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Abstract. The genus Marshallia is made up by seven to ten species of perennial herbs 
growing mainly in open habitats, whereas the genus Balduina is represented by three 
sympatric species; two perennial herbs and one annual, growing in open pine forest 
habitats. Both genera belong to the family Asteraceae, tribe Helenieae, and are endemic 
to the southeast United States, in North America. Cytogenetic studies concerning these 
two genera are scarce and genome size data is lacking for both. The main goals of this 
study were to (i) generate novel insights into the evolution of the genome size and (ii), 
contribute to filling existing gaps on our knowledge of the Asteraceae family from this 
point of view. Nuclear DNA contents range from 11.42 pg/2C in Marshallia trinervia to 
31.58 pg/2C in Marshallia mohrii. The combination of genome size with chromosome 
data (and inferred cytotypes) suggests the existence of multiple cytotypes, and provides 
interesting insights into the potential impact of polyploidy in the evolution of these 
genera in general, and the shaping of genome size diversity, in particular.

Keywords: Barbara’s buttons, chromosome counts, Compositae, nuclear DNA content, 
karyology, polyploidy.

INTRODUCTION

The genus Marshallia Schreb. (Asteraceae: Helenieae), commonly known 
as Barbara’s buttons, is endemic to the southeast United States of America 
(Hansen and Goertzen 2014). This small genus is made up of seven (Baldwin 
2009; Watson 2006) to ten species (Weakley 2020) of perennial herbs, which 
grow mainly in open habitats such as pine forests and roadsides, although 
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some species show preference for wet habitats as bogs, 
shoals or stream sides. 

Morphologically, the genus is characterized by pos-
sessing discoid inf lorescence heads of deeply lobed, 
rotate corollas that are colored either white or pink. 
Some of its morphological features are shared with other 
groups of Asteraceae (Baldwin 2009). This author placed 
the genus within subtribe Marshalliinae, closely related 
to Gaillardiinae (which includes Balduina Nutt., Gail-
lardia Foug., and Helenium L.) in the tribe Helenieae, 
but its sister group has not yet been clearly established 
(Baldwin and Wessa 2000). Although species of Mar-
shallia can be difficult to distinguish from each other 
based on morphological characters, a more recent study 
carried out by Hansen and Goertzen (2014) revealed that 
nuclear ribosomal ITS sequences serve as an acceptable 
DNA barcode marker in the genus, with sufficient nucle-
otide differences to discriminate amongst most species. 

The genus Balduina Nutt. is endemic to the south-
east United States, and it is represented by just three 
sympatric species, two perennial herbs and one annual 
(Keener 2006). Parker and Jones (1975) putatively related 
this genus to the tribe Helenieae based on an analysis of 
flavonoid and sesquiterpene lactone composition. 

Genome size (GS, usually estimated as the 2C-val-
ue), refers to the total amount of DNA in an unreplicat-
ed somatic nucleus (i.e. holoploid genome size, Greilhu-
ber et al. 2005). This parameter is considered as a bio-
diversity trait given the 2,400-fold variation encountered 
among land plants (Pellicer et al. 2018), with representa-
tives having some of the largest eukaryotic genomes so 
far reported (c. 300 Gbp/2C) in contrasting lineages such 
as the monocots and pteridophytes (Hidalgo et al. 2017). 
Certainly, the relevance of this parameter in the evolu-
tion of plants is without doubt and further supported by 
the multiple correlations reported between GS and sev-
eral ecological, life cycle and karyological attributes (e.g. 
Bennett and Leitch 2005; Beaulieu et al. 2008; Knight 
and Ackerly 2002; Pellicer et al. 2010a; Pustahija et al. 
2013; Pellicer et al. 2014). 

