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Abstract. The total volume of CO2 emissions is building up dramatically, and because 
of the effect of this gas on the growth, physiology, and biochemistry of plants, it is 
becoming increasingly necessary to look into the impact of the relentless rise of car-
bon dioxide. Although there are several developed approaches that tried to model the 
canopy resistance, many of these methodologies ignored the effect of CO2 or were not 
incorporated with the existing evapotranspiration calculation methodologies, mainly 
due to the complexity of the modeling procedure and the short time framework of the 
conducted studies. This review explores the few models estimating crop water require-
ments that account for this effect and examines their assumptions and theories. The 
inclusion of canopy resistance models in evapotranspiration calculation may be of 
questionable utility without improvements in some modeling aspects, such as the rela-
tionship between the stomatal conductance and CO2 and the climatic variables taken 
in consideration in the modeling process.
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INTRODUCTION

According to UNDESA (2017), the world popula-
tion is foreseen to grow between 20-30% by 2050, going 
from 7.7 billion people in 2017 to between 9.2 and 10,2 
billion. Naturally, the global demand for food produc-
tion is also expected to increase by almost 60% by 2025 
(Alexandratos and Bruinsma, 2012; OECD, 2012). On 
the other side, global water consumption has already 
known a leap of 600% over the last century (Wada et al., 
2016), and it keeps increasing by 1% yearly (AQUASTAT 
n.d.). Water demand is currently evaluated at 4.600 km3 
and could reach almost 6000 km3 by 2050 (Burek et al., 
2016). All this will put more pressure on the agricul-
tural sector, which is the actual largest world consumer 
of freshwater, mostly for irrigation, accounting for 70% 
of freshwater withdrawals, up to 90% by 2050 (WWAP, 
2012). Agriculture is also expected to face a fierce com-
petition for water resources from other sectors, resulting 
in a decrease in its share of total water use in developing 
countries from 86% in 1995 to 76% in 2025 (Rosegrant 
et al., 2002). In addition, global warming is meanwhile 
affecting the water cycle and shifting weather patterns 
(IPCC, 2014a). Therefore, the agricultural sector is in 
great need of creating strategies to improve water man-
agement and, consequently, attain greater levels of water 
savings in order to face these aforementioned challenges 
(de Fraiture and Wichelns, 2010).

One of the key components to improving the man-
agement of water resources is accurately determining 
the water requirements of irrigated crops. These needs 
depend on the management strategy chosen, and are 
based on the demand for atmospheric water, known as 
evapotranspiration. Evapotranspiration (ET) is a major 
component of the hydrological cycle and has an impor-
tant effect on the quality of water, since in the evapo-
ration process the water is purified. This clean H2O 
restores about 60% of global land surface water. For 
vegetated ecosystems, it is also the main component of 
energy balance, employing more than 50% of absorbed 
solar radiation (Trenberth et al., 2009). In fact, evapo-
transpiration is a component of the energy budget 
involving incoming energy and outgoing water, occur-
ring at the crop surface. The other components of the 
budget are net radiation, sensible heat flux, soil heat flux, 
and solar radiation stored as photochemical energy. This 
exchange process creates an atmospheric demand that 
is satisfied by transferring water out of the plant system 
through evapotranspiration. Such phenomenon is regu-
lated by the principle of energy conservation or energy 
balance: energy arriving at the vegetation surface equal 
energy leaving the same surface for the same time peri-

od. The energy balance equation for an evaporating sur-
face can be written as:

Rn-G-λET-H=0� (1)

