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Abstract. Agricultural drought poses a major threat to rice production in Indonesia,
highlighting the need for dynamic prediction to support timely and effective manage-
ment strategies. This study aims to develop a new approach for predicting rice drought
stress that incorporates the characteristics of SPI3, emphasizing onset and trends, and
to evaluate the model’s accuracy in predicting rice drought. The onset of SPI3 denotes
conditions at the start of the planting season, while the SPI3 trend represents the four-
month gradient from planting to harvest. The Normalized Difference Vegetation Index
(NDVI) derived from MODIS was utilized to validate the spatial and temporal predic-
tions of rice drought using the Proportion Correct (PC) method. The model performs
most reliably in capturing severe droughts during the dry season, with accuracies in
the very high drought category ranging from 60% to 85%. Performance declines in
March and August, highlighting challenges during the transitions between wet and dry
seasons. During the El Nifio year, predictions aligned with observed very high drought
(PC: 59-77%), whereas in the La Nifa year, they matched the low drought category
(PC: 72-76%). Comparable prediction accuracies in Indramayu and Bone indicate
the feasibility of developing a generalized model for Indonesias diverse rice-produc-
ing areas. Future improvements should integrate higher-resolution data and machine
learning, account for local irrigation practices, and expand validation across regions to
enhance model transferability and comprehensively assess its performance.
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HIGHLIGHTS

- Rice production in Indonesia is highly susceptible to
drought, with the damaged areas increasing sharply
during El Nifio years.

- The onset and trend of the 3-month Standardized
Precipitation Index (SPI3) reflect drought risk across
the growing season, making it a reliable predictor of
rice drought.

- Negative SPI3 trends correspond to lower yields,
while positive trends indicate higher yields, demon-
strating SPI3’s predictive value for yield variability.

- The higher accuracy in predicting severe rice
drought enhances early warning systems and ena-
bles proactive drought mitigation.

INTRODUCTION

Drought, as a natural disaster, demonstrates a
complex and cascading nature, leading to more severe
impacts compared to single-disaster events. Agriculture
is significantly affected by drought hazards, which are
a primary cause of crop failures and pose a substan-
tial threat to global food security (FAO, 2012; Zinat et
al., 2020). Prior studies indicate that the duration and
intensity of droughts are expected to increase signifi-
cantly in the future (Zhou et al., 2023; Li et al., 2024).
These findings confirm that drought represents a con-
siderable future threat, underscoring the necessity of
understanding its patterns and intensity for effective
anticipatory action.

Rice serves as the staple food for over 280 million
people in Indonesia. Rice fields cover approximately
7.4 million hectares across various regions of the coun-
try (BPS [Statistics Indonesia], 2024). Planting gener-
ally occurs twice a year, namely during the wet season
planting (WSP) and the first dry-season planting (DSP1),
with the possibility of a third planting in irrigated are-
as when water resources are sufficient (the second dry-
season planting, DSP2). Rice production in Indonesia
is highly susceptible to drought, particularly during the
dry-season plantings (Naylor et al., 2007; Surmaini et al.,
2015). El Nifo events are often associated with droughts
that significantly reduce rice production in Indonesia
(D’Arrigo and Wilson, 2008; Surmaini et al., 2015; Boer
and Surmaini, 2020). Data from the Ministry of Agricul-
ture of the Republic of Indonesia indicate that prolonged
droughts caused by moderate to strong El Nifio events
between 1990 and 2020 resulted in annual rice produc-
tion losses ranging from approximately 500,000 to 1.7
million tons.
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Droughts are typically classified according to their
duration and impacts on various ecological and social
contexts (Mishra and Singh, 2010). Consequently, they
are generally categorized into four types: meteorological,
agricultural, hydrological, and socio-economic droughts.
The transition from meteorological drought to agricul-
tural drought is particularly crucial for developing effec-
tive early warning systems for agricultural drought (Xu
et al., 2023). Drought propagation refers to the transition
from meteorological drought to other types of drought
(Bhardwaj et al., 2020). Typically, droughts begin with
insufficient precipitation, which subsequently reduces
soil moisture and decreases surface and groundwater
availability (Hao & Singh, 2015), ultimately leading to
adverse effects on crops (Wu et al., 2020; Li et al., 2024).

