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Abstract. An effective water resources management requires accurate predictions of 
possible risks. Drought is one of the most devastating phenomena that has a certain 
risk of occurrence. Understanding the variability of the drought indices is of great 
importance in determining the spatiotemporal behavior of the drought phenomenon. 
Moreover, determination of the variability and short-term prediction of the drought 
indices enables us to take necessary steps in hydrological and agricultural issues. In 
this study, drought indices have been predicted via Support Vector Regression, SVR. 
This method originated from a linear regression method in a high dimensional fea-
ture space. SVR necessitates a special input matrix. In this study, this matrix has 
been constructed on the basis of Chaotic Approach, CA. Commonly used drought 
indices are used in the prediction stage. These indices consist of monthly Palmer 
Drought Severity Index, PDSI, Palmer Hydrological Drought Index, PHDI, Palmer 
Z-Index, ZNDX, Modified Palmer Drought Severity Index, PMDI, and Standard Pre-
cipitation Index, SPI. One-step ahead prediction has been realized for a 36-month 
period. Most results show that predictions of the drought indices using SVR are 
quite promising. 

Keywords. Drought indices, prediction, phase space reconstruction, machine learning.

1. INTRODUCTION

It is a well-known fact that drought is one of the most important natural 
disasters in the world. Severity and duration of droughts in different regions 
of the world are expected to increase in the future due to climate change. Most 
countries will be affected by drought at different levels depending on the risk 
factors they have (Carrao et al., 2016). Drought is a natural disaster with the 
power to produce significant social and economic consequences. For this rea-
son, better management of water resources will gain more importance in the 
future. In drought studies, the first step is the determination of drought’s level 



66 Özlem Baydaroğlu Yeşilköy, Kasım Koçak, Levent Şaylan

and its variation and predicting the future value of the 
drought indices. Drought indices are used for determina-
tion and classification of the drought (Yihdego et al., 2019; 
Hao et al., 2016).

In literature, there are some studies about prediction 
of the drought indices. Liu et al. (2009) have implemented 
the Markov Chain Model to predict the PDSI. They con-
structed a one-step prediction model which produces 
different prediction accuracy such as 96.68%, 64.45%, 
52.6% and 0.40% for normal, slight, moderate, and severe 
drought conditions, respectively. Mehta et al. (2014) have 
used the Model for Interdisciplinary Research on Climate 
5 (MIROC5) and Statistical Forecast System (SPS) in order 
to predict the Self-Calibrating Palmer Drought Severity 
Index (SC-PDSI). Although correlation coefficients and 
root mean square errors are big enough with regard to the 
time period and grid spacing, the accuracy of the predic-
tion is within the acceptable limits. Cutore et al. (2009) 
employed neural networks and climate indices so as to 
predict the Palmer Indices. They found that the North 
Atlantic Oscillation (NAO) series are uncorrelated with 
the Palmer Indices for winter months while the European 
Blocking (EB) are correlated with the Palmer Indices both 
for winter and autumn months. Belayneh et al. (2014) have 
used a wavelet-neural network and wavelet-support vector 
regression approaches to predict long-term SPI series. The 
best prediction result is produced from the coupled wave-
let neural network. 

The SVR which is an advanced, state-of-the-art pre-
diction method can be seen as a specific implementation of 
Support Vector Machines (SVMs) to the regression prob-
lem (Vapnik, 1995; Cortes and Vapnik, 1995). The SVM 
is a kind of statistical learning machine which is widely 
used in an area of classification (Vapnik and Lerner, 1963; 
Vapnik and Chervonenkis, 1964). SVR transforms input 
space which is formed from the observations into high di-
mensional feature space by way of a kernel function and 
performs a linear regression in this space.