Genome size diversity and evolution studies in the 
Asteraceae have been examined by several authors (e.g. 
Vallès et al. 2013, Vitales et al. 2019). However, achiev-
ing a comprehensive understanding of GS evolution in 
a family as large as the Asteraceae (c. 25.000 species) is 
challenging. In fact, only about 6% of the extant taxo-
nomic diversity at the species level in this family has 
been studied from this point of view (Vitales et al. 2019). 
Despite the gaps in our knowledge, those studies have 
evidenced a relative high diversity of GS across species, 
ranging about 139-fold, mostly driven by the ubiquitous 
nature of polyploidy across the family. Indeed, the lack 

of correlation between GS and chromosome number 
among diploids suggests that chromosomal rearrange-
ments have a relatively minor impact on the overall 
DNA content at the family level (Vitales et al. 2019).

Although some species of Marshallia have recently 
been the subject of studies of nuclear gene regulation 
in non-model systems (Melton et al. 2019), and also of 
conservation biology (Knapp et al. 2020), cytogenetic 
studies concerning Marshallia or Balduina are very 
scarce and mostly restricted to chromosome counts. So 
far GS data are entirely absent for both genera accord-
ing to the Plant C-values Database (https://cvalues.sci-
ence.kew.org, Pellicer and Leitch 2020) as well as the 
family-specific Asteraceae Genome size database (htt-
ps://www.asteraceaegenomesize.com, Vitales et al. 2019). 
For that reason, the main goal of this study was to pro-
vide new GS and chromosome data for most species of 
these genera, aiming at (i) generating novel insights into 
the evolution of this parameter and (ii) contributing to 
filling existing gaps on our knowledge of Asteraceae 
genome size evolution. 

MATERIALS AND METHODS

Plant material

The species and populations studied as well as their 
origin and herbarium vouchers (deposited in the John D. 
Freeman Herbarium (AUA), of the Auburn University 
Museum of Natural History, Auburn, Alabama, USA) 
are shown in Table 1. 

Nuclear DNA content assessments 

Genome sizes of the target species were estimated 
using flow cytometry. Pisum sativum L. ‘Express Long’ 
(2C = 8.37 pg, Marie and Brown 1993) was used as an 
internal standard. Young, healthy leaf tissue (about 
25 mm2) from each species was placed in a plastic 
Petri dish and chopped in 1,200 µl of LB01 lysis buffer 
(Doležel et al. 1989) with a razor blade. The suspension 
of nuclei was filtered through a nylon mesh with a pore 
size of 70 µm and stained for 20 min with 36 µl of pro-
pidium iodide (60 µg/mL; Sigma-Aldrich Química) and 
supplemented with 100 µg/ml ribonuclease A (Boehring-
er). For each individual, two replicates were prepared 
and processed on the f low cytometer. Measurements 
were made at the Centres Científics i Tecnològics de la 
Universitat de Barcelona using an Epics XL flow cytom-
eter (Coulter Corporation, Hialeah, Fla.). The instrument 
was set up with the standard configuration: excitation of 
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the sample was done using a standard 488 nm air-cooled 
argon-ion laser at 15 mW power. Acquisition was auto-
matically stopped at 8,000 nuclei. The half-peak coef-
ficient of variation was calculated for both target plant 
material and the internal standard. 

Chromosome counts

Root-tip meristems were obtained from achenes ger-
minated on wet filter paper in Petri dishes at room tem-
perature. Seedlings were pretreated with 0.05% aqueous 
colchicine at room temperature for 2.5 h. Material was 
fixed in absolute ethanol and glacial acetic acid (3:1) for 
2 h at room temperature and stored in the fixative at 
4°C. Samples were hydrolyzed in 1 N HCl for 5 min at 
60°C, stained with 1% aqueous aceto-orcein for 4h, and 
squashed on slides in 45% acetic acid-glycerol (9:1). The 
best metaphase plates were photographed with a digital 
camera (AxioCam MRc5 Zeiss) mounted on a Zeiss Axi-
oplan microscope, and images were analyzed with Axio 
Vision Ac software version 4.2.