The Standardized Precipitation Index (SPI) is wide-
ly recognized as one of the most the straightforward
method for drought analysis and monitoring (McKee et
al., 1993). Its widespread adoption can be attributed to
its interpretability, comparability, standardized calcula-
tion methods (Zipper et al., 2016; Leng and Hall, 2019),
flexibility, simplicity, and accessibility of data (Dai et al.,
2020). In addition, SPI is easy to compute and demon-
strates strong adaptability across both temporal and spa-
tial scales (Pei et al., 2020). The SPI at a 3-month scale
(SPI3) is particularly suitable for agricultural drought
monitoring because it captures short to medium term
precipitation deficits that directly affect soil moisture
and crop growth (McKee et al., 1993; Zargar et al,,
2011). Tsige et al. (2019) identified a strong relationship
between SPI3 and agricultural drought, making it a val-
uable indicator for monitoring agricultural drought (Dai
et al., 2020).

Although the SPI is a well-established and widely
applied indicator for drought assessment, it frequently
categorizes drought events based on static thresholds or
classifications. This study introduces a novel interpre-
tive framework by focusing on the gradual onset and
trend dynamics of SPI3 as a predictive indicator for
rice drought. Our approach emphasizes the temporal
pattern and directionality of SPI3, monitoring how its
values evolve before a drought fully manifests. To our
knowledge, few studies examine SPI3 in this dynamic,
trend-oriented manner specifically tailored for agro-
nomic drought prediction in rice systems. The primary
ratio for employing this index as a drought predictor is
the recognition that rice growth and yield are influenced
not only by conditions at the onset of planting but also
throughout the entire growing period. By capturing the
gradual escalation and directional shifts of SPI3 values,
our method offers earlier detection of emerging drought
stress aligned with critical rice growth stages, enabling
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a more sensitive and agronomically relevant early-warn-
ing tool. The objective of this study is to develop a rice
drought prediction model that incorporates combined
SPI3 characteristics, with an emphasis on the onset and
trend dynamics, and to evaluate the model’s accuracy in
predicting rice drought.

MATERIALS AND METHODS
Study area

The model was constructed using data from two
districts, namely Indramayu in West Java Province, rep-
resenting the monsoon rainfall pattern, and Bone in
South Sulawesi Province, exemplifying the local rain-
fall pattern. These regions serve as key centers of rice
production and are vulnerable to drought occurrences.
Indramayu is located in the western region of Indonesia,
whereas Bone is situated in the central region (Figure 1).

Data
Meteorological data

Daily meteorological data from 38 rain gauge sta-
tions in Indramayu and Bone, including rainfall, mini-
mum and maximum temperatures, and solar radiation,
were collected for the period 1982-2009. The spatial
distribution of the rain gauge stations used in this study
is shown in Figure 1. In addition, gridded rainfall data
from the Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS) dataset for the years 2010-2019
were used for the SPI3 model application.

Soil data

Soil data samples were collected from study fields
in each sub-district of Indramayu and Bone. The data
included drainage class, runoff potential, slope, soil
layers, texture, organic carbon, pH, nitrogen content,
bulk density, and cation exchange capacity.
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Figure 1. Study region and distribution of rain gauges.
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Management practice data

In this study, management practices data were
obtained through interviews with farmers. The data
included sowing date, sowing density, row width, trans-
planting date, fertilizer application rates and dates, as
well as irrigation application dates and amounts.

Crop phenology

Data on crop phenology were obtained from the
Book of Variety Description of Rice published by the
Indonesian Center for Food Crops Research and Devel-
opment (ICFORD). The data included crop varieties,
emergence, flowering, maturity, heat units, biomass at
each stage, and yield.

Vegetation index

The Normalized Difference Vegetation Index
(NDVI) was generated from MOD13Q1.061 Terra Veg-
etation Indices of MODIS TERRA, with a spatial reso-
lution of 250 m and a temporal resolution of 16 days.
The MODIS data underwent atmospheric correction to
ensure reliable measurements of vegetation indices over
time (de Oliveira and Epiphanio, 2012).

