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Abstract. Performances of an Artificial Neural Network (ANN), a multiple linear 
regression (MLR) and the Jarvis type model were compared to estimate the surface 
conductance which is a driving factor affecting evapotranspiration. It was modeled by 
ANN and MLR using various parameters including global solar radiation, tempera-
ture, soil water content, relative humidity, precipitation and irrigation, vapor pressure 
deficit, wind speed and leaf area index. The measurements were carried out during the 
growing season of sunn hemp in 2004. The best relationship (r2=0.73) between the sur-
face conductance and all variables was estimated by the ANN when r2 was 0.91 in the 
training period. The average absolute relative error was 26.54% for the ANN (r2=0.80), 
51.07% for the MLR (r2=0.53) and 58.30% for Jarvis model (r2=0.26) when vapor pres-
sure deficit, temperature, soil water content, global solar radiation and leaf area index 
were considered to model. The results showed that the ANN approach had a better 
modeling potential of the surface conductance compared to the MLR and Jarvis model.

Keywords. Agriculture, Air-water interaction, Evapotranspiration, Neural Networks.

Riassunto. Le prestazioni di una rete neurale artificiale (ANN), una regressione lineare 
multipla (MLR) e il modello di tipo Jarvis sono state confrontate per stimare la con-
duttanza di superficie, che è un fattore trainante che influenza l’evapotraspirazione. È 
stato modellato con ANN e MLR utilizzando vari parametri tra cui radiazione sola-
re globale, temperatura, contenuto di acqua del suolo, umidità relativa, precipitazioni 
e irrigazione, deficit di pressione di vapore, velocità del vento e LAI. Le misurazioni 
sono state eseguite durante la stagione di crescita della canapa nel 2004. La migliore 
relazione (r2 = 0,73) tra la conduttanza superficiale e tutte le variabili è stata stimata 
dalla RNA quando r2 era 0,91 nel periodo di training della rete. L’errore relativo asso-
luto medio è stato del 26,54% per l’ANN (r2 = 0,80), del 51,07% per l’MLR (r2 = 0,53) 
e del 58,30% per il modello Jarvis (r2 = 0,26) quando il deficit di pressione di vapore, 
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temperatura, contenuto di acqua del suolo, radiazione solare globale e il LAI. I risultati hanno mostrato che l’approccio ANN aveva 
un potenziale di modellazione migliore della conduttanza superficiale rispetto al modello MLR e Jarvis.

Parole chiave. Agricoltura, interazione aria-acqua, evapotraspirazione, reti neurali.

1. INTRODUCTION

As a dynamic system, the crop growth is inf lu-
enced by many factors. Surface conductance is one of 
them and controls evapotranspiration which is strongly 
related to the stomatal activity and photosynthesis pro-
cess of vegetation. As a component of hydrological cycle, 
evapotranspiration plays a crucial role for planning irri-
gation schedule. It is also affected by many factors such 
as surface conductance, energy partitioning, water use 
efficiency and carbon exchange over vegetation surfaces 
(Woodward and Smith 1994; Sellers et al., 1996; Zhang 
et al., 2007). As well known, energy fluxes above canopy 
such as latent heat flux are mainly controlled by closure 
of stomata. Unfortunately, surface conductance isn’t a 
routinely and easily measured variable. In general, it is 
calculated by using some improved equations under 
consideration of interactions between meteorological 
and plant factors. Many studies were focused on the 
estimation of surface conductance by assuming it as a 
function of driving environmental and biological factors 
(Şaylan and Bernhofer, 1993). In earlier studies, the sur-
face conductance was modeled by linear and nonlinear 
techniques. As stated by Huntingford and Cox (1997), 
the response of surface conductance is highly nonlinear 
for local environmental conditions. Nonlinearity of sur-
face conductance can also be seen in the Jarvis-Stewart 
model (Jarvis, 1976; Stewart, 1988). 