where Rn is net radiation, H sensible heat, G soil heat flux 
and λET is the latent heat flux. Terms can be either posi-
tive or negative: positive Rn supplies energy to the veg-
etation surface and positive G, λET and H remove energy 
from the vegetation surface. The latent heat flux (λET) is 
the evapotranspiration fraction and can be derived from 
the energy balance equation, if all other components 
are known. ET is an important hydrological variable 
for irrigation water management, hydrological modeling 
and water balance calculations. Penman (1963) defines 
ET as the combination of two separate processes occur-
ring simultaneously, evaporation from the soil surface 
and transpiration from the crop. Since the evapotran-
spiration is strongly affected by crop type, crop devel-
opment and management practices, there was a need to 
find a concept to express the evaporative demand of the 
atmosphere independently of those factors. Hence, refer-
ence evapotranspiration (ETo) was introduced for this 
purpose. ETo is defined as the evapotranspiration rate 
from a well irrigated hypothetical grass reference crop 
with specific characteristics. It expresses the evaporat-
ing power of the atmosphere at a specific location and 
time of the year and does not consider crop character-
istics and soil factors. Instead, it is driven by weather 
parameters, which are solar radiation, air temperature 
humidity and wind speed. A thorough understanding 
of ETo is the first step to achieving efficient and effec-
tive water management and irrigation scheduling. The 
United Nations Food and Agriculture Organization 
(FAO) has adopted an updated Penman–Monteith equa-
tion (FAO-PM) as a global standard for estimating grass 
reference evapotranspiration (Allen et al., 1998). This 
equation was chosen as it provides a better prediction 
compared to other methods in a wide variety of geo-
graphic locations and climatic conditions (Kashyap and 
Panda, 2001; Yoder et al., 2005; López-Urrea et al., 2006; 
Suleiman and Hoogenboom, 2007; Adeboye et al., 2009; 
Rasul and Mahmood, 2009; Rácz et al., 2013). It includes 
all the different atmospheric variables that influence ET, 
which makes it suitable for climate change impact stud-
ies (Kingston et al., 2009; Islam et al., 2012; Priya et al., 
2014). However, despite the completeness of this equa-
tion, it simulates poorly the effect of CO2, that is repre-
sented by the “canopy resistance” or “surface resistance” 
term, rc. In fact, daily rc is fixed at 70 s m-1 and is con-
sidered constant regardless of climate type and change 
in climate patterns, thus contradicting published reports 
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(Long et al., 2004; Damour et al., 2010). Although Allen 
et al. (2006) considered that f luctuation in its value 
would have a negligible effect on the ETo calculation, 
many experimental studies disagree with their statement 
on hourly, daily and seasonal scales (Steduto et al., 2003; 
Katerji and Rana, 2006, 2011, 2014; Yan et al., 2017). This 
is particularly true when the crop is under well-watered 
conditions, i.e. when the physiological component of rc is 
at its minimum. The alarming increase of CO2 concen-
trations due to climate change, the physiological effects 
that it would have on crop plants (Tubiello et al., 2000; 
Long et al., 2004; Mall et al., 2017) and the uncertain-
ties affecting the calculation of ETo using the FAO-PM 
equation, have prompted many researchers to develop 
other approaches and models to estimate reference evap-
otranspiration, taking into account the variability of the 
canopy resistance rc. Following a short discussion on the 
effect of rising CO2 on crops evapotranspiration, this 
paper provides an overview of these different methods, 
delineating their main theories and assumptions, and 
exploring their strengths and weaknesses.

EFFECT OF CO2 ON CROPS EVAPOTRANSPIRATION

Our planet’s atmosphere witnessed a gradual change 
throughout history, experiencing a wide range of CO2 
concentration. Studies suggest that this concentration 
may have been about 4000 to 5000 ppm some 500 mil-
lion years ago (Ehleringer et al., 2005). Then, this concen-
tration decreased to around 1000 ppm between 35 and 55 
million years ago, falling abruptly to about 390 ppm dur-
ing Oligocene by approximately 32-25 million years ago 
(Tipple and Pagani, 2007). This decline in CO2 limited 
the efficiency of photosynthesis, triggering the evolution 
of C4 plants from ancestral C3 species as a clever solu-
tion to the problem of low atmospheric CO2. Since the 
pre-industrial era, anthropogenic greenhouse gas (GHG) 
emissions have been causing new increases in the atmos-
pheric concentrations of carbon dioxide, going from 270 
ppm before 1700 to about 410 ppm in 2020, reaching 
unprecedented levels in at least 800,000 years. The con-
centration will keep increasing if no additional efforts are 
made to reduce emissions (IPCC, 2014a, 2014b). These 
increasing concentrations have important physiological 
effects on plants, e.g. faster rate of photosynthesis, greater 
leaf area, increase in biomass and yield and decrease in 
stomatal conductance and transpiration rate (Allen, 1990; 
Ainsworth and Long, 2004; van der Kooi et al., 2016). 
The latter effect has been confirmed by several experi-
mental studies conducted in open-top and closed-top 
chambers or using the Free-Air Carbon dioxide Enrich-