Phylogenetic tree and data mapping

In order to plot and visualize GS data from a phy-
logenetic perspective, GenBank ITS sequences from 
Hansen and Goertzen (2014) and an outgroup (Heli-
anthus annuus L.) were downloaded using Geneious 
Prime 2020.1.2 (https://www.geneious.com), and aligned 
with CLUSTAL Omega (Sievers et al. 2011). A Maxi-
mum Likelihood tree was then constructed using the 
default settings and 10,000 bootstrap, as implemented 
in Geneious. Genome size data were plotted on the tree 

using the plotTree.wBars function implemented in Phy-
tools package (Revell 2012), and C-value scatterplots 
were carried out using ggplot2 package (Wickham 2016), 
both available in R (R core Team 2019). 

RESULTS

The results obtained for GS, complemented with 
chromosome numbers in some of the accessions are 
shown in Table 2. Illustrative chromosome pictures and 
the distribution of GSs from a phylogenetic perspective 
in Marshallia are depicted in Figure 1. In all investigated 
accessions, flow histograms with coefficients of variation 
below 3.5 were obtained, illustrating the high quality of 
the results obtained. As highlighted above, these two 
genera have never been studied from this perspective, 
and therefore, our results represent the first estimates for 
all of these species. 

DISCUSSION

The combination of GSs with actual chromo-
some data (plus inferred cytotypes) provides interest-
ing insights into the potential impact of polyploidy in 
the evolution of both Marshallia and Balduina. Semple 
and Watanabe (2009) attributed to the tribe Helenieae s. 
str., to which the two genera considered here belong, a 
secondarily derived base number of x = 19. However, all 
counts reported here as well as those previously record-
ed in the literature (see below) correspond to a primary 
base number of x = 9, one of the most frequent in the 
family Asteraceae.

Table 1. Marshallia and Balduina species studied including population code and origin.

Species Code Voucher (in herbarium AUA)

Balduina uniflora Nutt. B1 Live material from AU Davis Arboretum
Marshallia caespitosa Nutt. ex DC. var. Caespitosa M26 Watson 12-01, Pottawatamie Co., OK
M. graminifolia (Walt.) Small M1 Hansen 4951, Covington Co., AL
M. graminifolia (Walt.) Small M39 Hansen 5814, Jackson Co., MS
M. graminifolia (Walt.) Small M40 Hansen 5814, Beauregard Par., LA
M. mohrii Baedle and F.E.Boynton M20 Hansen 5055, Bibb Co., AL
M. mohrii Baedle and F.E.Boynton M21 Hansen 5056, Bibb Co., AL
M. obovata (Walt.) Baedle and F.E.Boynton M3 Hansen 4956, Macon Co., AL
M. obovata (Walt.) Beadle and F.E.Boynton M22 Hansen 5471, Macon Co., AL
M. obovata (Walt.) Beadle and F.E.Boynton M34 Hansen 5786, Bullock Co., AL
M. ramosa Beadle and F.E.Boynton M19 Hansen 5054, Ben Hill Co., GA
M. ramosa Beadle and F.E.Boynton M38 Hansen 5795, Washington Co., FL
M. trinervia (Walt.) Trel. M2 Hansen 4954, Lee Co., AL
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Genome size and chromosome diversity in Marshallia 

Nuclear DNA contents varied 2.76-fold in Marshal-
lia, ranging from 11.42 pg/2C in Marshallia trinervia 
(Walt.) Trel. to 31.58 pg/2C in the population M21 of 

Marshallia mohrii Beadle and F.E. Boynton (see Table 2). 
The large GS found in the latter, is further supported by 
the fact that this particular accession is a hexaploid, as 
confirmed by our chromosome counts (2n = 56, Figure 
1a). Furthermore, a likely hybrid origin of this species, 

Table 2. Marshallia and Balduina species studied including genome size measurements and chromosome counts. 