Elza Surmaini et al.

Methods

The method begins with the simulation of prob-
able rice yields using the Decision Support System for
Agro-technology Transfer (DSSAT) and the develop-
ment of the SPI3-rice yield model. The model is imple-
mented with SPI3, informed by gridded rainfall data
from CHIRPS, to assess the spatial prediction of rice
drought. The final step involves validating rice drought
predictions using NDVT obtained from MODIS TERRA
and evaluating prediction skill with the Proportion
Correct (PC) method. Figure 2 presents the analysis
flowchart.

Crop simulation scenario

The CERES-Rice model, a component of DSSAT
(Hoogenboom et al., 2023; Jones et al., 2003), was used
to simulate rice yield. The model has been validated
and shown to provide high accuracy for the Indonesian
region (Boer and Surmaini, 2020), with simulated rice
yield results of R*-adj = 88% (P<0.01). Planting date sce-
narios were established at 10-day intervals during the
dry season, specifically on the 5th, 15th, and 25th of
February, March, April, and May in Indramayu, and in
May, June, July, and August in Bone for the period 1982-
2009. The rice variety used was Ciherang, with a com-
mon fertilizer application of 200 kg/ha of urea, applied
twice at 10 and 40 days after planting. Planting distance
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Figure 2. Flowchart outlining the development process of the rice drought prediction model.
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was set at 25 x 20 cm, and transplanting was conducted
21 days after seedling emergence.

The Onset and Trend of SPI3

The SPI3 is calculated using the formula proposed
by McKee et al. (1993). The SPI3 compares precipita-
tion over a specific three-month period with historical
records for the same period. The onset of SPI3 denotes
its value at the beginning of the planting season. The
SPI3 trend is defined by the gradient of SPI3 over four
months, spanning from planting initiation to harvest, as
shown in Figure 3. Rice yield predictions were generated
one month prior to planting, providing an early warning
of potential yield losses due to drought.

Linkage between the onset and trend SPI3 and rice yield

The Cartesian plane quadrants were utilized to
examine the relationships between the onset and trend
of SPI3 and rice yield (Figure 4). Quadrant (Q) I indi-
cates the emergence of a positive SPI3 accompanied by
an upward trend. Q II demonstrates the commence-
ment of a positive SPI3, albeit with a declining trend.
Q IIT depicts the onset of a negative SPI3, yet shows an
upward trend. Finally, Q IV denotes the onset of a nega-
tive SPI3 with a declining trend. The SPI3 trend further
provides insights into moisture dynamics, where a posi-
tive trend indicates an increase in moisture levels over
time, whereas a negative trend signifies decreasing mois-
ture levels.
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Figure 3. Plot of SPI3 onset and trend associated with planting and
harvesting between April and July. As illustrated, the onset of SPI3,
defined three months in advance (April 2008), is -0.3, while the
SPI3 trend from April to July shows a gradient of +0.4.
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Figure 4. The quadrant illustrates the relationship between SPI3
onset (y-axis), SPI3 trend (x-axis), and rice yield.

Validation of rice drought prediction

This study employed NDVI to validate the spatial
and temporal patterns of rice drought. In rice culti-
vation, which is particularly sensitive to variations in
water availability, NDVI is instrumental in detecting
early indicators of drought stress (Thapa et al., 2019).
The dataset comprises two primary near-infrared (NIR)
bands, which were employed to calculate NDVTI follow-
ing the formulation in Equation (1):

NIR-Red
NDVI = {riRed )

NDVTI anomalies were calculated by comparing the
monthly NDVT values for each year with a baseline peri-
od from 2014 to 2020. Negative anomalies indicated veg-
etation health below normal levels, suggesting the occur-
rence of water stress (Nanzad et al., 2019). The formula
for NDVI anomaly is defined by Equation (2):

NDVIAnomaly = NDVIObserved — NDVIbaseline (2)

Where: NDVI p.rveq is the monthly median NDVI
value for a specific time period. NDVIy, ;.. is the
monthly median NDVT value over a baseline period.