ment (FACE) method (Wullschleger et al., 2002; Shams et 
al., 2012). On the other hand, more biomass means more 
evapotranspiration because of a higher leaf area index 
(LAI) (Wand et al., 1999; Piao et al., 2010), potentially 
offsetting the effect of the reduction in stomatal conduct-
ance (Bernacchi et al., 2007). However, even under exper-
imental conditions, there is a large uncertainty in the 
CO2 induced change in stomatal conductance, especially 
when scaling from the single leaf to a full canopy where 
other factors affect the whole process (Polley, 2002). For 
example, CO2 effect is significantly different between C3 
and C4 plants and between trees and smaller plants (Taiz 
and Zeiger, 1991), but also seems to depend on the scale 
of the experiment (Jarvis and McNaughton, 1986; Bunce, 
2004). In fact, most of the existing knowledge on plants 
response to higher CO2 concentrations is based on small 
scale research experiments conducted in open field with 
controlled environment. Even if there are techniques 
such as FACE that allow the exposure of plants to elevat-
ed CO2 concentrations under natural and fully open‐air 
conditions, they can be difficult and expensive to con-
struct and operate, which limits the inference space of 
these experiments with regards to the range of global 
ecosystems (Norby et al., 2016). Moreover, there could 
be an overestimation of the CO2 effect due to artificial 
ventilation and advection from outside the FACE area 
(Kruijt et al., 2008). Given the complexity of the effect of 
CO2-sensitivity of evapotranspiration on future climate 
simulations and the large uncertainty in the CO2 induced 
change in stomatal conductance under experimental con-
ditions (Kruijt et al., 2008), understanding plant respons-
es to CO2 is becoming increasingly important.

This review paper summarizes some of the most 
documented rc models, precisely those directly used or 
modified to account for the effect of CO2 on the evapo-
transpiration. The models presented (Table 1) have their 
limitations that the authors tried to underline. However, 
because the literature is limited regarding this particu-
lar topic, the primary purpose of this review was to pro-
vide a brief reference document for researchers and the 
scientific community in general on the different models 
developed so far and their main findings and challenges. 

DESCRIPTION AND DISCUSSION OF 
EVAPOTRANSPIRATION APPROACHES ACCOUNTING 

FOR CO2 EFFECT

Penman-Monteith method adapted to an increase in CO2 
concentrations

The standardized Penman–Monteith equation (FAO-
PM) (Allen et al., 1998) is based on the Penman–Montei-
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th equation (Monteith, 1965). It is the most widely used 
method and has been proven to be a good ETo estimator 
when compared with other methods, especially for daily 
computations (Chiew et al., 1995; Liu et al., 1997; Ventu-
ra et al., 1999; Jacobs and Satti, 2001; Garcia et al., 2004; 
Temesgen et al., 2005). For a grass reference surface and 
for a daily time step, this equation is expressed as:

ETo=
0.408∆�Rn-G�+γ 900

T2m+273 .u2(es-ea)

∆+γ(1+0.34u2) �  (2)

where ETo is the reference evapotranspiration (mm day-

1); Rn is the net radiation at the crop surface (MJ m-2 
day-1); G is the soil heat flux density (MJ m2 day-1); T2m is 
the mean daily air temperature at 2 m height (ºC); u2 is 
the wind speed at 2 m height (m s-1); es is the saturation 
vapour pressure (kPa); ea is the actual vapour pressure 
(kPa); (es − ea) is the saturation vapour pressure deficit 
(kPa); ∆ is the slope of the vapour–pressure curve (kPa 
ºC-1) and γ is the psychometric constant (kPa ºC-1).

The canopy resistance rc describes the resistance of 
vapour flow through the transpiring crop and evaporat-
ing soil surface. It is represented in the equation above 
by the value 0.34 in the denominator: 

0.34��=
70

208/u2
=rc/ra� (3)

where ra is the aerodynamic resistance (s m-1), which 
describes the transfer of heat and water vapour from the 
evaporating surface into the air above the canopy. For a 
grass reference surface, assuming a constant crop height 
of 0.12 m and a standardized height for wind speed, 
temperature and humidity at 2 m, ra becomes: 

ra=208/u2� (4)

Under the same reference conditions, and knowing 
that the stomatal resistance rs of an actively transpiring 
C3 grass leaf surface has a value of about 100 s m-1, rc is 
represented as the following: 

rc=
rs

0.5 LAI =
100 

0.5×2.88 =69≈70 s m-1� (5)

where LAI is the leaf area index of the upper half of 
dense clipped grass, which is generally the only part 
actively contributing to the surface heat and vapour 
transfer (LAI = 24 × crop height (h) = 24 × 0.12 = 2.88)