Species Code N1 2C (pg) 2C (Mbp)2 1Cx (pg) HPCV plant HPCV standard 2n 2n3

Balduina uniflora Nutt. 2 12.96±0.00 12675 6.48 2.44±0.37 3.03±0.16 18* 72
M. caespitosa Nutt. ex DC. M26 1 22.83 22328 5.70 1.87 2.85 36* 18,36
M. graminifolia (Walt.) Small M1 1 12.74 12460 6.37 2.50±0.19 2.82±0.05 18 18
M. graminifolia (Walt.) Small M39 1 12.72 12440 6.36 3.23±0.32 3.81±0.06 18* 18
M. graminifolia (Walt.) Small M40 5 12.89±0.27 12606 6.45 2.42±0.48 3.01±0.37 18* 18
M. mohrii Baedle and F.E.Boynton M20 1 16.70 16333 5.56 0.67±0.02 3.31±0.10 27* 36
M. mohrii Baedle and F.E.Boynton M21 4 31.58±0.97 30885 5.26 1.27±0.95 3.08±0.28 54 36
M. obovata (Walt.) Baedle and F.E.Boynton M3 3 13.60±0.51 13300 6.80 2.39±0.35 2.75±0.22 18 18
M. obovata (Walt.) Beadle and F.E.Boynton M22 1 13.73 13428 6.86 2.95±1.60 3.71±0.07 18 18
M. obovata (Walt.) Beadle and F.E.Boynton M34 1 13.92 13614 6.96 2.07±0.06 2.39±0.26 18* 18
M. ramosa Beadle and F.E.Boynton M19 1 16.77 16401 5.59 1.25±0.32 2.20±0.13 27* 18
M. ramosa Beadle and F.E.Boynton M19 2 23.92±0.12 23394 5.98 2.51±0.41 3.27±0.90 36* 18
M. ramosa Beadle and F.E.Boynton M38 2 13.37±0.19 13076 6,68 3.02±0.29 3.44±0.25 18* 18
M. trinervia (Walt.) Trel. M2 3 11.42±0.06 11169 5.71 3.21±0.26 3.30±0.26 18* 18

1 N = numer of individuals. 2 1 pg = 978 Mbp (Doležel et al. 2003). 3 Cromosome Counts Database (Rice et al. 2015). * Chromosome num-
bers inferred from nuclear DNA contents.

Figure 1. A. Illustrative chromosome counts in Marshallia: (top) Marshallia obovata (Walt.) Baedle and F.E. Boynton (M3, 2n = 18). (bot-
tom) Marshallia mohrii (M21, 2n = 56). Scale bars are 10 μm. B. Phylogenetic mapping of genome size data (2C-values) based on ITS 
sequences from Hansen and Goertzen (2014). Inferred ploidy levels based on nuclear DNA contents are indicated.
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with subsequent introgression has been suggested in the 
past. For example, Watson et al. (1991) and more recent-
ly Hansen and Goertzen (2014) suggested an allopoly-
ploid origin of this species, hypothesizing that M. trin-
ervia (2n = 18) could be one of the parents, which is sup-
ported by the very close phylogenetic relationship among 
both species (Hansen and Goertzen 2014). Other species 
possibly involved in the origin of M. mohrii could be 
either M. caespitosa or M. ramosa, given their relatively 
close phylogenetic relationship with this species (Hansen 
and Goertzen 2014). Considering the Federally Endan-
gered status of this imperiled species, further research 
into its apparent cytotype diversity is warranted. 