Neural networks are widely used nonlinear 
approaches in order to find an alternative way to solve 
complex problems. From past to present, many stud-
ies such as Kohonen (1984) and Hammerstrom (1993) 
showed the power of neural networks in modeling com-
plicated systems. Bolte (1989), Zhuang and Engel (1990), 
Thai and Shewfelt (1991), and Kaul et al. (2005) success-
fully applied the neural networks in the agriculture and 
engineering field. Huntingford and Cox (1997) applied 
ANN for modeling the surface conductance of plants. 
Additionally, van Wijk and Bouten (1999) modeled water 
and CO2 fluxes in the forest by ANN. Pachepsky et al. 
(1996) indicated that ANN gave better results for the soil 
water content according to soil physical properties than 
other regression techniques. Sahoo et al. (2005) also 
applied this approach for the estimation of pesticides 
in groundwater. Additionally, the same technique was 
applied by Terzi and Keskin (2005) for modeling evapo-

ration; by Kumar et al. (2002), Lin et al. (2007) and Kişi 
(2007) for the determination of evapotranspiration; by 
Mohandes et al. (1998) for the modeling of global solar 
radiation. Öztopal (2006) used ANN to model wind 
data. Doğan (2008) modeled reference evapotranspira-
tion by adaptive neuro-fuzzy inference system. Alves 
and Pereira (2000) applied the Jarvis model to obtain the 
surface resistance by using Penman-Monteith equation. 
Şen et al. (2009) used a fuzzy logic model for the predic-
tion of surface ozone. Şaylan et al. (2017) applied ANN 
and ANFIS approaches to model the soil water content. 
Ribeiro et al. (2018) used MLR and ANN techniques to 
build cross validation in estimating the yield response 
to drought. Yang et al. (2018) used a back-propagation 
ANN to model above-ground biomass which is an 
important factor for agricultural management. Niedbala 
(2019) built an ANN to predict winter rapeseed yield in 
Poland. Benali et al. (2019) used ANN to model solar 
radiation in three components: beam, diffuse and global. 
Another recent study on the projection of harvestable 
water from air humidity data using the ANN approach 
was conducted by Khaledi (2019).  

ANN techniques are capable to show high rates of 
success when applied in complex applications. Especially 
in meteorological applications, neural network mod-
els can be used to model radiation variables indicating 
crucial improvements against traditional models used in 
statistics (Lopez et al., 2001). 

Estimation of surface conductance is useful for 
agriculture and highly related with evapotranspiration. 
Knowledge about the characteristics of surface conduct-
ance of sunn hemp related to evapotranspiration status 
can be used to investigate the effects of particular factors 
on crop. It is also important for the planning of irriga-
tion and therefore for the management of water. Yet, 
surface conductance modeling over the growing period 
is a complex problem.

The characteristics of sunn hemp were investigated 
by Takagi et al. (2009). There is however still a clear need 
to better understand the relationship between surface 
conductance and environmental factors. There are only 
few studies on the application of ANNs for the estima-
tion of surface conductance such as Shen et al. (2002). 

The main objective of this study was to model and 
compare the surface conductance of sunn hemp as a 
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function of plant and meteorological variables by using 
nonlinear ANN, linear MLR and Jarvis type approach-
es. Related conductance data were collected from the 
high infiltrated sandy soil in the experiment field at the 
Arid Land Research Center of Tottori University located 
in Tottori, Japan. It was assumed that the surface con-
ductance is affected by air temperature (T), global solar 
radiation (Rg), vapor pressure deficit (VPD), soil water 
content (SWC), relative humidity (RH), precipitation 
and irrigation (P+I), wind speed (u) and leaf area index 
(LAI).

2. MATERIALS AND METHODS

2.1. Site description

This study was conducted on a research area (Fig. 
1) located at the Arid Land Research Center (ALRC), 
Tottori University, city of Tottori, Japan (35° 32’ N, 134° 

13’ E, 15 m above sea level). From climatological point 
of view, this field is characterized by humid temperate 
climate. The long term annual mean temperature and 
total precipitation are 14.6 °C and 1900 mm, respec-
tively. The field was about 1 ha. In addition, the experi-
ment field was tilled on July 29 and harvested on Octo-
ber 18, 2004 (Takagi 2005; Takagi et al., 2009). The con-
tents of sand, silt and clay in the soil were 96.1%, 0.4% 
and 3.5% respectively. The field capacity and permanent 
wilting point of the soil were 0.074 m3 m-3 and 0.022 m3 
m-3, respectively (Dehghanisanij et al., 2004). Although, 
the study area is one of the comparatively humid are-
as of Japan, the field was irrigated to protect the crops 
against water shortage because of high infiltration of the 
sandy soil, so water stress did not occur during growing 

period. Additionally, heavy rain was experienced due to 
a typhoon during the last two weeks of the sunn hemp 
growing season (Takagi et al., 2009). 

