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Abstract. Agricultural drought poses a major threat to rice production in Indonesia, 
highlighting the need for dynamic prediction to support timely and effective manage-
ment strategies. This study aims to develop a new approach for predicting rice drought 
stress that incorporates the characteristics of SPI3, emphasizing onset and trends, and 
to evaluate the model’s accuracy in predicting rice drought. The onset of SPI3 denotes 
conditions at the start of the planting season, while the SPI3 trend represents the four-
month gradient from planting to harvest. The Normalized Difference Vegetation Index 
(NDVI) derived from MODIS was utilized to validate the spatial and temporal predic-
tions of rice drought using the Proportion Correct (PC) method. The model performs 
most reliably in capturing severe droughts during the dry season, with accuracies in 
the very high drought category ranging from 60% to 85%. Performance declines in 
March and August, highlighting challenges during the transitions between wet and dry 
seasons. During the El Niño year, predictions aligned with observed very high drought 
(PC: 59–77%), whereas in the La Niña year, they matched the low drought category 
(PC: 72–76%). Comparable prediction accuracies in Indramayu and Bone indicate 
the feasibility of developing a generalized model for Indonesia’s diverse rice-produc-
ing areas. Future improvements should integrate higher-resolution data and machine 
learning, account for local irrigation practices, and expand validation across regions to 
enhance model transferability and comprehensively assess its performance.
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HIGHLIGHTS

–	 Rice production in Indonesia is highly susceptible to 
drought, with the damaged areas increasing sharply 
during El Niño years. 

–	 The onset and trend of the 3-month Standardized 
Precipitation Index (SPI3) reflect drought risk across 
the growing season, making it a reliable predictor of 
rice drought. 

–	 Negative SPI3 trends correspond to lower yields, 
while positive trends indicate higher yields, demon-
strating SPI3’s predictive value for yield variability.

–	 The higher accuracy in predicting severe rice 
drought enhances early warning systems and ena-
bles proactive drought mitigation. 

INTRODUCTION

Drought, as a natural disaster, demonstrates a 
complex and cascading nature, leading to more severe 
impacts compared to single-disaster events. Agriculture 
is significantly affected by drought hazards, which are 
a primary cause of crop failures and pose a substan-
tial threat to global food security (FAO, 2012; Zinat et 
al., 2020). Prior studies indicate that the duration and 
intensity of droughts are expected to increase signifi-
cantly in the future (Zhou et al., 2023; Li et al., 2024). 
These findings confirm that drought represents a con-
siderable future threat, underscoring the necessity of 
understanding its patterns and intensity for effective 
anticipatory action. 

Rice serves as the staple food for over 280 million 
people in Indonesia. Rice fields cover approximately 
7.4 million hectares across various regions of the coun-
try (BPS [Statistics Indonesia], 2024). Planting gener-
ally occurs twice a year, namely during the wet season 
planting (WSP) and the first dry-season planting (DSP1), 
with the possibility of a third planting in irrigated are-
as when water resources are sufficient (the second dry-
season planting, DSP2). Rice production in Indonesia 
is highly susceptible to drought, particularly during the 
dry-season plantings (Naylor et al., 2007; Surmaini et al., 
2015). El Niño events are often associated with droughts 
that significantly reduce rice production in Indonesia 
(D’Arrigo and Wilson, 2008; Surmaini et al., 2015; Boer 
and Surmaini, 2020). Data from the Ministry of Agricul-
ture of the Republic of Indonesia indicate that prolonged 
droughts caused by moderate to strong El Niño events 
between 1990 and 2020 resulted in annual rice produc-
tion losses ranging from approximately 500,000 to 1.7 
million tons. 

Droughts are typically classified according to their 
duration and impacts on various ecological and social 
contexts (Mishra and Singh, 2010). Consequently, they 
are generally categorized into four types: meteorological, 
agricultural, hydrological, and socio-economic droughts. 
The transition from meteorological drought to agricul-
tural drought is particularly crucial for developing effec-
tive early warning systems for agricultural drought (Xu 
et al., 2023). Drought propagation refers to the transition 
from meteorological drought to other types of drought 
(Bhardwaj et al., 2020). Typically, droughts begin with 
insufficient precipitation, which subsequently reduces 
soil moisture and decreases surface and groundwater 
availability (Hao & Singh, 2015), ultimately leading to 
adverse effects on crops (Wu et al., 2020; Li et al., 2024). 