Of the two investigated accessions of M. mohrii, the 
specimen belonging to population M20 had a GS of 16.70 
pg/2C. Compared to other confirmed diploid accessions 
in this study, such as M. obovata (2C = 12.89 pg) or M. 
graminifolia (2C = 13.60 pg), its nuclear DNA content is 
larger than would have been expected for a diploid acces-
sion. Several mechanisms could be invoked to provide an 
explanation for this GS, such as activation of amplifica-
tion of repetitive DNA and/or polyploidy. Based on the 
value obtained for the hexaploid population of this spe-
cies (M21, 31.58 pg/2C), a triploid cytotype could have, in 
theory, a similar GS as that found in population M20 (as 
inferred in Figure 1). However, to avoid excessive specu-
lation, further studies would be needed to confirm this 
point including an actual chromosome count, and thus 
discard the existence of bursts of DNA amplification as 
the main driver of such genomic expansion. Concern-
ing M. caespitosa, only one individual was analyzed in 
the present study (22.83 pg/2C, Table 2). From this value, 
a tetraploid cytotype can be also inferred (Figure 1), if 
compared with the results in chromosomally-confirmed 
diploid taxa. Certainly, both diploid (2n = 18) and tetra-
ploid (2n = 36) levels are known in the species (Wat-
son and Estes 1990), which makes our inference more 
feasible. Marshallia ramosa, the other possible genome 
donor of M. mohrii, is highly variable in morphology in 
the field, and also in GS (Table 2). In the present study, 
observed nuclear DNA content is compatible with three 
ploidy levels (2x, 3x and 4x; Figure 1), although only 2n 
= 18 has been previously reported for this species (Wat-
son and Estes 1990). Our results thus support a scenario 
where hybridization and introgression might have taken 
place, influencing changes in GS through the likely exist-
ence of multiple ploidy levels. 

In contrast to the above-mentioned cytogenetic vari-
ability, data from M. graminifolia and M. obovata, sug-
gest overall intraspecific GS stability, with values rang-
ing only 1.02 and 1.01-fold among accessions, respec-
tively. Our results confirmed that both species are diploid 

(Table 2, Figure 1), as previously reported by Watson and 
Estes (1990), and therefore the small intraspecific dif-
ferences in GS among them could have arisen through 
chromosomal reorganizations, as previously found in 
other Asteraceae (e.g. Anacyclus; Vitales et al. 2020).

Is genome size diversity mostly driven by polyploidy in 
Marshallia?

The nuclear DNA content estimates and somatic 
chromosome numbers from this study set up a scenario 
where polyploidy has played a significant and ongoing 
role in the in the evolution of Marshallia, influencing 
GS in particular. Genome sizes of around 12-13 pg/2C 
for the diploid level (i.e. 2n = 18), 23-24 pg/2C for the 
tetraploid (putatively corresponding to 2n = 36), and 
31-32 for the hexaploid level (corresponding to 2n = 54) 
were confidently inferred (Figure 1). In addition, two 
populations presented nuclear DNA amounts around 
16-17 pg/2C, suggesting the existence of triploid repre-
sentatives in the genus. If our overall ploidy inferences 
hold true, this would indicate that while M. obovata and 
M. graminifolia clades are essentially diploid, the clade 
including M. mohrii (3x and 6x), M. ramosa (2x, 3x, 4x) 
and M. caespitosa (4x) is cytogenetically highly diverse 
in a somewhat lineage-specific manner (Figure 1, Hans-
en and Goertzen 2014).

Polyploidy and whole genome duplications have been 
shown to have a direct impact on the GS, especially since 
it involves, at least, a duplication of the overall DNA con-
tent (Pellicer et al. 2018). However, genomic restructur-
ing after polyploid formation can result in elimination of 
specific DNA sequences, leading to a loss of linearity in 
the accumulation of DNA, the so-called genome down-
sizing (Leitch and Bennet 2004). This phenomenon can 
be seen in Marshallia, where a reduction of the holoploid 
nuclear DNA content with increasing ploidy levels was 
observed, which was more patent at higher ploidy levels 
(Figure 2a). For example, bearing in mind that 2C-values 
of about 12-13 pg were found in diploid accession, nucle-
ar DNA contents of ca. 18-20 pg would be expected in 
3x, 24-26 pg in 4x, and 36-40 pg (6x) would be expected 
under the assumption of proportional genome expan-
sion. However, the observed results are lower in each 
case (Table 2, Figure 2a). The impact of such reduction 
in Marshallia, is further illustrated by the fact that mon-
oploid C-values (i.e. 1Cx) are lower in polyploids with 
respect to their diploid counterparts (Figure 2b).