There are many applications of SVR about prediction 
of many variables. Yu et al. (2006) have used SVR for real-
time flood stage prediction. This study has demonstrated 
that a SVR has strong prediction performance. Santam-
aria-Bonfil et al. (2016) have developed a method based 
on the SVR to predict wind speeds for wind farms. They 
showed that the SVR is more appropriate for short term 
wind speed and wind power values prediction than persis-
tence and autoregressive models. SVR has been employed 
to predict hourly O3 concentrations by Ortiz-Garcia et al. 
(2010) with accurate prediction results. Baydaroğlu and 
Koçak (2014) have used SVR algorithm to predict evapo-
ration values. The results show that SVR-based predictions 
are very successful with high determination coefficients as 

83% and 97% for univariate and multivariate time series 
embeddings, respectively. Moreover, river flow prediction 
using hybrid models of the SVR with Wavelet Transform 
(WT), Singular Spectrum Analysis (SSA) and CA is real-
ized by Baydaroğlu et al. (2017). The SVR-WT combina-
tion has resulted in the highest coefficient of determina-
tion and the lowest mean absolute error. Granata et al. 
(2016) have applied SVR for a simulation of rainfall-runoff 
processes in two experimental basins and compared with 
EPA’s stormwater management model. The hydrograph 
shape and the time to peak are correctly modelled by these 
approaches. It can be said that the SVR shows considerable 
potential for applications to the problems of urban hydrol-
ogy.

The main idea behind this study is to predict drought 
indices consisting of many nonlinear variables with high 
accuracy. Prediction of drought indices enables decision 
makers to monitor all components of hydrologic cycle, 
gain simple information about different kinds of droughts 
which are complex phenomena, determine economic 
impacts, risks and changes on agricultural productivity, 
plan irrigation facilities and water distribution. In the 
prediction part of the study, SVR has been employed. It 
requires a special input data format. Chaotic Approach 
(CA) is utilized in order to prepare the input data set for 
SVR. For this purpose, a phase space is reconstructed by 
using Embedding Theorem (Takens, 1981). According to 
this theorem, time delays and embedding dimensions are 
determined from the time series in question. In this study, 
False Nearest Neighbour (FNN) (Kennel et al., 1992) and 
Mutual Information Function (MIF) (Fraser and Swinney, 
1986) have been implemented to determine the embed-
ding dimension and the time delay, respectively. 

In the organization of this paper, Section 2 introduces 
the methods and material used in the study, Section 3 dis-
cusses the results obtained in the study.

2. MATERIAL AND METHODS

The following are employed in this study: (1) Deter-
mining the optimum embedding dimensions and time 
delays (2) A phase space is constructed with these embed-
ding parameters in order to prepare input matrix for SVR 
(3) Prediction of the drought indices using SVR. 

FNN algorithm is based on the definition of true and 
false neighboring points in a phase space. Percentages of 
the false neighboring points in a successively higher di-
mensional phase space provide to develop this algorithm 
to choose an optimum embedding dimension. The Mutual 
Information Function (MIF) can be considered as a non-
linear counterpart of the Autocorrelation Function (ACF). 
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2.1. Data

The American Meteorological Society (1997) catego-
rizes droughts as meteorological or climatological, agri-
cultural, hydrological and socioeconomic droughts. Wil-
hite and Glantz (1985) are expressed numerically some 
indices based on historical climate records such as tem-
perature and precipitation.

In this study, US Palmer Drought Severity Index 
(PDSI), Palmer Hydrological Drought Index (PHDI), 
Palmer Z-Index (ZNDX), Modified Palmer Drought Se-
verity Index (PMDI) and Standard Precipitation Index 
(SPI) are considered. These indices were calculated from 
monthly data between June 1929 and December 2015 pro-
vided by National Oceanic and Atmospheric Administra-
tion (NOAA) (downloaded from https://www7.ncdc.noaa.
gov/CDO/ CDO DivisionalSelect.jsp)

The PDSI is widely and operationally used for de-
termination of drought status (Palmer, 1965). This index 
is based on a soil moisture balance between supply and 
demand. In other words, it is a function of precipitation, 
temperature, and available water content of the soil (Palm-
er, 1965; Alley, 1984). It is generated indicating the severity 
of wet or dry spells. This index is above +4 and below -4. 
Negative values indicate dry spells while positive values 
denote wet spells. 

The PHDI is a monthly hydrological drought index 
used to assess long-term moisture supply and indicates the 
severity of a wet or dry spell like the PDSI. This index con-
siders the information about precipitation as inflow, out-
flow and storage. Increased irrigation, new reservoirs, and 
added industrial water use are not typically included in 
the computation of this index. The index generally ranges 
from - 6 to +6. The major disadvantage of this index is that 
it does not take the long-term precipitation trend in con-
sideration (Karl and Knight, 1985). 