The Standardized Precipitation Index (SPI) is wide-
ly recognized as one of the most the straightforward 
method for drought analysis and monitoring (McKee et 
al., 1993). Its widespread adoption can be attributed to 
its interpretability, comparability, standardized calcula-
tion methods (Zipper et al., 2016; Leng and Hall, 2019), 
flexibility, simplicity, and accessibility of data (Dai et al., 
2020). In addition, SPI is easy to compute and demon-
strates strong adaptability across both temporal and spa-
tial scales (Pei et al., 2020). The SPI at a 3-month scale 
(SPI3) is particularly suitable for agricultural drought 
monitoring because it captures short to medium term 
precipitation deficits that directly affect soil moisture 
and crop growth (McKee et al., 1993; Zargar et al., 
2011). Tsige et al. (2019) identified a strong relationship 
between SPI3 and agricultural drought, making it a val-
uable indicator for monitoring agricultural drought (Dai 
et al., 2020). 

Although the SPI is a well-established and widely 
applied indicator for drought assessment, it frequently 
categorizes drought events based on static thresholds or 
classifications. This study introduces a novel interpre-
tive framework by focusing on the gradual onset and 
trend dynamics of SPI3 as a predictive indicator for 
rice drought. Our approach emphasizes the temporal 
pattern and directionality of SPI3, monitoring how its 
values evolve before a drought fully manifests. To our 
knowledge, few studies examine SPI3 in this dynamic, 
trend-oriented manner specifically tailored for agro-
nomic drought prediction in rice systems. The primary 
ratio for employing this index as a drought predictor is 
the recognition that rice growth and yield are influenced 
not only by conditions at the onset of planting but also 
throughout the entire growing period. By capturing the 
gradual escalation and directional shifts of SPI3 values, 
our method offers earlier detection of emerging drought 
stress aligned with critical rice growth stages, enabling 
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a more sensitive and agronomically relevant early-warn-
ing tool. The objective of this study is to develop a rice 
drought prediction model that incorporates combined 
SPI3 characteristics, with an emphasis on the onset and 
trend dynamics, and to evaluate the model’s accuracy in 
predicting rice drought. 

MATERIALS AND METHODS

Study area

The model was constructed using data from two 
districts, namely Indramayu in West Java Province, rep-
resenting the monsoon rainfall pattern, and Bone in 
South Sulawesi Province, exemplifying the local rain-
fall pattern. These regions serve as key centers of rice 
production and are vulnerable to drought occurrences. 
Indramayu is located in the western region of Indonesia, 
whereas Bone is situated in the central region (Figure 1). 

Data

Meteorological data

Daily meteorological data from 38 rain gauge sta-
tions in Indramayu and Bone, including rainfall, mini-
mum and maximum temperatures, and solar radiation, 
were collected for the period 1982–2009. The spatial 
distribution of the rain gauge stations used in this study 
is shown in Figure 1. In addition, gridded rainfall data 
from the Climate Hazards Group InfraRed Precipitation 
with Station (CHIRPS) dataset for the years 2010–2019 
were used for the SPI3 model application. 

Soil data

Soil data samples were collected from study fields 
in each sub-district of Indramayu and Bone. The data 
included drainage class, runoff potential, slope, soil 
layers, texture, organic carbon, pH, nitrogen content, 
bulk density, and cation exchange capacity. 

Figure 1. Study region and distribution of rain gauges.
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Management practice data

In this study, management practices data were 
obtained through interviews with farmers. The data 
included sowing date, sowing density, row width, trans-
planting date, fertilizer application rates and dates, as 
well as irrigation application dates and amounts. 

Crop phenology

Data on crop phenology were obtained from the 
Book of Variety Description of Rice published by the 
Indonesian Center for Food Crops Research and Devel-
opment (ICFORD). The data included crop varieties, 
emergence, flowering, maturity, heat units, biomass at 
each stage, and yield. 

