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ABSTRACT

Agricultural drought poses a major threat to rice production in Indonesia, highlighting the need
for dynamic prediction to support timely and effective management strategies. This study aims
to develop anew approach for predicting rice drought stress that incorporates the characteristics
of SPI3, emphasizing onset and trends, and to evaluate the model’s accuracy in predicting rice
drought. The onset of SPI3 denotes conditions at the start of the planting season, while the SPI3
trend represents the four-month gradient from planting to harvest. The Normalized Difference
Vegetation Index (NDVI) derived from MODIS was utilized to validate the spatial and temporal
predictions of rice drought using the Proportion Correct (PC) method. The model performs most
reliably in capturing severe droughts during the dry season, with accuracies in the very high
drought category ranging from 60% to 85%. Performance declines in March and August,
highlighting challenges during the transitions between wet and dry seasons. During the El Nifio
year, predictions aligned with observed very high drought (PC: 59—77%), whereas in the La
Nifia year, they matched the low drought category (PC: 72—76%). Comparable prediction
accuracies in Indramayu and Bone indicate the feasibility of developing a generalized model
for Indonesia’s diverse rice-producing areas. Future improvements should integrate higher-
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resolution data and machine learning, account for local irrigation practices, and expand
validation across regions to enhance model transferability and comprehensively assess its
performance.

Key words: drought, rice; prediction; SP13, NDVI
Highlights:
e Rice production in Indonesia is highly susceptible to drought, with the damaged areas
increasing sharply during El Nifio years.
e The onset and trend of the 3-month Standardized Precipitation Index (SPI3) reflect
drought risk across the growing season, making it a reliable predictor of rice drought.
e Negative SPI3 trends correspond to lower yields, while positive trends indicate higher
yields, demonstrating SPI3’s predictive value for yield variability.

e The higher accuracy in predicting severe rice drought enhances early warning systems
and enables proactive drought mitigation.

INTRODUCTION
Drought, as a natural disaster, demonstrates a complex and cascading nature, leading to more
severe impacts compared to single-disaster events. Agriculture is significantly affected by
drought hazards, which are a primary cause of crop failures and pose a substantial threat to
global food security (FAO, 2012; Zinat et.al., 2020). Prior studies indicate that the duration and
intensity of droughts are expected to increase significantly in the future (Zhou et al., 2023; Li
et al., 2024). These _findings confirm that drought represents a considerable future threat,
underscoring the necessity of understanding its patterns and intensity for effective anticipatory

action.

Rice serves as, the staple food for over 280 million people in Indonesia. Rice fields cover
approximately 7.4 million hectares across various regions of the country (BPS [Statistics
Indonesia], 2024). Planting generally occurs twice a year, namely during the wet season
planting (WSP) and the first dry-season planting (DSP1), with the possibility of a third planting
in irrigated areas when water resources are sufficient (the second dry-season planting, DSP2).

Rice production in Indonesia is highly susceptible to drought, particularly during the dry-season
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plantings (Naylor et al., 2007; Surmaini et al., 2015). El Nifio events are often associated with
droughts that significantly reduce rice production in Indonesia (D’Arrigo and Wilson, 2008;
Surmaini et al., 2015; Boer and Surmaini, 2020). Data from the Ministry of Agriculture of the
Republic of Indonesia indicate that prolonged droughts caused by moderate to strong El Nifio
events between 1990 and 2020 resulted in annual rice production losses ranging from

approximately 500,000 to 1.7 million tons.

Droughts are typically classified according to their duration and impacts_on various ecological
and social contexts (Mishra and Singh, 2010). Consequently, they.are generally categorized
into four types: meteorological, agricultural, hydrological, and,socio-economic droughts. The
transition from meteorological drought to agricultural droughtis particularly crucial for
developing effective early warning systems for agricultural drought (Xu et al., 2023). Drought
propagation refers to the transition from meteorological drought to other types of drought
(Bhardwaj et al., 2020). Typically, droughts begin with insufficient precipitation, which
subsequently reduces soil moisture and decreases surface and groundwater availability (Hao &

Singh, 2015), ultimately leading to adverse effects on crops (Wu et al., 2020; Li et al., 2024).

