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Abstract. Induced mutagenesis is considered a coherent mechanism in crop improve-
ment programmes to produce novel plant varieties. Due to the insufficiency of desired 
genotypes, plant breeders are supposed to re-associate the gene of interest from the 
accessible gene pool of the related plant species through hybridization to develop new 
cultivars with desired traits. The present investigation was performed to evaluate cad-
mium induced mutagenesis on growth performance, physio-biochemical traits and 
DNA damage studies in lentil. Growth and morphological parameters exhibited reduc-
tion with increasing concentration of cadmium. Maximum devaluation was reported 
at the highest concentration. Physiological and biochemical traits were also affected by 
different cadmium concentrations and reduced as concentration increased. Lipid per-
oxidation activity and antioxidant enzymes increased as mutagenic stress increased 
caused by cadmium. CAT and SOD concentration was found to increase initially and 
then decreased gradually at higher cadmium concentrations. SEM analysis of stomatal 
morphology revealed variation in stomatal shape and size in treated populations. There 
was a gradual enhancement in the percentage of DNA damage along with variation in 
morphological traits. The DNA damage was recorded as precocious movement, stray 
bivalent, laggard, stickiness, disorientation of chromosome, multi-bridge, disturbed 
polarity and micronuclei. It was concluded that at higher concentrations, cadmium 
cause DNA damage and these chromosomal alterations causes morpho-physiological 
and biochemical changes in lentil.

Keywords:  Abiotic stress, oxidative stress, antioxidant activity, DNA damage, Lens 
culinaris.

ABBREVIATIONS

Cd Cadmium
CAT Catalase activity
SOD Superoxide dismutase
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ROS Reactive oxygen species 
EDTA Ethyl diamine tetra acetic acid

INTRODUCTION

Nowadays, world is posing a severe threat of mal-
nutrition and food insecurity to human civilization. 
Scientists are involved in developing new and ingen-
ious approaches to diminish hunger and malnutri-
tion issues which are expanding day by day around 
the world. Pulses play a significant role in compensat-
ing food insecurity, especially for low-income families 
(Kumar and Pandey 2020).India is one of world’s largest 
producer, importer and consumer of pulses, especially 
lentils, which have great potential to elucidate the global 
food crisis. Lentil is highly efficient inadjusting adverse 
climatic conditions, which resulted in a declaration by 
United Nations in 2016 as an International Year of Puls-
es (IYP2016), with interdisciplinary research approaches 
towards the qualitative and quantitative improvement of 
pulses.

Lentil is considered as essentially important nutri-
tious crop rich in protein and minerals.  Lens culinaris 
is self-pollinated, diploid (2n=14) crop with a genome 
size of 4063Mbp (Arumuganathan and Earle, 1991). Van 
Oss et al. (1997) suggested that the Lens genus has four 
wild species L.culinaris, L. lamottei, L. nigricans and 
L. ervoides, whereas (Ferguson et al. 2000) observed 
that Lens culinaris Medikus contain three wild sub-
species: L. culinaris subsp. Orientalis and L. culinaris 
subsp. tomentosus and L. culinaris subsp. Odemen-
sis of which L. culinaris subsp. orientalis is considered 
the ancestor of cultivated lentil. Full knowledge of len-
til was given by Barulina (1930), who categorized Lens 
culinaris into two subspecies, of which one is named 
macrosperma (large seeds with 6-9 mm diameter) and 
the other microsperma (tiny seeds with 2-6mm diam-
eter). Lentil is known to be a source of protein and high 
quality fiber among all pulses, because of this property, 
it is considered an economical food consumed all over 
the world. Lentil is an accomplished source of essential 
vitamins and minerals such as foliate vitamin B1, mag-
nesium, phosphorus, potassium, copper complex carbo-
hydrates and vegetable protein and a low amount of fat-
free cholesterol (Tharanathan & Mahadevamma, 2003). 
Lentil contains macronutrients and also poses certain 
phytochemicals such as; flavonols, phenolic acids, phytic 
acid, soyasaponins and tannins (Xu & Chang, 2010).  It 
can fix atmospheric nitrogen and increase soil fertility 
due to increased level of nitrogen in soil and by adding 
carbon and organic matter. Keeping all these attrib-
utes in mind, it becomes necessary to ameliorate len-

til variety to obtain genotype of good nutrient quality 
and yield-related traits. Induced mutagenesis is a help-
ful technique in the plant-breeding programme for 
breeders or biological researchers with the embellish-
ment in knowledge of technique for inducing mutation 
and mutation process itself to produce new cultivar of 
better quality by creating variability (Chaudhary et al. 
2019).Mutagenesis has increased genetic variability for 
qualitative and quantitative traits and induces desir-
able mutant alleles, which may not previously pre-
sent in germplasm in a wide variety of species.Induced 
mutagenesis has played a significant role in overcom-
ing food scarcity for world population and developed 
new mutant cultivars with increased nutritional values 
(Suprasanna et al. 2015). 