Vegetation anomalies were classified into four sever-
ity levels based on NDVI anomaly values, determined by
predefined thresholds, as shown in Table 1.

Performance measures

Proportion of Correct (PC) is recognized as the
most straightforward for assessing the accuracy of cat-
egorical forecast systems. Its simplicity and ease of inter-
pretation make it a useful baseline for evaluating model
performance, particularly when class distributions are
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Table 1. NDVI anomaly ranges for drought hazard classification.

Elza Surmaini et al.

Class NDVI Anomaly Range Drought level Description
Class 1 Anomaly > 0.05 Low Above-normal vegetation growth, likely resulting from surplus water availability
Class 2 -0.05 < Anomaly < 0.05  Moderate Absence of significant water stress or drought conditions
Class 3 -0.1 < Anomaly < -0.05 High Minor drought conditions, characterized by vegetation experiencing moderate water stress

Class 4 Anomaly < -0.1

Very High Signify severe drought conditions

balanced (Nurmi, 2003; Wilks, 2019), and it has been
widely used in drought prediction systems where ease of
communication to stakeholders is critical (Wilks, 2019).
This measure is derived by calculating the ratio of accu-
rate predictions to the total number of predictions, as
described by Equation (3). The schematic contingency
for categorical forecasts is detailed in Table 2.

PC =24 3)

The PC methods commonly applied to analyze cat-
egorical data are based on contingency tables (Mason,
2012). The elements of equation 3 and Table 2 are
defined as a (hits) represents the number of true posi-
tives, where the model predicted drought and drought
was observed, b (false alarms) indicates the number
of false positive, where the model predicted drought,
although no drought was observed, ¢ (misses) represents
the number of false negative, where the model predicted
no drought, but drought was occurred, d (correct rejec-
tions) indicates the number of true negatives, where the
model correctly predicted no drought and no drought
was observed, and n expresses the total number of
observations.

The model was developed using historical data
from 1982 to 2009, which served as the model construc-
tion. The validation process was conducted using an
independent dataset covering the period 2014 to 2020,
applied at monthly intervals. The choice of these peri-
ods was determined by the availability and consistency
of reliable data, while the gap years (2010-2013) were
excluded due to data incompleteness. This approach
ensured that the model’s performance could be rigor-

Table 2. Schematic contingency table for categorical forecasts of
binary events.

Observed
Forecast
Yes No Total
Yes a (Hits) b (False alarms) a+b
No ¢ (Misses) d (Correct rejections) c+d
Total a+c b+d a+b+ctd=n

ously evaluated under independent conditions, thereby
strengthening the reliability of its predictive capability.
Additional validation was conducted for specific months
in DSP1 (June) and DSP2 (October) during Neutral
(2014), El Nifio (2015), and La Nifia (2017) years.

RESULTS
Association between SPI3 and rice yield

Figure 5 illustrates that the temporal patterns of
SPI3 and rice yield anomalies show that periods of
negative and positive rice yield anomalies are inter-
spersed with dry and wet conditions throughout the
study years. In Indramayu, notable drought events,
indicated by negative SPI3 values, were recorded in
1982, 1991, and 1997. During these years, rice yield
anomalies were markedly lower than average, reflect-
ing a significant reduction in actual rice yields com-
pared to typical levels. These events are associated with
reduced WSP periods and production, consistent with
the lower-than-average yield anomalies we observe in
those years (Siswanto et al., 2022). In contrast, in Bone,
yield declines occur only during extreme or prolonged
drought, reflecting local hydroclimatic and manage-
ment differences (Sunusi et al., 2024). This spatial het-
erogeneity in drought-yield relationships highlights a
broader pattern seen across Indonesia, where rice yield
responses to SPI-based drought indicators vary con-
siderably depending on local agroclimatic conditions
(Hendrawan et al., 2023).