As stated, genome downsizing in polyploids is a very 
common phenomenon in plants, and the Asteraceae 
family is no exception. Among other mechanisms, chro-
mosome rearrangements after polyploidy, particularly 
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for relatively old genome duplication events, can influ-
ence this process (e.g. Leitch and Bennet 2004, Pellicer 
et al. 2010b, and references therein). In the genus Arte-
misia, even between closely related species, contrasting 
GS dynamics have been reported (Pellicer et al. 2013), 
involving changes in the number and distribution of 
repetitive DNAs, such as ribosomal DNA loci, which 
could influence changes in GS. However, in some other 
cases, genome size additivity has been also described, 
suggesting a more recent origin of such polyploids (e.g. 
Pellicer et al. 2010a). In other groups, both GS increases 
and decreases have been observed (e.g. Nicotiana, Leitch 
et al. 2008). A similar scenario was reported in the gen-
era Hieracium and Centaurea (Bancheva and Greilhuber, 
2006; Chrtek et al. 2009), where multiploid taxa revealed 
both genome downsizing or upsizing in each genus. The 
mechanisms undepinning changes on GS in polyploids 

yet remain to be fully understood, but autopoliploidy 
and introgression could play a relevant role in determin-
ing the GS of the resulting polyploid.

Genus Balduina: nuclear DNA content evidences a poten-
tial unknown diploid cytotype 

Available chromosome numbers compiled in the 
CCDB (Rice et al. 2015) for the genus indicate the pres-
ence of tetraploids in the species Balduina atropurpurea 
Harper. and Balduina angustifolia (Pursh) Robinson (2n 
= 4x; Parker and Jones 1975), and octoploids in Baldui-
na uniflora Nutt. (2n = 8x = 72). Unfortunately, for our 
accession of B. uniflora we have only been able to esti-
mate the GS and an actual chromosome count is thus, 
missing. Certainly, its nuclear DNA content falls within 
the range of GS for diploids encountered in the closely 

Figure 2. A. Scatter plot of observed 2C-values in Marshallia grouped by ploidy level. The dotted line represents the projection of expected 
2C-values given a proportional increase of GS with ascending ploidy levels (note that the prediction is based on average 2C-values of dip-
loid taxa). B. Scatter plot of observed 1Cx-values in Marshallia grouped by ploidy level, which illustrate the reduction of the monoploid 
genome in ascending ploidy levels.
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related genus Marshallia (Table 2), suggesting that this 
accession could likely represent a diploid population. If 
this assumption holds true, then this finding would rep-
resent a new ploidy level report in the species, meaning 
a baseline level for chromosome evolution of the genus, 
which subsequently underwent several rounds of poly-
ploidy. In any case, further chromosome research will 
be necessary to confirm this point and discard any other 
potential taxonomic issues. 

CONCLUSIONS

We have performed the first GS assessments in the 
genera Marshallia and Balduina, complemented with 
chromosomes counts and chromosome number infer-
ences based on nuclear DNA content. The significant, 
ongoing role of polyploidy and hybridization in these 
genera has been discussed. In order to confirm some 
patterns deduced from the data, further research focused 
on chromosome counts should be carried out in all spe-
cies lacking this information, complemented with GS 
in the remaining species of both genera. In Balduina 
angustifolia, the only annual species in the genus (Keen-
er 2006), this research could be particularly interesting 
to test whether it shows a reduced GS associated with 
the faster life cycle than in perennials, as reported in 
many annual taxa (Pellicer et al. 2014, and references 
therein). 
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