Cd is an anthropogenic genotoxic pollutant that is 
highly soluble in water (Jiang et al. 2001)and is readily 
absorbed by the plants. Cd toxicity reduces uptake and 
translocation of nutrients and water, increases oxida-
tive damage, disrupts plant metabolism, and inhibits 
plant morphology and physiology (Haider et al. 2021).
In plants, primary effect of metal toxicity is inhibition 
in root growth and cell division, protein denaturation, 
altered photosynthesis (Rathore et al. 2007; Akinci et al. 
2010) and increases in the frequency of chromosomal 
aberrations as studied in different plants such as Allium 
by Liu et al., 1994, Allium sativum (Yi and Meng, 2003); 
Helianthus annuus (Kumar and Srivastava, 2006); Lathy-
rus sativus (Kumar and Tripathi, 2007a) etc. Heavy met-
al can induce reactive oxygen species (ROS) (Qian et al. 
2009). Plants overcome the damage induced via metals 
stress by activating defense mechanisms which involve 
both -enzymatic components such as catalase (CAT), 
superoxide dismutase (SOD) and peroxidase (POX) to 
protect themselves from ROS (Ruley et al.2004) and 
non-enzymatic components such as glutathione–S-tran-
ferase and glutathione reductase.  An increase in ROS 
causes overproduction of MDA, therefore MDA in plant 
cell acts as a markerbetween production and scaveng-
ing of free radicals. Production of ROS causes oxidative 
burst in biological macromolecules such as enzymes, 
proteins, membrane lipids, DNA, chloroplast and carot-
enoids (Tripathy and Oelmüller 2012). Cadmium binds 
strongly to DNA and RNA, and alters the DNA tran-
scription process so that DNA synthesis and mitotic 
activities are disturbed resulting in depolymerization, 
DNA strand breaks, generation of abnormal nitrog-
enous bases, DNA – DNA cross-links and DNA – pro-
tein cross-links. The present investigation examines cad-
mium-induced mutagenicity and related stress in lentils 
by assessing the growth, yield, cytological, physiological 
and biochemical traits. 
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2. MATERIALS AND METHODS

2.1 Seed procurement and treatments

Dry, healthy, certified, uniform and equal size seeds 
of Lens culinaris variety L-4076 were obtained from Indi-
an Agricultural Research Institute, New Delhi. Fresh, 
uniform and healthy seeds of lentil were presoaked in 
double-distilled water for 24 hours, and the mutagenic 
treatment of cadmium nitrate were given according to 
my previous study related to work (Shahwar et al. 2019).
The comprehensive knowledge of induced mutagenesis 
and selection of mutant lines are described in detail in 
earlier study related to the work (Shahwar et al., 2022). 
Presoaked seeds were then subjected to different concen-
trations (20,40,60,80 and 100ppm) of freshly prepared 
cadmium nitrate solution in double- distilled water at pH 
7.0 for 12 hrs with intermittent shaking after an interval 
of 1 or 2 hours at room temperature of 25± 2°C. After 
treatment, the seeds were thoroughly washed with tap 
water to ensure the removal of adhered metal (Cd++) on 
the surface of the seed coat.Treated seeds of each con-
centration were sown in replicates with their respective 
control in earthen pots having soil mixed with farmyard 
manure and irrigated regularly.

2.2 Growth and morphological study

The experiment was carried out to demonstrate the 
cadmium stress on the growth and morphology of Lens 
culinaris. Root and shoot length were measured from 
randomly selected seedlings of each replicate for 30 days. 
Agronomical parameters such as plant height, number 
of branches per plant, yield and yield related traits were 
recorded during the development. 