The Standardized PrecipitationIndex (SPI) is widely recognized as one of the most the
straightforward method for drought analysis and monitoring (McKee et al., 1993). Its
widespread adoption can be attributed to its interpretability, comparability, standardized
calculation methods (Zipper et al., 2016; Leng and Hall, 2019), flexibility, simplicity, and
accessibility of data (Dai et al., 2020). In addition, SPI is easy to compute and demonstrates
strong adaptability across both temporal and spatial scales (Pei et al., 2020). The SPI at a 3-
month scale (SPI3) is particularly suitable for agricultural drought monitoring because it
captures short- to medium-term precipitation deficits that directly affect soil moisture and crop

growth (McKee et al., 1993; Zargar et al., 2011). Tsige et al. (2019) identified a strong
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relationship between SPI3 and agricultural drought, making it a valuable indicator for

monitoring agricultural drought (Dai et al., 2020).

Although the SPI is a well-established and widely applied indicator for drought assessment, it
frequently categorizes drought events based on static thresholds or classifications. This study
introduces a novel interpretive framework by focusing on the gradual onset and trend dynamics
of SPI3 as a predictive indicator for rice drought. Our approach emphasizes the temporal
pattern and directionality of SPI3, monitoring how its values evolve before'a drought fully
manifests. To our knowledge, few studies examine SPI3 in this dynamic, ttend-oriented manner
specifically tailored for agronomic drought prediction in rice.systems. The primary rationale
for employing this index as a drought predictor is the recognition that rice growth and yield are
influenced not only by conditions at the onset of planting but also throughout the entire growing
period. By capturing the gradual escalation and directional shifts of SPI3 values, our method
offers earlier detection of emerging drought stress aligned with critical rice growth stages,
enabling a more sensitive and agronomically relevant early-warning tool. The objective of this
study is to develop a rice drought prediction model that incorporates combined SPI3
characteristics, with an emphasis on the onset and trend dynamics, and to evaluate the model’s

accuracy in predicting rice drought.

MATERIALS AND METHODS
Study area
The model was constructed using data from two districts, namely Indramayu in West Java
Province, representing the monsoon rainfall pattern, and Bone in South Sulawesi Province,

exemplifying the local rainfall pattern. These regions serve as key centers of rice production



116  and are vulnerable to drought occurrences. Indramayu is located in the western region of

117  Indonesia, whereas Bone is situated in the central region (Figure 1).
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120 Data
121 Meteorological Data

122 Daily meteorological data .from 38 rain gauge stations in Indramayu and Bone, including
123 rainfall, minimum'and-maximum temperatures, and solar radiation, were collected for the
124  period.1982=2009. The spatial distribution of the rain gauge stations used in this study is shown
125 in Figure L. In addition, gridded rainfall data from the Climate Hazards Group InfraRed
126  Precipitation with Station (CHIRPS) dataset for the years 2010-2019 were used for the SPI3

127  model application.

128 Soil Data
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Soil data samples were collected from study fields in each sub-district of Indramayu and Bone.
The data included drainage class, runoff potential, slope, soil layers, texture, organic carbon,

pH, nitrogen content, bulk density, and cation exchange capacity.

Management Practice Data
In this study, management practice data were obtained through interviews with farmers. The
data included sowing date, sowing density, row width, transplanting date, fertilizer application

rates and dates, as well as irrigation application dates and amounts.

Crop Phenology
Data on crop phenology were obtained from the Book of Variety Description of Rice published
by the Indonesian Center for Food Crops Research.and, Development (ICFORD). The data
included crop varieties, emergence, flowering, maturity, heatunits, biomass at each stage, and

yield.

