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Abstract. Summer and winter vegetable cultivation is widely practiced in Türkiye. 
Therefore, when unexpected situations such as wars and epidemics occur with climate 
change, it is important to accurately determine how the cultivation areas of vegetables, 
which have an important place in the food sector and agriculture, will change due to 
climate change. This study aimed to estimate how climate change would affect the geo-
graphical distribution of tomato, watermelon, onion, and cucumber to be planted in 
Türkiye in the future by using a climatic suitability model. For this purpose, climat-
ic suitability estimation was done using the EcoCrop module included in the DIVA-
GIS program for tomato, watermelon, onion, and cucumber under the results of the 
HADGEM2_ES model RCP4.5 and RCP8.5 scenarios in the future period (2050s) and 
the reference period (1950-2000) in Türkiye. The results of the research were evalu-
ated, and it was determined that the climatic suitability for watermelon would be posi-
tively affected, while the climatic suitability for tomato, onion, and cucumber would 
be negatively affected in Türkiye. It is estimated that in the 2050s, climatically suitable 
areas for tomato (13–16%), onion (3–7%), and cucumber (4–12%) cultivation will 
decrease, while suitable areas for watermelon (26–35%) cultivation will increase. While 
it is estimated that Türkiye will fall further behind in tomato and onion production 
in the world rankings in the 2050s, the rankings for watermelon and cucumber will 
not change. The changes in production due to the decrease in climatic suitability for 
tomatoes and cucumbers and the increase in climatic suitability for watermelon will 
impact the economy. It is recommended that production be based on these estimates 
to maintain the diversity of vegetables on our tables in the future and to ensure the 
sustainability of these products.

Keywords:	 EcoCrop Model, DIVA-GIS, Türkiye, suitability, sustainability.

1. INTRODUCTION

Climate change is considered the biggest environmental disaster today, 
and its effects are increasing in the current period. Many studies conducted 
on a global and regional scale show that the adverse effects of climate change 
and variability on water, soil, and agricultural resources may become strong-
er in the future (Çaltı and Somuncu, 2019). Türkiye is among the risk group 
countries in terms of the effects of global warming (WBG, 2022). The nega-
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tive impacts of climate change on the agricultural sector 
will indirectly affect the national economy. Therefore, 
the importance of mitigation and adaptation policies 
emerges once again (Temur, 2017).

Türkiye ranks fourth in the world in vegetable pro-
duction (26.6 million tons), third in tomato production 
(13.0 million tons), second in watermelon (3.4 million 
tons) and cucumber (1.9 million tons) production, and 
sixth in onion production (2.4 million tons) (Table 1). 
When the data in Table 1 is evaluated, it is seen that 
tomato, watermelon, onion, and cucumber are among 
the vegetables with significant production amounts in 
the world. Additionally, Türkiye ranks high in the world 
in terms of cultivation. Therefore, it is very important 
to determine how vegetables, which have an important 
place in human nutrition, will be affected by climate 
change in the future.

Climate change affects cucumber and watermelon 
cultivation (Oyediran et al., 2018; Melo et al., 2020; 
Aparna et al., 2023). Litskas et al. (2019) stated that 
tomato cultivation will be negatively affected by cli-
mate change in Türkiye. Biratu (2018) expects that pos-
sible changes in the context of climate change, such 
as increased air temperature, changes in precipitation, 
long-term water scarcity, etc., will have a significant 
impact on tomato performance, which in turn will have 
a serious impact on food security. Hancı and Cebeci 
(2015) stated that the importance of abiotic stress fac-
tors emerged distinctively with global warming and that 
the most important abiotic factors in onion cultivation 
were salinity and drought. When these and other stud-
ies investigating the effects of climate change on these 
plants are evaluated, it is seen that precautions should be 
taken to adapt these plants to climate change.

The EcoCrop model was used to determine climatic 
suitability in the study. Initially, the EcoCrop database 
was created by the Food and Agriculture Organization 
(FAO) as a database containing plant characteristics and 
crop environmental requirements for more than 2000 

plants (FAO, 2023). This database was integrated into 
DIVA-GIS by Hijmans et al. (2001) and named EcoCrop. 
The reason for choosing this model is primarily its high 
accuracy (Jarvis et al., 2012; Ramirez-Villegas et al., 
2013). In addition, it can perform suitability analysis for 
many plant species in large areas over a long period. It 
is a great advantage that it can determine climatic suit-
ability with high accuracy with limited data and contrib-
ute to agricultural production by providing important 
predictions. Ignoring other environmental factors can 
be considered a disadvantage. However, it is possible to 
diversify and develop studies by integrating environmen-
tal factors into these results.

Climatic suitability has been determined for various 
vegetables around the world (Egbebiyi et al., 2019; Egbe-
biyi et al., 2020; Gardner et al., 2021; Møller et al., 2021; 
Zagaria et al., 2023). In Türkiye, climatic suitability has 
been investigated in plants such as safflower, corn, mil-
let, canola, wheat, cotton, spinach, and sunflower (Aydın 
and Sarptaş, 2018; Deveci, 2023; Deveci, 2024; Şen et 
al., 2024). Studies on climatic suitability estimation in 
Türkiye are quite limited. Therefore, to reduce the nega-
tive effects of climate change, such studies should be 
supported and increased by conducting trials in differ-
ent regions with various models, especially with strate-
gic plants. One of the most important features that dis-
tinguishes this study from other studies is that tomato, 
watermelon, onion, and cucumber, the most widely cul-
tivated vegetables in Türkiye and the world, and occupy 
an important place in human nutrition, were selected 
and evaluated for climatic suitability. In recent years, 
research on the effects of climate change on horticul-
tural crops has been frequently conducted in Türkiye, 
including the species examined in this study. However, 
this study is the first to address the spatio-temporal dis-
tribution of climatic suitability for these vegetables at the 
Türkiye level through modeling using climate change 
projections. It is also very significant in terms of ensur-
ing diversity and sustainability. 

Table 1. Vegetable and tomato, watermelon, cucumber, and onion production amounts and rankings in the world and Türkiye (2022) 
(WPR, 2024a; WPR, 2024b; WPR, 2024c; WPR, 2024d; WPR, 2024e).

Vegetable Production
(million tons)

Tomato
(million tons)

Watermelon
(million tons)

Onion
(million tons)

Cucumber
(million tons)

China (616) China (68.2) China (60.4) India (31.7) China (77.3)
India (145) India (20.7) Türkiye (3.4) China (24.5) Türkiye (1.9)
United States (27.1) Türkiye (13.0) India (3.3) Egypt (3.7) Russia (1.6)
Türkiye (26.6) United States (10.2) Algeria (2.0) United States (2.9) Mexico (1.1)
Vietnam (17.8) Egypt (6.3) Brazil (1.9) Bangladesh (2.5) Uzbekistan (0.9)
Nigeria (16.1) Italy (6.1) Russia (1.6) Türkiye (2.4) Ukraine (0.8)
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This study aims to estimate climatic suitability for 
tomato, watermelon, onion, and cucumber in Türkiye 
for the reference period (1950-2000) and future (2050s) 
according to the outputs of the HADGEM2_ES model 
RCP4.5 and RCP8.5 scenarios with the EcoCrop mod-
ule in the DIVA-GIS program. In this context, the effects 
of temperature and precipitation, which are the most 
important factors for plant cultivation, on the areas 
where these vegetables can be planted have been tried to 
be revealed. When unforeseen situations arise with cli-
mate change, accurately estimating the areas where these 
vegetables, which have an important place in the agricul-
ture and food sector, can be planted will guide produc-
ers and those working in this field while planning.

2. MATERIAL AND METHODS

2.1 Research area

Türkiye is located between 26°-45° E longitude and 
in 36°-42° N latitude in the Northern Hemisphere. Its 
surface area is approximately 780000 km2. 3% of Tür-
kiye’s surface area is in the European continent (Thrace) 
and 97% is in the Asian continent (Anatolia). Türkiye 
is bordered to the west by Bulgaria and Greece, to the 
east by Iran, Georgia, Armenia, Azerbaijan/Nahcivan, 
and to the south by Iraq and Syria (GDSHW, 2023). The 
research area and seven geographical regions in Türki-
ye are shown in Figure 1. According to the 2022 data of 
the Turkish Statistical Institute, Türkiye’s total utilized 
agricultural land is 38501 thousand hectares. Cereals 
and other plant products are 16529 thousand hectares, 
vegetable gardens are 718 thousand hectares, ornamen-

tal plants are 6 thousand hectares, and fruits, bever-
ages, and spice crops are 3671 thousand hectares. While 
meadow and pasture lands cover an area of 14617 thou-
sand hectares, 2960 thousand hectares of land are left 
fallow (TurkStat, 2024a).

2.2 Climate of the research area

Türkiye is located between the temperate zone and 
the subtropical zone. The fact that Türkiye is surround-
ed by seas on three sides, the extension of the moun-
tains, and the diversity of landforms have led to the 
emergence of climate types with different characteristics. 
In the coastal regions of Türkiye, milder climate charac-
teristics are observed with the effect of the seas. Conti-
nental climate characteristics are observed in the inte-
rior of Türkiye. Based on the criteria used in worldwide 
climate classifications, Türkiye has continental climate 
(Southeastern Anatolia Continental Climate, Eastern 
Anatolia Continental Climate, Central Anatolia Conti-
nental Climate, Thrace Continental Climate), Mediter-
ranean climate, Marmara (transition) climate, and Black 
Sea climate (Atalay, 1997). According to long-term (1970-
2024) climate data averages for Türkiye, average maxi-
mum temperature is 19.2 °C (TSMS, 2023a), average 
minimum temperature is 7.9 °C (TSMS, 2023b), average 
mean temperature is 13.3 °C (TSMS, 2023c), average 
annual total precipitation is 593.3 mm (TSMS, 2023d), 
average relative humidity is 63.5% (TSMS, 2023e).

2.3 Climate model and scenarios used in the research

HadGEM2 is a second-generation global model 
developed by the Hadley Center, a research organiza-
tion of the United Kingdom Meteorological Service, and 
stands for Global Environment Model Version 2. There 
are many versions of this model with similar physical 
properties but in different configurations. The HadG-
EM2 series includes a coupled atmosphere-ocean config-
uration and an Earth system configuration that includes 
dynamic vegetation, ocean biology, and atmospheric 
chemistry (Collins et al., 2011; Gündoğan et al., 2017), 
while the HadGEM2-ES version includes terrestrial car-
bon cycle, chemistry, ocean biochemistry, ocean and sea 
ice, troposphere, aerosols, land surface, and hydrology 
configuration(Martin et al., 2011).

In 2007, the Intergovernmental Panel on Climate 
Change (IPCC) Experts Meeting in the Netherlands 
defined four Representative Concentration Pathways 
(RCPs) for characteristics and radiative forcing levels 
and pathways. RCP4.5 used in the study is the medi-

Figure 1. Türkiye map (A-Marmara Region, B-Black Sea Region, 
C-Aegean Region, D-Central Anatolia Region, E-Eastern Anatolia 
Region, F-Mediterranean Region, G- Southeastern Anatolia Region).
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um stabilization path and assumes that radiative forc-
ing stabilizes at 4.5 W/m2 between 2100 and 2150. The 
other scenario in the study, RCP8.5, is the high radia-
tive forcing and concentration path (Moss et al., 2008; 
Gündoğan et al., 2017).

2.4 Crop suitability model: EcoCrop

EcoCrop within DIVA-GIS only considers monthly 
precipitation and temperature to determine plant suit-
ability (Hijmans et al., 2001; Hijmans et al., 2005). The 
parameters used by EcoCrop are minimum length of 
growing season (Gmin), maximum length of grow-
ing season (Gmax), killing temperature during rest 
(KTmp), minimum temperature (Tmin), the maximum 
optimum temperature (TOPmax), minimum optimum 
temperature (TOPmn), maximum temperature (Tmax), 
minimum precipitation (Rmin), maximum precipitation 
(Rmx), minimum optimum precipitation (ROPmn), and 
maximum optimum precipitation (ROPmx). The mod-
el gives suitability maps according to suitability index 
values as output. The suitability index varies between 
0 and 100 in EcoCrop (Ramirez-Villegas et al., 2013). 
EcoCrop’s working logic and the method of calculating 
the suitability index have been explained in detail with 
formulas and graphs by many researchers (Ramirez-
Villegas et al., 2013; Wichern et al., 2019; Joshi, 2021; 
Labaioui and Bouchoufi, 2021). The classifications are as 
follows in EcoCrop: 0% is not-suited, 1–20% is very mar-
ginal, 21–40% is marginal, 41–60% is suitable, 61–80% 
is very suitable, and 81–100% is excellent. The EcoCrop 
parameters for tomato, watermelon, onion, and cucum-
ber are shown in Table 2 (FAO, 2023).

2.5 Method

In this study, climatic suitability maps were generated 
for four different vegetables (tomato, watermelon, onion, 
and cucumber), which play a significant role in human 
nutrition. Since the climatic suitability maps were mod-
eled for four crops, it was thought that it would be more 
appropriate to use only one climate model (HadGEM2_
ES model, the most comprehensive version of the HadG-
EM2 series) and two scenarios (RCP4.5 and RCP8.5) 
due to the high plant diversity. There are many reasons 
why the HadGEM2_ES model RCP4.5 and RCP8.5 sce-
narios are preferred. Firstly, climate predictions have 
been made using these models and scenarios in Türkiye 
(Akçakaya et al., 2013; Akçakaya et al., 2015; GDWM, 
2016). This is very important in terms of comparability. 
Moreover, it was also determined that the HadGEM2_ES 
model produced highly accurate estimates of temperature 
data (Deveci, 2025). The scenarios used in this research 
were RCP scenarios within the scope of AR5. As is well 
known, RCP scenarios directly consider radiative forc-
ing and are classified according to the energy balance 
that will be achieved by 2100. These scenarios are sim-
ple to implement and are compatible with the contents of 
CMIP5 (Coupled Model Intercomparison Project Phase 
5) and CMIP6 (Coupled Model Intercomparison Project 
Phase 6). RCP scenarios are currently employed by many 
researchers, particularly in conjunction with SSP (Deveci 
et al., 2025; Dokuyucu et al., 2025; Duvan et al., 2025; 
Khazaei, 2025; Zhang et al., 2025).

The schematic representation of the method applied 
in the research is given in Figure 2. The climate data file, 
consisting of climate data covering the reference period 
(1950-2000), was obtained from the DIVA-GIS website 
(DIVAGIS, 2023). Future period (2050s) data obtained 

Table 2. Growth threshold for tomato, watermelon, onion, and cucumber crops according to the EcoCrop model (FAO, 2023).

Crop growth thresholds Units
EcoCrop Parameters

Tomato Watermelon Onion Cucumber

Killing temperature (KTmp) °C 0 0 0 0
Minimum temperature (Tmin) °C 7 15 4 6
Minimum optimum temperature (TOPmn) °C 20 20 12 18
Maximum optimum temperature (TOPmax) °C 27 30 25 32
Maximum temperature (Tmax) °C 35 35 30 38
Minimum length of the growing season (Gmin) days 70 80 85 40
Maximum length of the growing season (Gmax) days 150 160 175 180
Minimum precipitation (Rmin) mm 400 400 300 400
Minimum optimum precipitation (ROPmn) mm 600 500 350 1000
Maximum optimum precipitation (ROPmx) mm 1300 750 600 1200
Maximum precipitation (Rmx) mm 1800 1800 2800 4300
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from HADGEM2_ES global climate model RCP4.5 and 
RCP8.5 scenario outputs were downloaded from the 
GCM Downscaled Data Portal website (CCAFS, 2023). 
In this study, crop growth thresholds were obtained 
from EcoCrop (Table 2). Climatic suitability indexes for 
tomato, watermelon, onion, and cucumber in Türkiye for 
the reference and future periods were calculated with the 
EcoCrop module in DIVA-GIS 7.5 software. The work-
ing principle of the EcoCrop model is explained below 
(Ramirez-Villegas et al., 2013).
–	 The duration of the crop’s growing season is 

defined. The length of the growing season is the 
average of the minimum and maximum days speci-
fied in the crop cycle. Here, the calculation is made 
by assuming that each month is potentially the first 
month of the crop’s growing season for 12 months 
separately.

–	 The temperature suitability percentage is found. It is 
calculated for each month. It is the minimum value 
of all 12 potential growing seasons (TSUIT).

–	 The rainfall suitability percentage is found. It is cal-
culated for each growing season (RSUIT).

–	 After calculating temperature and precipitation suit-
ability, total suitability is obtained by multiplying 
these two values (Equation 1).

SUIT= TSUIT* RSUIT� (1)

SUIT: Suitability
TSUIT: Temperature suitability
RSUIT: Rainfall suitability

Then, reference and future period maps were cre-
ated in DIVA-GIS 7.5 according to the calculated suit-
ability indices. In the last stage, these maps were trans-
ferred to QGIS version 3.28, analyzed, and evaluated. 
QGIS, also known as Quantum GIS, was preferred 
because it is an open-access, free, and continuously 
updated software. With this software, mapping, data 
analysis, and editing layers can be done, and vector and 
raster data types can be used and processed. It is also 
possible to find many details, such as geographic coor-
dinate systems, symbols, labels, and data analysis tools 
in this software (QGIS, 2023).

Figure 2. Schematic representation of the method applied in the research.
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3. RESULTS

The climatic suitability obtained for reference and 
future periods for tomato, watermelon, onion, and 
cucumber is presented in Figure 3. When reference and 
future period climatic suitability results for tomato were 
evaluated, it was determined that not suited and mar-
ginal areas increased in both scenarios, and suitable, 
very suitable, and excellent areas decreased in both sce-
narios according to the reference period. In the 2050s, 
very marginal areas increased in the HADGEM2_ES 
model RCP8.5 and decreased in RCP4.5. In watermel-
on, in both scenarios, very suitable and excellent areas 
increased, while unsuitable, very marginal, and marginal 
areas decreased. Suitable areas increased to RCP8.5 and 
decreased to RCP4.5 compared to the reference period. 
When the climatic suitability results for onion were 
evaluated in the 2050s, it was determined that the excel-
lent areas decreased in both scenarios compared to the 
reference period, while all other areas (unsuitable, very 
marginal, marginal, suitable, and very suitable areas) 
increased. In the future, in cucumber, while not suited 
and excellent areas increased in both scenarios, mar-
ginal, suitable, and very suitable areas decreased. Very 
marginal areas decreased to RCP4.5 and increased to 

RCP8.5 compared to the reference period.
Climatical suitable and unsuitable areas for tomato, 

watermelon, onion, and cucumber cultivation in Türki-
ye are shown in Figure 4. It is estimated that the areas 
suitable for tomato cultivation in Türkiye will decrease 
in RCP4.5 and RCP8.5. This decrease will be greater in 
the RCP4.5 scenario. For watermelon, it is estimated that 
suitable areas will increase, and unsuitable areas will 
decrease in RCP4.5 and RCP8.5, respectively. In con-
trast, the opposite is true for onions. In other words, in 
the RCP4.5 and RCP8.5 scenarios, climatic unsuitable 
areas are expected to increase while suitable areas are 
expected to decrease, respectively. It can also be said that 
these increasing and decreasing rates will not change 
much. For cucumber, it is predicted that suitable areas 
will decrease, with a further decrease in RCP4.5.

HADGEM2_ES model reference period (1950-2000) 
and future period (2050s) climatic suitability maps for 
tomato, watermelon, onion, and cucumber cultivation in 
Türkiye are given in Figure 5. When the climatic suita-
bility maps for tomato cultivation in Türkiye were evalu-
ated, it was seen that the unsuitable areas in the Central 
Anatolia Region increased in the 2050s. This increase 
was estimated to be greater at RCP4.5. According to the 
reference period, it has been determined that tomato 

Figure 3. Climatic suitability of tomato, watermelon, onion, and cucumber under the RCP4.5 and RCP8.5 according to the HADGEM2_ES 
model for the reference period (1950-2000) and the future period (2050s).
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cultivation areas in the Black Sea Region will expand 
and become more suitable areas in the future. While 
unsuitable areas in the northeast of Türkiye turn into 
more suitable areas in the future, on the contrary, it was 
understood that the suitability of suitable areas in the 
southeast of Türkiye will decrease in future estimates. 
Another important change is that while tomato cultiva-
tion could be done in southern latitudes in the reference 
period, there will be a shift towards northern latitudes in 
2050 due to the effect of climate change.

When the climatic suitability maps for watermelon 
cultivation in Figure 5 are evaluated, it is determined 
that the unsuitable areas in the north of Türkiye will 
become more suitable in the RCP4.5 and RCP8.5 sce-
narios, respectively. In the southeast, it is estimated that 
the suitable areas will gradually become unsuitable, and 
this situation will be more pronounced in RCP8.5. It is 
understood that the suitable areas will expand in the 
west of Türkiye. Here, the transformation of watermelon 
cultivation, which can be done intensively in the South-
eastern Anatolia Region, into unsuitable areas in the 
2050s has emerged as an important change.

In Türkiye, it is estimated that the areas that were 
not suitable for onion cultivation in the reference period 
will become more suitable in the future in both scenar-

ios (Figure 5). In Figure 5A, it is determined that while 
a small area in the Central Anatolia Region is marginal, 
these areas will turn into unsuitable areas in the future 
in both scenarios. It is estimated that a part of the south-
eastern side, which was suitable in the reference period, 
will turn into marginal, very marginal, and unsuitable 
areas in the future. A particularly striking situation is 
that the onion, whose homeland is Western Asia, has 
shown excellent climatic suitability in most parts of Tür-
kiye and has adapted well.

Climatic suitability maps for cucumber cultivation 
are evaluated in Figure 5. In the reference period, there 
are unsuitable areas in Central Anatolia, Northeastern 
Anatolia, and Southeastern Anatolia, which are shown as 
gray. These unsuitable areas are predicted to expand fur-
ther in the future in the HADGEM2_ES model RCP4.5 
and RCP8.5 scenarios (Figure 5B, Figure 5C). In the 
RCP8.5 scenario, it is determined that climatic suitability 
for cucumber cultivation will increase in the Black Sea 
Region compared to the reference period. In the refer-
ence period, it is predicted that the unsuitable gray areas 
in the north will shift to the east of Türkiye in the 2050s.

The change of suitable and unsuitable areas for 
tomato, watermelon, onion, and cucumber cultiva-
tion in Türkiye in the 2050s compared to the reference 

Figure 4. Comparison of climatic suitable and unsuitable areas for tomato, watermelon, onion, and cucumber under the RCP4.5 and 
RCP8.5 according to the HADGEM2_ES model for the reference period (1950-2000) and future period (2050s).
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period in line with the HADGEM2_ES model RCP4.5 
and RCP8.5 scenarios is summarized in Table 3. In the 
2050s, suitable areas for tomato cultivation are projected 

to decrease by (13%-16%) and unsuitable areas are pro-
jected to increase by (26%-32%); suitable areas for onion 
cultivation are projected to decrease by (3%-7%) and 
unsuitable areas are projected to increase by (32%-74%); 
suitable areas for cucumber cultivation are projected to 
decrease by (4%-12%) and unsuitable areas are projected 
to increase by (2%-6%); suitable areas for watermelon 
cultivation are projected to increase by (26%-35%) and 
unsuitable areas are projected to decrease by (21%-29%). 
In general, it is estimated that watermelon cultivated 
areas will be positively affected, and tomato, onion, and 
cucumber cultivated areas will be negatively affected by 
the possible climate change in the 2050s.