Assuming that the rc ≈ 70 s·m−1 applies to a specific 
CO2 concentration, estimating a new rc value for higher 
CO2 concentration provides a method to estimate possi-
ble impacts of higher CO2 on ETo. Thus, the following 
form of FAO-PM equation should be adopted:

ETo=
0.408∆�Rn-G�+γ 900

T2m+273 .u2(es-ea)

∆+γ(1+rc/ra)   (6)

Lovelli et al. (2010) and Snyder et al. (2011) used this 
method in a Mediterranean climate, introducing in the 
equation published values regarding atmospheric CO2 
on stomatal conductance (Long et al., 2004; Ainsworth 
and Long, 2004), and considering the temperature incre-
ment effect on the reference evapotranspiration (ETo) 
variation. They concluded that the effect of increasing 
CO2 concentration may be annulled by an increase in air 
temperature and subsequent increase in evapotranspira-
tion rate. On the other hand, Moratiel et al. (2011) found 
out that the CO2 increase from 372 ppm to 550 ppm 
would create a reduction of the ETo increment by half, 
from 11% to 5% in the next 50 years, as compared to the 
current situation in northern Spain. By recalibrating the 
canopy conductance for the widely acclaimed and rec-
ommended FAO-PM equation, this approach may be 
particularly effective in evaluating the effects of climate 
change on crop water use. However, The FAO-PM model 
is based on the “big leaf” approximation with constant 

Tab. 1. Some of the models referenced in this work

Model Reference Simulation 
Period

CO2 
concentration

Penman 
Monteith with a 
modified rc

Lovelli et al. 
(2010) 2071 - 2100 550 ppm

Moratiel et al. 
(2011) 2007 - 2050 372 and 550 

ppm
Snyder et al. 

(2011) 2050 550 ppm

CO2-factor Easterling et al. 
(1992)

Analog period: 
1931 - 1940

330 and 660 
ppm

Ficklin et al., 
(2009) NA 550 and 970 

ppm
Islam et al., 

(2012) 2010 - 2099 450 ppm to 900 
ppm

Wu et al., (2012) 2071 - 2100 330 and 660 
ppm

Fares et al., 
(2015) NA 330, 550, 710 

and 970 ppm
F factor Olioso et al. 

(2010)
2020 – 2049 and 

2070 - 2099
540, 703 et 836 

ppm

Salmon-
Monviola et al. 

(2013)

1961–1990, 
2010–2039, 

2040–2069 and 
2070–2099

330, 430, 545 
and 640 ppm

Jarvis Medlyn et al. 
(2001) NA 350–700 ppm

Katerji and 
Perrier

Katerji et al. 
(2017)

1981 – 2006 and 
2070 - 2100

600 and 850 
ppm
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canopy resistance, which is a simplistic assumption that 
could limit the accuracy of the predictions of the model. 
Considering the driving meteorological variables at a 
particular site, estimates made with the FAO-PM equa-
tion rely on the correct modeling of the effective values 
of both aerodynamic resistance ra and canopy resistance 
rc. Hence, the fixed value for rc may be the cause of the 
tendency for the FAO-PM method to underestimate the 
higher values of measured ETo, and to overestimate the 
lower ETo values in semi-arid and windy areas with a 
high evaporative demand (Hussein, 1999; Ventura et 
al., 1999; Berengena and Gavilan, 2005). As ra can be 
calculated from meteorological conditions, in order to 
provide more accurate estimations of evapotranspira-
tion using the FAO-PM equation, it may be necessary 
to parameterise rc as a primary factor in the evapotran-
spiration process (Monteith, 1965). Canopy resistance rc 
is a physiological parameter with an aerodynamic com-
ponent (Alves et al., 1998). It is difficult to estimate it 
for different climatic and crop water conditions, as it is 
influenced by solar radiation, temperature, vapor pres-
sure deficit and soil water content (Lecina et al., 2003; 
Pereira et al., 1999). Nevertheless, a simple attempt to 
model this resistance may yield a better estimation when 
the FAO-PM equation is applied over both short and tall 
crops (Alves and Pereira, 2000; Pereira et al., 1999) and 
over other types of vegetation (Chávez and López-Urrea, 
2019; Margonis et al., 2017). It could also be useful to 
incorporate the effects of the resistance due to vegetation 
into climatic and hydrological models (Yang et al., 2019; 
Bie et al., 2015).