2.2. Methods

2.2.1. Artificial neural networks (ANN)

As stated in Lopez et al. (2001), ANN approach 
bases on finding out the input and output variables’ 
relationship by studying previously recorded data. An 
ANN model consists of two phases which are training 
and testing phases. Input, hidden and output layers are 
required in an ANN. The input and output layers cover 
the nodes corresponding to input and output variables, 
respectively (Fig. 2). Every layer consists of a certain 
number of neurons. They are interconnected each of 
these by some weights. In the hidden layer, every neuron 
receives its input from the input layers according to Eq. 
(1): 
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�
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 (1)

where yj is the input value of the jth neuron in the hid-
den layer, m is the number of neurons in the input layer, 
wij is established weight and xi is the input value (Kaul et 
al., 2005). 

Every neuron in the hidden layer gives output (Oj) 
through an activation function. Oj is the sigmoidal func-
tion in the form of:
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Fig. 1. Research area located at the ALRC, Tottori, Japan.
Fig. 1. Area di studio situata presso l’ALRC, Tottori, Giappone.
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where f(yj) is the output of the neuron, bj is the initial 
value and θ represents the bias (Hamidi and Kayaalp, 
2008). Detailed theoretical description of the neural net-
works can be found in Haykin (1994).

In this study, back propagation neural network 
approach was used. The total sum of squared errors 
between measured and modeled values was minimized 
by tuning ANN parameters as used by van Wijk and 
Bouten (1999). The transfer function used for the hidden 
layer was the sigmoidal function. 

2.2.2. Surface conductance

In this study, the surface conductance was deter-
mined by rearranged Penman-Monteith equation (Mon-
teith and Unsworth, 1990).
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where gs is the surface conductance (m s-1), ga is the aer-
odynamic conductance (m s-1), ρ is the density of the air 
(kg m-3), β is Bowen ratio, γ is psychrometric constant 
(kPa °C-1), Cp is the specific heat at constant pressure (J 
kg-1 °C-1), VPD is the vapor pressure deficit (kPa), s is the 
rate of change of saturation vapor pressure with temper-
ature (kPa °C-1). 

The aerodynamic conductance is calculated by using 
following Eq. (4) based on wind speed (Jensen et al., 
1990):
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where k is von Karmaǹ s constant (0.41), u is wind speed 
(m s-1) at height z (m), zm (m) is the height of wind 

speed, zo (m) is the roughness parameter for momentum, 
zoh (m) is the roughness parameter for heat and water 
and d (m) is the zero plane of displacement. d, zo and zoh 
are calculated by the equations given below (Allen et al., 
1998):

d h= 2
3

 (5)

zo = 0.123h (6)

zoh = 0.1zo (7)

The latent heat flux (LE) was calculated by using 
Bowen Ratio Energy Balance (BREB) method as follows 
(Bowen, 1926): 
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where Rn is net radiation (Wm-2); G is soil heat flux 
(Wm-2); LE is latent heat flux (Wm-2); H is sensible heat 
flux (Wm-2); ΔT is the temperature gradient (oC) and 
Δe is the vapor pressure gradient (kPa) over the height 
interval above canopy surface.

2.2.3. Jarvis type model

The surface conductance model was built by Jarvis 
(1976) and developed by Noilhan and Planton (1989). 
In this study, the surface conductance was calculated 
by following equation (Dickonson, 1984; Niyogi and 
Roman, 1997):
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where rs is surface resistance (s m-1), rsmin is the mini-
mum surface resistance. Detailed information about 
the calculation of F1, F2, F3 and F4 as functions related 
to global solar radiation, soil water content, vapor pres-
sure deficit and temperature, can be found in Niyogi 
and Roman (1997), Dickinson (1984) and Kimura et al. 
(2006). 