The ZNDX essentially measures the moisture anoma-
ly. It specifies a deviation from the normal monthly PDSI. 
This index can respond to a month of above-normal pre-
cipitation, even during periods of drought.

The PMDI is derived from the PDSI having the differ-
ence with respect to transition periods between dry and wet 
spells. The PMDI is based on a weighting factor for wet and 
dry indices (Heddingshaus and Sabol, 1991). An index value 
is selected as the PDSI drought index. This selection is re-
alized by the program regarding probabilities (see https://
www7.ncdc. noaa.gov/CDO/CDODivisionalSelect.jsp).

The Surface Water Supply Index (SWSI) is calculated 
by using the components of precipitation, snowpack (in 
winter), stream flow (in summer) and reservoir storage 
inputs. Monthly data are used for the computation of the 
SWSI. McKee et al. (1993) stated that the SPI is another 

well-known and frequently used meteorological drought 
index in application. This index is a transformation of the 
probability of observing a given amount of precipitation 
in given months (see https://www7.ncdc. noaa.gov/CDO/
CDODivisionalSelect.jsp).

The Global Historical Climatology Network (GHCN) 
Daily dataset is the source of station data. GHCN-Daily 
contains several major observing networks in North 
America. The primary network is the National Weather 
Service (NWS) Cooperative Observing (COOP) program. 
These data update every day from a variety of data streams 
with quality checks. Moreover the data are reconstructed 
each weekend from its data source components (see detail 
https://www.ncdc.noaa.gov/data-access/land-based-sta-
tion-data/land-based-datasets/global-historical-climatol-
ogy-network-ghcn). 

Drought indices used in the study are given in the 
Figures 1 (a) to (k). These figures clearly reveal the erratic 
behavior of the drought indices.

2.2. Phase Space Reconstruction

Prediction of drought indices by way of SVR requires 
a special set of input data matrix. In this study, chaos theo-
ry is utilized to construct the input data matrix. The phase 
spaces of drought indices have been reconstructed using 
the most appropriate embedding parameters.

To estimate optimum embedding dimensions, a 
method proposed by Cao (1997) has been applied to all 
series. For this purpose, nonlinearTseries package in R-
Studio has been used (Cao, 1997; Arya and Mount, 1993; 
Arya et al., 1998). Embedding dimension values are deter-
mined from the points which E1(d) and E2(d) stay con-
stant together.

To reconstruct the phase space we need the proper 
time delays, . In the application, this parameter is extract-
ed from both autocorrelation and mutual information 
functions (MIF). In this study, we have chosen the MIF 
to decide the proper time delay because of its flexibility 
in measuring both linear and nonlinear inner-depend-
ences in a given series. To estimate optimum time delay, 
the fractal package in R-Studio has been used (Kantz and 
Schreiber, 1997; Bassingthwaighte et al., 1994; Fraser and 
Swinney, 1986; Casdagli et al., 1991).

The details of phase space reconstruction from a uni-
variate or single variable time series is given in Packard 
et al. (1980). A phase space can be reconstructed by using 
delay coordinate method. Coordinates of the phase space 
are spanned by the variables which are necessary to spec-
ify the time evolution of the system (Koçak et al., 2004). 
With regard to Embedding Theorem (Takens, 1981), a 
phase space can be constructed from a one-dimensional 
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series. Let’s consider a time series xi ∈ ℝ, i=1,2,…,N, then 
the reconstruction procedure for the purpose of predic-
tion is given as

Xi=(xi,xi-τ,…,xi-(d-1)τ) ∈ ℝd, i=1,2,…,N-(m-1)τ (1)

where Xi is an d-dimensional phase space vector, τ is a 
time delay and m is an embedding dimension.

In the d-dimensional space, phase space vectors de-
scribe an object which is topologically equivalent to the at-
tractor of the physical system (Porporato and Ridolfi, 1997).
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Fig. 1. Monthly (a) PDSI (b) PHDI (c) ZNDX (d) PMDI e) 1-month SPI (f) 2-month SPI (g) 3-month SPI (h) 6-month SPI (i) 9-month SPI 
(j) 12-month SPI (k) 24-month SPI.
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2.2.1. False Nearest Neighbor (FNN) Method 

To reconstruct a phase space, embedding dimensions 
and time delays should be determined from a given time 
series. In literature, there are some methods like False 
Nearest Neighbor (Kennel et al., 1992) and Grassberger-
Procaccia (GP) methods (Grassberger and Procaccia, 1983).