In this context, some studies incorporated a “CO2-
factor” into the FAO-PM equation (Easterling et al., 
1992; Ficklin et al., 2009; Parajuli, 2010; Islam et al., 
2012; Wu et al., 2012; Priya et al., 2014; Fares et al., 
2015). Then, equation (1) can be rewritten as: 

ETo=
0.408∆�Rn-G�+γ 900

T2m+273 .u2(es-ea)

∆+γ(1+ 0.34u2
CO2-factor )

  (7)

where, in the denominator, a linear relationship for sto-
matal conductance as a function of CO2 level is intro-
duced. It was developed by Stockle et al. (1992), and 
based on 80 data sets comparing leaf conductance at 330 
ppm and at 660 ppm of CO2 concentration for a wide 
range of species including C3 and C4 crops: 

gCO2
=g �1.4-0.4 CO2

330� � (8)

where gCO2 is the leaf conductance modified to reflect 
CO2 effects (m s-1); g is the conductance without the 

effect of CO2 (m s-1); CO2 is the actual atmospheric CO2 
concentration (ppm) and 330 represents the baseline 
atmospheric CO2 concentration (ppm). The new rc is as 
follows:

rc=
1

gCO2
× 0.5 LAI  (9)

The “CO2-factor” is based on experimental observa-
tions of a 40% linear decrease in stomatal conductance 
between 330 and 660 ppm CO2 concentrations (Morison 
and Gifford, 1983). Islam et al. (2012) incorporated this 
model in the FAO-PM equation to evaluate the effects 
of possible future anthropogenic climate change on ETo. 
Results of the different simulation studies showed an 
increase in ETo with changing climate, but the impact 
of increasing temperatures was almost offset by increas-
ing CO2 levels. In fact, sensitivity analysis showed that 
the effect of a 1°C rise in temperature was offset by an 
increase in CO2 levels up to 450 ppm, whereas the effect 
of a 2°C temperature rise was offset by CO2 concentra-
tions of 660 ppm, thus in close agreement with results 
found by Priya et al. (2014) using the same model. 
Authors pointed out that, due to its linearity, this “CO2-
factor” is only valid in the range of 330 to 660 ppm. For 
CO2 concentrations beyond 660 ppm, factors for spe-
cific crops reported by Allen (1990) were used. The same 
remark was made by Ficklin et al. (2009) when increas-
ing CO2 concentration to 970 ppm and temperature by 
6.4 °C caused watershed-wide average evapotranspira-
tion, averaged over 50 simulated years, to decrease by 
37.5%, resulting in an increase of water yield by 36.5%. 
They explained that the linear assumption of eq. (8) 
means that it is suitable for all plant species, which may 
lead to an overestimation of the aforementioned reduc-
tion in ETo in the presence of multiple types of land cov-
er. They concluded that because of this broad simplifica-
tion of the effects of CO2 on plant growth, their analysis 
was still too uncertain for water management purposes. 
The presumed overestimation of ETo is because this 
“CO2-factor” is based on the assumption that a doubling 
of CO2 concentration would lead to a general decrease of 
40% in stomatal conductance (Morison, 1987) irrespec-
tive of the land cover type. This reduction of conduct-
ance is assumed to be linear over the entire range of CO2 
concentrations between 330 ppm and 660 ppm (Mori-
son and Gifford 1983). To overcome this issue, Wu et al. 
(2012) proposed an optimised equation:

gCO2
=g �(1+p)-p CO2

330� �  (10)
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where p is the percentage decrease in leaf conductance 
specific to vegetation types (Authors provided differ-
ent values in their study). The modified equation inher-
ently gave a better representation of this increasing CO2 
effects than the original equation by incorporating the 
CO2 effects dynamically in more process-based details.

Olioso et al. (2010) suggested multiplying the FAO-
PM ETo by another factor F to correct the daily values 
of reference evapotranspiration taking into account the 
effect of higher CO2 concentrations. This factor was 
derived from evapotranspiration simulations of the 
ISBA-A-gs model (Calvet et al., 1998) at different CO2 
levels, and used in different studies (Martin et al., 2011; 
Lardy et al., 2012, 2014; Salmon-Monviola et al., 2013; 
Katerji et al., 2017):

F=1.1403-3.8979×10-4×[CO2]  (11)

The value of F is approximately 1 when the mean 
annual value of the air CO2 concentration is equal to 
370 ppm. F decreases or increases when the CO2 con-
centration is higher or lower than this threshold. For 
example, the decrease in ETo is approximately 8 and 
20 % when the CO2 concentration reaches 550 and 
900 ppm, respectively (Olioso et al., 2010). The fac-
tor is also based on a linear relationship between the 
decrease of ETo and the increase of the CO2 concentra-
tion, which raises the same concerns previously dis-
cussed. 