3. MEASUREMENTS

Vertical gradients of T and RH were measured at 
fixed levels of 0.5, 1 and 1.5 m above the ground sur-
face to apply BREB approach for the determination of 

Fig. 2. A typical neuron with layers.
Fig. 2. Un neurone tipico con strati.
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actual evapotranspiration. For this aim, ventilated psy-
chrometers were used to measure the variations of T 
and RH. The wind speed at 2 m was measured by a cup 
anemometer (3101-5, Young), though the wind direc-
tion was measured at a height of 3 m. In addition, a four 
component net radiometer sensor (MR40, EKO Inc.) was 
installed at 2 m high above the surface to measure short 
and longwave radiations. Soil heat flux was measured by 
two soil heat flux plates (PHF-01, REBS Inc.) installed at 
2 cm depth. Moreover, the soil water content was meas-
ured at 0-30 cm depth at three different points in the 
field by using soil water content reflectometers (CS615, 
Campbell Sci.). Furthermore, precipitation was collected 
by a tipping bucket rain gauge (34-T, Ota Keiki). Whole 
data were collected at 10 and 30 min. intervals using a 
datalogger (CR23x, Campbell Sci.). Necessary informa-
tion about components of the measurement system can 
be found in Takagi (2005) and Takagi et al. (2009).

4. RESULTS AND DISCUSSION

4.1. Observations

During the growing season of sunn hemp, the leaf 
area index (LAI) was periodically measured. The maxi-
mum LAI at the end of the period was 3.52. All mete-
orological variables were measured from 1st of August 
(DOY 214) to 8th of October 2004 (DOY 282). It has 
been observed that the mean temperatures were in a 
decreasing trend within this period, as expected. With 
the beginning of the rainy season, an expected decrease 
also occurred in VPD. SWC values generally followed 
the variations in P+I. Time series of the daily averaged 
meteorological factors (input variables) and daytime 
(Rn>0) energy balance components which were deter-
mined from 10-min data during the growing period 
were given in Fig. 3. Meteorological data could not be 
measured for four days because of some unexpected 
technical problems. At the early stages of the period, in 
August, the VPD was high, but it showed a decreasing 
trend until the end of the period (Fig. 3). As a result of 
heavy rain, the VPD decreased. This situation caused 
raise in soil water content on many days in September 
and October.

During the period, daily mean T at 2 m was about 
25 °C and ranged from 18 to 30 °C. Because the last days 
of the period encountered the typhoon season, the low-
est T was measured. T was decreasing gradually toward 
the end of the period. Daily average RH was about 81% 
ranged from 64 to 95%. As a consequence of heavy rain, 
RH showed a tendency for increase in September and 
October, when T dropped during the same period. The 

total irrigation and precipitation amounts were 172 and 
408.5 mm during the period. Totally, 187 mm rainwa-
ter fell in the last 11 days (during the typhoon season) 
of this experiment period. Missing meteorological data 
were filled by using data recorded at the fixed meteoro-
logical station of ALRC located about 300 m away from 
the experiment field. Daily mean wind speed (u) at 2 m 
height was 1.8 m s-1 and reached up to the maximum 
value of 3.8 m s-1. After beginning of the measurements, 
daily mean SWC increased due to the irrigation and pre-
cipitation. SWC at 0-30 cm depth was 0.12 m3 m-3 and 
showed an increasing trend. At the end of the period, 
SWC reached up to 0.17 m3 m-3. The amount and dis-
tribution of the P and I resulted in temporary increases 
in SWC during this growing period. Because of irriga-
tion, precipitation, increasing temperature and radiation, 
daily total evapotranspiration of sunn hemp was about 6 
mm. Furthermore, daily mean VPD ranged from 1 hPa 
to 15.3 hPa with an average value of 5.7 hPa (Takagi et 
al., 2009). 
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Fig. 3. Time series of daily averaged meteorological factors and 
daytime energy balance components.
Fig. 3. Serie temporali di dati meteorologici medi giornalieri e com-
ponenti del bilancio energetico diurno.
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4.2. Surface conductance of sunn hemp

As Dirks and Hensen (1999) reported, the surface 
conductance plays an essential role regarding energy and 
mass exchanges between the environment and plant. It 
is also important for designation of LE and CO2 assimi-
lation. In this study, it has been calculated by rearrang-
ing the Penman-Monteith equation. In order to calculate 
surface conductance, first, the actual evapotranspiration 
was calculated by BREB method. b, LE and H were cal-
culated by using Eqs. (8), (9) and (10), respectively. Sec-
ondly, ga was calculated by Eq. (4). Then, raw flux data 
were checked by using Ohmura (1982) criterion and 
some unacceptable data were rejected in order to avoid 
the errors in the estimation of fluxes of sunn hemp. 
Finally, gs was calculated by using Eq. (3). 