In this study, another algorithm proposed by Cao 
(1997) has been implemented to determine the minimum 
embedding dimension. For a time series x1,x2,…,xN, the 
time delay vectors reconstructed,

Xi(d)=(xi,xi+τ,…,xi+(d-1)τ), i=1,2,…,N-(d-1)τ (2)

Similar to FNN algorithm,

 (3)

where || || is some measurement of Euclidean distance and 
the maximum norm of the distance

 (4)

Xi(d+1) is the ith reconstructed vector with embed-
ding dimension d+1, i.e., Xi(d+1)=(xi,xi+τ,…,xi+dτ); n(i,d), 
(1≤n(i,d)≤N-dτ), is an integer such that xn(i,d)(d) is the 
nearest neighbour of xi(d) in the d-dimensional recon-
structed phase space in the sense of distance || ||. 

The threshold value should be determined by the de-
rivative of the underlying signal, therefore, for different 
phase point i, a(i,d) should have different threshold val-
ues. Also, different time series may have different thresh-
old values. For this problem, Cao (1997) defines the mean 
value of all a(i,d)’s

 (5)

To investigate its variation from d to d+1

 (6)

E1(d) stops changing when d is greater than some val-
ue d0 if the time series comes from an attractor. Then, the 
d0+1 is the minimum embedding dimension.

Another quantity which is useful to distinguish deter-
ministic signals from stochastic signals can be developed 
by using E*(d)

 (7)

Finally,  (8)

For time series data from a random set of numbers, 
E1(d), in principle, will never attain a saturation value as 
d increases. In practical computations, it is difficult to re-
solve whether the E1(d) is slowly increasing or has stopped 
changing if d is sufficiently large. Because available ob-
served data samples are limited, it may happen that E1(d) 
stops changing at some d although the time series is ran-
dom. To solve this problem, E2(d) can be considered. For 
random data, because the future values are independent 
of the past values, E2(d) will be equal to 1 for any d in this 
case. However, for deterministic data, E2(d) is certainly 
related to d, as a result, it cannot be a constant for all d; in 
other words, there must exist some d’s such that E2(d)≠1. 

2.2.2. Mutual Information Function (MIF) 

Another important embedding parameter for recon-
structing a phase space is a time delay. Various methods 
such as Mutual Information Function (MIF) (Fraser and 
Swinney, 1986), autocorrelation function, Cross Autocor-
relation (CAC) (Palit et al., 2013), C-C Method (Kim et al., 
1999) based on correlation integral can be used to deter-
mine proper time delay. MIF which is a nonlinear coun-
terpart of autocorrelation function is the most commonly 
used approach in nonlinear time series analysis. The time 
corresponding to the first minimum of the MIF gives the 
optimum value for the time delay.

2.2.3. Support Vector Regression

Vapnik and Lerner (1963) and Vapnik and Chervonen-
kis (1964) have developed SVM algorithm. SVM is a state-
of-the-art method which provides a good generalization 
capability to dynamics of a given process thanks to Struc-
tural Risk Minimization (SRM) approach. SVR, an appli-
cation of SVM to the regression problem, is based on the 
computation of a linear regression function in a multidi-
mensional feature space. 

For a set of k examples [(x1,y1 ),(x2,y2),…,(xk,yk)], each 
generated from an unknown probability distribution 
P(x,y) where xi are the input vectors and yi are the cor-
responding output values (i=1,2,…,k), the best approxi-
mate function of the possible smallest risk can be given as 
(Liong and Sivapragasam, 2002; Yu et al., 2006), 

R(α)=∫(y-f(x,α))2dP(x,y) (9)

where f(x,α) is a class of functions and α is the parameter 
of this function. 
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R(α) cannot be calculated because P(x,y) is unknown. 
For this reason, an induction principle for risk minimi-
zation should be taken into consideration. The approach 
which replaces the probable smallest risk R(α) by the em-
pirical risk Remp(α) is given by

 (10)

This approach is named Empirical Risk Minimization 
(ERM) induction principle. However, ERM does not guar-
antee a small R(α) if the number of training data is limited. 
Therefore, SRM principle based on statistical learning the-
ory has been developed by Vapnik (1999). 