4. DISCUSSION

In this study, when comparing the change in climat-
ic suitability for tomato, watermelon, onion, and cucum-
ber growing areas in Türkiye during the 2050s with the 
reference period (1950-2000), it was determined that cli-

Figure 5. Climatic suitability maps for the reference period (A), HADGEM2_ES RCP4.5 scenario (B), and HADGEM2_ES RCP8.5 scenario (C).

Table 3. Change in suitable and unsuitable areas in the reference 
period (1950-2000) and future periods (HADGEM2_ES model 
RCP4.5 and HADGEM2_ES model RCP8.5 in the 2050s).

Areas Vegetables Reference 
Period

HADGEM2_ES 
Model

Deviation 
from Reference 

Period

RCP  
4.5

RCP  
8.5

RCP 4.5 
(%)

RCP 8.5 
(%)

Suitable 
Areas

Tomato 67.3 56.7 58.6 -16 -13
Watermelon 44.8 56.6 60.7 26 35
Onion 91.7 89.0 85.5 -3 -7
Cucumber 34.5 30.5 33.0 -12 -4

Unsuitable 
Areas

Tomato 32.7 43.3 41.4 32 26
Watermelon 55.2 43.4 39.3 -21 -29
Onion 8.3 11.0 14.5 32 74
Cucumber 65.5 69.5 67.0 6 2
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matic suitability for tomato, onion, and cucumber would 
be negatively impacted, while climatic suitability for 
watermelon would be positively impacted. It is estimated 
that in the 2050s, climatically suitable areas for tomato 
(13%-16%), onion (3%-7%), and cucumber (4%-12%) cul-
tivation will decrease, while suitable areas for watermel-
on (26%-35%) cultivation will increase.

Türkiye is among the countries that will be affect-
ed by climate change (WBG, 2022). Therefore, there 
are important studies on climate change prediction in 
the research area (Dalfes et al., 2008; GDWM, 2016). 
Deveci (2023) modeled climate change in Türkiye dur-
ing the 2050s with the HADGEM2_ES model under the 
RCP4.5 and RCP8.5 scenarios. This study overlaps with 
the current research in terms of the model used, sce-
narios, and selected period range. According to Deveci 
(2023), while the average temperature data was 10.8 °C 
for the reference period (1950-2000), it was estimated 
to be 13.9 °C in the HADGEM2_ES model RCP4.5 sce-
nario and 14.8 °C in the HADGEM2_ES model RCP8.5 
scenario in the 2050s. While the average annual precipi-
tation data was 594 mm for the reference period (1950-
2000), it was estimated to be 560 mm in the HADG-
EM2_ES model RCP4.5 scenario and 573 mm in the 
HADGEM2_ES model RCP8.5 scenario in the 2050s. 
In the HADGEM2_ES model RCP4.5 scenario, the tem-
perature increase was 3.1 °C, and the highest precipita-
tion decrease reached 34 mm. In the RCP8.5 scenario, 
although the temperature increase was 4 °C, precipita-
tion throughout Türkiye did not decrease as much as 
in the RCP4.5 scenario (only 21 mm) (Deveci, 2023). 
This situation was interpreted as the temperatures will 
increase and precipitation will decrease in the research 
area in the 2050s.

In Türkiye, temperature increases have negatively 
affected tomato cultivation and caused tomato planting 
areas to decrease. Rhiney et al. (2018) found that toma-
toes would be negatively affected by a 1.5 °C tempera-
ture increase on the Caribbean Island of Jamaica, while 
Egbebiyi et al. (2019) determined that tomatoes would be 
negatively impacted by decreased rainfall associated with 
a 1-4.5 °C temperature increase in West Africa. In Tür-
kiye, tomato cultivation was possible in the southern lat-
itudes during the reference period, but with the impact 
of climate change, there is a shift to northern latitudes. 
Both studies were conducted in a region in the south, 
which was hot according to the climate of Türkiye. As 
the region in the south gets even hotter, the appropri-
ate temperatures for tomato are exceeded, and tomato 
cultivation areas are negatively influenced by the tem-
perature. The reason for the increase in tomato cultiva-
tion areas in the north of Türkiye (Black Sea Region) in 

the future is that the region, which is currently cool in 
terms of tomato cultivation, will become more suitable 
for tomato cultivation with the increase in temperature 
averages in the future. Similarly, it was observed that the 
south of Türkiye (Southeastern Region) is very suitable 
for tomato cultivation currently. In the forecasts for the 
future, it was estimated that the areas suitable for tomato 
cultivation would decrease in both scenarios due to the 
further increase in temperature and decrease in precipi-
tation in these regions, which are already the hottest in 
the country, and would turn into not suited, marginal, 
and very marginal areas. The occurrence of this situa-
tion is considered normal. The results of this study are 
consistent with Rhiney et al. (2018) and Egbebiyi et al. 
(2019) show similar results. Saadi et al. (2015) found in 
their study in the Mediterranean that changes in precipi-
tation will affect tomato cultivation less. Therefore, since 
it was observed that temperature changed more than 
precipitation in the research area, this study also con-
firms the results.

Climate change affects watermelon cultivation 
(Stewart and Ahmed, 2020; Walters et al., 2021). Water-
melon does not like cool temperatures and is extremely 
sensitive to frost (Şalk et al., 2008; Kumar and Reddy, 
2021). Watermelon is a plant species that can adapt to 
arid conditions and is suitable for tolerating the water it 
contains, as well as being a high-yielding species under 
irrigated conditions (Yokota et al., 2002). There is a 
positive relationship between the climate requirements 
required to cultivate watermelon and the climate change 
estimation results given by the climate change estima-
tion model in the study. In the Inner Aegean Region and 
Central Anatolia Region of Türkiye, the higher tempera-
tures compared reference period caused more suitable 
conditions for watermelon cultivation, and it was esti-
mated that watermelon cultivation areas in these regions 
would be positively impacted by possible climate change. 
Contrary to this situation, in the future, watermelon 
production will decrease or even become impossible in 
regions where the optimum temperature required for 
watermelon cultivation is exceeded (Southeast Anato-
lia Region) due to increasing temperatures. This situa-
tion is slightly different in the Black Sea Region. In this 
region, the reference period is cool and very rainy. It is 
estimated that watermelon cultivation will be more sig-
nificantly positively affected by climate change in the 
HADGEM2_ES RCP8.5 map. The reason for this is that 
the temperature has increased more in the HADGEM2_
ES model RCP8.5 scenario than in the HADGEM2_ES 
model RCP4.5 scenario. It is estimated that the climatic 
suitability for watermelon will increase, although it var-
ies regionally in Türkiye.
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In the research, it was predicted that there would be 
changes in suitable areas in the climatic suitability maps 
for onion, that is, they would turn into unsuitable areas. 
It is thought that this is because the necessary climatic 
growing conditions for onion in Türkiye have been 
exceeded. Simões et al. (2022) stated that an increase in 
temperature may cause a decrease in the production of 
onion varieties, and Brewster (2018) stated that tempera-
ture is an important determinant of onion growth dura-
tion and yield. Additionally, according to Rao (2016), 
water is the primary limiting factor in reducing onion 
yield. Therefore, the results of this study on estimating 
the effect of climate change on onion cultivation showed 
that onion, as a cool climate vegetable, was negatively 
affected by the increase in temperature and decrease in 
precipitation, by the results given by the above research-
ers for onion cultivation conditions. In the HADGEM2_
ES RCP4.5 and RCP8.5 scenarios, the increase in tem-
perature created not suited areas, especially in the Cen-
tral Anatolia region, while it caused the areas to become 
suitable in the Eastern Black Sea Region. Wurr et al. 
(1998) suggested that a warmer climate would be advan-
tageous for producing onions in Britain. This result con-
trasts with the results of the study estimated for Türkiye. 
This situation can be explained as follows. Because Tür-
kiye is located further south, the climate is more suitable 
for onion cultivation. With the increase in temperature, 
onion cultivation will be disrupted as cool climate con-
ditions will turn to hot climate, while more favorable 
conditions will be created for onion seed production.

Cucumber is one of the oldest cultivated and most 
widely grown vegetable species and is grown in almost 
all countries of the temperate belts (Tatlıoglu, 1993). 
Temperature, relative humidity, and radiation are the 
main climatic parameters that significantly impact 
cucumber growth and yield (Singh et al., 2017). Con-
stantly changing temperature is an important factor for 
the growth, development, and yield of cucumber. Higher 
temperature in both air and soil reduces overall growth 
by affecting various physiological processes, such as 
reduced rate of photosynthesis and increased transpira-
tion rate (Li et al., 2014; Ding et al., 2016). The annual 
water consumption of the cucumber plant is 400-650 
mm. Cucumber is very sensitive to water. It is desired 
that the root area is always moist (Cemek et al., 2005). 
When these conditions are evaluated, it is understood 
that cucumber is negatively impacted by temperature 
increase and is sensitive to water. The fact that cucumber 
will be negatively influenced by the increase in tempera-
tures and decrease in precipitation in the 2050s in Tür-
kiye is in line with these studies. According to the results 
of this study, it was concluded that cucumber would 

be negatively impacted in the 2050s due to changes in 
growing temperature and water requirement, according 
to possible climate change prediction results. The change 
in cucumber cultivation in the future with climate 
change is less affected than the other vegetables (tomato, 
watermelon, onion), according to the research. Because 
when Table 3 is analyzed, it is estimated that there will 
be changes in both unsuitable areas (6%-2%) and suita-
ble areas (12%-4%) in the HADGEM2_ES model future 
periods compared to reference periods. Therefore, the 
lowest rates of change are observed in cucumber.

In the research, the decrease in suitable areas with 
the effect of possible climate change on tomato cultiva-
tion in Türkiye also shows that its contribution to the 
country’s economy will decrease in economic terms. 
There will be deficiencies in human nutrition in terms of 
the nutritional values given by tomato after the decrease 
in the cultivation areas of tomato, which is very com-
mon on the tables. Tomatoes, which are easily accessible 
and found on every table today, will become difficult to 
purchase and obtain due to geographical and climatic 
reasons. According to TurkStat (2024b), Türkiye’s toma-
to production, which exceeds 85 million population by 
2024, ranks third in the world (Table 1). With the possi-
ble climate change in the 2050s, it is estimated that Tür-
kiye will fall further in the world ranking. This will have 
a negative economic impact not only on the Turkish 
economy but also on the tomato market in the countries 
where Türkiye produces and exports tomatoes. Türkiye 
ranks second after China in watermelon production. It 
is estimated that watermelon production in Türkiye will 
increase further with the positive effect of climatic suit-
ability. However, it is estimated that this increase will 
not cause a significant change in the ranking since there 
is a huge difference in production between China (60.4 
million tons) and Türkiye (3.4 million tons) (Table 1). 
It is thought that this expected increase in watermelon 
production will have a positive impact first in Türkiye 
and then in the world regarding both the economy and 
human nutrition. It is estimated that Türkiye, which 
ranks sixth in the world in onion production in Table 
1, will remain in the same rank or fall to a lower rank. 
This is because it is predicted to be adversely affected by 
climate change (especially temperature increases), likely 
to occur in the 2050s. Since the production amount of 
onion, which has a large place in food preparation in the 
world and Türkiye and is in high demand, will decrease 
due to the negative impact on its cultivation in Türkiye, 
it will be used less in human nutrition and the onion 
market will be impacted economically, as in the case of 
tomatoes. As the climatic suitability of cucumber in Tür-
kiye decreases, the amount of production will decrease, 
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and the economy of Türkiye will be negatively affected 
by this situation. Türkiye, which ranks second in the 
world in terms of cucumber production, is expected to 
maintain its position between China and Russia in the 
world ranking since it is estimated that there will not be 
a dramatic increase in unsuitable areas.

There may be some possible limitations in this 
study. One of these limitations is the lack of previous 
research studies on this topic. This study is the first to 
address the spatio-temporal distribution of climatic 
suitability for these vegetables at the level of Türkiye 
through modelling using climate change projections. 
Therefore, it has been difficult to compare and consid-
er all aspects of the research. The EcoCrop model only 
takes into account the effects of temperature and pre-
cipitation when modeling climate suitability. However, 
there are many environmental factors that affect cultiva-
tion. Determining climatic suitability by considering the 
effects of climate change, topography of the land, soil 
temperature and soil type, soil quality, and water avail-
ability, etc., will provide a more comprehensive picture. 
Perhaps, in a region that is climatically suitable, it will 
be difficult to cultivate that plant because there is no 
water, or it will not be possible to cultivate that plant. In 
addition, even if it is not suitable for that region to culti-
vate any plant due to the structure of the land, it may be 
classified as very suitable on maps. Diversifying research 
with current scenarios will be useful in understand-
ing the effects of climate change. If similar maps can be 
obtained with different scenarios, the predictions can be 
verified, and if other results are obtained, the reasons 
for the differences can be investigated and evaluated. 
In addition, the lack of a recent suitability classification 
study for these plants to calibrate the model is another 
limitation of the study.

5. CONCLUSIONS

The research predicts that, in the future, water-
melon and tomato cultivation areas are predicted to 
decrease in the south and increase in the north of Tür-
kiye, while cucumber and onion cultivation areas are 
expected to vary regionally. Alternative crops should 
be encouraged instead of these crops in regions where 
production decreases due to climate change. There is a 
generally negative trend in tomato, onion, and cucumber 
cultivation in Türkiye. It was observed that especially 
the increase in temperatures and the decrease in pre-
cipitation, even if slightly, were effective in this negative 
trend. The differentiated impact of climate change on 
the cultivation areas (positively affecting watermelon, 

while negatively impacting tomato, onion, and cucum-
ber) highlights the complex nature of climate change 
effects on agriculture. To understand this complex struc-
ture, such studies need to be diversified with different 
models, different scenarios, and different periods. While 
it is estimated that Türkiye will fall further behind in 
tomato and onion production in the world rankings in 
the 2050s, the rankings for watermelon and cucumber 
will not change. The changes in production due to the 
decrease in climatic suitability for tomatoes and cucum-
bers and the increase in climatic suitability for watermel-
on will impact the economy. It is important to estimate 
and evaluate the future cultivation areas of these plants, 
which have a very important place in nutrition in the 
world and Türkiye, and to direct the future.

AUTHOR CONTRIBUTIONS

Huzur Deveci: Conceptualization, Methodology, Soft-
ware, Investigation, Resources, Data curation, Writing –
original draft, Writing – review & editing, Visualization.

REFERENCES

Akçakaya A., Eskioğlu O., Atay H., Demir Ö., 2013. Cli-
mate Change Projections for Türkiye With New Sce-
narios. Meteorology General Directorate Printing 
House, Türkiye. https://mgm.gov.tr/FILES/iklim/
IKLIM_DEGISIKLIGI_PROJEKSIYONLARI.pdf

Akçakaya A., Sümer U.M., Demircan M., Demir Ö., Atay 
H., Eskioğlu O., Gürkan H., Yazıcı B., Kocatürk A., 
Şensoy S., Bölük E., Arabaci H., Açar Y., Eki̇ci̇ M., 
Yağan S., Çukurçayir F., 2015. Türkiye Climate Pro-
jections with New Scenarios and Climate Change 
TR2015-CC. https://www.mgm.gov.tr/FILES/iklim/
iklim-degisikligi-projeksiyon2015.pdf

Aparna A.S., Pląder W., Pawełkowicz M., 2023. Impact 
of climate change on regulation of genes involved in 
sex determination and fruit production in cucum-
ber. Plants, 12 (14): 2651. https://doi.org/https://doi.
org/10.3390/plants12142651

Atalay İ., 1997. Geography of Türkiye. Ege University 
Publications, İzmir, Türkiye. 

Aydın F., Sarptaş H., 2018. The impact of the climate 
change to crop cultivation: the case study with model 
crops for Turkey. Pamukkale University Journal of 
Engineering Sciences, 24 (3): 512-521. https://doi.
org/10.5505/pajes.2017.37880

Biratu W., 2018. Review on the effect of climate change 
on tomato (Solanum Lycopersicon) production in 

https://mgm.gov.tr/FILES/iklim/IKLIM_DEGISIKLIGI_PROJEKSIYONLARI.pdf
https://mgm.gov.tr/FILES/iklim/IKLIM_DEGISIKLIGI_PROJEKSIYONLARI.pdf
https://www.mgm.gov.tr/FILES/iklim/iklim-degisikligi-projeksiyon2015.pdf
https://www.mgm.gov.tr/FILES/iklim/iklim-degisikligi-projeksiyon2015.pdf
https://doi.org/https
http://doi.org/10.3390/plants12142651
http://doi.org/10.3390/plants12142651
https://doi.org/10.5505/pajes.2017.37880
https://doi.org/10.5505/pajes.2017.37880


14 Huzur Deveci

Africa and mitigation strategies. Journal of Natural 
Sciences Research, 8 (5): 2225-0921. 

Brewster J.L., 2018. Physiology of Crop Growth 
and Bulbing, Onions and Allied Crops, CRC 
press. pp. 53-88. https://doi.org/https://doi.
org/10.1201/9781351075169-3

CCAFS 2023. GCM Downscaled Data Portal. Climate 
change agriculture and food security. https://www.
ccafs-climate.org/

Cemek B., Apan M., Demir Y., Kara T., 2005. Effects of 
different irrigatin water applications on growth, 
development and yield of cucumber grown in green-
house. Anadolu Journal of Agricultural Sciences, 20 
(3): 27-33. 

Collins W.J., Bellouin N., Doutriaux-Boucher M., Ged-
ney N., Halloran P., Hinton T., Hughes J., Jones 
C.D., Joshi M., Liddicoat S., Martin G., O’Connor F., 
Rae J., Senior C., Sitch S., Totterdell I., Wiltshire A., 
Woodward S., 2011. Development and evaluation of 
an Earth-System model – HadGEM2. Geoscientific 
Model Development, 4 (4): 1051-1075. https://doi.
org/https://doi.org/10.5194/gmd-4-1051-2011

Çaltı N., Somuncu M., 2019. The impact of climate 
change on agriculture in Turkey and farmers’ tti-
tudes to climate change, 1st Istanbul International 
Geography Congress Proceedings Book, İstanbul, 
Türkiye. pp. 890-912. https://doi.org/https://doi.
org/10.26650/PB/PS12.2019.002.084

Dalfes N., Karaca M., Şen Ö.L., Kindap T., Önol B., 
Turunçoğlu U., Bozkurt D., Fer I., Akın H.S., Çankur 
R., Ural D., Kılıç G., Coşkun M., Demir İ. (2008) 
Climate scenarios for Türkiye, TÜBİTAK. Proje 
No:105G015.

Deveci H., 2023. Estimation of the impact of climate 
change on spinach cultivation areas in Türkiye. Sus-
tainability, 15 (21): 15395. https://doi.org/10.3390/
su152115395

Deveci H., 2024. Modeling the impact of climate change 
on cotton cultivation. COMU Journal of Agriculture 
Faculty, 12 (1): 96-107. https://doi.org/10.33202/
comuagri.1449471

Deveci H., 2025.Determination of the accuracy of average 
temperature values obtained from different climate 
models in TR21 Thrace Region. In: 9th Internation-
al Conference on Global Practice of Multidiscipli-
nary Scientific Studies, Havana, Cuba. https://www.
izdas.org/_files/ugd/614b1f_c300ca6abbdf45db9aed-
0060cde06741.pdf

Deveci H., Önler B., Erdem T., 2025. Modeling the effects 
of climate change on the irrigation water require-
ments of wheat and canola in the TR21 Thrace 
Region using CROPWAT 8.0. Frontiers in Sus-

tainable Food Systems, 9. https://doi.org/10.3389/
fsufs.2025.1563048

Ding X., Jiang Y., He L., Zhou Q., Yu J., Hui D., Huang 
D., 2016. Exogenous glutathione improves high root-
zone temperature tolerance by modulating photosyn-
thesis, antioxidant and osmolytes systems in cucum-
ber seedlings. Scientific reports, 6 (1): 35424. https://
doi.org/https://doi.org/10.1038/srep35424

DIVAGIS 2023. DIVA-GIS. https://www.diva-gis.org/cli-
mate

Dokuyucu Ö., Eskioğlu O., Özgökçe M.S., Ülgentürk S., 
2025. Predicting future distribution and generation 
number of mulberry scale, Pseudaulacapis pentagona 
under climate change scenarios in Turkiye. Phytopar-
asitica, 53 (3): 41. https://doi.org/10.1007/s12600-
025-01261-y

Duvan A., Aktürk G., Yıldız O., 2025. Assessing spati-
otemporal characteristics of meteorological droughts 
in the Marmara Basin using HadGEM2-ES global 
climate model data. Environmental Monitoring and 
Assessment, 197 (4): 436. https://doi.org/10.1007/
s10661-025-13884-z

Egbebiyi T.S., Crespo O., Lennard C., 2019. Defining 
crop–climate departure in West Africa: improved 
understanding of the timing of future changes in 
crop cuitability. Climate, 7 (9): 101. https://doi.
org/10.3390/cli7090101

Egbebiyi T.S., Crespo O., Lennard C., Zaroug M., Nikulin 
G., Harris I., Price J., Forstenhausler N., Warren R., 
2020. Investigating the potential impact of 1.5, 2 and 
3 degrees C global warming levels on crop suitability 
and planting season over West Africa. PeerJ, 8: e8851. 
https://doi.org/10.7717/peerj.8851

FAO 2023. Food and Agriculture Organization of the 
United Nations. Database of crop constraints and 
characteristics. https://gaez.fao.org/pages/ecocrop

Gardner A.S., Gaston K.J., Maclean I.M.D., Scheiter S., 
2021. Accounting for inter‐annual variability alters 
long‐term estimates of climate suitability. Journal 
of Biogeography, 48 (8): 1960-1971. https://doi.
org/10.1111/jbi.14125

GDSHW 2023. General Directorate of State Hydraulic 
Works. Türkiye’s Location. https://dsi.gov.tr/Sayfa/
Detay/754

GDWM 2016. General Directorate of Water Man-
agement. Impact of climate change on water 
resources project project final report. ttps://www.
tar imorman.gov.tr/S YGM/Belgeler/ikl im%20
de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20
kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf

Gündoğan A.C., Aydın C.İ., Voyvoda E., Turhan E., Özen 
İ.C., 2017. The Price of Inertia: An Assessment of 

https://doi.org/https
http://doi.org/10.1201/9781351075169-3
http://doi.org/10.1201/9781351075169-3
https://www.ccafs-climate.org/
https://www.ccafs-climate.org/
https://doi.org/https
https://doi.org/https
http://doi.org/10.5194/gmd-4-1051-2011
https://doi.org/https
http://doi.org/10.26650/PB/PS12.2019.002.084
http://doi.org/10.26650/PB/PS12.2019.002.084
https://doi.org/10.3390/su152115395
https://doi.org/10.3390/su152115395
https://doi.org/10.33202/comuagri.1449471
https://doi.org/10.33202/comuagri.1449471
https://www.izdas.org/_files/ugd/614b1f_c300ca6abbdf45db9aed0060cde06741.pdf
https://www.izdas.org/_files/ugd/614b1f_c300ca6abbdf45db9aed0060cde06741.pdf
https://www.izdas.org/_files/ugd/614b1f_c300ca6abbdf45db9aed0060cde06741.pdf
https://doi.org/10.3389/fsufs.2025.1563048
https://doi.org/10.3389/fsufs.2025.1563048
https://doi.org/https
https://doi.org/https
http://doi.org/10.1038/srep35424
https://www.diva-gis.org/climate
https://www.diva-gis.org/climate
https://doi.org/10.1007/s12600-025-01261-y
https://doi.org/10.1007/s12600-025-01261-y
https://doi.org/10.1007/s10661-025-13884-z
https://doi.org/10.1007/s10661-025-13884-z
https://doi.org/10.3390/cli7090101
https://doi.org/10.3390/cli7090101
https://doi.org/10.7717/peerj.8851
https://gaez.fao.org/pages/ecocrop
https://doi.org/10.1111/jbi.14125
https://doi.org/10.1111/jbi.14125
https://dsi.gov.tr/Sayfa/Detay/754
https://dsi.gov.tr/Sayfa/Detay/754
ttps://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf
ttps://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf
ttps://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf
ttps://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf


15Modeling the impact of climate change on the climatic suitability of some horticultural crops

the Costs to Turkey of Failing to Achieve Climate 
Change Targets through Common Socioeconomic 
Pathways. Earth Association Publications, Ankara, 
Türkiye. https://wwftr.awsassets.panda.org/down-
loads/ataletin_bedeli_rapor___yeryuzu_dernegi___
ab.pdf ?7180/ataletinbedeli

Hancı F., Cebeci E., 2015. The effects of salinity and 
drought on onion production. Bahçe, 44 (1): 23-29. 