Vegetation index
The Normalized Difference Vegetation Index (NDVI) was generated from MOD13Q1.061
Terra Vegetation Indices of MODIS TERRA, with a spatial resolution of 250 m and a temporal
resolution of 16 days. The MODIS data underwent atmospheric correction to ensure reliable

measurements of vegetation indices over time (de Oliveira and Epiphanio, 2012).

Methods
The method begins with the simulation of probable rice yields using the Decision Support
System for Agro-technology Transfer (DSSAT) and the development of the SPI3—rice yield
model. The model is implemented with SPI3, informed by gridded rainfall data from CHIRPS,

to assess the spatial prediction of rice drought. The final step involves validating rice drought
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predictions using NDVI obtained from MODIS TERRA and evaluating prediction skill with

the Proportion Correct (PC) method. Figure 2 presents the analysis flowchart.
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Figure 2. Flowchart outlining the development process of the rice drought prediction model

Crop Simulation Scenario
The CERES-Rice model, a component of DSSAT (Hoogenboom et al., 2023; Jones et al.,
2003), was used to simulate rice yield: The model has been validated and shown to provide
high accuracy for the Indonesian region (Boer and Surmaini, 2020), with simulated rice yield
results of R?-adj = 88% (P<0.01). Planting date scenarios were established at 10-day intervals
during the dry seasongspecifically on the Sth, 15th, and 25th of February, March, April, and
May in Indfamayu, and in May, June, July, and August in Bone for the period 1982-2009. The
rice variety used was Ciherang, with a common fertilizer application of 200 kg/ha of urea,
applied twiee at 10 and 40 days after planting. Planting distance was set at 25 x 20 cm, and

transplanting was conducted 21 days after seedling emergence.

The Onset and Trend of SPI3
The SPI3 is calculated using the formula proposed by McKee et al. (1993). The SPI3 compares

precipitation over a specific three-month period with historical records for the same period.
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The onset of SPI3 denotes its value at the beginning of the planting season. The SPI3 trend is
defined by the gradient of SPI3 over four months, spanning from planting initiation to harvest,
as shown in Figure 3. Rice yield predictions were generated one month prior to planting,

providing an early warning of potential yield losses due to drought.

2
15 . Rice
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Figure 3. Plot of SPI3 onset and trend associated with planting and harvesting between April
and July. As illustrated, the onset of SPI3, defined three months in advance (April 2008), is —
0.3, while the SPI3 trend from April to July shows a gradient of +0.4.

Linkage Between the Onset and Trend SPI3 and Rice Yield
The Cartesian plane quadrants were utilized to examine the relationships between the onset and
trend of SPI3 and rice yield (Figure 4). Quadrant (Q) I indicates the emergence of a positive
SPI3 accompanied by an upward trend. Q II demonstrates the commencement of a positive
SPI3, albeit with a declining trend. Q III depicts the onset of a negative SPI3, yet shows an
upward trend. Finally, Q IV denotes the onset of a negative SPI3 with a declining trend. The
SPI3 trend further provides insights into moisture dynamics, where a positive trend indicates
an increase in moisture levels over time, whereas a negative trend signifies decreasing moisture

levels.
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Figure 4. The quadrant illustrates the relationship between SPI3.onset (y-axis), SPI3 trend (x-
axis), and rice yield.
Validation of Rice Drought Prediction

This study employed NDVI to walidate the spatial and temporal patterns of rice drought. In rice
cultivation, which is particularly sensitive, to variations in water availability, NDVI is
instrumental in detecting early indicaters of drought stress (Thapa et al., 2019). The dataset
comprises two primary near-inftrared (NIR) bands, which were employed to calculate NDVI

following the formulation in Equation (1):

NIR — Red (1)

NDVI = SR + Red

NDVI anomalies were calculated by comparing the monthly NDVI values for each year with a
baseline period from 2014 to 2020. Negative anomalies indicated vegetation health below
normal levels, suggesting the occurrence of water stress (Nanzad et al., 2019). The formula for

NDVI anomaly is defined by Equation (2):

NDVI Anomaly = NDVIgpserved — NDVIpaseline (2)
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Where: NDVlgpserved is the monthly median NDVI value for a specific time period. ND Vlpaseline
is the monthly median NDVI value over a baseline period.
Vegetation anomalies were classified into four severity levels based on NDVI anomaly values,

determined by predefined thresholds, as shown in Table 1.