The SRM principle theoretically minimizes R(α) based 
on the simultaneous minimization of both the emprical 
risk and the confidence interval Ω (Yu et al., 2006). The 
bound on R(α) is given by

 (11)

where the parameter h is called the VC-dimension (Vap-
nik, 1995) of a set of functions. It can be seen as the capac-
ity or the complexity of a set of functions.

The learning machine is given a training data set 
{xi,yi}, i=1,…,k, yi∈ℝ,x∈ ℝD. The regression function as-
sumed for this data set is a linear regression on the hyper-
plane

yi=wxi+b (12)

where w is the weight vector, yi is the element of {+1,-1} and 
b is the bias or deviation. In case of real observations, most 
of the processes exhibit nonlinearity. Therefore, linear ap-
proaches may not be practical and effective. When con-
sidering nonlinearity, the input data, x, in the input space 
is mapped to high dimensional feature space using non-
linear function ϕ(x) and the decision function is given by 

f(w,b)=w.ϕ(x)+b (13)

If data are not separated linearly, then slack variables 
are inserted to the optimization problem. Then the regres-
sion problem can be converted into the following convex 
optimization problem (Yu et al., 2006).

 (14)

subject to yi-(w.ϕ(xi)+b)≤ε+ξ+; (w.ϕ(xi)+b)-yi≤ε+ξ-; ξ+,ξ-≥0, 
i=1,2,…,k 

where ξ+ and ξ- are slack variables that indicate the upper 
and lower training errors subject to an error tolerance ε. C 
is the penalty factor which is a balance between the train-
ing error and model complexity. To find Lagrange multi-
pliers  and  which are necessary to solve convex op-
timization problem, the following function is maximized

 (15)

subject to ; , i=1,2,…,k; 
, i=1,2,…,k

In Eq. (15), ϕ(xi).ϕ(xj) is a kernel function, K(xi,xj). 
There are various kernel functions such as linear, poly-
nomial, radial basis and sigmoid. The application of SVR 
requires the selection of an appropriate kernel function. 
Radial Basis Function (RBF) is the most commonly used 
kernel function because of its flexibility in applications 
(see Baydaroğlu and Koçak, 2014; Baydaroğlu et al., 2017; 
Yu and Liong, 2007; Belayneh et al., 2014; Ortiz-Garcia et 
al., 2010). Besides, it has a strong learning ability and is 
able to reduce computational complexity of the training 
process and improve the generalization performance of 
SVR (Li and Xu, 2005). In the study, RBF has been chosen 
as the kernel function

 (16)

where g is the width of radial basis function. The final de-
cision function of nonlinear SVR can be given by

 (17)

where xk is a new entry for the estimation.

2.3. Prediction 

In general, prediction from a time series can be per-
formed by using three different approaches. These are one-
step prediction, direct multi-step prediction and indirect 
multi-step prediction (Wang et al, 2010). Let η shows the 
prediction horizon or predefined time interval used for 
how far ahead the model predicts the future. Then the 
abovementioned prediction methods can be expressed as 
given below.

a. One-step prediction (η=1)
X(t+1) = F(X(t)) (18)
b. Direct multi-step prediction (η > 1)
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The prediction value of t + η can be estimated accord-
ing to the historical measurement data, and the prediction 
equation is

X(t + η) = F[X(t)] (19)
c. Indirect multi-step prediction (η > 1) 

Using iteration method to process one-step prediction 
model, and the prediction equation is

X(t + η) = F(F{· · · F[X(t)]}) (20)

In application, one-step prediction is the most fre-
quently used method due to its simplicity and its high ac-
curacy. Thus, throughout this study, one-step prediction 
was preferred to other prediction approaches and run for 
36 months (three years). This time period is enough to 
evaluate the accuracy of the prediction method. 

2.4. Performance Criteria

In this study, Mean Absolute Error (MAE) (Willmott 
and Matsuura, 2005), Relative Error (RE) (Golub and 
Charles, 1996) and coefficient of determination (R2) (Steel 
and Torrie, 1960) are calculated to estimate the prediction 
performance. 

Let N, xi, yi, x, y denote the total number of observa-
tions, observed values, forecasts, the arithmetic means of 
the observed and forecasted values, respectively. 