Daily total evapotranspiration was lower as expected 
at the early phenological stages in August than the val-
ues at the flowering and maturity stages in September 
and October. In the last part of the measurements, the 
heavy rain caused high soil moisture. Besides, evapo-
transpiration (ET) was increased with crop growth. The 

total amount of actual ET for whole growing season 
was around 350 mm. Eventually, it can be mentioned 
that the highest ET during the growing season can be 
attributed to the highest soil moisture and precipita-
tion amount. Daytime average global solar radiation 
was about 334 W m-2 and varied from 50 to 636 W m-2. 
Additionally, the daytime average Rn was about 231 W 
m-2 with a maximum value of 405 and a minimum of 32 
W m-2 over the period. It can be said that Rg showed a 
decreasing trend from the beginning to the end of the 
measurement period. Furthermore, the daytime average 
soil heat flux was about 28 W m-2. 

The results showed that most part of the available 
energy was used by ET of the sunn hemp. Temporal var-
iation of the calculated surface conductance is presented 
in Fig. 4. The daytime averaged aerodynamic and sur-
face conductance were about 31 mm s-1 and 16.7 mm s-1, 
respectively. gs value was lower in August than in Sep-
tember and October. These can be explained with the 
development of crop and increasing of the transpiration 
in the second half of the period as reported by Takagi et 
al., (2009). 
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4.3. Training and testing of ANN and MLR models

In this study, the MATHLAB was used to create 
an ANN model for predicting the daily average surface 
conductance of sunn hemp crop. In order to test the 
ANN and MLR models, total data were split into train-
ing and testing data. The ANN model was trained by 
randomly selected 70% of the whole data. Remaining 
portion (30%) of the total data were used in order to test 
the ANN model. A total of 45 daily averaged data, which 
are calculated from 30-min measured data (totally 2577 
data for 64 days) were used for training the model and 
remained part of data were applied for testing the mod-
el. Input and output variables were normalized within 
the range of 0.1 and 0.9 by using following equation and 
then normalized data were trained and tested by ANN 
and MLR. 

x
x x

x xi
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max
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�� �
�

�

�
�
�

�

�
�
�

0 1 0 8. .
( )min

 (12)

In training and testing of the ANN model, the num-
ber of epochs, the learning rate and hidden layers used 
in the optimization were 100, 0.30 and 2, respectively. 

In the study, the back-propagation algorithm in 
ANN approach was used for training several multi-lay-
er neural networks to estimate the daily average values 
of gs. In the first step, the surface conductance of sunn 
hemp was modeled by ANN, MLR and Jarvis (1976) 
approaches as a function of global solar radiation, soil 
water content, vapor pressure and temperature; and then 
leaf area index was added to this combination. Finally, 
all variables such as the daily average air temperature, 
relative humidity, wind speed, vapor pressure deficit, soil 
water content at 0-30 cm depth; daily total precipitation 
and irrigation; daytime net radiation and daily leaf area 
index data had been used as inputs in ANN and MLR 
to train and test the data set. In order to find a relation-
ship between gs and input data, the network consisted 
of eight inputs, five neurons in two hidden layers and 
one neuron in the output layer. The training procedure 
was continued until the error function approached to 
a minimum value in ANN. After finishing the train-
ing, the developed model was tested. The output was the 
surface conductance calculated by ANN (gsANN), MLR 
(gsMLR) and Jarvis approaches (gsJRV). After the train-
ing and testing, performance of the developed model by 
ANN (gsANN) was compared with the developed model 
by gsMLR, gsJRV and surface conductance in the Penman-
Monteith equation, which was calculated by Eq. (3). 
The performance of ANN, MLR and Jarvis type models 
was examined by looking at the average absolute rela-
tive error (AARE), root mean square error (RMSE) and 

determination coefficient (r2). AARE of gs was calculated 
using relative error (RE) given in Eq. 13 and 14.
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The surface conductance was estimated in Takagi 
et al. (2009) earlier. It was found that daytime hourly 
average gs was highly related to Rn by ANN and MLR 
approach, when daytime hourly data were used as input 
and output. However, in this study, daytime averaged 
energy fluxes, daytime surface conductance data, daily 
averaged meteorological variables, daily total precipita-
tion and irrigation were used. Additionally, in this study, 
input variables including LAI and Rg (instead of Rn) for 
modeling of gs were twice more than the input variables 
used in Takagi et al. (2009) study. 