Table 1. NDVI anomaly ranges for drought hazard classification.

Class  NDVI Anomaly Range = Drought level ~ Description

Above-normal vegetation growth,
Class 1 ~ Anomaly > 0.05 Low likely resulting from surplus water

availability

Absence of significant water stress
Class2 -0.05 < Anomaly <0.05 Moderate

or'drought cenditions

Minor drought conditions,
Class 3  -0.1 <Anomaly <-0.05 High characterized by vegetation

experiencing moderate water stress

Class4 Anomaly <-0.1 Very High Signify severe drought conditions

Performance Measures
Proportion of Correct (PC) is recognized as the most straightforward for assessing the accuracy
of categorical forecast systems. Its simplicity and ease of interpretation make it a useful baseline
for evaluating model performance, particularly when class distributions are balanced (Nurmi,
2003; Wilks, 2019), and it has been widely used in drought prediction systems where ease of
communication to stakeholders is critical (Wilks, 2019). This measure is derived by calculating
the ratio of accurate predictions to the total number of predictions, as described by Equation

(3). The schematic contingency for categorical forecasts is detailed in Table 2.

10
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The PC methods commonly applied to analyze categorical data are based on contingency tables
(Mason, 2012). The elements of equation 3 and Table 2 are defined as a (hits) represents the
number of true positives, where the model predicted drought and drought was observed, b (false
alarms) indicates the number of false positive, where the model predicted drought, although no
drought was observed, ¢ (misses) represents the number of false negative, where the model
predicted no drought, but drought was occurred, d (correct rejections) indicates the number of
true negatives, where the model correctly predicted no drought and no ‘drought/was observed,
and n expresses the total number of observations.

Table 2. Schematic contingency table for categorical forecasts of binary events.

Observed 233
Forecast
Yes No Total 234
Yes a (Hits) b.(False alarms) atb 235
No c (Misses)  d(Correctrejections) c+d 236
Total atc b+d atb+tct+d=n
237

The model was developed using historical data from 1982 to 2009, which served as the model
construction.,, The validation process was conducted using an independent dataset covering the
period 2014 to 2020, applied at monthly intervals. The choice of these periods was determined
by the availability and consistency of reliable data, while the gap years (2010-2013) were
excluded due to data incompleteness. This approach ensured that the model’s performance
could be rigorously evaluated under independent conditions, thereby strengthening the
reliability of its predictive capability. Additional validation was conducted for specific months
in DSP1 (June) and DSP2 (October) during Neutral (2014), El Nifio (2015), and La Nifia (2017)

years.
11
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Results
Association Between SPI3 and Rice Yield
Figure 5 illustrates that the temporal patterns of SPI3 and rice yield anomalies show that periods
of negative and positive rice yield anomalies are interspersed with dry and wet conditions
throughout the study years. In Indramayu, notable drought events, indicated by -negative SPI3
values, were recorded in 1982, 1991, and 1997. During these years, rice yicld anomalies were
markedly lower than average, reflecting a significant reductiondn actual rice yields compared
to typical levels. These events are associated with reduced wet-season plantings and
production, consistent with the lower-than-average yield anomalies we observe in those years
(Siswanto et al., 2022). In contrast, in Bone, yield declines occur only during extreme or
prolonged drought, reflecting local hydroclimatic and management differences (Sunusi et al.,
2024). This spatial heterogeneity in drought—yield relationships highlights a broader pattern
seen across Indonesia, where tice yield responses to SPI-based drought indicators vary

considerably depending on local agroclimatic conditions (Hendrawan et al., 2023).
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Figure 5. Evolution of SPI3 from 1982 to 2000, with a comparison to rice yield anomalies in
Indramayu and Bone.
The Onset and Trend SPI3 - Rice Yield Model

Figure 6 was generated by combining data from the two study areas, Indramayu and Bone.
These data were used to develop a prediction model designed to robustly capture agricultural
drought events in distinct rainfall regimes, specifically the monsoonal rainfall in Indramayu
and the local rainfall in Bone.