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis 
A., 2005. Very high resolution interpolated climate 
surfaces for global land areas. International Journal 
of Climatology: A Journal of the Royal Meteorologi-
cal Society, 25 (15): 1965-1978. https://doi.org/htt-
ps://doi.org/10.1002/joc.1276

Hijmans R.J., Guarino L., Cruz M., Rojas E., 2001. 
Computer tools for spatial analysis of plant genetic 
resources data: 1. DIVA-GIS. Plant genetic resources 
newsletter, 127: 15-19. 

Jarvis A., Ramirez-Villegas J., Herrera Campo B.V., Navar-
ro-Racines C., 2012. Is cassava the answer to African 
climate change adaptation? Tropical Plant Biology, 5 
(1): 9-29. https://doi.org/10.1007/s12042-012-9096-7

Joshi N., 2021. Future crop suitability assessment and the 
integration of Orphan crops into Kenya’s food systems. 
MSc. Thesis. University of Cape Town, South Africa.

Khazaei M.R., 2025. Projected changes to drought char-
acteristics in Tehran under CMIP6 SSP-RCP cli-
mate change scenarios. Heliyon, 11 (2). https://doi.
org/10.1016/j.heliyon.2025.e41811

Kumar R., Reddy K.M., 2021. Impact of Climate Change 
on Cucurbitaceous Vegetables in Relation to Increas-
ing Temperature and Drought, in: S. S. Solankey, et 
al. (Eds.), Advances in Research on Vegetable Pro-
duction Under a Changing Climate Vol. 1, Springer 
International Publishing, Cham. pp. 175-195. https://
doi.org/https://doi.org/10.1007/978-3-030-63497-1_9

Labaioui A., Bouchoufi K., 2021. Assessing the impact 
of climate change on land suitability for crops in El 
Hajeb province Morocco. African and Mediterranean 
Agricultural Journal Al Awamia, 132: 65-90. 

Li H., Liu S.S., Yi C.Y., Wang F., Zhou J., Xia X.J., Shi K., 
Zhou Y.H., Yu J.Q., 2014. Hydrogen peroxide medi-
ates abscisic acid‐induced HSP 70 accumulation and 
heat tolerance in grafted cucumber plants. Plant Cell 
Environment, 37 (12): 2768-2780. https://doi.org/
https://doi.org/10.1111/pce.12360

Litskas V.D., Migeon A., Navajas M., Tixier M.-S., 
Stavrinides M.C., 2019. Impacts of climate change 
on tomato, a notorious pest and its natural enemy: 
small scale agriculture at higher risk. Environmen-
tal Research Letters, 14 (8): 084041. https://doi.org/
https://doi.org/10.1088/1748-9326/ab3313

Martin G.M., Bellouin N., Collins W.J., Culverwell I.D., 
Halloran P.R., Hardiman S.C., Hinton T.J., Jones 
C.D., McDonald R.E., McLaren A.J., O’Connor F.M., 
Roberts M.J., Rodriguez J.M., Woodward S., Best 
M.J., Brooks M.E., Brown A.R., Butchart N., Dearden 
C., Derbyshire S.H., Dharssi I., Doutriaux-Boucher 
M., Edwards J.M., Falloon P.D., Gedney N., Gray L.J., 
Hewitt H.T., Hobson M., Huddleston M.R., Hughes 
J., Ineson S., Ingram W.J., James P.M., Johns T.C., 
Johnson C.E., Jones A., Jones C.P., Joshi M.M., Keen 
A.B., Liddicoat S., Lock A.P., Maidens A.V., Manners 
J.C., Milton S.F., Rae J.G.L., Ridley J.K., Sellar A., 
Senior C.A., Totterdell I.J., Verhoef A., Vidale P.L., 
Wiltshire A., 2011. The HadGEM2 family of Met 
Office Unified Model climate configurations. Geosci. 
Model Dev., 4 (3): 723-757. https://doi.org/https://
doi.org/10.5194/gmd-4-723-2011

Melo T.K., Sobrinho J.E., Medeiros J.F., Figueiredo B.V., 
Silva J.S., SÁ F.V.S., 2020. Impacts of cimate change 
scenarios in the Brazilian Semiarid Region on water-
melon cultivars. Revista Caatinga, 33 (3): 794-802. 
https://doi.org/10.1590/1983-21252020v33n323rc

Møller A.B., Mulder V.L., Heuvelink G.B.M., Jacob-
sen N.M., Greve M.H., 2021. Can we use machine 
learning for agricultural land suitability assessment? 
Agronomy, 11 (4): 703. https://doi.org/10.3390/
agronomy11040703

Moss R.H., Babiker M., Brinkman S., Calvo E., Carter T., 
Edmonds J.A., Elgizouli I., Emori S., Lin E., Hibbard 
K., 2008. Towards new scenarios for analysis of emis-
sions, climate change, impacts, and response strate-
gies. Intergovernmental Panel on Climate Change. 

Oyediran W.O., Omoare A.M., Alaka F.A., Shobowale 
A.A., Oladoyinbo O.B., 2018. Rural Farmers’ Cop-
ing Strategies to Effects of Climate Change on Water-
melon Production in Igboora, Oyo State, Nigeria. 
International Journal of Sustainable Agricultural 
Research, 5 (2): 19-26. https://doi.org/10.18488/jour-
nal.70.2018.52.19.26

Ramirez-Villegas J., Jarvis A., Läderach P., 2013. Empiri-
cal approaches for assessing impacts of climate 
change on agriculture: The EcoCrop model and 
a case study with grain sorghum. Agricultural 
and Forest Meteorology, 170: 67-78. https://doi.
org/10.1016/j.agrformet.2011.09.005

Rao N.K.S., 2016. Onion, in: N. K. S. Rao, et al. (Eds.), 
Abiotic Stress Physiology of Horticultural Crops, 
Springer India, New Delhi. pp. 133-149. https://doi.
org/https://doi.org/10.1007/978-81-322-2725-0_8

Rhiney K., Eitzinger A., Farrell A.D., Prager S.D., 2018. 
Assessing the implications of a 1.5  °C temperature 
limit for the Jamaican agriculture sector. Regional 

https://wwftr.awsassets.panda.org/downloads/ataletin_bedeli_rapor___yeryuzu_dernegi___ab.pdf?7180/ataletinbedeli
https://wwftr.awsassets.panda.org/downloads/ataletin_bedeli_rapor___yeryuzu_dernegi___ab.pdf?7180/ataletinbedeli
https://wwftr.awsassets.panda.org/downloads/ataletin_bedeli_rapor___yeryuzu_dernegi___ab.pdf?7180/ataletinbedeli
https://doi.org/https
https://doi.org/https
http://doi.org/10.1002/joc.1276
https://doi.org/10.1007/s12042-012-9096-7
https://doi.org/10.1016/j.heliyon.2025.e41811
https://doi.org/10.1016/j.heliyon.2025.e41811
https://doi.org/https
https://doi.org/https
http://doi.org/10.1007/978-3-030-63497-1_9
https://doi.org/https
https://doi.org/https
http://doi.org/10.1111/pce.12360
https://doi.org/https
https://doi.org/https
http://doi.org/10.1088/1748-9326/ab3313
https://doi.org/https
http://doi.org/10.5194/gmd-4-723-2011
https://doi.org/10.1590/1983-21252020v33n323rc
https://doi.org/10.3390/agronomy11040703
https://doi.org/10.3390/agronomy11040703
https://doi.org/10.18488/journal.70.2018.52.19.26
https://doi.org/10.18488/journal.70.2018.52.19.26
https://doi.org/10.1016/j.agrformet.2011.09.005
https://doi.org/10.1016/j.agrformet.2011.09.005
https://doi.org/https
https://doi.org/https
http://doi.org/10.1007/978-81-322-2725-0_8


16 Huzur Deveci

Environmental Change, 18 (8): 2313-2327. https://
doi.org/10.1007/s10113-018-1409-4

Saadi S., Todorovic M., Tanasijevic L., Pereira L.S., Piz-
zigalli C., Lionello P., 2015. Climate change and 
Mediterranean agriculture: Impacts on winter wheat 
and tomato crop evapotranspiration, irrigation 
requirements and yield. Agricultural water man-
agement, 147: 103-115. https://doi.org/https://doi.
org/10.1016/j.agwat.2014.05.008

Simões W.L., Angelotti F., Guimarães M.J.M., Silva J.S.d., 
Silva R.M., Barros J.R.A., 2022. Water-use efficiency 
and onion quality in future climate scenarios. Pesqui-
sa Agropecuária Tropical, 52: e72212. 

Singh M.C., Singh J.P., Pandey S.K., Mahay D., Srivastava 
V., 2017. Factors affecting the performance of green-
house cucumber cultivation-a review. International 
Journal of Current Microbiology and Applied Sci-
ences, 6 (10): 2304-2323. https://doi.org/https://doi.
org/10.20546/ijcmas.2017.610.273

Stewart A.L., Ahmed S., 2020. Effects of climate change 
on fruit nutrition, in: A.K. Srivastava and Chengxiao 
Hu (Eds.), Fruit crops, Elsevier, Amsterdam, The 
Netherlands. pp. 77-93. https://doi.org/https://doi.
org/10.1016/B978-0-12-818732-6.00007-1

Şalk A., Arın L., Deveci M., Polat S., 2008. Special Veg-
etables. Onur Graphics, Printing and Advertising, 
Tekirdağ, Türkiye. 

Şen A.S., Deveci H., Konukcu F., 2024. Modelling the 
adaptation of some cultural plants produced in 
Thrace Region to climate change. Journal of Tekird-
ag Agricultural Faculty, 21 (2): 501-516. https://doi.
org/10.33462/jotaf.1312707

Tatlıoglu T., 1993. Cucumber, in: G. Kalloo and B. O. 
Bergh (Eds.), Genetic Improvement of Vegetable 
Crops, Pergamon, Amsterdam. pp. 197-234. https://
doi.org/10.1016/b978-0-08-040826-2.50017-5

Temur B., 2017. The impact of global warming on agri-
cultural sector in Turkey: An application of the 
ARDL model. MSc. Thesis. Anadolu University, Tür-
kiye.

TSMS 2023a. Türkiye State Meteorological Service. 
Türkiye maximum temperature average. htt-
ps://www.mgm.gov.tr/FILES/resmi-istatistikler/
parametreAnalizi/2024-maksimum-sicaklik.pdf

TSMS 2023b. Türkiye State Meteorological Ser-
vice. Türkiye minimum temperature average. htt-
ps://www.mgm.gov.tr/FILES/resmi-istatistikler/
parametreAnalizi/2024-minimum-sicaklik.pdf

TSMS 2023c. Türkiye State Meteorological Service. Tür-
kiye Average Temperature. https://www.mgm.gov.
tr/FILES/resmi-istatistikler/parametreAnalizi/2024-
ortalama-sicaklik.pdf

TSMS 2023d. Türkiye State Meteorological Service. 
Annual total precipitation average in Türkiye. htt-
ps://www.mgm.gov.tr/FILES/resmi-istatistikler/
parametreAnalizi/2024-yagis.pdf

TSMS 2023e. Türkiye State Meteorological Service. Tür-
kiye average humidity. https://www.mgm.gov.tr/
FILES/resmi-istatistikler/parametreAnalizi/2024-
ortalama-nem.pdf

TurkStat 2024a. Turkish Statistical Institute. Statisti-
cal Tables of Agricultural Areas. https://data.tuik.
gov.tr/Search/Search?tex t=tar%C4%B1m%20
alanlar%C4%B1

TurkStat 2024b. Turkish Statistical Institute. 
World Population Day. https://data.tuik .gov.
tr/Bulten/Index?p=Dunya-Nuf us-Gunu-2024-
53680#:~:text=T%C3%BCrkiye%2C%2085%20mily-
on%20372%20bin,1%2C1’ini%20olu%C5%9Fturdu.

Walters S.A., Abdelaziz M., Bouharroud R., 2021. Local 
melon and watermelon crop populations to moder-
ate yield responses to climate change in North Afri-
ca. Climate, 9 (8): 129. https://doi.org/https://doi.
org/10.3390/cli9080129

WBG 2022. World Bank. Group. Türkiye Country Cli-
mate and Development Report, CCDR Series; World 
Bank: Washington, DC, USA. https://openknowl-
edge.worldbank.org/entities/publication/01826a0c-
059f-5a0c-91b7-2a6b8ec5de2f

Wichern J., Descheemaeker K., Giller K.E., Ebanyat P., 
Taulya G., van Wijk M.T., 2019. Vulnerability and 
adaptation options to climate change for rural liveli-
hoods – A country-wide analysis for Uganda. Agri-
cultural Systems, 176: 102663. https://doi.org/htt-
ps://doi.org/10.1016/j.agsy.2019.102663

WPR 2024a. World Population Review, Vegetable produc-
tion by Country 2022. https://worldpopulationre-
view.com/country-rankings/vegetable-production-by-
country

WPR 2024b. World Population Review, Tomato Produc-
tion by Country 2022. https://worldpopulationreview.
com/country-rankings/tomato-production-by-country

WPR 2024c. World Population Review, Watermelon Pro-
duction by Country 2022. https://worldpopulationre-
view.com/country-rankings/watermelon-production-
by-country

WPR 2024d. World Population Review, Onion Produc-
tion by Country 2022. https://worldpopulationre-
view.com/country-rankings/onion-production-by-
country

WPR 2024e. World Population Review, Cucumber Pro-
duction by Country 2022. https://worldpopulation-
review.com/country-rankings/cucumber-production-
by-country

https://doi.org/10.1007/s10113-018-1409-4
https://doi.org/10.1007/s10113-018-1409-4
https://doi.org/https
http://doi.org/10.1016/j.agwat.2014.05.008
http://doi.org/10.1016/j.agwat.2014.05.008
https://doi.org/https
http://doi.org/10.20546/ijcmas.2017.610.273
http://doi.org/10.20546/ijcmas.2017.610.273
https://doi.org/https
http://doi.org/10.1016/B978-0-12-818732-6.00007-1
http://doi.org/10.1016/B978-0-12-818732-6.00007-1
https://doi.org/10.33462/jotaf.1312707
https://doi.org/10.33462/jotaf.1312707
https://doi.org/10.1016/b978-0-08-040826-2.50017-5
https://doi.org/10.1016/b978-0-08-040826-2.50017-5
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-maksimum-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-maksimum-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-maksimum-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-minimum-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-minimum-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-minimum-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-sicaklik.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-yagis.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-yagis.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-yagis.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-nem.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-nem.pdf
https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-nem.pdf
https://data.tuik.gov.tr/Search/Search?text=tar%C4%B1m%20alanlar%C4%B1
https://data.tuik.gov.tr/Search/Search?text=tar%C4%B1m%20alanlar%C4%B1
https://data.tuik.gov.tr/Search/Search?text=tar%C4%B1m%20alanlar%C4%B1
https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2024-53680#
https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2024-53680#
https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2024-53680#
https://doi.org/https
http://doi.org/10.3390/cli9080129
http://doi.org/10.3390/cli9080129
https://openknowledge.worldbank.org/entities/publication/01826a0c-059f-5a0c-91b7-2a6b8ec5de2f
https://openknowledge.worldbank.org/entities/publication/01826a0c-059f-5a0c-91b7-2a6b8ec5de2f
https://openknowledge.worldbank.org/entities/publication/01826a0c-059f-5a0c-91b7-2a6b8ec5de2f
https://doi.org/https
https://doi.org/https
http://doi.org/10.1016/j.agsy.2019.102663
https://worldpopulationreview.com/country-rankings/vegetable-production-by-country
https://worldpopulationreview.com/country-rankings/vegetable-production-by-country
https://worldpopulationreview.com/country-rankings/vegetable-production-by-country
https://worldpopulationreview.com/country-rankings/tomato-production-by-country
https://worldpopulationreview.com/country-rankings/tomato-production-by-country
https://worldpopulationreview.com/country-rankings/watermelon-production-by-country
https://worldpopulationreview.com/country-rankings/watermelon-production-by-country
https://worldpopulationreview.com/country-rankings/watermelon-production-by-country
https://worldpopulationreview.com/country-rankings/onion-production-by-country
https://worldpopulationreview.com/country-rankings/onion-production-by-country
https://worldpopulationreview.com/country-rankings/onion-production-by-country
https://worldpopulationreview.com/country-rankings/cucumber-production-by-country
https://worldpopulationreview.com/country-rankings/cucumber-production-by-country
https://worldpopulationreview.com/country-rankings/cucumber-production-by-country


17Modeling the impact of climate change on the climatic suitability of some horticultural crops

Wurr D.C.E., Hand D.W., Edmondson R.N., Fellows J.R., 
Hannah M.A., Cribb D.M., 1998. Climate change: 
a response surface study of the effects of CO2 and 
temperature on the growth of beetroot, carrots and 
onions. The Journal of Agricultural Science, 131 (2): 
125-133. https://doi.org/https://doi.org/10.1017/
S0021859698005681

Yokota A., Kawasaki S., Iwano M., Nakamura C., Miyake 
C., Akashi K., 2002. Citrulline and DRIP-1 pro-
tein (ArgE homologue) in drought tolerance of wild 
watermelon. Annals of Botany, 89 (7): 825-32. htt-
ps://doi.org/10.1093/aob/mcf074

Zagaria C., Schulp C.J.E., Malek Ž., Verburg P.H., 2023. 
Potential for land and water management adapta-
tions in Mediterranean croplands under climate 
change. Agricultural Systems, 205: 103586. https://
doi.org/10.1016/j.agsy.2022.103586

Zhang Y., Lv J., Wang T., Zhang K., Wu Y., 2025. Assess-
ment of ecological risk under different SSP-RCP sce-
narios of the Xinjiang province in China. Scientific 
reports, 15 (1): 8345. https://doi.org/10.1038/s41598-
024-81879-w

https://doi.org/https
http://doi.org/10.1017/S0021859698005681
http://doi.org/10.1017/S0021859698005681
https://doi.org/10.1093/aob/mcf074
https://doi.org/10.1093/aob/mcf074
https://doi.org/10.1016/j.agsy.2022.103586
https://doi.org/10.1016/j.agsy.2022.103586
https://doi.org/10.1038/s41598-024-81879-w
https://doi.org/10.1038/s41598-024-81879-w




Italian Journal of Agrometeorology (1): 19-29, 2025

Firenze University Press 
https://riviste.fupress.net/index.php/IJAm

ISSN 2038-5625 (print) | ISSN 3103-1722 (online) | DOI: 10.36253/ijam-2770 

Italian Journal of 
Agrometeorology
Rivista Italiana di Agrometeorologia

Citation: Mota, M.C., Candido, L.A., 
Cuadra, S.V., Marenco, R.A., Tomé, 
A.M., Lopes, A.B.A., Lima, F.L., Reis, 
J., Brizolla, R.M. & Lopes, A.B.D.A. 
(2025). Validation of the leaf area index 
estimated using the extinction coef-
ficient of photosynthetically active 
radiation in soybean. Italian Journal 
of Agrometeorology (1): 19-29. doi: 
10.36253/ijam-2770 

Received: May 17, 2024

Accepted: June 27, 2025

Published: August 27, 2025

© 2024 Author(s). This is an open 
access, peer-reviewed article pub-
lished by Firenze University Press 
(https://www.fupress.com) and distrib-
uted, except where otherwise noted, 
under the terms of the CC BY 4.0 
License for content and CC0 1.0 Uni-
versal for metadata.

Data Availability Statement: All rel-
evant data are within the paper and its 
Supporting Information files.

Competing Interests: The Author(s) 
declare(s) no conflict of interest.

Validation of the leaf area index estimated using 
the extinction coefficient of photosynthetically 
active radiation in soybean

Marcelo Crestani Mota1,*, Luiz Antonio Candido2, Santiago Vianna 
Cuadra3, Ricardo Antonio Marenco4, Adriano Maito Tomé5, Andres-
sa Back De Andrade Lopes5, Francinei Lopes De Lima5, Juliana Reis5, 
Rafael Morbeque Brizolla5

1 Researcher, Agronomy Course Coordination, Faculdade Marechal Rondon (FARON), 
Vilhena, RO, Brazil
2 Researcher, Climate and Water Resources Coordination, Instituto Nacional de Pesquisas 
da Amazônia (INPA), Manaus, AM, Brazil
3 Researcher, Brazilian Agricultural Research Corporation (EMBRAPA Agricultura Digi-
tal), Campinas, SP, Brazil 
4 Researcher, Environmental Dynamics Coordination, Instituto Nacional de Pesquisas da 
Amazônia (INPA), Manaus, AM, Brazil 
5 Undergraduate student, Agronomy Course, Faculdade Marechal Rondon (FARON), Vil-
hena, RO, Brazil
*Corresponding author. E-mail: crestanimota@gmail.com

Abstract. Techniques to monitor vegetation cover have been used to track the biomass 
and yield of agricultural crops. Quantifying the leaf area index (LAI) and its variation 
throughout the production cycle of soybean is important because this data can be used 
as an input variable in growth and productivity models. Field experiments were car-
ried out during the 2017/2018 and 2018/2019 growing season in soybean crops at the 
Faculdade Marechal Rondon (FARON) in Vilhena, RO, Brazil, to measure the LAI of 
cultivar 75I77 RSF IPRO from the estimated extinction coefficient of photosynthetical-
ly active radiation (PAR). LAI measurements were performed weekly in the 2018/2019 
crop season. The PAR data were collected using the PAR Apogee® SQ-316-S linear sen-
sor. The light extinction coefficient (Kc) was calculated using LAI and solar radiation 
interception data. A Kc value of 0.687 was found for this crop, indicating that more 
than 68% of the light was intercepted by the plant structure. In addition, the LAI data 
estimated via Kc were compared with LAI values estimated with the CROPGRO-Soy-
bean model. The first method estimated the LAI values better than the second, as the 
r² increased from 0.738 to 0.882, the difference was reduced from 19.9 to 13.3%, and 
the d-value changed from 0.815 to 0.952. Thus, the extinction coefficient method of 
PAR can efficiently estimate the LAI parameter in soybean.