The relationships between each of the variables 
with gs were examined separately. Fig. 5 represents the 
response of gs to variables (u, RH, P+I, LAI, T, SWC, 
VPD, Rg, ET). The lines (dotted line for linear and 
straight line for nonlinear fittings) show the fittings of 
the functions for the data. As seen in Fig. 5, the vari-
ability of the gs of sunn hemp depends highly on VPD, 
RH and u. The gs increased when VPD, u decreased and 
RH increased; as expected. The gs was high when T was 
low and LAI was high. The gs value increased, while 
P+I increased. The response of gs to the variability of T 
was similar to as reported by Kimura et al. (2006). The 
effects of Rg and SWC were weak on the gs of sunn hemp 
during the measurement period. Despite of high SWC, gs 
and ET values during the measurement period, a quite 
low relationship could be obtained between SWC and gs. 

By using this data set, it has been found that the 
highest determination coefficient (r2=0.35) was estimated 
by MLR method for gs in the training period when VPD 
and RH used together as inputs. In the test period, the 
MLR method estimated slightly higher r2 (0.68). Simi-
larly, the MLR for combination of VPD, RH and u gave 
better relationships (r2=0.45) in the training period (Tab. 
1). The MLR for combination of Rg, VPD, SWC and T, 
which are also meteorological input parameters in Jarvis 
type of model, showed a determination coefficient of 
(r2) 0.40 with a high RMSE in training period, whereas 
r2 was 0.82 in test period. Adding LAI into the combi-
nation of Rg, VPD, SWC and T caused to increase the 
relationship (r2=0.49) in the training period. The MLR 
model had the highest r2 with a value of 0.57 when all 
meteorological factors (VPD, RH, u, Rg, T, SWC, LAI, 
P+I) were considered as inputs. It increased between the 
training and test periods of the model (Tab. 1). 
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The performance criteria of the ANN model for the 
train and test periods were given in Tab. 2. The highest 
determination coefficient (r2=0.37) in training period 

was estimated by ANN approach for gs when VPD and 
RH were inputs. If we considered u as the combination 
of VPD and RH, resulting correlation sharply increased. 

Tab. 2. Performance criteria of the ANN model in the train and test 
periods. 
Tab. 2. Criteri di rendimento del modello MLR e nei periodi di 
allenamento e test.

Train
data

r2
RMSE

Test
data

r2
RMSE

gs-VPD,RH 0.37
 

2.75 0.48 2.75 
gs-VPD,RH,u 0.50 2.36 0.26 3.05
gs-VPD,T,SWC,Rg 0.87 1.95 0.63 2.34
gs-VPD, T, SWC, Rg, LAI 0.81 1.97 0.79 2.27
gs-VPD,T,RH,u,Rg,T,LAI,P+I,SWC 0.91       3.02 0.30 7.76
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Fig. 5. Response of gs to the variables.
Fig. 5. Risposta delle conduttanza a diverse variabili ambientali.

Tab. 1. Performance criteria of the MLR model in the train and test 
periods. 
Tab. 1. Criteri di rendimento del modello MLR e nei periodi di 
allenamento e test.

Train 
data

r2
RMSE

Test 
data

r2
RMSE

gs-VPD, RH 0.35 7.77 0.68 6.14
gs-VPD, RH, u 0.45 7.16 0.43 8.68
gs-VPD, T, SWC, Rg 0.40 8.43 0.82 3.81
gs-VPD, T, SWC, Rg, LAI 0.49 6.73 0.59 8.49
gs-VPD,T,RH,u,Rg,LAI,P+I,SWC 0.57 7.13 0.72 6.85

RMSE = Root mean square error - Errore quadratico medio.
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Similarly, adding Rg into the input list of VPD, T and 
SWC gave significant increase in the ANN model per-
formance for train (r2=0.87) and test (r2=0.63) periods. 
Considering LAI with the input combinations of VPD, 
SWC, T and Rg showed a slight decrease in the perfor-
mance of the ANN model in the training period and an 
increase in the test period. As seen in Tab. 2, adding P+I, 
RH, and u to the input combination of VPD, LAI, SWC, 
Rg , T resulted in an rise of ANN model performance for 
train period. In this case, it had the highest r2 with a val-
ue of 0.91. When using VPD, T, SWC, Rg and LAI in test 
period, the highest relationship (r2=0.79) was obtained, 
compared to MLR model (Tab. 2). 