This figure reveals a clear association between the onset and trend of SPI3 and rice yields. Rice
yields below 2 t/ha appear more frequently in Quadrants II and I, which are characterized by
negative SPI3 trends indicating drier conditions during the growing, season, consistent with
other regional findings that SPI3 effectively captures ddrought-induced reductions in rice
productivity (Surmaini et al., 2019). In contrast, Quadrants I and IV - marked by positive SPI3
trends and therefore wetter conditions show a higher incidence of rice yields exceeding 4 t/ha,

suggesting improved moisture availability significantly mitigates drought-induced yield losses.

5000

4000

13000

Onset of SPI3
o
Rice Yield (Kg/Ha)

2000

L 1000
-1 08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Trend of SPI3

Figure 6. Rice yields are displayed in a Cartesian plot with the SPI3 onset value on the y-axis
and the SPI3 trend on the x-axis. Positive SPI3 onset values correspond to wet conditions,
whereas negative values indicate dryness. Similarly, a positive SPI3 trend represents rising
moisture availability, while a negative trend reflects a decline. Quadrants represent onset—trend

13
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combinations: QI = wet/wetter, QII = wet/drier, QIII = dry/drier, QIV = dry/wetter. The color
of the circle in the quadrat indicates different rice yields.

The Cumulative Distribution Function (CDF) offers a compelling visualization of the
probability distribution of rice yields under the corresponding conditions in each quadrant.
Figure 7 shows the CDF curves for QII and QIII, which demonstrate a gradual increase up to
less than 4 t/ha, indicating that lower rice yields are more prevalent when both SPI3 trends are
negative. In contrast, in QI and QIV, the CDF curves exhibit a steep increas¢ once rice yields
exceed 4 t/ha, suggesting that higher rice yields are more common when both the onset and

trend of SPI3 are positive.

Empirical CDF

0.5
504
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Figure 7. The CDF of'rice yield for each quadrant
The rice drought category in each quadrant is assessed using a score based on a rice yield
threshold of 2 t/ha, under the assumption that drought conditions result in yields falling below
this level. The score is calculated by multiplying the percentage of rice yields below 2 t/ha in
each quadrant by the probability of these yields occurring in that quadrant, relative to the total
sample across all quadrants. The rice drought categories are classified into four levels, as

presented in Table 3.
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Table 3. Criteria for rice drought levels

Quadrant Sample (%) Rice Probability of rice Score (axb) drought level

yield < 2 ton/ha (a) yield < 2 ton/ha (b)

I 15.194 0.034 0.005 Low
II 24.734 0.276 0.068 High
11 50.707 0.328 0.166 Very high
v 9.364 0.130 0.012 Moderate

Skill of Rice Drought Prediction
The performance of rice drought prediction across four drought categories from 2014 to 2020
is shown in Figure 8. The analysis was condueted monthly from January to December,

comparing the model’s predictions with observed conditions using NDVI data from the

MOD13Q1 product.

Figure 8 (a) displays rice drought predictions in Indramayu. In the low drought category,
accuracy typically ranges from 50% to 80%. In the moderate category, accuracy varies between
40% and 70%, with reduced error bars indicating increased confidence. However, significant
declinies are observed, in March and August, highlighting difficulties during the transitions
between wetand dry seasons. The high category exhibits marginally higher accuracy (50-75%)
compared to the moderate category, albeit with greater error margins. In the very high category,
accuracy ranges from 60% to 85%, peaking in June and July during the dry season. These
findings suggest that the model is more effective in predicting severe droughts during the dry

season, while its performance diminishes during the wet and transitional seasons.