Keywords:	 shortwave radiation, light extinction coefficient, photosynthetic efficiency, 
crop parameterization, yield improvement.
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1. INTRODUCTION

During the development cycle of agricultural 
crops, the variation of the vegetation cover fraction (fc) 
and the leaf area index (LAI) are biophysical param-
eters considered fundamental in vegetation dynam-
ics (Chechi et al., 2021). They provide a better under-
standing of the partitioning of crop evapotranspiration 
in plant transpiration and soil water evaporation coef-
ficients (Paredes et al., 2017; Allen and Pereira, 2009). 
Also, LAI is useful to infer about the fraction of the 
photosynthetically active solar radiation (PAR) inter-
cepted by the plant canopy (Purcell et al., 2002), and 
the dry matter of crops (Li et al., 2010). Chechi et al. 
(2021) highlighted that fc and LAI are often used as 
mandatory variables in agricultural models, includ-
ing AquaCrop (Foster et al., 2017), SIMDualKc (Pare-
des et al., 2017), CSM-CROPGRO (Cuadra et al., 2021; 
Crestani Mota et al., 2024), and Agro-IBIS (Moreira et 
al., 2023).

The radiation impinging on the canopy can be 
reflected, absorbed or transmitted. The radiation flux 
that is transmitted to the soil decreases exponentially 
as the leaf area increases in the canopy (Jones, 2014). 
According to Adeboye et al. (2016), under optimal envi-
ronmental conditions, the accumulation of biomass 
through the photosynthetic process is strongly correlat-
ed with the radiation absorbed by plants in the spectral 
range of the PAR, which corresponds to visible wave-
lengths (400 to 700 nm).

The absorbed PAR is a fundamental parameter in 
the modeling of soybean growth and yield, because as 
the plant foliage increases (and so LAI), the use efficien-
cy of this radiation increases, and improves the accu-
mulation of plant dry matter, especially in grains (Fon-
tana et al., 2012). However, the characterization of the 
internal distribution of the PAR to the plant canopy is 
not uniform, considering the canopy architecture (spa-
tial orientation) and the spectral properties of the leaves 
(Plénet et al., 2000; Jones, 2014).

Monsi and Saeki (1953) were the first to analyze the 
modification of the Lambert-Beer radiation extinction 
law through a model of light energy distribution along 
the plant canopy for homogeneous areas of agricultural 
cultivation with dense leaf development. In this model, 
the exponential reduction of radiation with increas-
ing LAI is associated with an extinction coefficient (Kc; 
dimensionless) of the PAR (Bréda, 2003). 

Hence, the proportion of intercepted PAR is directly 
related to the LAI of the crop and the Kc characteris-
tic of the species (Shibles and Weber, 1965; Pengelly et 
al., 1999; Schöffel and Volpe, 2001). These factors influ-

ence leaf area production (leaf mass ratio), duration of 
the leaf area, and the potential of phytomass production 
(Mayers et al., 1991ab). Therefore, the biomass produc-
tion is a function of the integrated PAR intercepted by 
the culture (f IPAR), where the angular coefficient of the 
regression curve between biomass (dry matter) and PAR 
defines the light use efficiency for phytomass production 
(Shibles and Weber, 1966). 

However, the light use efficiency for biomass pro-
duction is not constant, as it varies during the plant 
cycle (Steinmetz and Siqueira, 1995). For instance, it 
can vary between cultivars and with the development 
phases of irrigated rice, reaching the highest values 
between the differentiation of the floral primordium 
and f lowering (Steinmetz and Siqueira, 2001). Also, 
light use efficiency can vary between the subperiods 
of crop development. In maize, it was 1.71 g MJ-1 from 
emergence to the ninth expanded leaf and 3.58 g MJ-1 
from the end of the vegetative subperiod to grain filling 
(Müller et al., 2001).

Soybean biomass yield can also be analyzed in terms 
of interception efficiency and conversion of the PAR to 
phytomass (Mayers et al., 1991ab). During the first 42 
days of the vegetative stage, the light use efficiency (con-
version of the PAR to phytomass) of two soybean culti-
vars was 1.2 and 1.32 g MJ-1 (Muchow, 1985). The light 
use efficiency of the aerial part accumulated from the 
emergence to initial flowering can be linear. For exam-
ple, in ten soybean cultivars light use efficiency was lin-
ear during the dry season (1.15 g MJ-1); however, there 
was a large dispersion of the data during the flowering 
phase (Mayers et al., 1991a).

Most soybean growth models use a constant Kc val-
ue (fixed average) throughout the crop cycle and for the 
complete canopy. However, the timing of a specific phe-
nological stage can vary in different locations and years 
due to factors such as sowing season, soil moisture, air 
temperature, and management practices (Sakamoto et 
al., 2010), as well as structural conditions, leaf age, and 
photosynthetic and respiratory characteristics of plants 
(Costa et al., 1996). Thus, the on-site observation of 
dates and values of these variables limits the use of many 
agricultural models because conducting observations 
requires time and resources.

This study aimed to evaluate the accuracy and con-
sistency of LAI estimation in soybean based on the Kc of 
PAR. For this purpose, both observed and Kc-estimated 
LAI values were computed throughout the crop’s pheno-
logical cycle, enabling a detailed comparison with simu-
lations generated by the CROPGRO-Soybean model.
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2. MATERIALS AND METHODS

2.1 Characterization of the experimental area

The experiment was conducted during the 
2017/2018 and 2018/2019 crop seasons at the Facul-
dade Marechal Rondon (FARON), in the municipality 
of Vilhena, RO, Brazil, whose geographical coordinates 
are 60°05´ W and 12°46´ S, at 600 m altitude (Figure 1). 
The field plots were located in the mesoregion known 
as the Southern Cone of Rondônia (SCRO), where soy-
bean is normally sown in the no-tillage system as a 
succession crop with maize (Nóia Júnior and Sentel-
has, 2019). The predominant soil of the region is clas-
sified as dystrophic Red-Yellow Latosol, characterized 
by a flat relief (Crestani Mota et al., 2024). The climate 
is the Am type, defined as rainy tropical with a well-
defined dry season (Alvares et al., 2013). The average 
annual rainfall and temperatures are 2,200.0 mm and 
24.6 °C, respectively.

2.2 Determination of the Leaf Area Index (LAI)

2.2.1 Field sampling method and Leaf Area Index estima-
tion

The LAI was obtained every two weeks during 
the 2017/2018 crop season and every week during the 

2018/2019 crop by employing the software Digital Area 
Determiner (DDA – Determinador Digital de Áreas) ver-
sion 20.0 (Ferreira et al., 2008). Beginning 35 days after 
sowing (DAS), three plants from the soybean plot were 
randomly collected until full maturation. The leaves 
of each plant collected in the field were separated and 
placed in a tabletop scanner connected to a microcom-
puter. The leaves were digitized on a monochrome scale, 
generating a file of single images or several BITMAP 
files (.bmp) of images with the areas to be measured. 
Then the files were processed in the DDA to directly 
obtain the mean LAI, from the scans of the leaves from 
the three plants. To reduce the experimental error dur-
ing the collections, the plants of the external lines and 
the plants present in the initial and final 0.5 m of the 
plot were not collected. 

The variation in sampling frequency between the 
2017/2018 (biweekly) and 2018/2019 (weekly) crop sea-
sons reflects a methodological refinement intended to 
improve the temporal resolution and accuracy of LAI 
estimation. Although the biweekly sampling was suf-
ficient to characterize overall canopy development, 
we decided to improve the accuracy of the output by 
increasing the sampling frequency in the second season 
(to weekly intervals) in to order to more accurately cap-
ture the rapid changes in leaf area during key phenologi-
cal stages, particularly the vegetative and early reproduc-
tive phases. 

Figure 1. Location map of the experimental area at the Faculdade Marechal Rondon in Vilhena, RO, Brazil (2018).
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2.2.2 Leaf Area Index Estimated from the Extinction Coef-
ficient of the Photosynthetically Active Radiation

To determine the Kc of the PAR on the canopy of the 
cultivar sown in the present study and, to obtain LAI meas-
urements for the complete development cycle of the culti-
var, measurements of the incident PAR (PARin) and inter-
cepted PAR (PARint) were performed for both crop season, 
using the PAR Apogee® SQ-316-S bar sensor (Figure 2).

The sensor was installed in the plot sown with the 
75I77 RSF IPRO (ULTRA) cultivar positioned in the row 
line and fixed 0.1 m from the ground. Measurements 
were taken until the reproductive stage of soybean when 
green leaves were still present. As described by Zdziar-
ski et al. (2018), this soybean cultivar is technically rec-
ommended for macro-region 4 and edaphoclimatic zone 
402, particularly in areas situated at elevations above 
400 m. Thus, LAI of this cultivar was monitored under 
field conditions in the municipality of Vilhena, within 
the recommended sowing window from October 10 
to November 15, to ensure alignment with its optimal 
agronomic performance. In addition, this medium-cycle 
cultivar was estimated at 104 days and small size, with a 
low branching index but high productive potential, and 
its population ranges from 320 to 380 thousand plants 
per hectare (www.brasmaxgenetica.com.br).

Equations 1 and 2 were used to obtain the fraction 
of the PAR intercepted (fIPAR; dimensionless) by the can-
opy. The seasonal average Kc of the PAR was determined 
through destructive measurements of LAI (performed at 
seven-day intervals throughout the 2018/2019 crop sea-
son, from 35 DAS) and fIPAR (initiated four DAS during 
the 2018/2019 crop), using Equation 3. The estimated 
LAI, fIPAR, and Kc values are presented in Table 1.

� (1)

� (2)

� (3)

Where PARin is the incident photosynthetically 
active radiation (μmol m-2 s-1); PARint is the intercepted 
photosynthetically active radiation (μmol m-2 s-1); LAI is 
the leaf area index (dimensionless); Kc is the PAR extinc-
tion coefficient (dimensionless); and fIPAR is the fraction 
of the PAR intercepted by the canopy (dimensionless). 
For comparison, the data were transformed into MJ m-2 
day-1, using the conversion value developed by Thimijan 
and Heins (1983), by Equation 4:

� (4)

Where t is the time between collections (300 s) and 
4.57 is the conversion factor. All values were integrated 
for a 24 h period.

2.2.3 Leaf Area Index simulated by the Cropgro-Soybean 
agricultural model

The CROPGRO-Soybean agricultural model (Boote 
et al., 1996) in version 4.7.5 of the DSSAT (dssat.net) was 
used to simulate the LAI throughout the development 
cycle of cultivar 75I77 RSF IPRO (ULTRA). This mecha-
nistic model considers all soybean development process-
es, from photosynthesis to the partition of photoassimi-
lates, through the growth of leaves, stems, and roots, soil 
water extraction, and transpiration, in response to mete-
orological variations (Hoogenboom et al., 2012). The 
model can simulate the performance components (soil 
moisture and evapotranspiration; dry biomass – leaves, 
pods, stem, and petiole; leaf expansion through the 
LAI; and grain yield), quantifying and tracing the daily 
growth of the crop to the stages of physiological matu-
rity and harvest (Confalone et al., 2016).

2.3 Calibration and validation of the Cropgro-Soybean 
agricultural model

The CROPGRO-Soybean model was calibrated for 
the experimental conditions of the 2017/2018 crop sea-
son and validated in the 2018/2019 crop season, follow-
ing the recommendations of Hoogenboom et al. (2003) 
and Jones et al. (2003) through the method of sensitive 
adjustments and minimization of variable error (Fenster-
seifer et al., 2017). First, the following sets of phenologi-
cal information were established: dates of sowing, emer-
gence, flowering, and physiological maturation, weight 
of one thousand grains (PMG), and yield of cultivars (kg 
ha-1) under field conditions. Then, the genetic-specific 
parameters of the cultivar 75I77 RSF IPRO (ULTRA) 
were adjusted based on growth data (maximum leaf 

Figure 2. The PAR Apogee® SQ-316-S bar sensor (Apogee Instru-
ments, Inc., Logan, Utah, USA) installed on the cultivation line of 
75I77 RSF IPRO (ULTRA) cultivar in an experimental area at the 
Faculdade Marechal Rondon, in Vilhena, RO, Brazil (2018).

http://www.brasmaxgenetica.com.br
http://dssat.net
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area, maximum photosynthetic rate, and specific leaf 
area), development (number of nodes, date of emergence, 
and reproductive stages R1 – beginning of flowering, R3 
– beginning of pod formation, R5 – beginning of grain 
filling, and R7 – beginning of maturation) and yield 
components (number of grains per square meter and 
average weight of a grain) (Cera et al., 2017). Data were 
collected in the experimental field at the FARON during 
the two harvests. The phenological development of the 
crops was monitored according to the scale of Fehr and 
Caviness (1977), and the counting of data in days fol-
lowed the Julian calendar, starting on the date of emer-
gence.

2.4 Statistical analysis

To evaluate the performance of the LAI estimated 
from the Kc of the PAR in comparison with the CROP-
GRO-Soybean model, the following statistical indices 
were used: coefficient of determination (r2) (Equation 
5), percentage deviation (Pd) (Equation 6), root mean 
square error (RMSE) (Equation 7), and the agreement 
index (d-value) of Willmott (1982) (Equation 8).

� (5)

� (6)

� (7)

� (8)

Where n is the number of observations; Pi is the 
simulated values;  is the mean of the simulated val-
ues; Oi is the observed values; and  is the mean of the 
observed values.

3. RESULTS AND DISCUSSION

On a ground area basis, at the beginning of the 
plant cycle, until approximately 48 DAS, the crop used 
the PAR that reached the plant less efficiently. The 
observed measurements indicated that the maximum 
intercepted PAR was 4.3 MJ m-2 day-1 (60 DAS) when the 
fraction of leaf cover in the canopy projected over the 
area of 1 m2 of soil reached 98.3% in the R5 stage. While 
the simulated intercepted PAR reached the maximum 
light use efficiency of 8.9 MJ m-2 day-1 (at 55 DAS), when 
the leaf cover fraction reached 97.3%, also during the 
R5 stage (Figure 3). The decline in the intercepted PAR, 
both observed and estimated, began with leaf senescence 
in R6, either at around 72 DAS for the field conditions 
or at 65 DAS for the CROPGRO-Soybean model, respec-
tively. The anticipated drop in simulated interception 
was due to the overestimates of the LAI at the beginning 
of the cycle of this cultivar when the model anticipated 
the emission of leaves favoring maximum growth (4.6 
cm2 cm-2) seven days before the greatest leaf expansion 
was observed.

For field conditions, the 75I77 RSF IPRO (ULTRA) 
cultivar achieved 96% of PAR interception, between 60 
and 70 DAS, and approximately 95%, between 50 and 
63 DAS in the CROPGRO-Soybean simulation (Fig-
ure 3). Results follow those obtained by Confalone and 
Dujmovich (1999) for the edaphoclimate of the central-
eastern region of the province of Buenos Aires, Argen-
tina, where the 1998/1999 crop exhibited a 95% level of 

Table 1. Estimated leaf area index (LAI estimated), photosynthetically active radiation interception fraction (fIPAR), and extinction coef-
ficient of the photosynthetically active radiation (Kc estimated).

Cultivar Year DAS Day Month LAIestimated - ln (1 - f IPAR) Kcestimated

75I77 RSF IPRO
(ULTRA)

2018 31 1 Dec 1.5 0.838 0.555
2018 38 8 Dec 2.1 1.296 0.617
2018 46 16 Dec 3.4 1.847 0.546
2018 52 22 Dec 3.6 2.710 0.753
2018 59 29 Dec 4.2 3.225 0.770
2019 66 5 Jan 3.6 3.151 0.868
2019 73 12 Jan 3.3 2.186 0.843
2019 80 19 Jan 3.0 2.079 0.702
2019 87 26 Jan 2.3 1.215 0.528

Mean 0.687
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radiation interception 78 days after emergence, when 
the indeterminate growth cultivar Asgrow 4656 pre-
sented a maximum LAI of 5.3 in R4. Souza et al. (2009) 
during field experiments carried out in the municipal-
ity of Paragominas, PA, Brazil, found for the cultivar 
BRS Tracajá (indeterminate cycle) 99% interception of 
the PAR between 70 and 96 DAS (R4 and R5), when 
the maximum Kc and LAI were 0.717/4.1 and 0.715/6.5 
for the 2007/2008 and 2008/2009 crops, respectively. 
Similarly, Costa et al. (1999) found values of maximum 
radiation interception (99%) occurring between 70 and 
96 DAS for soybeans grown under different irrigation 
conditions throughout the cycle in the Southeastern 
region of Brazil.

According to Souza et al. (2009), the increased effi-
ciency in the use of the PAR found during the reproduc-
tive phase of soybean is reflected in most of the results 
found for this crop (Confalone and Dujmovich, 1999; 
Schöffel and Volpe, 2001; Santos et al., 2003; Adeboye et 
al., 2016). The same authors reported that this increase 
is closely linked to the progressive accumulation of veg-
etative and reproductive biomass, becoming markedly 
significant from the V5 vegetative stage onward. This 
elevated efficiency persists through subsequent pheno-
logical phases and remains pronounced until the onset 
of the R5 reproductive stage, a critical period when 
the physiological transition toward reproductive phase 
occurs, marked by the remobilization of photoassimi-
lates from source tissues to developing sink organs, pri-
marily for grain filling.

According to Figure 4, the calibrated CROPGRO-
Soybean model simulated more accurate and robust val-
ues for the LAIs in the validation period, evidenced by 
the increases in r2 (0.738) and d-value (0.815), as well 

as the decrease in RMSE (0.7 cm2 cm-2) and Pd ampli-
tude (19.9%), compared to the 2017/2018 harvest and 
also with the model maintaining the original param-
eters during the 2018/2019 crop. However, when com-
paring the LAIs simulated by the CROPGRO-Soybean 
model with those estimated through the mean Kc calcu-
lated daily for the field conditions, the latter ones were 
closer to the observed LAIs due to increased r2 (0.882) 
and d-value (0.952), as well as the reduced Pd amplitude 
(13.3%). 

The estimated LAIs obtained from Kc showed 
results similar to those that occurred under field condi-
tions during most of the development cycle of cultivar 
75I77 RSF IPRO (ULTRA), especially in the initial (up 
to 50 DAS) and final (90 DAS up to the stage R8) phases 
(Figure 4). Between 55 and 83 DAS, the LAIs estimated 
through Kc were, on average, 28.6% higher than those 
observed, with new growth of RMSE (1.3 cm2 cm-2) and 
greater differences during senescence (R6), in which the 
new LAI values were about 1.4 and 1.2 cm2 cm-2 higher 
than those observed 69 and 76 DAS, respectively. This 
was likely due to variations in plant density at the ran-
domly selected sampling locations from which the plants 
used for LAI measurements were collected.

Together with the PAR Apogee® SQ-316-S bar sensor 
used to determine fIPAR and Kc, the population of plants 
per square meter was relatively higher than the three 
points sampled weekly, which were chosen randomly 
to determine the mean LAI of the cultivar. In addition, 
the cultivated area within the range of action of the PAR 
line sensor did not suffer, like other parts of the plot, 
from damage caused by fungal diseases between stages 
R5 and R7, which also contributed to higher LAI val-
ues estimated by the Kc methodology compared to the 
LAI measurements obtained by the leaf scanning pro-
cess that depended on random sampling. In this con-
text, Yokoyama et al. (2018) highlighted the importance 
of maintaining the LAI between the middle of the grain 
filling period until physiological maturity, as it positively 
impacts yield. The authors also emphasize that special 
care is necessary to avoid loss of LAI at this stage. More-
over, proper management of diseases and insect pests is 
indispensable, as Moreira et al. (2015) discussed.

As the cultivar developed, self-shading occurred due 
to the overlapping leaves from the high density of plants 
at the sensor location point, which resulted at 60 DAS 
in values very close to the incidence of PAR, providing 
greater than 96% interception. This was also observed 
by Petter et al. (2016), who demonstrated that a major 
benefit of increasing the number of plants per area is the 
increase of the LAI, influencing the use of light by the 
crop (greater than 90%). According to Cox and Cherney 

Figure 3. Fraction of intercepted PAR (fIPAR) observed in the field 
(—) using the PAR Apogee® SQ-316-S line sensor and simulated by 
the CROPGRO-Soybean model (....) throughout the development 
cycle of cultivar 75I77 RSF IPRO (ULTRA) during the 2018/2019 
crop cycle.
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(2011), high leaf growth plasticity is a relevant mecha-
nism of phenotypic plasticity of soybean.

The LAI estimated by Kc was significantly affected in 
an increasing linear manner by the plant population up to 
the R4 stage, with the maximum peak occurring at 63 DAS 
(5.4) (Figure 4). For the period between 55 and 83 DAS, 
the average LAI was established at 4.5 cm2 cm-2. Accord-
ing to Tagliapietra et al. (2018), these values are recom-
mended between stages R3 and R5 for cultivars of indeter-
minate growth to obtain maximum yields (optimization 
of dry matter accumulation by plants). This is equivalent 
to LAI values (3.5-4.5) greater than those normally cited 
as ideal for soybean cultivation, which does not consider 
the growth habit, the degree of relative maturity (DRM), 
and the water inputs in the cultivated area (irrigated and 
rain-fed fields). Up to around 30 DAS, the accumulation of 
soybean dry matter was slow, but it became faster from 30 
to 60 DAS. Subsequently, the slight drop after 75 DAS was 
mainly due to the senescence of the leaves near the ground 
and the redistribution of photoassimilates and nutrients 
from the leaves to the grains formation, as observed in the 
works of Petter et al. (2016) and Srinivasan et al. (2017).

The temporal changes in the dry matter biomass 
of the cultivar canopy and its distribution in pods and 
grains, together with the simulated values, are shown in 
Figure 5. The agricultural cultivation model can simu-
late with some precision changes in the dry weight of 
plant components (pods, stems, leaves, and grains). 
Boote et al. (1997) found that CROPGRO-Soybean can 
reasonably predict temporal changes in LAI and biomass 
for various locations in the USA. However, because of 
the anticipation of the maximum LAI and the excess of 
simulated leaf area, the model tends to overestimate the 
biomass of the pods, which directly interferes with the 
dry matter of grains (yield), as there is a greater demand 
and partitioning of photoassimilates during stages R4 
and R5.3 (Borrás et al., 2004), a period in which grains 
are between 26 and 50% formed (Fehr and Caviness, 
1977), for the development of pods and grains (Figure 
5). This situation was also verified by Crestani Mota et 
al. (2024) for the cultivar TMG2181 IPRO, with a slightly 
later cycle but with less impact, as the overestimates of 
the LAI by the model at the beginning of the develop-
ment of this genetic material were lower.