According to Katerji et al. (2017), the issue of the 
approaches mentioned above is that they are insufficient 
to adapt the FAO-PM equation to the increasing con-
centrations of CO2. These solutions always consider the 
resistance rc to be constant by neglecting its reliance on 
climatic variables, which means that rc parameterisation 
is required to reduce the difference between the direct-
ly measured ETo values, and those estimated using the 
FAO-PM model.

PENMAN-MONTEITH METHOD WITH VARIABLE 
CANOPY RESISTANCE MODELS

Jarvis Model

Jarvis model is a phenomenological and multiplica-
tive empirical model that interprets field measurements 
of stomatal conductance gCO2 in relation to environ-
mental variables. It calculates gCO2 by multiplying the 
maximum conductance gmax, which is a value which 
represents the highest g recorded under optimal condi-
tions (Korner et al., 1979), with a number of empirical 
response functions, including one for CO2-sensitivity, 

and it is assumed that each variable acts independently 
(Jarvis, 1976; Whitehead, 1998):

gCO2
=

1
rs

=gmax f�I�f�Ta�f�Ca�f�VPD�f(Ψ)  (12)
 

where I is the absorbed photosynthetic photon flux den-
sity (μmol m-2 s-1), Ta is the air temperature (°C), Ca is 
the CO2 concentration (ppm), VPD is the Vapour Pres-
sure Deficit (kPa) and Ψ is the soil water potential (Pa).

Same as the aforementioned models, Jarvis model 
is also based on a linear function between the stomatal 
conductance gCO2 and atmospheric CO2. In fact, Jarvis 
(1976) concluded that gCO2 decreased linearly when the 
increase in CO2 concentration is within the range of 
100-1000 ppm, and that it stays constant when the CO2 
concentration is <100 ppm or >1000 ppm. Also, equa-
tion (12) may underestimate gCO2 when relative humid-
ity (RH) is high because it correlates gCO2 linearly to RH 
(Wang et al., 2009). In this case, a nonlinear function of 
RH or VPD may reduce the bias (Leuning, 1995; Wang 
et al., 2009).

Nevertheless, Jarvis model has been used in differ-
ent forms in many studies (Hanan and Prince, 1997; 
Gharsallah et al., 2013; Zhang et al., 2016; Zhou et al., 
2019). In the east coast region of North America, elevat-
ed atmospheric CO2 was found to reduce ET at a rate of 
0.84 mm/year between 1901 and 2008 when calculating 
stomatal conducatance with a Jarvis-type equation in 
the Dynamic Land Ecosystem Model (DLEM) 2.0 (Yang 
et al., 2015). Using the same model in a global scale, Pan 
et al. (2015) concluded that increasing atmospheric CO2 
will lessen the positive effect of warming temperature 
and increasing precipitation on ET by the end of the 21st 
century. Medlyn et al. (2001) analysed data from 13 long-
term (>1 year) field-based studies of the effects of elevated 
CO2 concentration (350 ppm and 700 ppm) on European 
forest tree species by fitting data to two models namley 
Jarvis and Ball (Ball et al., 1987). Their meta-analysis 
indicated a significant decrease (21%) in stomatal con-
ductance in response to growth in elevated CO2 concen-
trations across all studies, resulting in a decrease of ET.

Some authors think that another limit of the Jarvis 
model is that each response function has to be adjusted 
to the data to be able to provide good predictions for any 
type of vegetation, since they are specific for only certain 
crops and climate conditions and they cannot be used 
for general purposes (Yu and Wang, 2010). Consequent-
ly, a site-specific calibration of the empirical response 
functions becomes necessary. Another criticism for-
mulated against this approach is that the knowledge 
of stomatal resistance rs alone may not be sufficient to 
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calculate ET because the FAO-PM equation requires rc. 
Hence, the upscaling of rs to the canopy level is required 
to calculate rc, which could be quiet challenging (Irmak 
et al., 2008). Besides, Alves and Pereira (2000) ques-
tioned the validity of the multiplicative model because 
it only includes the physiological component of rc but 
not the aerodynamic component ra and because of the 
assumption of environmental variables acting indepen-
dently.

