable. This is often 414 

accompanied by a broad error margin, reflecting increased uncertainty in distinguishing 415 

between short-term dry spells and the onset of sustained drought conditions (AghaKouchak et 416 

al., 2015). 417 

These findings underscore that in regions with extensive irrigation networks, NDVI may fail to 418 

fully capture the agricultural impacts of meteorological drought, leading to discrepancies 419 
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between predicted drought categories and observed vegetation responses. This suggests that 420 

integrating additional variables, such as irrigation coverage, groundwater use, could improve 421 

the accuracy of drought assessments (He et al., 2022; Purnamasari et al., 2025). For 422 

policymakers, this implies that drought early warning systems should incorporate both climatic 423 

indicators and agricultural water management practices to provide more reliable information 424 

for decision-making. 425 

The prediction accuracies obtained for both regions are nearly identical, indicating that data 426 

from Indramayu and Bone can generate predictions with comparable reliability. This finding 427 

supports the broader objective of developing a generalized model for application across 428 

Indonesia, where diverse rainfall regimes and agroecological conditions prevail. Furthermore, 429 

to enhance drought prediction accuracy, future research should prioritize integrating higher-430 

resolution data with machine learning techniques, which could improve both the accuracy and 431 

reliability of predictions. Incorporating local irrigation practices into prediction models is 432 

crucial, as such practices can significantly mitigate the impacts of drought and lead to 433 

discrepancies between observed NDVI and predicted rice drought. Finally, to improve the 434 

transferability of the model developed in this study, future work should emphasize validation 435 

across diverse regions, time periods, and climate regimes, thereby enabling a more 436 

comprehensive assessment of model accuracy and performance.  437 

Several widely used data sources for operational SPI forecasts include the NOAA Climate 438 

Prediction Center, which issues global seasonal precipitation outlooks (NOAA, 2024); the 439 

ECMWF seasonal forecasting system, which provides ensemble-based precipitation 440 

predictions suitable for SPI calculation (ECMWF, 2023); the SPEIbase and Global Drought 441 

Observatory platforms, which disseminate SPI and related drought indices across varying time 442 

scales (GDO, 2024); and the BMKG’s national seasonal rainfall forecasts, which are routinely 443 
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available for Indonesia (BMKG, 2023). Although our study was retrospective, these forecast 444 

products offer a clear pathway for future operationalization, enabling real-time or anticipatory 445 

rice drought prediction and strengthening the applicability of our framework for practitioners 446 

and policymakers. 447 

CONCLUSION 448 

This study proposes a rice drought prediction model that employs the onset and trend of SPI3 449 

as key predictors. The model was developed using data from two major rice-producing regions 450 

characterized by contrasting rainfall patterns. The onset of SPI3 refers to its value at the 451 

beginning of the planting season, while the SPI3 trend is defined as the gradient over four 452 

months from planting initiation to harvest. Rice yield predictions were generated one month 453 

prior to planting, providing an early warning of potential yield losses due to drought. Yield 454 

estimation within the model was conducted using a crop simulation approach, and drought 455 

predictions were validated against NDVI observations. 456 

Our study highlights that the association between the onset and trend of SPI3 is strongly linked 457 

to rice yield outcomes. Specifically, lower yields tend to occur under negative SPI3 trends, 458 

reflecting drier-than-normal conditions during the growing season, whereas higher yields are 459 

generally associated with positive SPI3 trends, indicative of wetter conditions. This relationship 460 

underscores the utility of SPI3 not only as a drought indicator but also as a predictor of potential 461 

yield variability. 462 

Overall, the results demonstrate that the prediction model performs more reliably in capturing 463 

severe drought conditions, particularly during the dry season, whereas its performance declines 464 

during wet and transitional periods. In both Indramayu and Bone, accuracies in the very high 465 

drought category are consistently higher, with accuracy ranges between 60-85%, indicating the 466 

model’s strength in detecting extreme drought events.  However, reduced accuracy and larger 467 
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uncertainties during seasonal transitions highlight the challenges of predicting drought under 468 

highly variable climatic conditions. During El Niño years, rice drought categories are typically 469 

elevated compared to neutral years, with PCs ranging from 59% to 77%, whereas in La Niña 470 

years they correspond more closely with the observed low drought category, with PCs ranging 471 

from 72% to 76%.  472 

The higher accuracy achieved for the very high rice drought category in this study is crucial for 473 

advancing rice drought prediction. Comparable prediction accuracies for Indramayu and Bone 474 

further support the feasibility of developing a generalized model applicable across Indonesia’s 475 

diverse agroecological conditions. Nevertheless, accuracy decreases during transitional 476 

periods, highlighting the challenges of maintaining predictive reliability amid rapidly changing 477 

rainfall patterns. Incorporating local irrigation practices into the model is essential, as such 478 

practices can markedly alter drought impacts and explain discrepancies between observed 479 

NDVI and predicted rice drought.  In addition, expanding validation across multiple regions, 480 

time periods, and climate regimes is essential to enhance the model’s transferability and provide 481 

a thorough assessment of its accuracy, reliability, and overall performance under diverse 482 

agroclimatic conditions. 483 
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