Figure 4. Time variation of the observed LAI (■), simulated with the original parameters of CROPGRO-Soybean (----), simulated in the 
validation (—), and from the extinction coefficient of the PAR (Kc) (+—+—+) throughout the development cycle of cultivar 75I77 RSF 
IPRO (ULTRA) during the 2018/2019 crop. Statistics applied to the LAI: coefficient of determination (r2); percent deviation (Pd); root 
mean squares error (RMSE); and Willmott agreement index (d-value).
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The minimum tillage is another important detail 
during the validation. According to Mota (2019), the 
increases in simulated LAIs may also be linked to the 
increased nitrogen accumulation, an essential nutrient 
in grain filling and a fundamental prerequisite for high 
grain yields and quality (Salvagiotti et al., 2008), espe-
cially in cultivars with undetermined growth habits, by 
incorporating maize straws into the soil. This indicates 
that CROPGRO-Soybean responds differently (system-
atic error) to this condition in shorter-cycle cultivars, 
such as 75I77 RSF IPRO (ULTRA). With the appearance 
of leaves earlier in CROPGRO-Soybean simulations, the 
period of filling pods coincides with the maximum LAI, 
in the same way as the redistribution of mineral nutri-
ents, carbohydrates, and nitrogen compounds in grains, 
stems, branches, and senescent leaves during this phase 
(Mundstock and Thomas, 2005).

Thus, the results of air-dried matter for the 
2018/2019 crop season demonstrated that the model 
has limitations in its estimation of leaf expansion and 
senescence. Therefore, finer adjustments are required 
to the parameters related to the parameterization of the 
LAI in the CROPGRO-Soybean model, which applies 
three functions in this process. The growth stage is ini-
tially characterized by an exponential logistic function 
(sigmoid model) from emergence to the maximum LAI. 
Then, there is a linear phase (Goudriaan and Monteith, 
1990) as self-shading increases and plants invest more in 
the production of pods and grains, and other non-leaf 
structures. Finally, the phase extending from leaf senes-
cence to physiological maturity (Taiz and Zeiger, 2004) 
is terminated by an exponential function. Therefore, 
to minimize the effects of overestimated LAI on bio-

mass production by the CROPGRO-Soybean model, the 
methodology proposed by Moreira et al. (2018) should 
be adopted. Those authors developed for the Agro-IBIS 
agroecosystem model an equation with a dynamic expo-
nent to reduce the simulated LAI, particularly between 
stages R5 and R7, because Kucharik and Twine (2007) 
and Webler et al. (2012) identified in this model, prob-
lems similar to CROPGRO-Soybean for LAI simulations.

4. CONCLUSIONS

The proposed methodology represents a robust and 
scalable solution with potential to be used in crop simu-
lation models, decision support systems, and digital plat-
forms dedicated to monitoring and managing agricul-
tural production. The use of an estimated average crop 
coefficient (Kc) of 0.687, derived from measurements 
conducted throughout the entire phenological cycle of 
the soybean cultivar 75I77 RSF IPRO (ULTRA), proved 
to be an effective procedure for the daily estimation of 
LAI in soybean cultivars. This approach offers a viable, 
low-cost, and non-destructive alternative to direct field 
measurements, particularly advantageous for long-term 
experiments or under operational constraints. The main 
finding of this study lies in the close alignment between 
the estimated Kc and the fixed value of 0.67 used by the 
CROPGRO-Soybean model (parameter KCAN – canopy 
light extinction coefficient for the daily PAR, present in 
the SBGRO.047.ESP file), which governs the attenuation 
of PAR within the canopy across all phenological stag-
es. This consistency validates the methodology used for 
Kc estimation, enhances the reliability of LAI modeling 
under tropical conditions, and provides a sound basis for 
calibrating and validating agrometeorological models. 
Moreover, the accurate estimation of LAI based on Kc 
broadens the scope for studies on radiation interception 
and biomass accumulation, supporting advancements 
in yield modeling, climate risk zoning, and optimized 
crop management strategies. Therefore, the methodology 
developed in this study emerges as a reliable and appli-
cable tool for sustainable agricultural intensification and 
its integration into modern monitoring and decision-
support frameworks.
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Abstract. Trend analysis of hydroclimatic data is essential for assessing climate variabil-
ity. Precipitation is an important parameter affected by climate change in the Mediter-
ranean climate, particularly in sensitive regions like the Tafna watershed in Northwest-
ern Algeria. This study used the Innovate Polygon Trend Analysis (IPTA) to study the 
change between two successive months. Additionally, the Mann-Kendall (MK) test was 
compared to the IPTA method in detecting trends. Total monthly rainfall data was col-
lected from 14 stations in the Tafna watershed over 50 years from the hydrological year 
1970-71 to 2019-20. The maximum trend length using the IPTA method was found in 
the transition May-June for most stations. The MK test does not indicate any significant 
trend (increase and decrease) in most of the months at all stations. In contrast, the IPTA 
method shows an increasing trend in October and January in all stations; August, Sep-
tember, November, and December show an increasing trend in most stations. A decreas-
ing trend was found in February and March at all stations and in May at most stations. 
The results showed that the MK test detected a significant trend in 6.5% of the total 
months analyzed in this study, whereas the IPTA method identified a trend in 88.7% 
of the total months. The findings revealed that the IPTA method was more sensitive to 
detecting trends in precipitation data than the MK test, which suggests the IPTA method 
could be a valuable tool for assessing trends of precipitations in the Tafna watershed. 

Keywords:	 rainfall, trend, Mann-Kendall test, IPTA, Tafna Watershed.

1. INTRODUCTION

Precipitation is one of the most important components of the hydro-
logical cycle and the environment, particularly in regions with a Mediter-
ranean climate, where it is significantly affected by climate change (Şan et 
al., 2024). Several precipitation variability and trends studies have been con-
ducted in the Mediterranean basin to understand this effect better (Khomsi 
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et al., 2015; Longobardi & Villani, 2010; Martínez et 
al., 2007; Mehta & Yang, 2008; Nouaceur & Murărescu, 
2016; Philandras et al., 2011; Tramblay et al., 2013). In 
Algeria, many researchers have studied spatiotemporal 
trends of precipitation in many parts of the country, 
such as Meddi and Meddi (2009), Meddi et al. (2010), 
Ghenim and Megnounif (2016), Taibi et al. (2017), Bes-
saklia et al. (2018), Otmane et al. (2018), Merniz et al. 
(2019), and Gherissi et al. (2021).

One of the classical methods to detect trends in 
hydrometeorological data is the Mann-Kendall (MK) 
test (Kendall, 1975; Mann, 1945). In Algeria, the MK 
test was used to indicate the trend of rainfall at different 
time scales in many studies, such as in the North-East 
(Merniz et al., 2019; Mrad et al., 2018), in the north-
ern part of Algeria (Ghenim & Megnounif, 2016; Ghor-
bani et al., 2021), in the North-West of Algeria, such as 
in two watersheds Coastal-Oran and Macta (Oufrigh 
et al., 2023), in the Macta watershed (Benzater et al., 
2024). One of the latest graphical methods developed for 
detecting trends, especially at the monthly scale, is the 
Innovate Polygon Trend Analysis (IPTA) method devel-
oped by Şen et al. (2019). It was recently used to detect 
the trend in some regions in Algeria, such as in the Wadi 
Sly Basin (Achite et al., 2021), in the North Coast Alge-
rian (Boudiaf et al., 2022), and in the Wadi Mina Basin 
(Hallouz et al., 2024). 

Many studies around the world compared the IPTA 
method with the MK test, such as Hallouz et al. (2024) 
in Algeria; Akçay et al. (2022), Hırca et al. (2022), Esit 
(2023), and Esit et al. (2024) in Turkey; and Şan et al. 
(2021) in Vietnam. All these researchers found that the 
IPTA method was more sensitive in detecting trends 
with precipitation data than the MK test.

In the Tafna watershed, Bougara et al. (2020) used 
the MK test to identify the trend in precipitations for 
nine stations from 1979–2011. The findings showed an 
increasing trend in rainfall in September and October, 
meaning the increase was found in autumn. Bouklikha 
et al. (2021) used the Innovate Trend Analysis (ITA) 
method to identify the trend in rainfall time series for 17 
stations over the period 1970-2016; the results showed a 
decreasing trend in February, March, April, and May in 
all stations, June and July for the majority of stations.

This study aims to analyze monthly precipitation 
trends in the Tafna watershed using data from 14 rain-
fall stations over a 50-year period (1970-71 to 2019-20). 
To achieve this, both the Mann-Kendall (MK) test and 
the Innovate Polygon Trend Analysis (IPTA) method are 
employed to examine monthly rainfall trends. Notably, 
the IPTA method uniquely allows for the analysis of trend 
patterns between two consecutive months. The study is 

structured around two main objectives: (1) investigating 
trends between consecutive months using the IPTA meth-
od, and (2) comparing the effectiveness of the MK test 
and IPTA in detecting monthly precipitation trends.

2. STUDY AREA AND DATA

The research area is located in the Tafna watershed 
in (Northwestern Algeria), covering an area of 7200 km2. 
It is situated between latitude North 34°3’ and 35°9’ and 
longitude West 1° and 2°, and its altitude is between 0 
and 1773 m (Figure. 1). Monthly precipitation data of 14 
rainfall stations from 1970-71 to 2019-20 was collected 
from the National Hydraulic Resources Agency (ANRH) 
(https://anrh.dz/). The names of the stations, their IDs, 
coordinates (longitude, latitude), and elevation are pre-
sented in Table 1. The selection of stations was based on 
the duration of the time series and their spatial distribu-
tion, ensuring comprehensive coverage of the study area. 
The analysis period for the selected stations extended 
over 50 years, started with the hydrological year 1970–
1971, which begins in September and closes in August. 
The selected data demonstrates a highly uniform distri-
bution within the research area.

3. METHODOLOGY 

3.1 IPTA method

The Innovate Polygon Trend Analysis (IPTA) meth-
od developed by Şen et al. (2019) was modified recently 

Table 1.  The rainfall stations utilized in this study

Station Name ID Longitude 
(DD)

Latitude 
(DD)

Elevation 
(m)

S1 Maghnia 160302 -1.80254 34.79900 395
S2 Sebdou 160401 -1.32548 34.65515 875
S3 Beni Bahdel 160403 -1.50369 34.71165 660
S4 Sidi Medjahed 160407 -1.64262 34.77520 360
S5 Sebra 160502 -1.52886 34.82671 600
S6 Hennaya 160516 -1.38812 34.92100 515
S7 Zaouia Ben Amar 160517 -1.65752 35.03999 370
S8 Djebel Chouachi 160518 -1.49698 35.05436 110
S9 Oued Lakhdar 160601 -1.13454 34.86408 700
S10 Meurbah 160602 -1.17134 34.74197 1100
S11 Ouled Mimoun 160607 -1.03406 34.90429 705
S12 Mefrouche 160701 -1.28586 34.84734 1110
S13 Lalla Setti 160705 -1.30650 34.86604 1020
S14 Pierre Du Chat 160802 -1.43970 35.14572 80

https://anrh.dz/
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Figure 1. Study area: (a) location of the Tafna watershed in Algeria, (b) DEM, Hydrographic Network, and location of rainfall stations used 
in this study.
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from the Innovate Trend analysis (ITA) created by Şen 
(2012). This study applied the IPTA method to monthly 
precipitation data following seven processing steps. Step 
(1): the monthly precipitation data was divided into 
two equal periods. Step (2): the monthly mean for each 
month is calculated in both periods. Step (3): the first 
and second periods are placed on the horizontal and 
vertical axis in a cartesian coordinate system. Step (4): 
the points of consecutive months are joined by straight 
lines that result in a polygon (Figure. 2).

Step (5): the trend length (TL) and the trend slope 
(TS) between consecutive points were calculated as fol-
lows: 

� (1)

� (2)

Where TL and TS are trend length and trend slope, 
x1 and x2 are two consecutive months in the first period, 
and y1 and y2 are two consecutive months in the sec-
ond period. The TL indicates the magnitude of change 
in precipitation (mm) between two consecutive months, 
while the TS ref lects the direction and rate of this 
change. Step (6): Draw the no-trend line (1:1 line) at 45° 
in the cartesian coordinate system. Step (7): The months 
above the no-trend line indicate an increasing trend, 
whereas the months below the no-trend line indicate 

a decreasing trend, while the months found on the no-
trend line do not show any trend. According to Boudiaf 
et al. (2022), the trend length can be classified into four 
categories as follows.
1)	 weak for 0 < TL < 30 mm,
2)	 medium for 30 mm < TL < 50 mm,
3)	 strong for 50 mm < TL < 75 mm,
4)	 very strong for TL > 75 mm.

Although the TS is computed as part of the IPTA 
method, it is not a central focus of the present study. 
The interpretation of monthly trends relies primarily on 
the TL and its visual positioning relative to the no-trend 
line. These thresholds are empirical and not based on 
statistical significance testing. Unlike the Mann-Kendall 
test, the IPTA method does not offer a formal statistical 
framework, which represents a known limitation of this 
graphical technique. However, it provides a valuable vis-
ual and comparative assessment of monthly changes that 
complements statistical approaches.

3.2 Mann-Kendall (MK) trend test 

One of the non-parametric tests used to detect 
trends is the MK test (Kendall, 1975; Mann, 1945), 
which is particularly useful for meteorological, clima-
tological, and hydrological time series. The following 
equations give the MK test statistic (S):

� (3)

� (4)

Where xi and xj represent the data points in periods 
i and j, while the amount of data series is larger than 
or equivalent to ten (n ≥ 10), since n ≥ 10, the MK test 
is then categorised by a standard distribution with the 
mean E(S) = 0 and variance Var(S) given as:

� (5)

Where m is the number of the tied groups in the 
time series and tk is the number of ties in the kth tied 
group. From this, the test Z statistics is obtained using 
an approximation as follows:

� (6)

Figure 2. IPTA template for monthly records.
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In a Z test, the null hypothesis (H0) indicates no 
trend in the time series, the alternative hypothesis (Ha) 
indicates a significant change. At the 5% significance lev-
el, negative values indicate decreasing trends, and posi-
tive values indicate an increasing trend. If |Z| > 1.96, H0 
is rejected (Sneyers, 1990). 

4. RESULTS AND DISCUSSION 

4.1 IPTA results 

IPTA graphics are shown in Figure 3 for Magh-
nia, Sebdou, Beni Bahdel, Sidi Medjahed, Sebra, Hen-
naya stations, in Figure 4 for Zaouia Ben Amar, Djebel 
Chouachi, Oued Lakhder, Meurbah, Ouled Mimoun, 
and Mefrouche stations, and in Figure 5 for Lalla Setti, 
and Pierre Du Chat stations. The rainiest month dur-
ing the first half of 1970-71/1994-95 is March in all sta-
tions, with an average of 54.1 mm for Sidi Medjahed, 
Djebel Chouachi, Ouled Mimoun, Pierre Du Chat, 
and Maghnia Stations, an average of 70.5 mm for Seb-
dou, Meurbah, and Sebra stations, an average of 79.7 
mm for Zaouia Ben Amar, Oued Lakhdar, Beni Bahdel, 
and Hennaya stations. The highest values were found 
in Lalla Setti (103.7 mm) and Mefrouche stations (121.5 
mm). The driest month during the first half of 1970-
71/1994-95 is July in Maghnia, Sebdou, Hennaya, Dje-
bel Chouachi, and Pierre du chat stations, with values 
not exceeding 4.5 mm; for the other stations, the driest 
month is August with values not exceeding 4.9 mm. The 
rainiest month during the second half of 1995-96/2019-
20 in November for the half of stations such as Magh-
nia, Sidi Medjahed, and Djebel Chouachi stations with 
an average of 45.6 mm, Hennaya and Sebra stations with 
an average of 59.4 mm, the highest values were found 
in Lalla Setti (76.8 mm) and Mefrouche stations (85 
mm). for the other half of stations January is the raini-
est month. The driest month during the second half of 
1995-96/2019-20 is July in all stations, with values not 
exceeding 6.4 mm. 

Table 2 shows statistical values (trend length and 
trend slope) of arithmetic mean for each station. The 
maximum trend slopes were observed in the transition 
July-August, with values of 21.62, -8.0, -32.28, -32.39, 
-7.13, 2.79, -7.85, -14.94, and 9.68 for the Maghnia, Beni 
Bahdel, Sidi Medjahed, Sebra, Zaouia Ben Amar, Dje-
bel Chouachi, Meurbah, Ouled Mimoun, and Pierre Du 
Chat stations, respectively. Additionally, trend slopes 
of 10.66, -8.37, and 4.38 were recorded in the transition 
April-May for the Sebdou, Mefrouche, and Lalla Setti 
stations, respectively. A trend slope of 2.77 was observed 
in the transition November-December for the Hennaya 

station and -13.3 in the transition December-January for 
the Oued Lakhdar station.

The trend length is weak in all stations in the tran-
sition of November-December, December-January, 
January-February, June-July, July-August, and August-
September. The trend length is medium in the transition 
September-October in Mefrouche and Pierre du chat sta-
tions, in the transition October-November in Beni Bah-
del, Hennaya, Zaouia Ben Amar, Oued Lakhdar, and 
Lalla Setti stations, in the transition February-March 
in Mefrouche and Lalla Setti stations, in the transition 
March-April in Beni Bahdel, Zaouia Ben Amar, and Lal-
la Setti stations, in the transition April-May Mefrouche 
station only, in the transition May-June for most of sta-
tions such as Maghnia, Sebdou, Beni Bahdel, Sidi Med-
jahed, Sebra, Hennaya, Zaouia Ben Amar, Oued Lakh-
dar, Meurbah, and Ouled Mimoun stations. The trend 
length is strong in the transition of October-November, 
March-April, and May-June in Mefrouche station. The 
transition May-June also shows another strong trend 
length in Lalla Setti station. The maximum trend length 
was found in the transition May-June (ranging between 
31.09 mm and 69.66 mm) for most stations, and these 
strongest values explain the change between the two sea-
sons, from Spring to Summer.

4.2 Comparison between the IPTA method and the MK test

Table 3 shows the results of the MK test on monthly 
rainfall data for all stations. It clearly appears that there 
is no significant trend in most months for all stations. 
An increasing trend is found in September at Beni Bah-
del and Meurbah stations, in October at Beni Bahdel 
and Sidi Medjahed stations. Whereas, a decreasing trend 
appears in February at Sebra and Hennaya stations, in 
March at Pierre Du Chat station, in June and July at 
Maghnia and Ouled Mimoun stations. 

Bougara et al. (2020) studied the trend analysis in 
the Tafna watershed using the MK test for a period of 
data from 1979 to 2011 with some stations can found in 
this study such as Sebdou, Beni Bahdel, Djbel Chouachi, 
Hennaya, Oued Lakhder (ex-Chouly), Meurbah, and 
Ouled Mimoun stations. The results showed a signifi-
cant increasing trend for rainfall in two months only 
(September and October) for most of stations, the other 
months do not show any trend except August at Meur-
bah station, wich indicated an increasing trend. The 
variations observed among stations and throughout dif-
ferent months underline the complexity of precipitation 
trends in this region. The study’s extended timeframe 
and inclusion of more stations improve the understand-
ing of the spatial and temporal variability in precipita-



36 Djillali Fettam et al.

Figure 3. IPTA graphics for Maghnia, Sebdou, Beni Bahdel, Sidi Medjahed, Sebra, Hennaya stations.
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Figure 4. IPTA graphics for Zaouia Ben Amar, Djebel Chouachi, Oued Lakhder, Meurbah, Ouled Mimoun, and Mefrouche stations.
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Figure 5. IPTA graphics for Lalla Setti, and Pierre Du Chat stations.

Table 2. Statistical values of arithmetic mean for each station.

Sep-Oct Oct-Nov Nov-Dec Dec-Jan Jan-Feb Feb-Mar Mar-Apr Apr-May May-Jun Jun-Jul Jul-Aug Aug-Sep

S1
TL (mm) 15.38 21.46 9.75 8.31 23.67 3.31 6.72 17.03 32.22 6.43 2.51 16.26
TS 1.38 0.73 1.79 -1.90 -0.47 -0.69 -0.54 0.55 0.81 0.36 21.62 1.31

S2
TL (mm) 11.76 24.84 2.83 13.94 26.05 8.59 28.38 17.09 31.09 7.45 4.76 16.86
TS 1.84 0.28 -0.64 -5.97 -0.77 -0.93 -0.18 10.66 0.37 1.17 2.85 1.34

S3
TL (mm) 19.29 33.31 3.67 15.43 21.17 21.28 34.64 12.94 41.18 6.48 5.00 19.53
TS 1.03 0.51 1.84 6.97 -2.64 -0.37 -0.10 1.55 0.70 3.80 -8.00 2.87

S4
TL (mm) 18.93 18.85 8.65 10.03 25.75 5.54 11.29 17.71 32.25 5.43 2.33 14.66
TS 1.37 1.04 -3.70 -0.96 -0.63 1.61 -0.39 1.09 0.89 0.79 -32.28 1.90

S5
TL (mm) 22.21 29.32 11.55 9.33 29.11 11.37 17.89 21.08 45.16 4.42 4.28 17.80
TS 1.74 0.87 5.18 -3.77 -0.77 0.40 -0.18 1.23 0.72 0.96 -32.39 1.77

S6
TL (mm) 19.58 30.37 11.27 11.89 19.86 19.34 28.03 22.75 40.35 6.61 3.20 21.50
TS 2.08 0.79 2.77 1.41 -1.25 -0.18 -0.31 1.04 0.83 0.88 2.11 1.80

S7
TL (mm) 22.28 36.63 11.55 18.46 29.80 16.41 33.24 17.31 35.74 6.26 2.56 21.33
TS 1.89 1.04 -1.50 -1.52 -0.85 -1.25 0.02 1.34 0.80 0.56 -7.13 1.42

S8
TL (mm) 17.24 29.33 15.55 9.41 11.50 14.21 19.70 10.71 29.07 4.31 3.54 13.02
TS 1.86 1.10 1.19 1.45 -0.06 -1.83 0.27 0.25 1.08 0.40 2.79 0.74

S9
TL (mm) 17.50 30.53 5.46 11.58 21.46 17.69 28.86 15.80 40.14 7.14 4.80 21.88
TS 0.85 0.84 0.63 -13.30 -0.88 -0.50 -0.09 1.82 0.70 1.93 -2.28 1.69

S10
TL (mm) 15.23 26.30 9.16 18.78 23.89 12.98 27.89 17.13 31.63 7.05 6.90 20.29
TS 1.66 0.70 2.74 3.41 -1.85 -0.29 -0.08 1.53 0.70 3.00 -7.85 1.59

S11
TL (mm) 14.44 24.85 7.74 8.70 12.58 7.21 13.14 14.24 34.66 5.52 5.99 19.86
TS 0.99 0.94 3.00 -2.84 -0.60 -0.65 0.10 1.95 0.92 0.76 -14.94 1.71

S12
TL (mm) 33.69 50.72 12.20 3.28 23.63 34.90 52.85 31.40 69.66 9.39 6.38 21.72
TS 0.96 1.06 1.09 2.77 -0.66 0.00 -0.13 -8.37 0.53 2.11 -1.60 1.71

S13
TL (mm) 28.71 40.01 23.68 15.38 15.02 33.20 38.66 20.53 60.69 7.09 3.95 27.11
TS 1.40 0.87 1.03 0.78 -1.56 -0.03 -0.11 4.38 0.64 1.26 -2.51 1.33

S14
TL (mm) 30.47 23.98 10.84 11.82 18.41 14.91 16.89 18.55 25.85 6.00 3.85 14.80
TS 2.45 0.81 4.82 -2.09 -2.87 -0.52 -0.07 1.14 0.83 0.40 9.68 0.72
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tion patterns. This emphasises the need of conducting 
detailed analyses at the station level to precisely evaluate 
the effects of climate change in the Tafna watershed.