The onset and trend SPI3 - rice yield model

Figure 6 was generated by combining data from the
two study areas, Indramayu and Bone. These data were
used to develop a prediction model designed to robustly
capture agricultural drought events in distinct rainfall
regimes, specifically the monsoonal rainfall in Indram-
ayu and the local rainfall in Bone.

This figure reveals a clear association between the
onset and trend of SPI3 and rice yields. Rice yields below
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Figure 5. Evolution of SPI3 from 1982 to 2000, with a comparison to rice yield anomalies in Indramayu and Bone.

2 t/ha appear more frequently in Quadrants IT and III,
which are characterized by negative SPI3 trends indi-
cating drier conditions during the growing season, con-
sistent with other regional findings that SPI3 effectively
captures drought-induced reductions in rice productivity
(Surmaini et al., 2019). In contrast, Quadrants I and IV -
marked by positive SPI3 trends and therefore wetter con-
ditions show a higher incidence of rice yields exceeding
4 t/ha, suggesting improved moisture availability signifi-
cantly mitigates drought-induced yield losses.

The Cumulative Distribution Function (CDF) offers
a compelling visualization of the probability distribu-
tion of rice yields under the corresponding conditions
in each quadrant. Figure 7 shows the CDF curves for
QII and QIII, which demonstrate a gradual increase up
to less than 4 t/ha, indicating that lower rice yields are
more prevalent when both SPI3 trends are negative. In
contrast, in QI and QIV, the CDF curves exhibit a steep
increase once rice yields exceed 4 t/ha, suggesting that
higher rice yields are more common when both the
onset and trend of SPI3 are positive.

The rice drought category in each quadrant is
assessed using a score based on a rice yield threshold
of 2 t/ha, under the assumption that drought condi-
tions result in yields falling below this level. The score
is calculated by multiplying the percentage of rice yields
below 2 t/ha in each quadrant by the probability of these
yields occurring in that quadrant, relative to the total
sample across all quadrants. The rice drought categories
are classified into four levels, as presented in Table 3.

Skill of rice drought prediction

The performance of rice drought prediction across
four drought categories from 2014 to 2020 is shown in
Figure 8. The analysis was conducted monthly from Jan-
uary to December, comparing the model’s predictions
with observed conditions using NDVI data from the
MOD13Q1 product.

Figure 8 (a) displays rice drought predictions in
Indramayu. In the low drought category, accuracy



30

Elza Surmaini et al.

3 I 1 I 1 d | @] I T 5000
O
o O
o a
g oP © o oRe) ©
2r O G Q& © o
o) 8%)
) 4000
3y
1+ @§OO§ °
) 5 00 ©
- T
o : §? T
(/5] (§9 5 !m
L =
o k-]
w0 T 3000 3
4 P
c 3
o —
1L | [
2000
2k ]
O
_3 O 1 | | 1 1000

-1 -08 -06 -04 -0.2

0 0.2 04 0.6 0.8 1

Trend of SPI3

Figure 6. Rice yields are displayed in a Cartesian plot with the SPI3 onset value on the y-axis and the SPI3 trend on the x-axis. Positive
SPI3 onset values correspond to wet conditions, whereas negative values indicate dryness. Similarly, a positive SPI3 trend represents rising
moisture availability, while a negative trend reflects a decline. Quadrants represent onset-trend combinations: QI = wet/wetter, QII = wet/
drier, QIII = dry/drier, QIV = dry/wetter. The color of the circle in the quadrat indicates different rice yields.

5 Empirical CDF Table 3. Criteria for rice drought levels
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Figure 7. The CDF of rice yield for each quadrant.

0 1080 2000 3000 4000 300 SOOD TO00 E000 However, significant declines are observed in March

and August, highlighting difficulties during the transi-
tions between wet and dry seasons. The high category
exhibits marginally higher accuracy (50-75%) com-
pared to the moderate category, albeit with greater
error margins. In the very high category, accuracy
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Figure 8. Accuracy of rice drought predictions for the 2014-2020 period in a) Indramayu and b) Bone.

ranges from 60% to 85%, peaking in June and July
during the dry season. These findings suggest that the
model is more effective in predicting severe droughts
during the dry season, while its performance diminish-
es during the wet and transitional seasons.