Vegetation index

The Normalized Difference Vegetation Index 
(NDVI) was generated from MOD13Q1.061 Terra Veg-
etation Indices of MODIS TERRA, with a spatial reso-
lution of 250 m and a temporal resolution of 16 days. 
The MODIS data underwent atmospheric correction to 
ensure reliable measurements of vegetation indices over 
time (de Oliveira and Epiphanio, 2012). 

Methods

The method begins with the simulation of prob-
able rice yields using the Decision Support System for 
Agro-technology Transfer (DSSAT) and the develop-
ment of the SPI3–rice yield model. The model is imple-
mented with SPI3, informed by gridded rainfall data 
from CHIRPS, to assess the spatial prediction of rice 
drought. The final step involves validating rice drought 
predictions using NDVI obtained from MODIS TERRA 
and evaluating prediction skill with the Proportion 
Correct (PC) method. Figure 2 presents the analysis 
flowchart. 

Crop simulation scenario

The CERES-Rice model, a component of DSSAT 
(Hoogenboom et al., 2023; Jones et al., 2003), was used 
to simulate rice yield. The model has been validated 
and shown to provide high accuracy for the Indonesian 
region (Boer and Surmaini, 2020), with simulated rice 
yield results of R²-adj = 88% (P<0.01). Planting date sce-
narios were established at 10-day intervals during the 
dry season, specifically on the 5th, 15th, and 25th of 
February, March, April, and May in Indramayu, and in 
May, June, July, and August in Bone for the period 1982–
2009. The rice variety used was Ciherang, with a com-
mon fertilizer application of 200 kg/ha of urea, applied 
twice at 10 and 40 days after planting. Planting distance 
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Figure 2. Flowchart outlining the development process of the rice drought prediction model.
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was set at 25 × 20 cm, and transplanting was conducted 
21 days after seedling emergence. 

The Onset and Trend of SPI3

The SPI3 is calculated using the formula proposed 
by McKee et al. (1993). The SPI3 compares precipita-
tion over a specific three-month period with historical 
records for the same period. The onset of SPI3 denotes 
its value at the beginning of the planting season. The 
SPI3 trend is defined by the gradient of SPI3 over four 
months, spanning from planting initiation to harvest, as 
shown in Figure 3. Rice yield predictions were generated 
one month prior to planting, providing an early warning 
of potential yield losses due to drought.

Linkage between the onset and trend SPI3 and rice yield 

The Cartesian plane quadrants were utilized to 
examine the relationships between the onset and trend 
of SPI3 and rice yield (Figure 4). Quadrant (Q) I indi-
cates the emergence of a positive SPI3 accompanied by 
an upward trend. Q II demonstrates the commence-
ment of a positive SPI3, albeit with a declining trend. 
Q III depicts the onset of a negative SPI3, yet shows an 
upward trend. Finally, Q IV denotes the onset of a nega-
tive SPI3 with a declining trend. The SPI3 trend further 
provides insights into moisture dynamics, where a posi-
tive trend indicates an increase in moisture levels over 
time, whereas a negative trend signifies decreasing mois-
ture levels. 

Validation of rice drought prediction 

This study employed NDVI to validate the spatial 
and temporal patterns of rice drought. In rice culti-
vation, which is particularly sensitive to variations in 
water availability, NDVI is instrumental in detecting 
early indicators of drought stress (Thapa et al., 2019). 
The dataset comprises two primary near-infrared (NIR) 
bands, which were employed to calculate NDVI follow-
ing the formulation in Equation (1):

� (1)

NDVI anomalies were calculated by comparing the 
monthly NDVI values for each year with a baseline peri-
od from 2014 to 2020. Negative anomalies indicated veg-
etation health below normal levels, suggesting the occur-
rence of water stress (Nanzad et al., 2019). The formula 
for NDVI anomaly is defined by Equation (2): 

� (2)

Where: NDVIobserved is the monthly median NDVI 
value for a specific time period. NDVIbaseline is the 
monthly median NDVI value over a baseline period.

Vegetation anomalies were classified into four sever-
ity levels based on NDVI anomaly values, determined by 
predefined thresholds, as shown in Table 1. 