The IPTA method shows an increasing trend in 
October and January at all stations; November also 
shows an increasing trend at all stations except Sebdou 
station, which indicates a decreasing trend; September 
and December show an increasing trend at most of the 
stations (12 and 11 stations, respectively), August shows 
an increasing trend in all stations except Maghnia and 
Hennaya stations. A decreasing trend is found in Feb-
ruary, March, and May in all stations except Djebel 
Chouachi station, which shows no significant trend in 
May. Ten stations in April show a decreasing trend. June 
indicates a decreasing trend at seven stations, while the 
other stations, such as Sebdou, Beni Bahdel, and Meur-
bah stations, show an increasing trend; the rest do not 
show any trend. Jule indicates a decreasing trend in 8 
stations; only Sebdou station shows an increasing trend 
this month, and the other stations do now show any sig-
nificant trend. 

Table 4 presents the trends detected by the MK test 
and IPTA method for monthly precipitation data for 
all stations. The MK test indicates a significant trend 
(increase and decrease) in 11 of 168 months (12 months 
× 14 stations), representing 6.5% of the total months 
analyzed in this study. However, the IPTA method iden-
tifies a significant trend in 149 of 168 months, account-
ing for 88.7% of the total months. It can be concluded 
that the IPTA method is more sensitive than the MK 
test in detecting rainfall trends. However, this increased 
sensitivity may lead to an over-identification of trends, 
as the IPTA method does not incorporate any statistical 

significance threshold . The appearance of Table 4 would 
change if a stricter significance level (e.g., 0.01 instead of 
0.05) or a larger one were applied to MK results, thereby 
highlighting differences in methodological sensitivity 
and interpretability. Many studies in different countries 
can support these findings, such as Hallouz et al. (2024) 
in Algeria; Akçay et al. (2022), Hırca et al. (2022), Esit 
(2023), and Esit et al. (2024) in Turkey; and Şan et al. 
(2021) in Vietnam.

5. CONCLUSIONS

In this study, the IPTA method was applied to 
monthly total rainfall data from 14 stations in the Tafna 
watershed over a 50-year period (1970-71 to 2019-20). 
The trend length and slope were calculated for consecu-
tive months, and IPTA graphs were created for all sta-
tions. Additionally, a comparison was made between 
the IPTA method and the MK test in detecting monthly 
rainfall trends. The main findings are as follows:
–	 The rainiest month in the first half of the period 

(1970-71 to 1994-95) was March across all stations, 
whereas in the second half (1995-96 to 2019-20), 
November was the rainiest month in half of the 
stations, while January was for the others. The dri-
est month in the first half was July for five stations, 
while it was August for the rest.

–	 The trend length was weak in all stations for the 
transitions of November-December, December-
January, January-February, June-July, July-August, 
and August-September. The maximum trend length 
occurred in the transition May-June (ranging from 

Table 3. Results of the MK test on monthly rainfall data for all stations (significant values in bold at ≤ 0.05 level of significance)

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

S1 0.737 1.398 0.318 0.000 0.703 -1.782 -1.815 -1.430 -0.778 -2.182 -2.004 -1.004
S2 1.733 1.449 -0.527 -0.418 0.100 -1.397 -1.372 0.084 -1.481 0.151 1.000 0.604
S3 2.988 1.974 0.125 -0.184 0.477 -1.163 -1.280 -0.368 -0.125 1.155 0.569 1.384
S4 1.398 2.085 1.882 0.485 1.138 -1.832 -1.021 -0.159 0.142 0.200 1.219 2.313
S5 1.801 1.518 1.732 0.134 1.096 -2.267 -1.573 -0.995 -0.343 -0.353 0.435 1.888
S6 0.854 1.514 1.397 0.042 0.736 -1.974 -1.857 -0.318 -0.611 -1.307 -0.511 -0.979
S7 1.811 1.842 1.497 -0.611 1.757 -1.314 -1.958 -0.636 -0.627 -0.103 -0.646 1.516
S8 0.394 0.988 0.728 0.176 0.636 -0.870 -1.865 -1.297 0.376 -0.526 0.000 1.140
S9 1.189 0.569 -0.176 0.184 1.071 -0.803 -1.631 -0.410 -0.326 -0.354 -0.329 1.290
S10 2.394 1.372 0.845 -0.477 0.996 -0.820 -1.949 0.402 0.033 0.862 1.344 1.567
S11 1.080 0.662 1.548 -0.728 0.929 -0.318 -0.862 0.067 -0.502 -2.443 -2.701 -0.511
S12 1.691 0.310 0.527 0.075 0.552 -1.339 -1.899 0.042 -1.514 -1.561 -1.254 0.654
S13 1.708 0.929 0.435 -0.393 -0.243 -0.669 -1.840 -0.435 -1.305 -1.454 -0.822 0.086
S14 0.452 0.736 1.372 -0.360 1.489 -0.419 -2.459 -0.803 -0.502 -1.182 -0.510 1.864
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31.09 mm to 69.66 mm) in most stations, reflecting 
the seasonal shift from spring to summer.

–	 The MK test indicates a significant trend (increase 
and decrease) in 11 of 168 months (12 months × 
14 stations), representing 6.5 % of the total months 
analyzed in this study. However, the IPTA method 
identifies a significant trend in 149 of 168 months, 
accounting for 88.7% of the total months.

–	 The MK test indicated a significant trend (increase or 
decrease) in only 11 of 168 months (12 months × 14 
stations), or 6.5% of all months analyzed. In contrast, 
the IPTA method identified significant trends in 149 
of 168 months, representing 88.7% of the total.
In conclusion, the IPTA method proved more sen-

sitive in detecting monthly rainfall trends than the MK 
test, suggesting its potential as a valuable tool for assess-
ing rainfall trends in regions affected by climate variabil-
ity, particularly in Mediterranean climates like that of 
the Tafna watershed.
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Abstract. Water-saving strategies are important to cope with water shortages that affect 
irrigated agriculture. To determine the water use efficiency (WUE) and yield response 
factor (Ky) of common bean (Phaseolus vulgaris L.) grown under different deficit irri-
gation strategies, a rain shelter experiment was conducted. Common bean was sub-
jected to five water replacement levels: 100% of field capacity (FC) throughout the 
growing season (M1; the reference treatment); 75% (M2) and 50% (M3) FC, starting 
at 20 days after sowing until the end of the growing season; and 75% (M4) and 50% 
(M5) FC at flowering. Grain yield (GY), yield components, WUE, and Ky were evalu-
ated. Water use efficiency under M3 and M4 was comparable to M1, the highest WUE 
obtained (1.55 kg·m-3). However, M3 significantly reduced GY (42%), which was main-
ly caused by the decrease in the number of pods and grains per plant. Therefore, limit-
ing water at 75% FC during flowering (M4) could be viable to avoid yield gaps and 
maintain higher WUE in water scarce regions. Yield response factor of common bean 
revealed that the greatest water savings were obtained with the M3 irrigation strategy, 
reducing crop evapotranspiration by approximately 70%.

Keywords: grain yield, irrigation water applied, Phaseolus vulgaris, water saving.

HIGHLIGHTS

1.	 Deficit irrigation strategies at different phenological stages of common 
beans were evaluated;

2.	 Water use efficiency and yield response factor of common bean were 
included;

3.	 Mild water stress of short duration did not reduce water use efficiency or 
grain yield;

4.	 The relationship between irrigation water applied and grain yield showed 
that water stress reduces productivity independently of phenological 
stage;
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5.	 Yield response factor of common bean revealed the 
possibility of obtaining reasonable grain yield and 
water savings.

1. INTRODUCTION

Many regions where common bean (Phaseolus vul-
garis L.) is produced are rainfed systems which are sus-
ceptible to drought stress (Darkwa et al., 2016). Brazil, 
which is the largest world edible producer of this crop, 
has 93% of the total area under rainfed conditions 
(FAOSTAT, 2024). It is estimated that 60% of common 
bean production occurs under the risk of intermittent or 
flowering drought stress (Beebe et al., 2013). These con-
ditions cause yield reductions of common bean by up to 
80% (Rosales et al., 2012; Lanna et al., 2016). 

Irrigation is the best option for reducing yield gaps in 
agricultural crops by enabling the supply of water in the 
appropriate quantity for each phase of the growing sea-
son (Kang et al., 2021). However, water shortages as part 
of climate change are reducing the availability of water for 
agriculture (Darkwa et al., 2016). Deficit irrigation plays a 
positive role in regions where water is scarce, saving water 
as well as ensuring yield per unit of planted area (Geerts 
and Raes, 2009). Previous research has focused on defi-
cit irrigation at specific growth stages (Sánchez-Reinoso 
et al., 2020) and is scarce on the water replacement levels 
at which common bean is most efficient in water use. In 
addition, “all-stage” adaptation to drought is required for 
cultivation in dry environments, but in common bean this 
strategy has been poorly studied. Therefore, different defi-
cit strategies both in duration and intensity are expected 
to help develop water-saving strategies in this crop.

One of the alternatives for evaluating drought 
response is water use efficiency (WUE), which is 
defined as the ratio of dry matter production to water 
use (Geerts and Raes, 2009). Improved WUE in com-
mon beans is important for leading to a rational use of 
resources without adverse effects on production (Web-
ber et al., 2006; Quiloango-Chimarro et al., 2022). The 
approach to increasing WUE could be made by adopting 
technologies that increase the proportion of water that is 
transpired by the crop, and increasing the crop’s capac-
ity to produce biomass and yield per unit of water tran-
spired (Mathobo et al., 2017). An additional approach 
to consider involves examining the impact of drought 
by assessing yield response factor (Ky) derived from the 
correlation between relative yield (compared to yield 
potential) and relative evapotranspiration (compared to 
maximum evapotranspiration - no stress), as outlined by 
Doorenbos and Kassan (1979). In the context of deficit 

irrigation, exploring both WUE and yield response fac-
tor (Ky) can provide a comprehensive understanding of 
water saving in common beans.

It was hypothesized that water deficit strategies 
reduce the water use of common bean without signifi-
cant reductions in grain yield. Therefore, the objectives 
of this study were to determine the water use efficiency 
and yield response factor of common bean under mild 
and moderate water deficit strategies, considering both 
the entire growing season and specific growth stages 
(vegetative and flowering).

2. MATERIAL AND METHODS

2.1 Study site, field preparation, and treatment description

The experiment was carried out under rain shel-
ter conditions in Piracicaba, São Paulo State, Bra-
zil (22°46’39” S, 47°17’45” W, altitude of 570 m) from 
March to June 2020. The experimental area is specifi-
cally designed for water use efficiency experimentation 
(França et al., 2024; Quiloango-Chimarro et al., 2021) 
and consisted of a shelter with a ceiling height of 5.2 m, 
a transparent plastic cover shielded against UV rays, and 
a black screen on the sides that intercepted 50% of the 
incident radiation.

TAA Dama, a common bean cultivar, was sown in 
a single row per plot with an inter-row spacing of 0.1 m 
(10 plants·plot-1). Each plot consisted of a large water-
proofed container with an area of 0.43 m2 and dimen-
sions of 1.04 x 0.41 x 0.76 m (length, width, and depth) 
filled with soil characterized as Oxisol Typic Ustox with 
a sandy-loam texture, which was hydro-physically and 
chemically characterized before the beginning of the 
experiment. Soil characteristics in the 0-0.4 m layer were: 
pH (CaCl2) = 5.4; Ca (mg·kg−1) = 560.4; Mg (mg·kg−1) = 
84.7; K (mg·kg−1) = 23.4; H + Al (mg·kg−1) = 175.5; P 
(mg·kg−1) = 21.4; S (mg·kg−1) = 23.3, organic matter 
(g·kg−1) = 9, dry bulk density (kg·m−3) = 1600, field capac-
ity (m3·m-3) = 0.22, permanent wilting point (m3·m-3) = 
0.16, sand (%) = 72.2, clay (%) = 19.7 and silt (%) = 8.0. 
Fertilization was conducted following the guidelines for 
São Paulo state (van Raij et al., 1997). Phosphate and 
potassium fertilizer were applied at rates of 70 kg·ha-1 of 
P2O5 and 45 kg·ha-1 of K2O, respectively. All the phos-
phate was applied in the sowing furrow, while potassium 
was divided into two soil cover applications (sowing and 
beginning of flowering). Pesticide applications were made 
when necessary and weed control was conducted manu-
ally throughout the growing season.

Air temperature, relative humidity, and global solar 
radiation were recorded inside the shelter area at 2 m 
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height and the reference evapotranspiration (ETo) was 
calculated using the Penman-Monteith method (Allen et 
al., 1998) (Figure 1).

During the experiment, the minimum daily temper-
ature ranged from 5.9°C at 82 days after sowing (DAS) 
to 22.2°C at 14 DAS. In turn, the maximum tempera-
ture varied between 18.8°C and 38.1°C at 78 DAS and 
13 DAS, respectively. In general, during the experimen-
tal period, the temperature remained within the ideal 
temperature range for common bean cultivation. The 
average value for global solar radiation recorded dur-
ing the experimental period was 16.7 MJ·m-2·day-1, with 
extremes of 26.5 and 4.1 MJ·m-2·day-1 at 9 and 77 DAS, 
respectively. The average relative humidity during the 
period was 71.7%, reaching a maximum value of 88.6% 
at 38 DAS and a minimum value of 56.6% at 2 DAS. The 
ETo varied between 1.1 and 5.3 mm·day-1 at 77 DAS and 
9 DAS, respectively.

The irrigation treatments consisted of five water 
replacement levels with five replications distributed com-
pletely at random and included: irrigation at field capac-
ity (FC) throughout the growing season (M1); 75 and 

50% FC from 20 DAS until the end of the growing sea-
son, denominated M2 and M3, respectively; and 75 and 
50% FC at flowering (from 40 to 61 DAS), denominated 
M4 and M5, respectively. In this trial, 75% and 50% FC 
were considered as mild and moderate drought stress, 
respectively (Figure 2).

2.2 Irrigation management

Irrigation water was provided through a drip irriga-
tion system. A small drip line (1 m length) with six emit-
ters was installed in each plot. The emitters were spaced 
0.15 m apart and had a flow rate of 0.6 L·h-1, resulting in 
a flow rate of 3.6 L·h-1 per plot. All plots were controlled 
individually with micro-registers from a control panel. 
In each replication of the M1 (full irrigation treatment), 
a set of three tensiometers was installed at 0.1, 0.3, and 
0.5 m depths, providing soil matric potential records 
for the soil layers 0.0-0.2, 0.2-0.4, and 0.4-0.6 m, respec-
tively, which were monitored every other day. Irrigation 
for M1 was computed by applying water to bring the soil 

Figure 1. Maximum and minimum air temperature (A), relative humidity and solar radiation (B), and reference evapotranspiration (ETo) 
(C) in the experimental area throughout the growing season.
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water to FC the first two layers, while the third layer was 
used for drainage control. Irrigation was triggered when 
the soil water potential reached -20 kPa at 0.1 m depth. 
Volumetric soil water content for each layer before irriga-
tion was estimated from matric potential readings using 
the van Genuchten approach (van Genuchten, 1980). 
The other treatments (M2, M3, M4 and M5) received 
a fraction of the water applied to M1. Plants were irri-
gated to FC until 20 DAS using the Penman-Monteith 
approach (Kc initial = 0.35) as described by Allen et al. 
(1998), when seedlings were well established.

2.3 Yield measurement and calculation of WUE and Ky 

At physiological maturity, plants from the cen-
tral part of the row were harvested (5 plants) and were 

dried in a forced-ventilation oven at 60°C for 72 h. The 
number of pods per plant (PP), total number of grains 
per plant (TNG), number of grains per pod (NGP) and 
grain yield (GY) (kg·ha-1) were obtained. WUE (kg·m-3) 
was calculated for each treatment as the ratio of the GY 
(kg·ha-1) to the total volume of irrigation water applied 
(IWU) (mm), using equation 1:

� (1)

Ky was calculated for each treatment as the ratio of 
the relative yield (1 – (Ya·Ym

-1)) to the relative evapotran-
spiration (1 – (ETa·ETm

-1)), using equation 2:

� (2)

Figure 2. Experimental area (A) and experimental design used in this study (B). M1 - 100% of field capacity (FC) throughout the growing 
season; M2 - 75% FC from 20 days after sowing until the end of the growing season; M3 - 50% FC from 20 days after sowing until the end 
of the growing season; M4 - 75% FC at flowering; M5 - 50% FC at flowering; DAS - days after sowing; b - border.
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where Ya is the actual yield, Ym is the maximum yield, ETa 
is the actual evapotranspiration and ETm is the maximum 
evapotranspiration. A Ky value greater than 1 indicates 
that yield loss exceeds the proportional reduction in water 
availability; a Ky value less than 1 suggests that yield loss 
is less severe than the water deficit; and a Ky value equal 
to 1 means that yield reduction is directly proportional to 
the water deficit. In this study, the yield and evapotranspi-
ration of treatment M1 (100% of FC throughout the grow-
ing season) were considered to be equal to Ym and ETm, 
respectively, and the yield and evapotranspiration of the 
other treatments to be Ya and ETa. Actual evapotranspi-
ration represents the amount of water used by the crop, 
which in deficit irrigation treatments is typically equal to 
the water supplied (Djaman and Irmak, 2012).

2.4 Statistical analysis

All the statistical analyses were performed with R Stu-
dio (R Project for Statistical Computing, version 4.1.2). 
One-way analysis of variance (ANOVA) was performed 
after testing the homogeneity of variances and normal-
ity of the residuals by the Levene and Shapiro-Wilk tests, 
respectively. The means were compared with the Fisher 
Least Significant Difference (LSD) at 5% probability.

3. RESULTS AND DISCUSSION

3.1 Irrigation water applied (IWU)

The total amount of IWU to the experimental com-
mon bean differed depending on the strategies irrigation 
treatments (Figure 3). 451, 357, 263, 403 and 355 mm of 
irrigation water were applied throughout the growing sea-
son in treatments M1, M2, M3, M4 and M5, respectively. 
At the seedling establishment stage (0 to 20 DAS) all treat-
ments received 74 mm of irrigation water. In the vegeta-
tive stage (21 to 39 DAS) the IWU in treatments M1, M4 
and M5 was 89 mm and in treatments M2 and M3 it was 
67 and 44 mm. During flowering (40 to 61 DAS) the crop 
received the highest amount of irrigation water, 190, 143, 
95,143 and 95 mm for treatments M1, M2, M3, M4 and 
M5, respectively. During grain-filling to physiological 
maturity (62 to 92 DAS) the IWU was 97, 73, 49, 97 and 
97 mm for treatments M1, M2, M3, M4 and M5.

3.2 Grain yield and grain yield components

Grain yield decreased as drought stress increased, 
except for M4, which was similar to M1 (Table 1). Under 
field conditions, Calvache et al. (1997) reported significant 

yield decreases when water limiting was applied during 
all the growing season as well as at flowering. The yield 
penalty in common bean is variable due to differences in 
the timing and intensity of drought stress (Heinemann et 
al., 2016; Galvão et al., 2019; do Nascimento Silva et al., 
2020). Therefore, the non-significant yield reduction of 
M4 could be associated with the high frequency of irriga-
tion and the water replacement level used.

The grain yield penalty due to drought stress was 
mostly caused by the reduction in the number of pods 
per plant (PP) and the low number of grains per plant 
(TNG). All deficit irrigation treatments showed signifi-
cant reductions in PP and TNG compared to M1, except 

Figure 3. Irrigation water applied (mm) in the different phases of 
the growing season of common bean subjected to deficit irrigation 
strategies. M1 - 100% of field capacity (FC) throughout the grow-
ing season; M2 - 75% FC from 20 days after sowing until the end 
of the growing season; M3 - 50% FC from 20 days after sowing 
until the end of the growing season; M4 - 75% FC at flowering; M5 
- 50% FC at flowering; DAS - days after sowing.

Table 1. Effect of deficit irrigation strategies on yield and yield 
components of common bean.

Treatment Grain yield 
(kg·ha-1)

Pods per 
plant

Grains per 
pod

Grains per 
plant

M1 4625 ± 759 a 19.9 ± 3.8 a 4.6 ± 0.3 92 ± 15.3 a
M2 3145 ± 685 bc 14.4 ± 2.6 bc 4.5 ± 0.8 64 ± 9.7 bc
M3 2693 ± 404 c 11.9 ± 1.5 c 4.6 ± 0.2 56 ± 6.3 c
M4 3883 ± 849 ab 17.3 ± 3.8 ab 4.7 ± 0.6 83 ± 24.1 ab
M5 3202 ± 607 bc 15.9 ± 3.4 b 4.5 ± 0.3 68 ± 11.1 bc
LSD (0.05) 1071 4.7 ns 22

Each value represents the mean ± standard deviation. Treatments 
with the same letters within a column do not differ from each other 
at the 5% probability level by the LSD test (p < 0.05). M1 = 100% 
of field capacity (FC) throughout the growing season; M2 = 75% 
FC from 20 days after sowing until the end of the growing season; 
M3 = 50% FC from 20 days after sowing until the end of the grow-
ing season; M4 = 75% FC at flowering; M5 = 50% FC at flowering. 
ns, no significant. 
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M4. This was expected because previous studies showed 
that the yield component most affected by drought stress 
is PP (Nuñez Barrios et al., 2005; de Oliveira Neto et al., 
2022), mainly by flower senescence and flower abortion 
(Mathobo et al., 2017). The number of grains per pod 
(NGP) was similar for all irrigation treatments, with an 
average of 4.5 grains per pod. Previous studies confirm 
that NGP is not susceptible to drought stress (Acosta 
Gallegos & Shibata, 1989; Galvão et al., 2019), suggesting 
that limited water in common bean does not disrupt the 
supply of assimilates to the pods.

3.3 Water use efficiency (WUE)

Water use efficiency in this study ranged from 1.03 
to 0.90 kg·m-3 (Figure 4). The WUE of M3 and M4 was 
similar to that of M1, whereas it was reduced for M2 and 
M5. This could be because common bean invests pho-
tosynthetic resources for root production per unit water 
used to extract more water under drought conditions, 
but this strategy is insufficient to increase WUE for bio-
mass and grain (Webber et al., 2006). Considering that 
the yield penalty was significant for M3, the WUE of M4 
could be considered the best option to save water (a water 
reduction of 48 mm) while maintaining a substantial 
yield (3.9 Mg·ha-1). These results are also relevant because 
future drought stress patterns for central Brazil suggest 
stress on the reproductive stage (Heinemann et al., 2016).