15
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Figure 8. Accuracy of rice drought predictions for the 2014-2020 period in a) Indramayu and
b) Bone.

Figure 8 (b) displays the efficacy of sice drought prediction in Bone. In the Low drought
category, accuracies vary between 50% and 75%, with large error bars indicating high
variability. In the Moderate drought category, accuracies range from 40% to 60%, with
narrower error marginsysuggesting a higher level of confidence. The model’s accuracy for the
Highdrought category ranges from 40% to 80%, with reduced performance observed during
the wet season (October to December). This indicates challenges in accurately identifying
severe drought events during the transitional dry—wet season. In the Very High category,
accuracy improves across the months, ranging from 60% to 85%, suggesting enhanced
performance. However, substantial uncertainty remains in predicting extreme drought
conditions in April and September, highlighting challenges during transitions between the dry

and wet seasons.
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Figure 9 depicts the spatially predicted and observed rice drought for June (DSP1) and

October (DSP2) in 2014, 2015, and 2017, corresponding to Neutral, El Nifio, and La Nifia
years. The impact of ENSO on rice drought categories in the Indramayu and Bone regions
shows a comparable pattern. During El Nifio years, rice drought levels are typically higher

than in Neutral years, whereas La Nifia years generally exhibit lower levels.
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Figure 9. Map of the predicted and observed rice drought in a) Indramayu and b) Bone for
June (DSP1) and Qctober. (DSP2) during 2014, 2015, and 2017, corresponding to Neutral, El
Nifio, and La Nifa years.Shaded areas denote rice field regions, while color variations indicate
the corresponding.drought categories. The SPI row indicates predicted rice drought, while the

NDVI row represents observed conditions.

Predictions for October (DSP2) in the Neutral year (2014) and the El Nifio year (2015) indicate
very high rice drought categories, with the highest PC at 64% for Indramayu and 76% for Bone.
In the La Nifa year (2017), predictions for June (DSP1) and October closely aligned with the
observed low drought category, with the PC for both regencies ranging from 72% to 76%.

Observations, however, revealed areas with varying hazard levels from low to high. Rice
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drought prediction for October shows higher accuracy compared to June, indicating improved
model performance during the peak of the dry season. This discrepancy reflects the

complexities of local conditions influencing vegetation resilience during drought periods.

Discussion
Figure 5 highlights the link between SPI3 and rice yield anomalies. In Indramayu, prolonged
severe negative SPI3 values are associated with reduced rice yields, as evidenced-in 1982, 1991,
and 1997. This aligns with the findings of Prabnakorn et al. (2018), which indicate that SPI
values below -1 often lead to significant yield reductions. Furthermore, Rejekiningrum et al.
(2022) emphasized that regions experiencing increased drought frequency and duration are
likely to experience substantial agricultural losses, which underscores the sensitivity of rice
cultivation in Indramayu to persistent climate stress.  Conversely, in.Bone, episodes of negative
SPI3 tend to be shorter and less severe, reflecting milder drought conditions with relatively
limited impacts on rice productivity. This divergenee underscores the role of regional climatic
variability in shaping drought tisk and,agricultural outcomes. It also suggests that while
Indramayu requires more robust drought-mitigation strategies, Bone may benefit from adaptive

practices that focus on maintaining resilience during shorter-term drought.

Figure 6 illustrates, that rice yields exhibit a specific response to SPI3, particularly in relation
to the onset and\trends, and their progression throughout the growing season. Negative SPI3
values in the early growing season may hinder crop establishment, whereas moisture deficits
during the reproductive phase often lead to pronounced yield reductions as a result of water
stress during grain development (Ray et al., 2015). In contrast, positive SPI3 values reflect
favorable moisture availability, which promotes crop growth and has the potential to enhance

yields (Gebrehiwot et al., 2011; Forootan et al., 2019). Our analysis strengthens earlier
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conclusions by indicating that SPI3 is effective not only in identifying drought occurrence but

also in forecasting rice yield anomalies.