Figure 8 (b) displays the efficacy of rice drought
prediction in Bone. In the Low drought category, accu-
racies vary between 50% and 75%, with large error bars
indicating high variability. In the Moderate drought cat-
egory, accuracies range from 40% to 60%, with narrower

error margins, suggesting a higher level of confidence.
The model’s accuracy for the High drought category
ranges from 40% to 80%, with reduced performance
observed during the wet season (October to December).
This indicates challenges in accurately identifying severe
drought events during the transitional dry-wet season.
In the Very High category, accuracy improves across the
months, ranging from 60% to 85%, suggesting enhanced
performance. However, substantial uncertainty remains
in predicting extreme drought conditions in April and
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Figure 9. Map of the predicted and observed rice drought in a) Indramayu and b) Bone for June (DSP1) and October (DSP2) during 2014,

2015, and 2017, corresponding to Neutral, El Nifio, and La Nifia years.

Shaded areas denote rice field regions, while color variations indicate

the corresponding drought categories. The SPI row indicates predicted rice drought, while the NDVI row represents observed conditions.

September, highlighting challenges during transitions
between the dry and wet seasons.

Figure 9 depicts the spatially predicted and observed
rice drought for June (DSPI) and October (DSP2) in
2014, 2015, and 2017, corresponding to Neutral, El Nifio,
and La Nifia years. The impact of ENSO on rice drought
categories in the Indramayu and Bone regions shows a
comparable pattern. During El Nifio years, rice drought
levels are typically higher than in Neutral years, whereas
La Nifia years generally exhibit lower levels.

Predictions for October (DSP2) in the Neutral year
(2014) and the El Nifo year (2015) indicate very high rice
drought categories, with the highest PC at 64% for Indram-
ayu and 76% for Bone. In the La Nina year (2017), predic-
tions for June (DSP1) and October closely aligned with
the observed low drought category, with the PC for both
regencies ranging from 72% to 76%. Observations, however,
revealed areas with varying hazard levels from low to high.
Rice drought prediction for October shows higher accuracy
compared to June, indicating improved model performance
during the peak of the dry season. This discrepancy reflects
the complexities of local conditions influencing vegetation
resilience during drought periods.

DISCUSSION

Figure 5 highlights the link between SPI3 and rice
yield anomalies. In Indramayu, prolonged severe nega-

tive SPI3 values are associated with reduced rice yields, as
evidenced in 1982, 1991, and 1997. This aligns with the
findings of Prabnakorn et al. (2018), which indicate that
SPI values below -1 often lead to significant yield reduc-
tions. Furthermore, Rejekiningrum et al. (2022) empha-
sized that regions experiencing increased drought fre-
quency and duration are likely to experience substantial
agricultural losses, which underscores the sensitivity of
rice cultivation in Indramayu to persistent climate stress.
Conversely, in Bone, episodes of negative SPI3 tend to be
shorter and less severe, reflecting milder drought condi-
tions with relatively limited impacts on rice productivity.
This divergence underscores the role of regional climatic
variability in shaping drought risk and agricultural out-
comes. It also suggests that while Indramayu requires
more robust drought-mitigation strategies, Bone may
benefit from adaptive practices that focus on maintaining
resilience during shorter-term drought.

Figure 6 illustrates that rice yields exhibit a specific
response to SPI3, particularly in relation to the onset and
trends, and their progression throughout the growing
season. Negative SPI3 values in the early growing season
may hinder crop establishment, whereas moisture deficits
during the reproductive phase often lead to pronounced
yield reductions as a result of water stress during grain
development (Ray et al., 2015). In contrast, positive SPI3
values reflect favorable moisture availability, which pro-
motes crop growth and has the potential to enhance
yields (Gebrehiwot et al., 2011; Forootan et al., 2019). Our
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analysis strengthens earlier conclusions by indicating that
SPI3 is effective not only in identifying drought occur-
rence but also in forecasting rice yield anomalies.