3.4 Yield response factor (Ky)

The analysis of yield response factor in the context 
of different irrigation strategies revealed distinct perfor-
mances, focusing only on the impact of soil moisture 

while keeping all other production variables constant 
(Table 2). Treatment M2 and M5 resulted in higher Ky 
values > 2.00, showing similar reductions not only for 
GY but also for evapotranspiration. Treatments M3 and 
M4 showed a Ky of approximately 1.71 but were affected 
by different patterns of grain yield reduction and evapo-
transpiration.

According to Smith and Steduto (2012), common 
beans are categorized as very sensitive to water stress 
(with Ky values of 1.15). This is consistent with this 
study where all deficit irrigation resulted in Ky values 
>1.70. Among the tested strategies, the least impact in 
Ky was observed in M3 and M4. It is important to note, 
however, that water stress during flowering in common 
beans should be avoided, as a 10% reduction in evapo-
transpiration resulted in a 17.2% decrease in yield.

4. CONCLUSIONS

Water use efficiency (WUE) and yield response fac-
tor (Ky) can support decision-making when implement-
ing deficit irrigation strategies in common bean. By 
analyzing both indicators, it was observed that the adop-
tion of 50% field capacity (FC) throughout the growing 
season (M3) and 75% FC during flowering (M5) main-
tained WUE comparable to that of full irrigation (M1), 
while also resulting in a low Ky. However, since this 
study was conducted over a single cropping season, fur-
ther research across multiple seasons is required to bet-
ter understand the effects of deficit irrigation strategies 
in common bean.

Figure 4. Effect of deficit irrigation strategies on water use efficien-
cy (WUE) of common bean. Treatments with the same letters do 
not differ from each other at the 5% probability level by the LSD 
test (p < 0.05). M1 = 100% of field capacity (FC) throughout the 
growing season; M2 = 75% FC from 20 days after sowing until the 
end of the growing season; M3 = 50% FC from 20 days after sow-
ing until the end of the growing season; M4 = 75% FC at flower-
ing; M5 = 50% FC at flowering. 

Table 2. Effect of deficit irrigation strategies on yield response fac-
tor (Ky) of common bean.

Treatment Relative yield
(1 – (Ya·Ym

-1))

Relative 
evapotranspiration
(1 – (ETa·ETm

-1))

Yield response 
factor
(Ky)

M1 0 0 -
M2 0.47 0.21 2.23
M3 0.72 0.42 1.71
M4 0.19 0.11 1.72
M5 0.44 0.22 2.00

M1 - 100% of field capacity (FC) throughout the growing season; 
M2 - 75% FC from 20 days after sowing until the end of the grow-
ing season; M3 - 50% FC from 20 days after sowing until the end 
of the growing season; M4 - 75% FC at flowering; M5 - 50% FC at 
flowering; Ya - actual yield; Ym – maximum yield; ETa - actual evap-
otranspiration; ETm - maximum evapotranspiration.
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Abstract. Solar radiation (H) is a critical factor in Earth’s surface processes, influenc-
ing climate, ecosystems, agriculture, and energy fluxes. Accurate prediction of daily 
H is essential for advancing solar power as a sustainable energy source. This study 
evaluates the effectiveness of machine learning (ML) models-support vector regres-
sion (SVR), extreme gradient boosting (XGBoost), boosted regression forest (BRF), 
and k-nearest neighbors (K-NN)-in predicting daily H in Gadarif, Sudan, a semi-arid 
region with limited prior research on solar radiation. The models were developed 
using daily climatic variables, including temperature and a binary precipitation vari-
able (Pt) to account for cloud cover effects. The dataset was split into training (80%) 
and testing (20%) subsets, with model performance evaluated using key metrics: coef-
ficient of determination (R²), root mean square error (RMSE), and mean absolute 
error (MAE). BRF achieved the best performance with an R² of 0.963 and RMSE of 
4.38 (MJ m⁻² d⁻¹) during training. However, model performance decreased during test-
ing, with XGBoost and K-NN showing higher error margins. Including Pt improved 
the models’ ability to account for cloud cover effects, particularly on overcast days. 
Despite these improvements, challenges remained in predicting H under extreme cli-
matic conditions, highlighting the need for more advanced approaches. These findings 
suggest that ML models can be effectively adapted for H prediction in other semi-arid 
and arid regions. The results underscore the importance of considering precipitation 
and cloud cover in H predictions, which is crucial for optimizing solar energy systems 
and enhancing agricultural planning.

Keywords:	 solar radiation, machine learning, renewable energy, semi-arid climate, 
comprehensive evaluation.

HIGHLIGHTS

–	 Machine learning models, including SVR, XGBoost, BRF, and K-NN, 
were applied to predict daily solar radiation (H).
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–	 BRF outperformed the other models, achieving the 
highest performance with an R2 of 0.963 and RMSE 
of 4.38 (MJ m⁻² d⁻¹) during training.

–	 Incorporating a precipitation variable (Pt) improved 
the models’ accuracy by accounting for cloud cover 
effects.

–	 Testing showed a performance drop, though BRF 
maintained strong generalization, needing refine-
ment for extreme conditions.

–	 The methodology, applied in Gadarif, Sudan, can 
be adapted for other semi-arid and arid regions for 
solar energy optimization.

NOMENCLATURE

Parameters

C	 penalty parameter of the error
H	 global solar radiation (MJ m-2 day-1)
H0	 extra-terrestrial solar radiation (MJ m-2 day-1)
K	 kernel function
I	 loss function
n	 number of observations
N	 sunshine duration
ΔT	 diurnal temperature range (°C)
Pt	 transformed precipitation
Tmax	 daily maximum temperature (°C)
Tmin	 daily minimum temperature (°C)
Xmin	 minimum observed value in the dataset
Xmax	 maximum observed value in the dataset
Xmean	  mean observed value in the dataset
Cs	 Skewness coefficient
SD	 Stander deviation
Ck	 Kurtosis coefficient
φ	 higher-dimensional feature space
ω	 weights vector
ɛ	 tube size	
λ	 regularization parameter
γ	 minimum loss
Ω	 regularization term

Constants

a, b, and c empirical coefficients

Abbreviation

ANN	 Artificial Neural Networks
MLP	 Multi-layer Perceptron
SVM	 Support Vector Machine
XGBoost	 Extreme Gradient Boosting
ANFIS	 adaptive neuro-fuzzy inference system
RF	 Random Forest
AI	 Artificial Intelligence
BRF 	 Boosted Regression Forests
ML 	 Machine Learning

1. INTRODUCTION

Solar radiation (H) plays a crucial role in Earth’s 
surface processes, influencing climate systems, hydrol-
ogy, and ecosystems (Caldwell, M.M., Bornman, J.F., 
Ballaré, 2007). Its accurate estimation is particularly 
critical in semi-arid regions where environmental and 
agricultural systems heavily depend on it. Solar radiation 
directly impacts photosynthesis, making it a vital vari-
able in crop modeling, where agronomic applications are 
essential for optimizing yield predictions (Holzman et 
al., 2018). Precise H forecasts are essential for improving 
agricultural planning and water resource management, 
especially in regions with limited resources.

This study addresses the gap in H prediction for 
semi-arid regions, focusing on Gadarif, Sudan, by 
employing advanced machine learning (ML) techniques 
support vector machines (SVM), extreme gradient boost-
ing (XGBoost), boosted regression forest (BRF), and 
k-nearest neighbors (K-NN). While traditional stud-
ies have focused on temperate climates using statisti-
cal models, this research applies ML models to capture 
complex, non-linear interactions in semi-arid condi-
tions. SVM and XGBoost were selected for their robust-
ness and ability to generalize well across varying data-
sets, BRF for its ensemble method, which reduces bias 
and variance, and K-NN for its effectiveness in mod-
eling local relationships. By utilizing a daily temporal 
scale, this study provides precise short-term H forecasts, 
enhancing prediction accuracy for agricultural applica-
tions in resource-challenged regions like Gadarif.

ML approaches have been increasingly applied to esti-
mate H in various climates. (Wang et al., 2016) conducted 
a comparative study in China, estimating daily H using 
models such as multilayer perceptron (MLP), radial basis 
function (RBF), and generalized regression neural net-
works (GRNN). The study found that GRNN underper-
formed compared to MLP and RBF, highlighting the need 
for more robust models in H prediction. Similarly, (Bel-
mahdi et al., 2020) forecasted daily H one month ahead 
using ARIMA and ARMA models, with ARIMA demon-
strating superior accuracy over a persistence model.

Most previous studies focused on a specific timescale 
or component of H. For instance, (Belmahdi et al., 2022) 
introduced a new optimization method to predict hourly 
H, comparing several models, including feed-forward 
backpropagation (FFBP), ARIMA, k-NN, and SVM. FFBP 
and ARIMA models exhibited the highest accuracy, as 
confirmed by regression plots under clear-sky conditions.

Fan et al. (2018a) employed SVM and extreme gra-
dient boosting (EGB) models to predict H in humid 
regions with limited data. They found that SVM outper-
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formed EGB and traditional empirical models in terms 
of prediction stability. Similarly, (Belaid and Mellit, 
2016) explored the use of SVM and artificial neural net-
works (ANN) for predicting daily and monthly H, con-
cluding that SVM produced better correlations between 
predicted and observed values at both timescales.

Geographical and meteorological data have also 
been extensively utilized in H modeling. For example, 
(Sözen et al., 2008) employed an artificial neural net-
work (ANN) model to estimate H in Turkey, achiev-
ing highly accurate predictions. In Algeria, (Mellit et 
al., 2008) applied both ANN and adaptive neuro-fuzzy 
inference system (ANFIS) models, also producing reli-
able results for H estimation. (Chen et al., 2011) found 
that SVM were dependable model for H predictions 
across multiple stations, while (Ahmed and Adam, 2013) 
demonstrated that ANN models outperformed empirical 
models in predicting H in Qena, Egypt, achieving higher 
correlations between predicted and observed values.

While these studies have significantly advanced 
the field of H prediction, they often lack comprehensive 
evaluations of model performance in semi-arid climates. 
Furthermore, few studies have incorporated precipitation 
data to account for cloud cover, a critical factor affecting 
H in these regions. (He et al., 2020) highlighted the vari-
ability of H across different geographic regions; however, 
the unique climatic conditions of semi-arid areas like 
Gadarif remain underexplored.

The primary objective of this study is to predict daily 
H in Gadarif, Sudan, using advanced ML models. This 
is the first study to apply the Boosted Regression Forest 
(BRF) model for H prediction in this region. Addition-
ally, the study incorporates precipitation data as a key 
variable to account for the influence of cloud cover on H, 
which an aspect that has not been extensively explored.

The novelty of this research lies in its application of 
BRF, an underutilized yet powerful ensemble method, 
for H estimation in semi-arid regions. By integrating 
precipitation as a binary variable, the study enhances the 
accuracy of solar radiation predictions and agricultural 
modeling, providing new insights into the interaction 
between precipitation, cloud cover, and H in Gadarif. 
This tailored approach fills gaps in existing research and 
contributes to improving forecasting in resource-con-
strained environments.

2. MATERIALS AND METHODS

2.1 Study area and data collection 

Figure 1 illustrates the study area, Gadarif, located in 
eastern Sudan, which experiences a hot semi-arid climate 

(BSh according to the Köppen-Geiger classification). 
This region faces significant agricultural challenges due 
to harsh environmental conditions, including high tem-
peratures, erratic rainfall, and limited water resources. 
These factors contribute to substantial yield variability 
and increased vulnerability to drought and heat stress. 
Moreover, the scarcity of reliable water sources and the 
fluctuating solar radiation levels emphasize the need for 
accurate solar radiation predictions, which are essential 
for effective water management and crop planning.

The study area is primarily agricultural, with sor-
ghum and sesame as the main crops. These crops 
depend on consistent solar radiation (H) and sufficient 
water availability, emphasizing the importance of this 
study for local agricultural management.

Daily meteorological data were collected from 2010 
to 2022, covering a 12-year period. The data were obtained 
from the Sudan Meteorological Authority (SMA) at the 
Gadarif weather station, a well-established station that 
records key climatic variables. Equipped with modern weath-
er instrumentation, the station measures H, temperature, 
and precipitation. This data were supplemented with satel-
lite-derived information from NASA’s POWER Data Access 
Viewer, ensuring the completeness and accuracy of the data-
set used in this study. The combined dataset includes daily 
observations of H, temperature (Tmax, Tmin), and precipitation 
(Pt), which were essential inputs for the ML models.

These data were recorded at daily intervals, which 
enabling for high -resolution training of the model. 
However, in scenarios where daily data are not avail-
able, the model can be adapted by means of a weekly or 
monthly average, such as low-ceiling input. In addition, 
proxy dataset from satellite sources, such as MODIS and 
CHIRPS precipitation estimate, can serve as a viable 
alternative to support Modi’s estimate and application.

2.2 Machine learning models 

The dataset comprises 4,380 daily records collected 
over a 12-year period (2010–2022). For the purposes 
of model development, the data were divided into a 
training set (80%) and a testing set (20%). The dataset 
includes daily measurements of H, extraterrestrial radia-
tion (H0), Tmax, Tmean, Tmin, and Pt. These variables were 
used as inputs for the machine learning models to pre-
dict H more accurately.

2.2.1 Support vector machines (SVM) 

The support vector machine (SVM) model, devel-
oped by Vapnik and outlined in (Vapnik, 2006), stands as 
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a widely used supervised AI model for tasks such as data 
analysis and pattern recognition, particularly in applica-
tions involving regression and prediction. The SVM algo-
rithm functions by predicting regression through a series 
of kernel functions. To ensure methodological clarity, it 
is important to explain the kernel function in support 
vector machines (SVM). The kernel function defines the 
operations and transformations applied to the input data. 
By addressing the non-linear characteristics of SVM and 
the approaches it utilizes to define appropriate decision 
boundaries, this explanation enhances the understanding 
of SVM. This understanding, in consequence, empow-
ers them to make well-informed decisions when applying 
SVM to diverse datasets (Wu, 1999; Tay and Cao, 2001).

The SVM algorithm expresses the approximated 
function as depicted in the subsequent equation:

F (x) = ω.φ(x) + b� (1)

In this equation, φ (x) denotes the transformation 
of the input vector x into a higher-dimensional feature 
space. The parameters ω and b represent the weight vec-
tor and a threshold, respectively. These values can be 
obtained by reducing the regularized risk function, as 
defined below:

� (2)

where C represents the error factor,  is the desired out-
put value, n signifies the amount of observations, and 

 represents the empirical error, where-
in the function Lε (d, y) can be defined as follows: 

� (3)

where,  ||ω||² serves as the regularization term, and ε 
defines the size of the tube, which is maintained to be 

Figure 1. Geographical location of the meteorological station in semi-arid climate region in Sudan. 
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nearly equal to achieve approximate accuracy during 
training.
εi and  to estimation parameters W and d, expressed 
as 2

� (4)

Upon introducing Lagrange multipliers and incor-
porating optimal constraints, we obtain the subsequent 
decision function from equation (1):

� (5)

where K ( ) denotes the kernel function, equal to the 
internal product of vectors  and  within the charac-
teristic space u ( ) and u ( ), expressed as K ( ) = 
u ( ) * -u ( ). The kernel function offers the benefit of 
handling feature spaces with any dimension, eliminating 
the need for an explicit mapping process. (Scholkopf et 
al., 1999) provided a comprehensive description of the 
SVM model.

2.2.2 Extreme Gradient Boosting (XGBoost) 

XGBoost is a highly efficient, flexible, and portable 
gradient-boosting library designed for distributed envi-
ronments. Built on the Gradient Boosting framework, 
it uses parallel tree boosting to apply ML algorithms to 
solving various data science problems with speed and 
precision. XGBoost extends gradient-boosted decision 
trees (GBDT), focusing on enhancing processing speed 
and performance. This algorithm has been success-
fully applied to predict solar power with minimal error, 
as demonstrated by (Cai et al., 2020), who found that 
XGBoost outperformed other machine learning methods.

The additive learning process in XGBoost is as fol-
lows: Initially, the first learner is fitted to the entire input 
data space, and subsequently, a second model is trained 
on the residuals, addressing the limitations of the initial 
weak learner. This fitting process continues iteratively 
until a predefined stopping criterion is met. The ultimate 
prediction of the model is the sum of predictions from 
each individual learner. The general prediction function 
at steps ‘is formulated as follows:

� (6)

where xi refers to the training data, and ft (x) denotes the 
learner fitted incrementally at stage t, with simple regres-
sion trees typically serving as the foundational learners. 
The cumulative training process aims to minimize the 
subsequent regularized objective function.

� (7)

This aims to strike a balance between two key objec-
tives: reducing empirical training error, quantified by 
the loss function l (yi, i) which compares predicted  
i to the target yi values, and managing model complexity 
through the regularization term Ω (f) (Chen and Wang, 
2007). The regularization term Ω (f) is defined as fol-
lows:

� (8)

where T represents the count of leaves, ω corresponds 
to the weights associated with each leaf, and λ and γ 
are parameters that control the extent of regularization. 
This constraint limits the complexity of individual tree 
models, mitigating the risk of overfitting. XGBoost’s 
ability to handle missing values internally without the 
need for imputation further enhances its robustness and 
applicability across different scenarios. However, tuning 
XGBoost can be complex due to the numerous hyperpa-
rameters involved, and while optimized for efficiency, it 
can still be computationally intensive and require signifi-
cant memory, especially with very large datasets. Addi-
tionally, the model can be difficult to interpret compared 
to simpler models, such as linear regression.

2.2.3 Boosted regression forests (BRF) 

Boosted Regression Forests (BRFs) represent a 
sophisticated ensemble modeling technique that com-
bines regression trees in a boosting framework along 
with the random forest algorithm. This combination 
leads to exceptional predictive performance across a 
wide range of scientific applications (Wu and Levin-
son, 2021). The BRF algorithm builds regression tree 
models in a sequential manner, with each successive 
model learning from the prediction errors of the preced-
ing model, to incrementally improve accuracy (Masrur 
Ahmed et al., 2021). Specifically, BRF training initiates 
with a basic regression tree, and subsequently, additional 
trees are incorporated to fit the residuals from the ini-
tial model and minimize the loss function. This process 
continues, with each tree focusing on reducing residuals, 
until it reaches convergence or the predefined number of 
trees. The final BRF model comprises an additive combi-
nation of the sequentially trained regression trees. 

The boosting mechanism improves predictions 
by concentrating on misclassified instances, while the 
random forest component ensures robustness against 
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overfitting. These combined features enable BRFs to 
effectively capture complex data relationships, render-
ing them essential for predictive modeling in various 
scientific fields. The BRF model predicts the target vari-
able based on a set of input features by aggregating the 
predictions from each tree in the ensemble, each with its 
own individual weight. This prediction can be expressed 
mathematically as:

� (9)

where,  represents the comprehensive prediction, 
 denotes the number of trees,  signifies the weight 

assigned to the m-th tree, and  denotes the predic-
tion made by the  -th tree. The high predictive pow-
er of BRFs, due to the combination of boosting (which 
reduces bias) and random forests (which reduce vari-
ance), makes them highly effective for both regression 
and classification tasks. However, training BRFs can be 
computationally expensive and time-consuming due to 
the iterative nature of boosting. Additionally, the model 
can be complex and difficult to interpret compared to 
single-tree models, requiring careful tuning of multiple 
hyperparameters, which can be both challenging and 
time-intensive.

2.2.4 K-nearest neighbors (K-NN) 

The KNN method, first introduced by (Fix and 
Hodges, 1989) and later expanded upon by (Kramer, 
2013), is a nonparametric classification technique. It is 
used for both classification and regression tasks. The 
approach utilizes a dataset in either scenario and the 
‘k’ closest training samples are considered as the input. 
The K-NN method involves querying a database to iden-
tify data points that closely resemble the observed data, 
which are commonly mentioned as referred to as the 
nearest neighbors of the current data (Peterson, 2009). 
In this study, K-NN is applied to predict the most closely 
related testing stations based on the training station. The 
following provides a summary of the K-NN regression 
function:

� (10)

In K-NN regression, when confronted with an 
unknown pattern represented as , the algorithm com-
putes the mean of the function values obtained from its 
K-closest neighbors. The set NK ( ) includes the indices 
of these nearest K neighbors of . The concept of local-
ized functions in both the data and label spaces forms 
the core principle underpinning the averaging process 

in K-NN Essentially, within the close vicinity of xi, it 
is expected that patterns like  are expected to exhibit 
similar continuous labels, with f ( ) approximating  
(Kramer, 2013).

The simplicity and ease of implementation of K-NN 
make it an accessible choice for various applications. Its 
non-parametric nature eliminates the need for assump-
tions about the underlying data distribution, allowing 
flexibility in handling different types of data.

However, K-NN’s computational inefficiency dur-
ing the prediction phase, especially with large datasets, 
and its high memory usage due to storing all training 
data can be significant drawbacks. Additionally, K-NN’s 
performance can degrade with high-dimensional data if 
irrelevant features are present, necessitating careful fea-
ture selection. Moreover, the method is sensitive to the 
scale of the data, requiring normalization or standardi-
zation of features to ensure optimal performance.

2.2.5 Models development

In contrast, the second scenario (SVM2, XGBoost2, 
BRF2, and K-NN2) incorporated a more comprehensive 
set of input variables: daily Tmin, Tmax, a binary variable 
Pt indicating the presence of rainfall, where Pt = 1 for 
rainfall greater than 0 mm and Pt = 0 for no rainfall, 
and daily extraterrestrial radiation (H0). The inclusion of 
Pt aimed to assess the influence of precipitation on daily 
H, while H0, determined using a mathematical equation 
proposed by (Pereira et al., 2015), accounted for extrater-
restrial radiation, by considering factors such as the day 
of the year, latitude, and solar angle.

This approach enabled a comparative analysis of 
how additional climatic and radiative factors affect mod-
el accuracy and robustness, providing deeper insights 
into the factors influencing daily H estimations.

2.2.6 Hyper-Parameters Tuning

The dataset in this study was divided into two sub-
sets: 80% for training and 20% for testing. This split 
allows the model to be trained on a substantial portion 
of the data, while reserving a smaller, unseen portion is 
reserving a smaller, unseen portion to evaluate the mod-
el’s generalization capability. The training set (80%) is 
used to develop the machine learning models and fine-
tune hyperparameters, while the test set (20%) was used 
to assess model performance on unseen data.

In addition to the standard random 80/20 split, an 
alternative test set selection strategy was implemented 
to account for temporal autocorrelation. Specifically, 
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the final 28 months of the 12-year dataset (equivalent to 
20% of the total 144 months) were selected as a contigu-
ous block to serve as the test set. This approach prevents 
overlap between highly autocorrelated data points in the 
training and testing sets, offering a more realistic assess-
ment of the models’ ability to generalize to temporally dis-
tinct conditions. The models were retrained using the ini-
tial 116 months of data and tested on the final 28 months. 
Performance metrics were then recalculated to compare 
results under both random and temporally split scenarios. 
To ensure the robustness of the evaluation under random 
splitting, the train-test split was repeated 10 times, and 
the performance metrics were averaged to minimize ran-
domness effects and provide stable estimates.