Katerji and Perrier (KP) model

Based on the fact that rc, for well-watered crops, var-
ies during the day with different climatological variables, 
Katerji et al. (1983) suggested a new semi-empirical pro-
cedure to determine both resistances rc and ra by apply-
ing the Buckingham π-theorem (Kreith and Bohn, 2001). 
They established a linear relationship between the cano-
py resistance rc and the climatic resistance r* (Monteith, 
1965): 

rc/ra=a r*/ra+b  (13)

where a and b are empirical calibration coefficients 
which vary with crop type but not with site (Rana et al., 
1998). Parameter values for a few crops were provided by 
Katerji and Rana (2014). r* (s m-1) is represented by the 
following equation:

r*=
∆+γ
∆γ

ρCpD
Rn-G  (14)

where ρ is the air density (kg m-3), Cp the specific heat of 
moist air (J kg-1 C-1) and D is the vapor pressure deficit 
(VPD) (kPa).

However, this model still does not take into account 
the impact of the air CO2 concentration value on the 
resistance rc. After incorportating their model into the 
FAO-PM equation (PM-KP), Katerji et al. (2017) used a 
CO2 correction factor (Olioso et al., 2010) with the PM-
KP equation to compare it to the standard Penman-
Monteith method (FAO-PM) with a fixed rc value. PM-
KP yielded better performances in forecasting the ETo 
directly measured by weighing lysimeters during the 
summer season for the measured period (1986–2006) in 
Apulia region in southern Italy (Katerji et al., 2017). The 
results demonstrated that the FAO-PM formula underes-
timated the measured ETo values by 20 %, whereas the 
underestimation is only 3 % for the PM-KP formula.

This semi-empirical KP approach has been widely 
used in the subsequent literature (Peterschmitt and Per-
rier, 1991; Alves and Pereira, 2000; Lecina et al., 2003; 
Steduto et al., 2003; Pauwels and Samson, 2006; Liu et 

al., 2012b; Margonis et al., 2017). However, one of its 
main limitations is the need for a specific calibration, 
even if it can be unnecessary under certain circum-
stances (Rana et al., 1998, 2001; Katerji and Rana, 2008). 
Furthermore, Gharsallah et al. (2013) insisted that the 
model’s performance would probably be improved cali-
brating the a and b parameters for the main phenologi-
cal phases of crops, making the use of this model even 
more complicated. A second limitation is the fact that 
it depends on the temporary value of the Bowen ratio 
β, which is not readily available (Perez et al., 2006). 
Besides, the KP model seems to fail under irrigated con-
ditions in semiarid to arid regions (Allen et al., 2006).

MODIFIED MAKKINK EQUATION

Makkink model (Makkink, 1957) is a simple empiri-
cal method for ETo estimation that uses only tempera-
ture and radiation parameters:

ETo=α 
S

λ (S+γ)  K�  (15)

where K↓ is the incoming short-wave (global) radiation 
(W m-2), λ is the latent heat of vaporization of water (J 
kg-1), S is the temperature-dependent gradient of the sat-
urated vapour pressure curve (Pa K-1) and α is an empir-
ical coefficient (= 0.65).

This formula does not take into consideration the 
effects of CO2. To fix that, Kruijt et al. (2008) multiplied 
eq. (15) with a correction factor c:

c= Sg×ST×FT×∆CO2  (16)

Sg=(dg/g)/dCO2  (17)

ST=(dT/T)/(dg/g)  (18)

where g is the stomatal conductance (mol m-2 s-1), Sg is 
the sensitivity of g to CO2 (ppm-1), ST is the relative sen-
sitivity of transpiration T to g (kg m-2 s-1), FT is the tran-
spiration share of evapotranspiration and ΔCO2 is the 
change in atmospheric CO2 concentration (ppm).

After parametrizing Sg, ST and FT based on the lit-
erature, Kruijt et al. (2008) provided correction factors 
applied to a projected additional increase of atmos-
pheric CO2 concentrations in 2050 and 2100 by 150 and 
385 ppm respectively for various vegetation categories. 
Results of their study suggest that direct effects of CO2 
reducing evapotranspiration can be expected to be mod-
erate, up to 5% in the coming 50 years and up to 15% 
by 2100. Applying their methodology in Central and 
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Eastern Europe resulted in a decrease in reference evap-
otranspiration rates compared with runs that did not 
consider increases in CO2 levels (Eitzinger et al., 2013). 
Similarly, Huntington et al. (2016) concluded that crop 
evapotranspiration is projected to increase in all basins 
of Western United States, especially areas where peren-
nial crops are grown, and with smaller increases in areas 
where annual crops are grown.