The accuracy of rice drought prediction varies
across the four drought categories throughout the year,
with higher accuracy observed in the low and very high
drought categories. These observations align with the
findings of Mohseni et al. (2021), who reported that
satellite-based NDVT data, such as MOD13Ql, are effec-
tive in predicting both low and high drought events by
clearly distinguishing between normal vegetation and
stressed conditions. In contrast, the moderate drought
category often shows reduced accuracy. This limita-
tion arises because vegetation stress during moderate
drought is relatively subtle, and the associated spectral
changes may overlap with those observed under nor-
mal conditions. Consequently, NDVI alone may fail to
discriminate intermediate drought intensities with suffi-
cient precision (Zhang et al., 2016. Lee et al. (2021) fur-
ther noted that incorporating additional variables, such
as soil moisture or land surface temperature, enhances
the accuracy of moderate drought detection by utiliz-
ing diverse datasets. Moreover, research using higher-
resolution imagery, such as Landsat, has demonstrated
improved accuracy in identifying severe droughts (Yang
et al., 2023). Nevertheless, MOD13Ql remains one of the
most widely used products due to its temporal frequen-
cy and long historical record, even though its relatively
coarse spatial resolution introduces challenges in captur-
ing localized extreme drought events.

From an evaluation perspective, the PC method is
widely used in drought monitoring because it provides
an intuitive measure of correctly classified drought cate-
gories and offers a simple means of communicating fore-
cast performance to stakeholders in early warning sys-
tems. However, PC has notable limitations, since miss-
ing an actual drought (miss) often carries more severe
consequences than issuing a false alarm, leading to an
overly optimistic view of forecast reliability. For this rea-
son, PC is most effective when used in combination with
additional skill scores that capture event-specific perfor-
mance. Metrics such as the Heidke Skill Score, Cohen’s
Kappa, and the Brier Score offer more comprehensive
evaluations of categorical forecasts, allowing for a more
balanced assessment of model reliability (Mason, 2003;
Wilks, 2019).

The discrepancy between drought predictions and
NDVI observations in Indramayu during DSP2 (Octo-
ber) of the Neutral year 2014, as well as DSP1 (June) and
DSP2 (October) of the El Nifio year 2015 (Figure 9a),
can largely be explained by the dominance of irrigation
infrastructure in the western part of the regency. While

the model-based predictions classified these periods
into higher drought categories, NDVI values suggested
a relatively low drought category in certain areas. This
divergence highlights the buffering effect of irrigation
systems, which can sustain vegetation health even under
negative SPI3 conditions by providing a reliable water
supply. (Xiao et al., 2023). Consequently, NDVI may
underestimate drought severity in irrigated regions, as
vegetation remains green and photosynthetically active
despite underlying hydrological stress (Rembold et al.,
2019; Satapathy et al., 2024).

In Bone, the accuracy of drought prediction is
enhanced by its extensive rainfed rice fields, which ena-
ble SPI3 to effectively capture NDVI patterns. Unlike
irrigated systems, rainfed agriculture is directly influ-
enced by rainfall anomalies, linking meteorological
drought indices and vegetation dynamics more appar-
ent (Rojas et al., 2011; Chen et al., 2025). However, pre-
dictive accuracy decreases during transitional months,
such as the shift between the dry and wet seasons, when
rainfall patterns become highly variable and less predict-
able. This is often accompanied by a broad error mar-
gin, reflecting increased uncertainty in distinguishing
between short-term dry spells and the onset of sustained
drought conditions (AghaKouchak et al., 2015).

These findings underscore that in regions with
extensive irrigation networks, NDVI may fail to ful-
ly capture the agricultural impacts of meteorological
drought, leading to discrepancies between predicted
drought categories and observed vegetation responses.
This suggests that integrating additional variables, such
as irrigation coverage, groundwater use, could improve
the accuracy of drought assessments (He et al., 2022;
Purnamasari et al., 2025). For policymakers, this implies
that drought early warning systems should incorporate
both climatic indicators and agricultural water manage-
ment practices to provide more reliable information for
decision-making.