All ML models were implemented and evaluated 
using Python (version 3.8) in a Jupyter Notebook envi-
ronment, running on a 2.3 GHz Intel Core i7 quad-core 
processor with 16 GB of RAM. Libraries used include 
scikit-learn (version 0.24.2) for SVM and K-NN, XGBoost 
(version 1.4.2), and lightgbm (version 3.2.1) for BRF. Data 
preprocessing was performed using Pandas (version 1.2.4) 
and Numpy (version 1.20.3), with visualizations gener-
ated using Matplotlib (version 3.4.2) and Seaborn (version 
0.11.1). The use of these tools ensures the reproducibility 
of the study and highlights the rigor of the analysis.

2.2.7 Comparison of models and statistical indices

The accuracy and effectiveness of the selected 
machine learning models for predicting daily H were 
assessed and compared using four widely recognized sta-
tistical metrics (Despotovic et al., 2015; Lu et al., 2018; 
Fan et al., 2018b; Ma et al., 2019). These measurements 
include the mean bias error (MBE, as shown in Eq. (14)), 
the mean absolute error (MAE, as defined in Eq (13)), 
the root mean square error (RMSE, per Eq. (12)), and the 
coefficient of determination (R2, described in Eq. (11)). 
Detailed explanations and mathematical expressions for 
these metrics are provided in the following section.

� (11)

� (12)

� (13)

� (14)

In evaluating model performance, the Normalized 
Root Mean Square Error (NRMSE) was used to account 

for the Normalized Root Mean Square Error (NRMSE), 
calculated by normalizing the Root Mean Square Error 
(RMSE) with the standard deviation of the observed 
solar radiation. In this context, , , , and n 
represent the measured, estimated, mean, and number of 
observations for global solar radiation, respectively. This 
approach ensured consistent model comparisons across 
datasets with varying levels of variability. The Coeffi-
cient of Determination (R²) measured how well the mod-
els captured variance in observed values, with higher 
R² values (closer to 1) indicating a better fit and align-
ment of the regression line with the data. Additionally, 
RMSE values quantified the differences between model 
estimates and measured values, where lower RMSE val-
ues signifying superior model performance. Mean Bias 
Error (MBE) highlighted estimation tendencies, with 
positive values representing overestimation and negative 
values indicating underestimation of global solar radia-
tion. Together, these metrics provided a comprehensive 
evaluation of model accuracy, addressing both variance 
and potential biases in prediction.

Table 1 presents descriptive statistics for key mete-
orological variables, including maximum temperature 
(Tmax), mean temperature (Tmean), minimum temperature 
(Tmin), precipitation (Pt), extra-terrestrial solar radiation 
(H0), and solar radiation (H). Additionally, co-skewness 
and co-kurtosis values to provide insights into the dis-
tributional characteristics and relationships among these 
variables. These statistics offer a comprehensive overview 
of the meteorological conditions in the study area, facili-
tating an understanding of the data’s central tendencies 
and variability.

The flowchart in (Figure 2) outlines the process the 
process of data collection, processing, and model evalu-
ation. After splitting the data into training (80%) and 
testing (20%) sets, the models are evaluated under two 
scenarios. The best-performing model is either selected 
or further refined through iterative improvements, if 

Table 1. provides a statistical summary of key meteorological vari-
ables, including minimum (Xmin), mean (Xmean), maximum 
(Xmax), standard deviation (SD), skewness (Cs), and kurtosis 
(Ck), essential for evaluating variability and distribution character-
istics in model training and testing datasets.

Variables Xmin. Xmean. Xmax. SD. Cs. Ck.

Tmax (°C) 1.000 37.458 46.700 3.843 -0.333 1.450
Tmean(°C) 11.300 29.941 38.900 3.152 0.042 0.106
Tmin(°C) 10.500 22.376 33.000 3.089 -0.116 0.593
Pt(mm) 0.000 1.630 73.300 6.405 5.746 39.505
H (MJ m-2 d-1.) 60.000 178.333 226.700 2.299 -0.540 0.827
H0(MJ m-2d-1) 90.300 356.455 453.000 4.557 -0.536 0.985
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necessary. The finalized model is then used to generate 
predictions, completing the analysis.

3. RESULTS AND DISCUSSION

This study aimed to predict solar radiation (H) 
at meteorological stations in Sudan’s semi-arid region 
using four machine learning models: support vector 
machines (SVM), extreme gradient boosting (XGBoost), 
boosted regression forest (BRF), and K-Nearest Neigh-
bors (K-NN). Table 2 summarizes the values of four 

commonly used statistical indicators for these models, 
including the mean and standard deviation (SD) calcu-
lated across 10 repeated training-test procedures to eval-
uate uncertainty in model performance.

During the training phase, all models demonstrat-
ed strong performance. For example, SVM achieved an 
R² of 0.953 ± 0.010, an RMSE of 4.937 ± 0.143( MJ m⁻² 
d⁻¹), and a minimal MAE of 0.510 ± 0.083 (MJ m⁻² d⁻¹). 
These metrics suggest that the model was well-calibrated 
during training. XGBoost followed closely with an R² 
of 0.952 ± 0.009, although it showed a higher MAE of 
1.475 ± 0.091 (MJ m⁻² d⁻¹). BRF outperformed the oth-

Figure 2. Flowchart for evaluation of machine learning models for solar radiation prediction.
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ers, achieving the highest R² 0.963 ± 0.010 and the low-
est RMSE 4.383 ± 0.128 (MJ m⁻² d⁻¹), indicating supe-
rior training performance. K-NN also performed well, 
achieving an R² of 0.964 ± 0.012 and a low MAE of 0.609 
± 0.079 (MJ m⁻² d⁻¹). The inclusion of uncertainty met-
rics (standard deviation) provides a clearer view of the 
model’s consistency, reinforcing the reliability of these 
results across different training-test splits.

However, the transition to the testing phase revealed 
a decline in performance for all models, indicating 
reduced generalization capability. For example, SVM 
achieved an R² of 0.929 ± 0.01 on the testing set, with 
an elevated RMSE of 6.204 ± 0.176 (MJ m⁻² d⁻¹) and a 
moderate MAE of 0.874 ± 0.105 (MJ m⁻² d⁻¹). XGBoost, 
despite its strong training performance, showed a 
reduced in R² 0.926 ± 0.014 along with an increased 
RMSE 6.337 ± 0.189 (MJ m⁻² d⁻¹) and MAE 1.819 ± 0.112 
(MJ m⁻² d⁻¹). BRF maintained competitive performance 
achieving an R² of 0.924 ± 0.011 and the lowest RMSE 
6.453 ± 0.162 (MJ m⁻² d⁻¹) among the models, demon-
strating better generalization. K-NN, although perform-
ing relatively well, exhibited a decline in R² 0.922 ± 0.016 
with an increased RMSE 6.532 ± 0.151 (MJ m⁻² d⁻¹) and 
MAE 1.066 ± 0.110 (MJ m⁻² d⁻¹) during testing.

By incorporating standard deviation as an uncer-
tainty measure, the analysis offers a more nuanced 
understanding of model performance, While the models 
performed well overall, there is variability in their abil-

ity to generalize to unseen data. This variability under-
scores the importance of accounting for data sampling 
and training-test splits when evaluating machine learn-
ing models.

The findings of this study are consistent with previ-
ous research conducted in similar climatic regions or 
using comparable methodologies. For example, (Hai 
et al., 2020) investigated solar radiation prediction in a 
semi-arid region using machine learning techniques and 
reported comparable performance trends among the mod-
els evaluated. Like this study, their results also empha-
sized the superior generalization capability of ensemble 
methods, such as BRF. The inclusion of uncertainty met-
rics in the current analysis reinforces these conclusions, 
confirming that BRF consistently outperforms other mod-
els in terms of predictive accuracy and robustness.

However, contrasting results have been observed in 
other semi-arid regions. (Jamei et al., 2023) found that 
SVM models outperformed ensemble methods like BRF, 
highlighting the influence of local climatic conditions 
and the inherent complexity of solar radiation patterns. 
These differences underscore the need for tailored mod-
eling approaches that account for the specific character-
istics of each region. The uncertainty analysis performed 
in this study further supports this, showing that even 
within a single semi-arid region, revealing that even 
within a single semi-arid region, performance can vary 
across different data subsets.

Table 2. Model Performance with Uncertainty Estimation for Scenario 1 and Scenario 2 (Training and Test Phases)

Model R2  

(Mean ± SD)
RMSE  

(Mean ± SD)
MAE 

(Mean ± SD)
MBE 

(Mean ± SD)

Training
SVM1 0.953 ± 0.010 4.937 ± 0.143 0.510 ± 0.083 -0.298 ± 0.021
XGB1 0.952 ± 0.009 4.967 ± 0.156 1.475 ± 0.091 -0.007 ± 0.016
BRF1 0.963 ± 0.010 4.383 ± 0.128 0.996 ± 0.081 -0.017 ± 0.022
 K-NN1  0.964 ± 0.012  4.329 ± 0.147  0.609 ± 0.079  0.003 ± 0.018
SVM2 0.964 ± 0.011 4.629 ± 0.130 0.470 ± 0.074 -0.278 ± 0.019
XGB2 0.965 ± 0.012 4.500 ± 0.141 1.356 ± 0.085 -0.005 ± 0.018
BRF2 0.967 ± 0.013 4.200 ± 0.135 0.879 ± 0.072 -0.012 ± 0.017
K-NN2  0.966 ± 0.011  4.202 ± 0.139  0.590 ± 0.077  0.002 ± 0.015

Testing
SVM1 0.929 ± 0.012 6.204 ± 0.176 0.874 ± 0.105 -0.258 ± 0.028
XGB1 0.926 ± 0.014 6.337 ± 0.189 1.819 ± 0.112 0.048 ± 0.032
BRF1 0.924 ± 0.011 6.453 ± 0.162 1.508 ± 0.097 0.105 ± 0.030
 K-NN1  0.922 ± 0.016  6.532 ± 0.151  1.066 ± 0.110  -0.056 ± 0.025
SVM2 0.953 ± 0.014 5.940 ± 0.153 0.782 ± 0.098 -0.217 ± 0.025
XGB2 0.949 ± 0.011 5.875 ± 0.146 1.612 ± 0.101 0.052 ± 0.029
BRF2 0.948 ± 0.013 5.819 ± 0.141 1.386 ± 0.089 0.098 ± 0.027
K-NN2  0.945 ± 0.015  6.042 ± 0.149  0.978 ± 0.096  -0.042 ± 0.023
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Including precipitation as a binary variable (Pt) 
enhanced the models’ ability to account for cloud cover 
effects on solar radiation patterns. This aligns with find-
ings by (Jallal et al., 2020), who showed that integrat-
ing relevant meteorological variables can significantly 
improve model performance, especially during testing. In 
this study, the models incorporating Pt achieved better 
results in both scenarios, with reduced RMSE and MAE 
values, suggesting that precipitation data serves as an 
essential proxy for cloud cover in H prediction models.

To evaluate the impact of temporal autocorrelation 
on model performance, a second round of model test-
ing was conducted using a temporally structured data 
split, where the final 28 months (20%) of the dataset 
were used as a contiguous test block. This method pro-
vided a more conservative and realistic estimate of gen-
eralization performance, minimizing the influence of 
autocorrelated training-test overlaps. As expected, the 
models exhibited a slight decline in accuracy under this 
scenario. For instance, the BRF2 model’s R² decreased 
modestly, and RMSE increased by approximately 5–7% 
compared to the random split approach, reflecting the 
increased challenge of predicting temporally distant 
data. Despite this, BRF2 remained the top-performing 
model, demonstrating strong resilience and predictive 
capacity even under more stringent validation settings. 
Table 3 presents the performance results of the four 
machine learning models under the temporally struc-
tured data split scenario, maintaining the same format 
as Table 2 for consistency. Both training and testing 
results are included, along with uncertainty estimates 
(standard deviation). Compared to the random split 
scenario, a slight performance drop is observed in the 
test phase, as expected due to the greater challenge of 
predicting temporally distant data. Among the models, 
BRF2 again demonstrated the most robust generaliza-
tion capability, maintaining strong accuracy and low 

variability. These results confirm the value of evaluating 
ML models under realistic, temporally structured sce-
narios to better reflect operational forecasting conditions 
in environmental modeling. These findings affirm the 
importance of evaluating model robustness using tempo-
rally structured testing, especially in environmental time 
series applications where autocorrelation is prevalent.

While this study contributes valuable insights into 
H prediction in semi-arid regions, there is room for fur-
ther exploration. Future research focus on hybrid models 
that combine the strengths of different machine learn-
ing techniques or integrate additional meteorological 
variables, such as satellite-based data, to improve predic-
tive accuracy. The inclusion of uncertainty measures in 
future studies will also be essential for ensuring the reli-
ability of results and refining model performance across 
different climatic regions.

In conclusion, the boosted regression forest (BRF) 
model emerged as the most reliable and robust across 
both training and testing phases, demonstrating consist-
ent performance and lower variability compared to other 
models. However, the findings highlight the importance 
of employing tailored machine learning approaches that 
consider the specific climatic and geographical charac-
teristics of the study area. The integration of uncertainty 
estimation adds depth to the analysis, ensuring that the 
conclusions are based on statistically sound comparisons 
and robust model evaluations.

The performance of several machine learning mod-
els for predicting H during the training phase is illus-
trated in the scatter plot in (Figure 3), showing high 
predictive accuracy across all models with R² values 
approximately at 0.96. This indicates strong correla-
tions between observed and predicted solar radiation 
values. The SVM models perform comparably, with 
SVM2 achieving a lower RMSE of 4.08 ± 0.15 (MJ m-² 
d⁻¹) compared to SVM1’s RMSE of 4.93 ± 0.18 (MJ m-² 

Table 3. Model Performance with Uncertainty Estimation for Temporally Structured Data Split (Training and Test Phases)

Phase Model R²
(Mean ± SD)

RMSE  
(Mean ± SD)

MAE
(Mean ± SD)

MBE
(Mean ± SD)

Training SVM2 0.964 ± 0.010 4.61 ± 0.13 0.48 ± 0.07 -0.27 ± 0.02
  XGB2 0.962 ± 0.011 4.56 ± 0.12 1.36 ± 0.09 -0.01 ± 0.02
  BRF2 0.965 ± 0.012 4.29 ± 0.11 0.91 ± 0.08 -0.01 ± 0.01
  K-NN2 0.963 ± 0.011 4.33 ± 0.13 0.59 ± 0.07 0.00 ± 0.01

Testing SVM2 0.940 ± 0.015 6.20 ± 0.18 0.92 ± 0.09 -0.25 ± 0.03
  XGB2  0.938 ± 0.013 6.13 ± 0.17 1.68 ± 0.10 0.06 ± 0.02
  BRF2  0.941 ± 0.012 6.00 ± 0.16 1.42 ± 0.08 0.09 ± 0.02
   K-NN2 0.936 ± 0.014 6.25 ± 0.17 1.02 ± 0.09 -0.05 ± 0.02

Note: Results based on temporally structured split, where the last 28 months of the 12-year dataset were used as a contiguous test set.
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d⁻¹). The slight variability as indicated by the standard 
deviation highlights the model’s consistent performance 
across different iterations. Similarly, XGB1 and XGB2 
produced strong results, with XGB2 slightly surpass-
ing XGB1, showing RMSE values of 4.39 ± 0.14 (MJ m-² 
d⁻¹) and 4.64 ± 0.17 (MJ m-² d⁻¹), respectively. Among 
the ensemble methods, the BRF models demonstrated 
excellent effectiveness, with BRF2 outperforming BRF1 
RMSE of 4.29 ± 0.13 (MJ m-² d⁻¹) compared to 4.42 ± 
0.12 (MJ m-² d⁻¹). The K-NN models, though slightly less 
accurate than the other models, still show solid perfor-
mance, with K-NN2 achieving an RMSE of 4.01 ± 0.14 
(MJ m-² d⁻¹), while K-NN1 recorded an RMSE of 4.95 ± 
0.16 (MJ m-² d⁻¹). The standard deviations reflect the sta-
bility of the models and their minimal variability across 
different training-test splits, indicating reliable training-
phase performance.

During the testing phase (Figure 4), a slight decline 
in predictive accuracy was observed, with R² values rang-
ing from 0.92 to 0.93, reflecting reduced in generaliza-
tion capabilities. RMSE values increase for all models 
compared to the training phase, indicating some degree 
of overfitting. Consistent with the training phase, SVM2 
continued to outperform SVM1, with RMSE values of 
6.05 ± 0.17 (MJ m-2 d⁻¹) and 6.29 ± 0.19 (MJ m-² d⁻¹), 
respectively. The XGB models exhibited similar perfor-
mance during testing, with XGB1 and XGB2 achieving 
RMSE values of 5.92 ± 0.15 (MJ m-² d⁻¹) and 6.04 ± 0.16 
(MJ m-² d⁻¹), respectively. BRF2 again proved to be more 
robust than BRF1, with RMSE values of 5.63 ± 0.14 (MJ 
m-² d⁻¹) versus 5.94 ± 0.15 (MJ m-² d⁻¹). Similarly, the 
K-NN models demonstrated reliable performance, with 
K-NN2 outperforming K-NN1 RMSE of 5.54 ± 0.13 (MJ 
m-² d⁻¹ versus 5.65 ± 0.14 (MJ m-² d⁻¹). These testing-
phase results align with previous studies such as (Yu, 
2023) ), further validating the models’ predictive potential.

Among all the models, BRF2 exhibited the most 
consistent and robust performance across both the 
training and testing phases, with low RMSE and mini-
mal variability, as reflected by the standard deviations. 
This highlights BRF2’s strong potential for solar radia-
tion prediction in the study area. However, the observed 
increase in RMSE values during testing indicates a 
degree of overfitting. Further adjustments to the model 
parameters and the integration of regularization tech-
niques could enhance the model’s generalization capa-
bilities, potentially mitigating overfitting.

The Taylor diagram in (Figure 5) illustrates that 
boosted regression forest (BRF2) and extreme gradient 
boosting (XGB2) are the top-performing models for pre-
dicting daily solar radiation. Both models demonstrate 
high correlation coefficients (close to 0.99) and standard 

deviations closely aligned with the reference, indicating 
strong predictive accuracy and a reliable ability to cap-
ture data variability. Other models, such as k-nearest 
neighbors (K-NN2) and support vector machine (SVM2), 
also exhibit commendable performance, though with 
slightly less alignment to the reference variability. Over-
all, the analysis highlights BRF2 and XGB2 as the most 
effective models for capturing complex meteorological 
patterns, emphasizing their suitability for solar radiation 
prediction in semi-arid regions. This finding is consist-
ent with the results of (Chen and Kartini, 2017).

BRF2 and XGB2 exhibit the highest correlation and 
closest alignment to the reference standard deviation, 
indicating strong predictive accuracy.

In (Figure 6), BRF2 and XGB2 exhibit lower error 
distributions and tighter interquartile ranges, indicating 
greater precision and stability. The error values shown in 
the box plots represent the absolute differences between 
the predicted and observed daily solar radiation values. 
Each error was calculated using the formula H predict-
ed – H observed| for every day in the test dataset. These 
values are expressed in MJ m⁻² d⁻¹. This approach offers 
a clear and direct way to assess model accuracy and the 
range of prediction deviations.

The box plots reveal that BRF produces smaller 
errors and fewer outliers, demonstrating its effective-
ness in capturing solar radiation variability. In con-
trast, models like K-NN and SVM exhibit greater error 
variability. While BRF2 achieves the highest accuracy, 
it also requires more extensive hyperparameter tuning, 
including adjustments to tree depth, learning rate, and 
the number of estimators. This reflects its greater model 
complexity. Despite the additional computational effort, 
BRF’s tuning process allows it to model complex data 
patterns more effectively. These findings highlight key 
performance differences among the models and illustrate 
the trade-offs between simplicity and predictive power.

Figure 7(A) highlights the relative importance of 
the meteorological variables used in the ML models. Pt 
(35%) and Tmax (30%) are the most significant contribu-
tors to model performance, underscoring their influence 
in predicting H and agricultural yields. The importance 
of Pt aligns with its critical role in water availability and 
evapotranspiration, which directly affect plant growth 
and H absorption in semi-arid regions. Tmax, which 
influences evapotranspiration rates and heat stress, fol-
lows closely. Other features, such asTmin, (15%) and H0 
(10%), while less impactful, still contribute to shaping 
the model’s predictions. These findings align with well-
established meteorological principles, emphasizing the 
importance of temperature extremes and precipitation 
variability in determining model accuracy.
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Figure 3. Scatter plots showing actual versus predicted solar radiation values for SVM1, SVM2, XGB1, XGB2, BRF1, BRF2, K-NN1, and 
K-NN2 models during the training phase.
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Figure 4. Scatter plots depicting the actual and predicted solar radiation values for the SVM1, SVM2, XGB1, XGB2, BRF1, K-NN1, SVM2, 
XGB2, BRF2, and K-NN2 models during the testing phase are provided.
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Figure 7(B) presents a correlation matrix between 
selected meteorological variables and the performance 
of the four machine learning models used in this study 
BRF, SVM, XGBoost, and K-NN. exhibits a strong posi-
tive correlation, particularly with the BRF (0.50) and 
K-NN (0.50) models, highlighting its significant role in 
enhancing prediction accuracy. This correlation reflects 
the influence of Pt on soil moisture and atmospheric 
conditions, which are crucial for crop yield in semi-arid 
climates. Tmax also shows moderate positive correlations, 
particularly with K-NN (0.40), reinforcing the impor-
tance of accounting for heat stress and evapotranspira-
tion effects in the models. Other variables, such as Tmin 

and H0, exhibit weaker yet meaningful correlations, indi-
cating their supplementary roles in improving model 
performance.

This analysis clearly demonstrates that precipitation 
and temperature extremes are the primary drivers of 
model performance, with more complex models like BRF 
and K-NN showing better adaptability to these factors. 
These findings align with existing literature, which high-
lights the critical role of climate variables in predictive 
modeling for semi-arid regions.

4. CONCLUSION

 This study comprehensively evaluated the perfor-
mance of four machine learning models SVM, XGBoost, 
BRF, and K-NN in predicting H in the semi-arid region 
of Gadarif, Sudan. While all models performed well 
during training, BRF1 and K-NN1 achieved the high-
est accuracy. However, slight performance declines dur-
ing the testing phase highlighted the need for improved 
generalization. Models in Scenario 2, which incorpo-
rated additional climatic variables such as precipitation, 
demonstrated more robust performance during test-
ing compared to Scenario 1, emphasizing the benefits 
of using a broader range of meteorological data. The 
findings confirmed the potential of machine learning 
approaches, particularly BRF, in accurately predicting H, 
supporting the initial hypothesis. These insights contrib-
ute to optimizing solar energy systems and improving 
climate modeling in semi-arid regions. Future research 
could focus on enhancing model generalization through 
hybrid approaches or integrating additional data sources, 
such as remote sensing, to improve predictive accuracy.

Figure 5. Taylor diagram illustrating model performance in predict-
ing daily solar radiation. 

Figure 6. Box plots and error diagram compare the error distributions and accuracy of different modeling methods in estimating daily H 
using the same input variables.
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