Performance measures

Proportion of Correct (PC) is recognized as the 
most straightforward for assessing the accuracy of cat-
egorical forecast systems. Its simplicity and ease of inter-
pretation make it a useful baseline for evaluating model 
performance, particularly when class distributions are 
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Figure 3. Plot of SPI3 onset and trend associated with planting and 
harvesting between April and July. As illustrated, the onset of SPI3, 
defined three months in advance (April 2008), is –0.3, while the 
SPI3 trend from April to July shows a gradient of +0.4. 

Figure 4. The quadrant illustrates the relationship between SPI3 
onset (y-axis), SPI3 trend (x-axis), and rice yield.
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balanced (Nurmi, 2003; Wilks, 2019), and it has been 
widely used in drought prediction systems where ease of 
communication to stakeholders is critical (Wilks, 2019). 
This measure is derived by calculating the ratio of accu-
rate predictions to the total number of predictions, as 
described by Equation (3). The schematic contingency 
for categorical forecasts is detailed in Table 2.

� (3)

The PC methods commonly applied to analyze cat-
egorical data are based on contingency tables (Mason, 
2012). The elements of equation 3 and Table 2 are 
defined as a (hits) represents the number of true posi-
tives, where the model predicted drought and drought 
was observed, b (false alarms) indicates the number 
of false positive, where the model predicted drought, 
although no drought was observed, c (misses) represents 
the number of false negative, where the model predicted 
no drought, but drought was occurred, d (correct rejec-
tions) indicates the number of true negatives, where the 
model correctly predicted no drought and no drought 
was observed, and n expresses the total number of 
observations.

The model was developed using historical data 
from 1982 to 2009, which served as the model construc-
tion. The validation process was conducted using an 
independent dataset covering the period 2014 to 2020, 
applied at monthly intervals. The choice of these peri-
ods was determined by the availability and consistency 
of reliable data, while the gap years (2010-2013) were 
excluded due to data incompleteness. This approach 
ensured that the model’s performance could be rigor-

ously evaluated under independent conditions, thereby 
strengthening the reliability of its predictive capability. 
Additional validation was conducted for specific months 
in DSP1 (June) and DSP2 (October) during Neutral 
(2014), El Niño (2015), and La Niña (2017) years. 

RESULTS

Association between SPI3 and rice yield

Figure 5 illustrates that the temporal patterns of 
SPI3 and rice yield anomalies show that periods of 
negative and positive rice yield anomalies are inter-
spersed with dry and wet conditions throughout the 
study years. In Indramayu, notable drought events, 
indicated by negative SPI3 values, were recorded in 
1982, 1991, and 1997. During these years, rice yield 
anomalies were markedly lower than average, reflect-
ing a significant reduction in actual rice yields com-
pared to typical levels. These events are associated with 
reduced WSP periods and production, consistent with 
the lower-than-average yield anomalies we observe in 
those years (Siswanto et al., 2022). In contrast, in Bone, 
yield declines occur only during extreme or prolonged 
drought, ref lecting local hydroclimatic and manage-
ment differences (Sunusi et al., 2024). This spatial het-
erogeneity in drought–yield relationships highlights a 
broader pattern seen across Indonesia, where rice yield 
responses to SPI-based drought indicators vary con-
siderably depending on local agroclimatic conditions 
(Hendrawan et al., 2023).

The onset and trend SPI3 - rice yield model

Figure 6 was generated by combining data from the 
two study areas, Indramayu and Bone. These data were 
used to develop a prediction model designed to robustly 
capture agricultural drought events in distinct rainfall 
regimes, specifically the monsoonal rainfall in Indram-
ayu and the local rainfall in Bone.

This figure reveals a clear association between the 
onset and trend of SPI3 and rice yields. Rice yields below 

Table 1. NDVI anomaly ranges for drought hazard classification.

Class NDVI Anomaly Range Drought level Description

Class 1 Anomaly > 0.05 Low Above-normal vegetation growth, likely resulting from surplus water availability
Class 2 -0.05 ≤ Anomaly ≤ 0.05 Moderate Absence of significant water stress or drought conditions
Class 3 -0.1 ≤ Anomaly < -0.05 High Minor drought conditions, characterized by vegetation experiencing moderate water stress
Class 4 Anomaly < -0.1 Very High Signify severe drought conditions

Table 2. Schematic contingency table for categorical forecasts of 
binary events.