The accuracy of rice drought prediction varies across the four drought categories throughout
the year, with higher accuracy observed in the low and very high drought categories. These
observations align with the findings of Mohseni et al. (2021), who reported that satellite-based
NDVI data, such as MOD13Q1, are effective in predicting both low and high.drought events
by clearly distinguishing between normal vegetation and stressed conditiens. * In contrast, the
moderate drought category often shows reduced accuracy. Thisslimitation arises because
vegetation stress during moderate drought is relatively subtle, and the associated spectral
changes may overlap with those observed under normal conditions. Consequently, NDVI alone
may fail to discriminate intermediate drought intensities with sufficient precision (Zhang et al.,
2016. Lee et al. (2021) further noted that incorporating additional variables, such as soil
moisture or land surface temperature, enhances the accuracy of moderate drought detection by
utilizing diverse datasets. Moreover, tesearch using higher-resolution imagery, such as
Landsat, has demonstrated improved accuracy in identifying severe droughts (Yang et al.,
2023). Nevertheless,.,MOD13Q1 remains one of the most widely used products due to its
temporal frequency and long historical record, even though its relatively coarse spatial

resolution intreduces challenges in capturing localized extreme drought events.

From an evaluation perspective, the PC method is widely used in drought monitoring because
it provides an intuitive measure of correctly classified drought categories and offers a simple
means of communicating forecast performance to stakeholders in early warning systems.
However, PC has notable limitations, since missing an actual drought (miss) often carries more
severe consequences than issuing a false alarm, leading to an overly optimistic view of forecast

reliability. For this reason, PC is most effective when used in combination with additional skill
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scores that capture event-specific performance. Metrics such as the Heidke Skill Score, Cohen’s
Kappa, and the Brier Score offer more comprehensive evaluations of categorical forecasts,

allowing for a more balanced assessment of model reliability (Mason, 2003; Wilks, 2019).

The discrepancy between drought predictions and NDVI observations in Indramayu during
DSP2 (October) of the Neutral year 2014, as well as DSP1 (June) and DSP2.(October) of the
El Nino year 2015 (Figure 9a), can largely be explained by the dominanece of irrigation
infrastructure in the western part of the regency. While the model-based predictions classified
these periods into higher drought categories, NDVI values suggested a relatively low drought
category in certain areas. This divergence highlights the buffering effect of irrigation systems,
which can sustain vegetation health even under negative SPI3 conditions by providing a reliable
water supply. (Xiao et al., 2023). Consequently, NDVI may underestimate drought severity in
irrigated regions, as vegetation remains green and photosynthetically active despite underlying

hydrological stress (Rembold et al., 2019; Satapathy et.al, 2024).

In Bone, the accuracy of drought prediction,is enhanced by its extensive rainfed rice fields,
which enable SPI3 to effectively capture NDVI patterns. Unlike irrigated systems, rainfed
agriculture is directly influencedby rainfall anomalies, linking meteorological drought indices
and vegetation dynamics more apparent (Rojas et al., 2011; Chen et al., 2025). However,
predictive accuracy decreases during transitional months, such as the shift between the dry and
wet seasons, when rainfall patterns become highly variable and less predictable. This is often
accompanied by a broad error margin, reflecting increased uncertainty in distinguishing
between short-term dry spells and the onset of sustained drought conditions (AghaKouchak et

al., 2015).

These findings underscore that in regions with extensive irrigation networks, NDVI may fail to

fully capture the agricultural impacts of meteorological drought, leading to discrepancies
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between predicted drought categories and observed vegetation responses. This suggests that
integrating additional variables, such as irrigation coverage, groundwater use, could improve
the accuracy of drought assessments (He et al., 2022; Purnamasari et al., 2025). For
policymakers, this implies that drought early warning systems should incorporate both climatic
indicators and agricultural water management practices to provide more reliable information

for decision-making.