 (21)

 (22)

 (23)

3. RESULTS 

The recent studies on climate change indicate that 
drought will be one of the most important challenges in 
the future. To facilitate the drought related analysis, some 
drought indices have been developed to judge numerically 
whether current conditions fall within the drought limits 
or not. Thus, predictions of drought indices will enable us 
to take some necessary precautions to mitigate the pos-
sible effects of drought related damages.

All drought indices have been predicted for a 
36-month prediction period by way of one-step ahead 
prediction. Prediction of drought indices is a very com-

plicated task since this kind of data show quite high vari-
ability. Therefore, SVR that is a state-of-the-art method 
when comparing other counterparts is chosen to predict 
drought indices. 

To prepare an input matrix for SVR, optimum embed-
ding parameters have been estimated as seen in Tab. (1).

After the proper determination of embedding param-
eters phase spaces for the drought indices can be recon-
structed. Then by using these phases, the input data ma-
trix can be formed properly. In this case, any input data 
matrix consists of two parts. One is a training data set and 
the other is a test data set. In addition, the input data set 
also includes the target data column. This column indi-
cates the next or future values of the predicted variable.

From embedding parameters given in Tab. 1, phase 
spaces are reconstructed. 

Tab. 2 shows the SVR parameters used in the predic-
tions of drought indices. As mentioned before, the param-
eter C given in the second column of the table controls the 
trade-off between the slack variable penalty and the size of 
the margin. SVR uses a more sophisticated penalty func-
tion than the SVM, not allocating a penalty if the predicted 
value is less than a distance ε away from the actual value. 

Tab. 1. Optimum time delays and embedding dimensions for 
drought indices.

Drought 
Indices

Time 
Delays

Embedding 
Dimensions

Drought 
Indices

Time 
Delays

Embedding 
Dimensions

PDSI 17 9 SP02 2 10
PHDI 17 9 SP03 2 9
ZNDX 17 9 SP06 6 10
PMDI 2 10 SP12 14 8
SP01 2 10 SP24 20 8

Tab. 2. SVR parameters used in the predictions of the drought indi-
ces.

SVR Parameters C ε g

PDSI 0.3536 0.0044 0.0060
PHDI 8.0000 0.0229 0.7711
ZNDX 197.4029 0.0001 0.5452
PMDI 1.8340 0.0499 1.6818
SP01 256.0000 0.0004 0.0482
SP02 98.7015 0.0031 0.4585
SP03 256.0000 0.1294 0.1621
SP06 1.4142 0.1187 1.0000
SP09 279.1699 0.1996 0.0078
SP12 256.0000 0.1088 0.0060
SP24 58.6883 0.0593 0.3855
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Fig. 2. Prediction results of (a) PDSI (b) PHDI (c) ZNDX (d) PMDI (e) SPI01 (f) SPI02 (g) SPI03 (h) SPI06 (i) SPI09 (j) SPI12 (k) SPI24 (l) 
Prediction performance of the drought indices.
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The last parameter, g, is the width of the Gaussian kernel 
function. These parameters are calculated for their valid 
ranges which are determined by using a Fortran code and 
optimum values of parameters given in Tab. 2 are used for 
the implementation of SVR.

The application of SVR requires the selection of an 
appropriate kernel function. In the study, RBF has been 
chosen as the kernel function. RBF is the most commonly 
used kernel function because of its flexibility in applica-
tions (see Baydaroğlu and Koçak, 2014; Baydaroğlu et al., 
2017; Yu and Liong, 2007; Belayneh et al., 2014; Ortiz-Gar-
cia et al., 2010). Besides, it has a strong learning ability and 
is able to reduce computational complexity of the training 
process and improve the generalization performance of 
SVR (Li and Xu, 2005). 

Predictions of the last 36-month period of the drought 
indices are given in Fig. 2(a) to (k). In this fig., normalized 
prediction and indices values have been used. Besides, sta-
tistics of the performance criteria of the predictions can be 
seen in Fig. 2(l). 