Forecast
Observed

Yes No Total

Yes a (Hits) b (False alarms) a+b
No c (Misses) d (Correct rejections) c+d
Total a+c b+d a+b+c+d= n
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2 t/ha appear more frequently in Quadrants II and III, 
which are characterized by negative SPI3 trends indi-
cating drier conditions during the growing season, con-
sistent with other regional findings that SPI3 effectively 
captures drought-induced reductions in rice productivity 
(Surmaini et al., 2019). In contrast, Quadrants I and IV - 
marked by positive SPI3 trends and therefore wetter con-
ditions show a higher incidence of rice yields exceeding 
4 t/ha, suggesting improved moisture availability signifi-
cantly mitigates drought-induced yield losses.

The Cumulative Distribution Function (CDF) offers 
a compelling visualization of the probability distribu-
tion of rice yields under the corresponding conditions 
in each quadrant. Figure 7 shows the CDF curves for 
QII and QIII, which demonstrate a gradual increase up 
to less than 4 t/ha, indicating that lower rice yields are 
more prevalent when both SPI3 trends are negative. In 
contrast, in QI and QIV, the CDF curves exhibit a steep 
increase once rice yields exceed 4 t/ha, suggesting that 
higher rice yields are more common when both the 
onset and trend of SPI3 are positive. 

The rice drought category in each quadrant is 
assessed using a score based on a rice yield threshold 
of 2 t/ha, under the assumption that drought condi-
tions result in yields falling below this level. The score 
is calculated by multiplying the percentage of rice yields 
below 2 t/ha in each quadrant by the probability of these 
yields occurring in that quadrant, relative to the total 
sample across all quadrants. The rice drought categories 
are classified into four levels, as presented in Table 3. 

Skill of rice drought prediction

The performance of rice drought prediction across 
four drought categories from 2014 to 2020 is shown in 
Figure 8. The analysis was conducted monthly from Jan-
uary to December, comparing the model’s predictions 
with observed conditions using NDVI data from the 
MOD13Q1 product. 

Figure 8 (a) displays rice drought predictions in 
Indramayu. In the low drought category, accuracy 

Figure 5. Evolution of SPI3 from 1982 to 2000, with a comparison to rice yield anomalies in Indramayu and Bone.
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typically ranges from 50% to 80%. In the moderate 
category, accuracy varies between 40% and 70%, with 
reduced error bars indicating increased confidence. 
However, significant declines are observed in March 
and August, highlighting difficulties during the transi-
tions between wet and dry seasons. The high category 
exhibits marginally higher accuracy (50-75%) com-
pared to the moderate category, albeit with greater 
error margins. In the very high category, accuracy 

Figure 6. Rice yields are displayed in a Cartesian plot with the SPI3 onset value on the y-axis and the SPI3 trend on the x-axis. Positive 
SPI3 onset values correspond to wet conditions, whereas negative values indicate dryness. Similarly, a positive SPI3 trend represents rising 
moisture availability, while a negative trend reflects a decline. Quadrants represent onset–trend combinations: QI = wet/wetter, QII = wet/
drier, QIII = dry/drier, QIV = dry/wetter. The color of the circle in the quadrat indicates different rice yields.

Figure 7. The CDF of rice yield for each quadrant.

Table 3. Criteria for rice drought levels

Quadrant 
Sample (%) 
Rice yield < 
2 ton/ha (a)

Probability of 
rice yield < 2 

ton/ha (b)
Score (axb) Drought 

level

I 15.194 0.034 0.005 Low
II 24.734 0.276 0.068 High
III 50.707 0.328 0.166 Very high
IV 9.364 0.130 0.012 Moderate
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ranges from 60% to 85%, peaking in June and July 
during the dry season. These findings suggest that the 
model is more effective in predicting severe droughts 
during the dry season, while its performance diminish-
es during the wet and transitional seasons. 