The actual gs values calculated from Eq. 3 were 
compared to the performance of the Jarvis model. In 
addition, the gs modeled using only variables consid-
ered in the Jarvis model (VPD, T, SWC, Rg, LAI) by 
ANN and MLR were compared with the actual gs. The 
performance of the model gs by ANN (gsANN) was com-
pared to the model gs by multiple regressions (gsMLR), 

Jarvis type (gsJVR) and the gs in Eq. (3) (Fig. 6). As seen 
in Fig. 6, the MLR model overestimated the gs slightly, 
when gs was lower than about 20 mm s-1 and underes-
timated when gs was higher than about 20 mm s-1. The 
relationship between actual gs and gsMLR was represent-
ed with a determination coefficient of 0.53. The Jarvis 
model underestimated the actual gs and the relationship 
between gs and gsJRV was weak (r2=0.26). In contrast, 
application of ANN approach on gs gave very close rela-
tionship with the gs (r2=0.80) with a value of 26.54 % 
AARE during the period. It has been found that ANN 
has higher accuracy compared to classical method MLR 
and Jarvis type model (Fig. 6). Finally, it has been esti-
mated that the Jarvis type of model gave the lowest rela-
tionship with the actual gs. 

After using the MLR between the meteorological 
and crop variables, which are independent variables, and 
surface conductance as dependent variable, it had been 
found that gs increased when LAI, T, RH increased and 
VPD, u decreased. 
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Fig. 6. The model gs by ANN, MLR and JRV.
Fig. 6. Il modello della conduttanza su base ANN, MLR e JVR.
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5. DISCUSSION

In this study; ANN, MLR and Jarvis approaches 
have been applied for conductance during the measure-
ment period of sunn hemp crop. ANN approach was 
compared to MLR, which is the traditional statistical 
technique and to Jarvis model as one of the commonly 
used approaches in the modeling of surface conduct-
ance. For training of the input data, eight variables 
were used in order to model the surface conductance. 
By using hourly daytime data calculated from 10-min 
averaged data, the surface conductance was modeled by 
ANN in Takagi et al. (2009). In that case, it was found 
that hourly averaged gs was highly related to the hour-
ly averaged Rn, whereas weak relationship was found 
between gs and VPD, G, T. In our study, however, the 
daily averaged meteorological data, Rg and LAI were 
also used as inputs for the modeling of daytime aver-
aged surface conductance of sunn hemp. The results 
showed that the daytime averaged surface conductance 
was mainly influenced by the variation of VPD, RH 
and u. A low determination coefficient (0.53) between 
gs and all input variables had been found by using MLR 
analysis as a better relationship between daytime aver-
age gs and all input variables was estimated by the ANN 
approach. Furthermore, the gs seems to be affected 
slightly by SWC. This might be resulted from the high 
SWC, which is generally related to precipitation and 
irrigation. Using the same methodology in our study, 
Alves and Pereira (2000) also applied the Jarvis model 
and calculated the rs by relating it with major mete-
orological parameters that affect the energy and mass 
transfers between the surface and atmosphere in the 
Penman-Monteith equation. The authors obtained sat-
isfactory relationships between rs, Rn and VPD which 
were represented with determination coefficients higher 
than 0.9. The finding of Shen et al. (2007) is also con-
sistent with the results of this study. 

Consequently, the ANN approach simulated the 
gs better than MLR and Jarvis approaches, when the 
same meteorological variables were used for modeling 
as in Jarvis model. Adding LAI to this input combina-
tion like in Eq. (11), ANN gave high correlation with gs 
for all cases. Finally, the ANN approach showed a bet-
ter improvement against traditional statistical technique, 
when the same variables in the Jarvis model was consid-
ered for modeling. For this reason, it can be said that the 
ANN approach produced more accurate prediction for 
surface conductance than the Jarvis and MLR approach-
es. These results indicate that the ANN approach can 
be used for the estimation of non-linear time series and 
dynamic conditions. 
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