The prediction accuracies obtained for both regions
are nearly identical, indicating that data from Indram-
ayu and Bone can generate predictions with comparable
reliability. This finding supports the broader objective
of developing a generalized model for application across
Indonesia, where diverse rainfall regimes and agro-
ecological conditions prevail. Furthermore, to enhance
drought prediction accuracy, future research should pri-
oritize integrating higher-resolution data with machine
learning techniques, which could improve both the accu-
racy and reliability of predictions. Incorporating local
irrigation practices into prediction models is crucial,
as such practices can significantly mitigate the impacts
of drought and lead to discrepancies between observed
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NDVI and predicted rice drought. Finally, to improve
the transferability of the model developed in this study,
future work should emphasize validation across diverse
regions, time periods, and climate regimes, thereby ena-
bling a more comprehensive assessment of model accu-
racy and performance.

Several widely used data sources for operational
SPI forecasts include the NOAA Climate Prediction
Center, which issues global seasonal precipitation out-
looks (NOAA, 2024); the ECMWTF seasonal forecast-
ing system, which provides ensemble-based precipita-
tion predictions suitable for SPI calculation (ECMWEF,
2023); the SPEIbase and Global Drought Observatory
platforms, which disseminate SPI and related drought
indices across varying time scales (GDO, 2024); and
the BMKG’s national seasonal rainfall forecasts, which
are routinely available for Indonesia (BMKG, 2023).
Although our study was retrospective, these forecast
products offer a clear pathway for future operationaliza-
tion, enabling real-time or anticipatory rice drought pre-
diction and strengthening the applicability of our frame-
work for practitioners and policymakers.

CONCLUSION

This study proposes a rice drought prediction mod-
el that employs the onset and trend of SPI3 as key pre-
dictors. The model was developed using data from two
major rice-producing regions characterized by contrast-
ing rainfall patterns. The onset of SPI3 refers to its value
at the beginning of the planting season, while the SPI3
trend is defined as the gradient over four months from
planting initiation to harvest. Rice yield predictions were
generated one month prior to planting, providing an ear-
ly warning of potential yield losses due to drought. Yield
estimation within the model was conducted using a crop
simulation approach, and drought predictions were vali-
dated against NDVI observations.

Our study highlights that the association between
the onset and trend of SPI3 is strongly linked to rice
yield outcomes. Specifically, lower yields tend to occur
under negative SPI3 trends, reflecting drier-than-normal
conditions during the growing season, whereas higher
yields are generally associated with positive SPI3 trends,
indicative of wetter conditions. This relationship under-
scores the utility of SPI3 not only as a drought indicator
but also as a predictor of potential yield variability.

Overall, the results demonstrate that the predic-
tion model performs more reliably in capturing severe
drought conditions, particularly during the dry season,
whereas its performance declines during wet and transi-
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tional periods. In both Indramayu and Bone, accuracies
in the very high drought category are consistently high-
er, with accuracy ranges between 60-85%, indicating the
model’s strength in detecting extreme drought events.
However, reduced accuracy and larger uncertainties
during seasonal transitions highlight the challenges of
predicting drought under highly variable climatic condi-
tions. During El Nifio years, rice drought categories are
typically elevated compared to neutral years, with PCs
ranging from 59% to 77%, whereas in La Nifa years
they correspond more closely with the observed low
drought category, with PCs ranging from 72% to 76%.

The higher accuracy achieved for the very high rice
drought category in this study is crucial for advancing
rice drought prediction. Comparable prediction accura-
cies for Indramayu and Bone further support the fea-
sibility of developing a generalized model applicable
across Indonesia’s diverse agroecological conditions.
Nevertheless, accuracy decreases during transitional
periods, highlighting the challenges of maintaining pre-
dictive reliability amid rapidly changing rainfall pat-
terns. Incorporating local irrigation practices into the
model is essential, as such practices can markedly alter
drought impacts and explain discrepancies between
observed NDVI and predicted rice drought. In addi-
tion, expanding validation across multiple regions, time
periods, and climate regimes is essential to enhance the
model’s transferability and provide a thorough assess-
ment of its accuracy, reliability, and overall performance
under diverse agroclimatic conditions.
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