Figure 8 (b) displays the efficacy of rice drought 
prediction in Bone. In the Low drought category, accu-
racies vary between 50% and 75%, with large error bars 
indicating high variability. In the Moderate drought cat-
egory, accuracies range from 40% to 60%, with narrower 

error margins, suggesting a higher level of confidence. 
The model’s accuracy for the High drought category 
ranges from 40% to 80%, with reduced performance 
observed during the wet season (October to December). 
This indicates challenges in accurately identifying severe 
drought events during the transitional dry–wet season. 
In the Very High category, accuracy improves across the 
months, ranging from 60% to 85%, suggesting enhanced 
performance. However, substantial uncertainty remains 
in predicting extreme drought conditions in April and 

Figure 8. Accuracy of rice drought predictions for the 2014–2020 period in a) Indramayu and b) Bone.
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September, highlighting challenges during transitions 
between the dry and wet seasons. 

Figure 9 depicts the spatially predicted and observed 
rice drought for June (DSP1) and October (DSP2) in 
2014, 2015, and 2017, corresponding to Neutral, El Niño, 
and La Niña years. The impact of ENSO on rice drought 
categories in the Indramayu and Bone regions shows a 
comparable pattern. During El Niño years, rice drought 
levels are typically higher than in Neutral years, whereas 
La Niña years generally exhibit lower levels. 

Predictions for October (DSP2) in the Neutral year 
(2014) and the El Niño year (2015) indicate very high rice 
drought categories, with the highest PC at 64% for Indram-
ayu and 76% for Bone. In the La Niña year (2017), predic-
tions for June (DSP1) and October closely aligned with 
the observed low drought category, with the PC for both 
regencies ranging from 72% to 76%. Observations, however, 
revealed areas with varying hazard levels from low to high. 
Rice drought prediction for October shows higher accuracy 
compared to June, indicating improved model performance 
during the peak of the dry season. This discrepancy reflects 
the complexities of local conditions influencing vegetation 
resilience during drought periods.

DISCUSSION

Figure 5 highlights the link between SPI3 and rice 
yield anomalies. In Indramayu, prolonged severe nega-

tive SPI3 values are associated with reduced rice yields, as 
evidenced in 1982, 1991, and 1997. This aligns with the 
findings of Prabnakorn et al. (2018), which indicate that 
SPI values below -1 often lead to significant yield reduc-
tions. Furthermore, Rejekiningrum et al. (2022) empha-
sized that regions experiencing increased drought fre-
quency and duration are likely to experience substantial 
agricultural losses, which underscores the sensitivity of 
rice cultivation in Indramayu to persistent climate stress. 
Conversely, in Bone, episodes of negative SPI3 tend to be 
shorter and less severe, reflecting milder drought condi-
tions with relatively limited impacts on rice productivity. 
This divergence underscores the role of regional climatic 
variability in shaping drought risk and agricultural out-
comes. It also suggests that while Indramayu requires 
more robust drought-mitigation strategies, Bone may 
benefit from adaptive practices that focus on maintaining 
resilience during shorter-term drought. 

Figure 6 illustrates that rice yields exhibit a specific 
response to SPI3, particularly in relation to the onset and 
trends, and their progression throughout the growing 
season. Negative SPI3 values in the early growing season 
may hinder crop establishment, whereas moisture deficits 
during the reproductive phase often lead to pronounced 
yield reductions as a result of water stress during grain 
development (Ray et al., 2015). In contrast, positive SPI3 
values reflect favorable moisture availability, which pro-
motes crop growth and has the potential to enhance 
yields (Gebrehiwot et al., 2011; Forootan et al., 2019). Our 

a) b)

Figure 9. Map of the predicted and observed rice drought in a) Indramayu and b) Bone for June (DSP1) and October (DSP2) during 2014, 
2015, and 2017, corresponding to Neutral, El Niño, and La Niña years. Shaded areas denote rice field regions, while color variations indicate 
the corresponding drought categories. The SPI row indicates predicted rice drought, while the NDVI row represents observed conditions.
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analysis strengthens earlier conclusions by indicating that 
SPI3 is effective not only in identifying drought occur-
rence but also in forecasting rice yield anomalies.