As stated before, drought is the most devastating 
natural phenomenon that causes serious loss of life and 
property. Therefore, prediction of drought occurrence is 
extremely important for decision makers. In the current 
literature, there are various drought indices and each one 
is developed for different purposes. Instead of focusing on 
a specific drought index, most of the well-known drought 
indices are considered in the prediction process 

The importance of drought indices’ prediction origi-
nates from the cruciality of drought prediction. Calcula-
tion of drought indices consists of many meteorological 
and hydrologic parameters. Therefore, prediction of these 
indices has a complex and difficult challenge. Since accu-
rate drought prediction enables people to take necessary 
precautions for agricultural sustainability, disaster man-
agement and plan water management, agricultural activi-
ties, a hybrid prediction method based on SVR powered 
by Chaos Theory has been used in this study. It is a well-
known fact that there is an inverse relationship between 
variability and prediction accuracy. Although drought in-
dices have high variability, high generalization capability 
of SVR leads to predictions with high accuracy. 

Fig. 2 (l) shows prediction performance criteria, MAE, 
RE, R2. High MAE and RE values and low R2 values indi-
cate medium and low prediction accuracy and vice versa. 

If RE=0, prediction is perfect while RE=1 means that 
only the average value is predicted. From Fig. 2 (l), it is 
seen that ZNDX and SP01 have the highest relative errors. 
Namely, these indices have been predicted on their average 
levels. Similarly, it can be easily seen that ZNDX and SPI01 
are indices which are difficult to predict as seen similarly 
on MAEs and R2 values of ZNDX and SPI01.

Willmott and Matsuura (2005) indicate that MAE is 
a good natural measure of average error. Fig. 2 (l) shows 
that maximum MAE values of all indices belong to ZNDX 
and SPI01. Moreover, ZNDX and SPI01 have the smallest 
R2 values. 

As a result, PDSI, PHDI, PMDI, SP09, SP12 and SP24 
can be predicted with high accuracy when considering all 
performance criteria. These indicators show that all Palm-
er drought indices can be predicted accurately using SVR. 

In summary, the results show that the proposed hy-
brid method can accurately predict drought indices but 
ZNDX and SPI01. The low predictability of these indices is 
quite understandable. Because ZNDX is limited to just one 
month, it is a short-term drought measure without mem-
ory from previous months (see https://www.cisa.sc.edu/
atlas/glossary.html). Similarly, it may be difficult to obtain 
the required number of data for high prediction accuracy 
of SPI01 since it shows the anomalies of the observed total 
precipitation for a month. Obviously, prediction errors de-
crease as the numbers of the month increase for SPIs. Pre-
dictions for Palmer Indices and long-term SPIs are very 
promising. 

4. CONCLUSION

One of the most important features that distinguish 
the drought phenomenon from other natural disasters is 
of its slowly developing feature over time. The second im-
portant feature of drought events is that once it has started, 
its devastating effects continue for a relatively long period 
of time. Drought has the ability to deeply affect all sectors 
and leaves permanent marks on the life of society. For this 
reason, it is a natural disaster that deserves further study. 
There are many drought indices which are widely used in 
the monitoring of drought events. Therefore, in order to 
minimize the negative effects of drought events, it is of vi-
tal importance to realize accurate predictions of drought 
indices.

SVMs were developed on the basis of statistical learn-
ing. It had outstanding advantages in theory and it real-
ized the nonlinear mapping of the high-dimensional space 
by kernel function, and it was used to solve nonlinear clas-
sification and regression estimation problems (Li et al., 
2019). On the other hand, Chaos Theory has made a great 
success in many fields of pure and applied sciences, espe-
cially in atmospheric sciences, climatology, economy, fluid 
mechanics, hydrology, medical sciences, etc. In this study, 
the two state of the art techniques were applied to the pre-
diction of drought indices. 

SVR is a product of SVM developed to be applied 
to the regression problems. In SVR, the most important 
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step of the application is to form the input matrix. In the 
current literature, there is no standard procedure in the 
construction of input matrix. CA enables the scientists 
to use a standard method to construct the input matrices 
which plays an important role in the success of the SVR 
method.

In the application stage, the above mentioned meth-
ods were applied to five frequently used drought indices 
for prediction purposes. Except for ZNDX and SPI01, 
which fluctuate almost randomly, the results are very en-
couraging. The results show clearly that the proposed hy-
brid method produces very accurate one-step predictions 
of drought indices. The proposed method has the ability 
to produce the prediction higher than one-step. Undoubt-
edly, such predictions will provide significant flexibility 
to the decision makers in terms of taking the necessary 
measures on time.
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