The prediction accuracies obtained for both regions are nearly identicalgindicating that data
from Indramayu and Bone can generate predictions with comparable reliability: This finding
supports the broader objective of developing a generalized, model, for application across
Indonesia, where diverse rainfall regimes and agroecological conditions prevail. Furthermore,
to enhance drought prediction accuracy, future research should prioritize integrating higher-
resolution data with machine learning techniques, which ecould improve both the accuracy and
reliability of predictions. Incorporating local irrigation practices into prediction models is
crucial, as such practices can significantly mitigate the impacts of drought and lead to
discrepancies between,observed NDVI and predicted rice drought. Finally, to improve the
transferability of the.model developed in this study, future work should emphasize validation
across diversearegions, time periods, and climate regimes, thereby enabling a more

comprehensive assessment of model accuracy and performance.

Several widely used data sources for operational SPI forecasts include the NOAA Climate
Prediction Center, which issues global seasonal precipitation outlooks (NOAA, 2024); the
ECMWF seasonal forecasting system, which provides ensemble-based precipitation
predictions suitable for SPI calculation (ECMWF, 2023); the SPEIbase and Global Drought
Observatory platforms, which disseminate SPI and related drought indices across varying time

scales (GDO, 2024); and the BMKG’s national seasonal rainfall forecasts, which are routinely
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available for Indonesia (BMKG, 2023). Although our study was retrospective, these forecast
products offer a clear pathway for future operationalization, enabling real-time or anticipatory
rice drought prediction and strengthening the applicability of our framework for practitioners

and policymakers.

CONCLUSION
This study proposes a rice drought prediction model that employs the onset and trend of SPI3
as key predictors. The model was developed using data from two major rice-producing regions
characterized by contrasting rainfall patterns. The onset of SPI3.refets to its, value at the
beginning of the planting season, while the SPI3 trend is defined as.the gradient over four
months from planting initiation to harvest. Rice yield predictions were generated one month
prior to planting, providing an early warning of potential yield losses due to drought. Yield
estimation within the model was conducted using a crop simulation approach, and drought
predictions were validated against NDVI observations.
Our study highlights that the association between the onset and trend of SPI3 is strongly linked
to rice yield outcomes. Specifically, lower yields tend to occur under negative SPI3 trends,
reflecting drier-than-normal conditions during the growing season, whereas higher yields are
generally associated with positive SPI3 trends, indicative of wetter conditions. This relationship
undetscores the utility.of SPI3 not only as a drought indicator but also as a predictor of potential

yield variability.

Overall, the results demonstrate that the prediction model performs more reliably in capturing
severe drought conditions, particularly during the dry season, whereas its performance declines
during wet and transitional periods. In both Indramayu and Bone, accuracies in the very high
drought category are consistently higher, with accuracy ranges between 60-85%, indicating the

model’s strength in detecting extreme drought events. However, reduced accuracy and larger
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uncertainties during seasonal transitions highlight the challenges of predicting drought under
highly variable climatic conditions. During El Nifio years, rice drought categories are typically
elevated compared to neutral years, with PCs ranging from 59% to 77%, whereas in La Nifia
years they correspond more closely with the observed low drought category, with PCs ranging

from 72% to 76%.

The higher accuracy achieved for the very high rice drought category in this study is.crucial for
advancing rice drought prediction. Comparable prediction accuracies fordndramayu and Bone
further support the feasibility of developing a generalized modelapplicable across Indonesia’s
diverse agroecological conditions. Nevertheless, accuracy..decreases ,during transitional
periods, highlighting the challenges of maintaining predictive reliability amid rapidly changing
rainfall patterns. Incorporating local irrigation practices into the model is essential, as such
practices can markedly alter drought impacts and explain discrepancies between observed
NDVI and predicted rice drought. In addition, expanding validation across multiple regions,
time periods, and climate regimes is essential to enhance the model’s transferability and provide
a thorough assessment of its accuracy, reliability, and overall performance under diverse

agroclimatic conditions.
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