The accuracy of rice drought prediction varies 
across the four drought categories throughout the year, 
with higher accuracy observed in the low and very high 
drought categories. These observations align with the 
findings of Mohseni et al. (2021), who reported that 
satellite-based NDVI data, such as MOD13Q1, are effec-
tive in predicting both low and high drought events by 
clearly distinguishing between normal vegetation and 
stressed conditions. In contrast, the moderate drought 
category often shows reduced accuracy. This limita-
tion arises because vegetation stress during moderate 
drought is relatively subtle, and the associated spectral 
changes may overlap with those observed under nor-
mal conditions. Consequently, NDVI alone may fail to 
discriminate intermediate drought intensities with suffi-
cient precision (Zhang et al., 2016. Lee et al. (2021) fur-
ther noted that incorporating additional variables, such 
as soil moisture or land surface temperature, enhances 
the accuracy of moderate drought detection by utiliz-
ing diverse datasets. Moreover, research using higher-
resolution imagery, such as Landsat, has demonstrated 
improved accuracy in identifying severe droughts (Yang 
et al., 2023). Nevertheless, MOD13Q1 remains one of the 
most widely used products due to its temporal frequen-
cy and long historical record, even though its relatively 
coarse spatial resolution introduces challenges in captur-
ing localized extreme drought events.

From an evaluation perspective, the PC method is 
widely used in drought monitoring because it provides 
an intuitive measure of correctly classified drought cate-
gories and offers a simple means of communicating fore-
cast performance to stakeholders in early warning sys-
tems. However, PC has notable limitations, since miss-
ing an actual drought (miss) often carries more severe 
consequences than issuing a false alarm, leading to an 
overly optimistic view of forecast reliability. For this rea-
son, PC is most effective when used in combination with 
additional skill scores that capture event-specific perfor-
mance. Metrics such as the Heidke Skill Score, Cohen’s 
Kappa, and the Brier Score offer more comprehensive 
evaluations of categorical forecasts, allowing for a more 
balanced assessment of model reliability (Mason, 2003; 
Wilks, 2019).

The discrepancy between drought predictions and 
NDVI observations in Indramayu during DSP2 (Octo-
ber) of the Neutral year 2014, as well as DSP1 (June) and 
DSP2 (October) of the El Niño year 2015 (Figure 9a), 
can largely be explained by the dominance of irrigation 
infrastructure in the western part of the regency. While 

the model-based predictions classified these periods 
into higher drought categories, NDVI values suggested 
a relatively low drought category in certain areas. This 
divergence highlights the buffering effect of irrigation 
systems, which can sustain vegetation health even under 
negative SPI3 conditions by providing a reliable water 
supply. (Xiao et al., 2023). Consequently, NDVI may 
underestimate drought severity in irrigated regions, as 
vegetation remains green and photosynthetically active 
despite underlying hydrological stress (Rembold et al., 
2019; Satapathy et al., 2024).

In Bone, the accuracy of drought prediction is 
enhanced by its extensive rainfed rice fields, which ena-
ble SPI3 to effectively capture NDVI patterns. Unlike 
irrigated systems, rainfed agriculture is directly influ-
enced by rainfall anomalies, linking meteorological 
drought indices and vegetation dynamics more appar-
ent (Rojas et al., 2011; Chen et al., 2025). However, pre-
dictive accuracy decreases during transitional months, 
such as the shift between the dry and wet seasons, when 
rainfall patterns become highly variable and less predict-
able. This is often accompanied by a broad error mar-
gin, reflecting increased uncertainty in distinguishing 
between short-term dry spells and the onset of sustained 
drought conditions (AghaKouchak et al., 2015).

These findings underscore that in regions with 
extensive irrigation networks, NDVI may fail to ful-
ly capture the agricultural impacts of meteorological 
drought, leading to discrepancies between predicted 
drought categories and observed vegetation responses. 
This suggests that integrating additional variables, such 
as irrigation coverage, groundwater use, could improve 
the accuracy of drought assessments (He et al., 2022; 
Purnamasari et al., 2025). For policymakers, this implies 
that drought early warning systems should incorporate 
both climatic indicators and agricultural water manage-
ment practices to provide more reliable information for 
decision-making.