Based on the extensive number of manuscripts on 
the topic reviewed by the authors, there is an abun-
dance of models with a modified canopy resistance rc 
(e.g. Shuttleworth and Wallace, 1985; Massman, 1992; 
Stannard, 1993; Todorovic, 1999; Irmak and Mutiibwa, 
2010). However, very few of them took in consideration 
the change in atmospheric CO2, hence the small num-
ber of models discussed in this study. This is essentially 
because when the time span of the research is short, the 
change in atmospheric CO2 concentration is very small 
and is generally ignored (Li et al., 2014; Zhang et al., 
2008). Furthermore, some of these models were not even 
incorporated into the FAO-PM equation to estimate ET 
responses to increased CO2 concentration (e.g. Ball et 
al., 1987; Wang and Wen, 2010). The main issue with 
the previously reviewed models is that the relationship 
between stomatal conductance and CO2 concentration is 
assumed to be a simple linear one, which is an assump-
tion only valid within the limited range of 330–660 ppm 
(Li et al., 2019). In fact, those models rarely went beyond 
that range where data are better fitted with a nonlinear 
curve. This observation is consistent with the findings of 
Health and Russell (1954), Morison and Gifford (1983) 
and Wang and Wen (2010). Thus, it is crucial and indis-
pensable to validate the accuracy and reliability of these 
models when applying them into the FAO-PM equation 
especially when the CO2 concentration is higher than 
660 ppm, and to choose the appropriate one to improve 
the estimation of ET under elevated CO2 concentration. 

Although some studies applied modified simple 
empirical equations, such as Makkink (Kruijt et al., 
2008) and Priestley-Taylor (Rosenzweig and Iglesias, 
1998; Hatch et al., 1999; Strzepek et al., 1999) to account 
for the vegetation responses to an elevated atmospheric 
CO2, the FAO-PM method has been always considered 
to be the most reliable one for various climatic con-
ditions due to its physically based characteristic with 
incorporating both physiological and aerodynamic 
parameters (Xu et al., 2006). However, its use of a fixed 
canopy resistance of 70 s m-1 is perceived as weakness, as 
surface resistance may change with climate and weath-
er parameters, variation in day length, or differences 
between daytime and nighttime wind (Pereira et al., 
1999). In fact, this fixed rc hypothesis has not been veri-

fied in experimental trials carried out on irrigated grass 
surfaces which underlined significant variations in the 
canopy resistance rc on daily and seasonal scales (Rana 
et al., 1994; Steduto et al., 2003; Katerji and Rana, 2006; 
Lecina et al., 2003; Perez et al., 2006). The same criti-
cism applies to the models discussed above since they 
are replacing the constant daily values of the grass rc 
with different but always constant values, or using a sim-
ple correction factor with the FAO-PM formula, which 
could be because of the complexity of the canopy resist-
ance modelling (Katerji and Rana, 2006).

CONCLUSION

This paper provides an overview of surface resist-
ance models found in literature that included the effect 
of CO2 on crop evapotranspiration. The paper reports 
a brief explanation of the main theories and assump-
tions involved in the models’ development and under-
lines their main characteristics. Using these models 
would help improving the accuracy of ET estimations. 
Yet, modeling canopy resistance is a difficult task as its 
value depends on vegetation type, climate, plant archi-
tecture and, in water scarcity conditions, on plant and/
or soil water status (Shuttleworth and Gurney, 1990). 
This complexity caused the dissimilarity in results when 
using some of the aforementioned models in this review, 
which is also due to the conflicting effect that increase 
in CO2 concentration has with increase in tempera-
ture. Hence, there is still a need to enhance the robust-
ness of the resistance modeling procedure in order to 
be applied to different crops under different climatic 
conditions and under diverse future climate change sce-
narios. Actually, the great bulk of studies carried out on 
canopy resistance modelling compared the performance 
of these models with that of the FAO-PM approach or 
with different models for estimating ETo, and very few 
researchers have actually attempted to estimate future 
changes in ETo based on projected climate change sce-
narios and estimates of increased CO2 concentrations. 
Furthermore, many models were not even tested with 
the FAO-PM equation, justifying Yang et al. (2019) state-
ment that many present climate models do not account 
for vegetation responses to an elevated atmospheric CO2, 
thus seriously questioning the claim of ‘warming leads 
to drying’ in earlier studies. 

We note in conclusion that there is a growing need 
for improved surface resistance models, that may simu-
late better the changes in stomata physiological respons-
es, thus enhancing the accuracy, reliability and applica-
bility of ET estimates.
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