The prediction accuracies obtained for both regions 
are nearly identical, indicating that data from Indram-
ayu and Bone can generate predictions with comparable 
reliability. This finding supports the broader objective 
of developing a generalized model for application across 
Indonesia, where diverse rainfall regimes and agro-
ecological conditions prevail. Furthermore, to enhance 
drought prediction accuracy, future research should pri-
oritize integrating higher-resolution data with machine 
learning techniques, which could improve both the accu-
racy and reliability of predictions. Incorporating local 
irrigation practices into prediction models is crucial, 
as such practices can significantly mitigate the impacts 
of drought and lead to discrepancies between observed 
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NDVI and predicted rice drought. Finally, to improve 
the transferability of the model developed in this study, 
future work should emphasize validation across diverse 
regions, time periods, and climate regimes, thereby ena-
bling a more comprehensive assessment of model accu-
racy and performance. 

Several widely used data sources for operational 
SPI forecasts include the NOAA Climate Prediction 
Center, which issues global seasonal precipitation out-
looks (NOAA, 2024); the ECMWF seasonal forecast-
ing system, which provides ensemble-based precipita-
tion predictions suitable for SPI calculation (ECMWF, 
2023); the SPEIbase and Global Drought Observatory 
platforms, which disseminate SPI and related drought 
indices across varying time scales (GDO, 2024); and 
the BMKG’s national seasonal rainfall forecasts, which 
are routinely available for Indonesia (BMKG, 2023). 
Although our study was retrospective, these forecast 
products offer a clear pathway for future operationaliza-
tion, enabling real-time or anticipatory rice drought pre-
diction and strengthening the applicability of our frame-
work for practitioners and policymakers.

CONCLUSION

This study proposes a rice drought prediction mod-
el that employs the onset and trend of SPI3 as key pre-
dictors. The model was developed using data from two 
major rice-producing regions characterized by contrast-
ing rainfall patterns. The onset of SPI3 refers to its value 
at the beginning of the planting season, while the SPI3 
trend is defined as the gradient over four months from 
planting initiation to harvest. Rice yield predictions were 
generated one month prior to planting, providing an ear-
ly warning of potential yield losses due to drought. Yield 
estimation within the model was conducted using a crop 
simulation approach, and drought predictions were vali-
dated against NDVI observations.

Our study highlights that the association between 
the onset and trend of SPI3 is strongly linked to rice 
yield outcomes. Specifically, lower yields tend to occur 
under negative SPI3 trends, reflecting drier-than-normal 
conditions during the growing season, whereas higher 
yields are generally associated with positive SPI3 trends, 
indicative of wetter conditions. This relationship under-
scores the utility of SPI3 not only as a drought indicator 
but also as a predictor of potential yield variability.

Overall, the results demonstrate that the predic-
tion model performs more reliably in capturing severe 
drought conditions, particularly during the dry season, 
whereas its performance declines during wet and transi-

tional periods. In both Indramayu and Bone, accuracies 
in the very high drought category are consistently high-
er, with accuracy ranges between 60-85%, indicating the 
model’s strength in detecting extreme drought events. 
However, reduced accuracy and larger uncertainties 
during seasonal transitions highlight the challenges of 
predicting drought under highly variable climatic condi-
tions. During El Niño years, rice drought categories are 
typically elevated compared to neutral years, with PCs 
ranging from 59% to 77%, whereas in La Niña years 
they correspond more closely with the observed low 
drought category, with PCs ranging from 72% to 76%. 

The higher accuracy achieved for the very high rice 
drought category in this study is crucial for advancing 
rice drought prediction. Comparable prediction accura-
cies for Indramayu and Bone further support the fea-
sibility of developing a generalized model applicable 
across Indonesia’s diverse agroecological conditions. 
Nevertheless, accuracy decreases during transitional 
periods, highlighting the challenges of maintaining pre-
dictive reliability amid rapidly changing rainfall pat-
terns. Incorporating local irrigation practices into the 
model is essential, as such practices can markedly alter 
drought impacts and explain discrepancies between 
observed NDVI and predicted rice drought. In addi-
tion, expanding validation across multiple regions, time 
periods, and climate regimes is essential to enhance the 
model’s transferability and provide a thorough assess-
ment of its accuracy, reliability, and overall performance 
under diverse agroclimatic conditions.
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