2.3Determination of physiological and biochemical param-
eters

2.3.1 Estimation of chlorophyll and carotenoid content

The photosynthetic pigments (chlorophyll a, b and 
carotenoid) were determined by acetone method (Arnon 
1949) following pigment extraction.  For the purpose,1 
g fresh leaves were ground with 80% acetone and the 
extract was diluted with double distilled water and the 
final volume was made 10mL. The optical density (O.D) 
of photosynthetic pigments were measured at wave-
lengths of 663 and 645nm (Smith and Benitez, 1955) 
using UV-VISspectrophotometers. Photosynthetic pig-
ment of the sample was calculated using the following 
formula:

chlorophyll a = 12.7 (O.D.) 663-2.69(O.D.) 645×v/
w×1000
chlorophyll b = 22.9 (O.D.) 645-4.68(O.D.) 663×v/
w×1000
Total chlorophyll = 20.2 (O.D.) 645+8.02 (O.D.) 663×v/
w×1000
carotenoids = 46.95 (O.D. 440.5-0.268× chlorophyll (a+b)
Where W=fresh weight of extracted tissue in grams
V= total volume of extract

2.3.2 Analysis of stomatal morphology and mineral ele-
ments 

Stomatal morphology was studied using scanning 
electron microscopy (JEOL, JSM-6510LV, JAPAN). Scan-
ning electron microscopy andenergy dispersive X-ray 
microanalysis(EDX) of leaf sample were performed fol-
lowing the protocol proposed by Daudet al. (2009) with 
minor changes. The leaf samples were fixed in 2.5 % 
glutaraldehyde and 2% paraformaldehyde in 0.1M phos-
phate buffer (pH 7.0) for 4 hrs and washed for 15 min 
with phosphate buffer thrice at each step. Leaf sam-
ples were then re-fixed for 1 hour with OsO4 (osmium 
tetraoxide) in 0.1 M of potassium phosphate buffer (pH 
7.0) and were again washed for 15 min with the same 
phosphate buffer thrice at each step. The dehydration 
was done after fixation using ethanol series (30%, 50%, 
70%, 90%, and 100%) for 15-20 min thrice for each cycle 
and transferred in the mixture of alcohol and isoa-
myl acetate (1:1) for half an hour and in pure isoamyl 
acetate for one hour. Dehydration of specimens were 
done by Zeiss Evo 60 (Carl Zeiss SEM, Germany) criti-
cal point dryer using liquid carbon dioxide, the samples 
were coated with a thin layer of Palladium and observed 
under SEM at 15 kv with x1500 magnifications. Pre-
pared leaf samples were analyzed through EDX for min-
eral element analysis.

2.3.3 Estimation of proline content

Leaf sample was homogenized in 10 mL of 3% aque-
ous sulfosalicylic acid and centrifuged at 9000 rpm for 
10 min. 2ml glacial acetic acid was added to 2 mL of 
supernatant; further 2ml ninhydrin solution in 30ml 
acetic acid and 20mL of 6M H3PO4were added. The 
solution was incubated at 100oC for 1 hour and OD was 
recorded at 520 nm using toluene as blank. Proline con-
tent in test sample was calculated using a standard curve 
(Bates et al. 1973).
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2.3.4 Determination of lipid peroxidation/MDA content

Malondialdehyde (MDA) content was measured fol-
lowing the protocol proposed by Hodges et al. (1999) 
and expressed as µ moles g -1.

2.3.5 Antioxidant enzyme activity assay

Antioxidant enzyme assay was done by the method 
proposed by Sinha et al. (2018) with slight modification.  
Fresh leaves tissues were grinded in 1 ml extraction buff-
er having 80 mM sodium phosphate buffer, 1mM EDTA, 
1 m Mphenylsulfonylfluride (PMSF), 1% polyvinyl pyr-
rolidone (PVP), and 0.5% (v/v) Triton X-100 and centri-
fuged at 11000 rpm for 25 min at 4°C. The supernatant 
kept at -20°C was used to determine antioxidant enzyme 
activities such as catalase (CAT) following protocol pro-
posed by Yu and Rengel (1999), superoxide dismutase 
(SOD), Gallego et al. (1996) and peroxidase (POX) Kar 
and Mishra (1976).

2.3.6 Estimation of protein content

Dry seeds (0.5g) were ground in 10ml water and 
1ml of 10%trichloroaceticacid was added to the extract. 
The sample was kept in an ice bath for 10 min. and the 
supernatant was collected and centrifuged at 5000 rpm 
for 10 min at 4oC. 20 ml sodium hydroxide (0.1N) was 
added to dissolve the protein and the total volume was 
made the nearest whole number. Seed protein content 
of the extract was determined by Lowry’s method (1951) 
using BSA (Bovine serum albumin) as standard and 
absorbance were measured at 650 nm.

2.4 DNA damage Studies

For chromosomal studies, young and small-sized 
f lower buds were collected from treated and control 
plants, fixed in freshly prepared Carnoy’s fluid (1:3:6 
ratio of glacial acetic acid, chloroform and alcohol) 
and were preserved in 70% alcohol. For DNA dam-
age studies,anthers of appropriate size were squashed 
in 0.5% propionocarmine stain, dehydrated in normal 
butyl alcohol series and mounted on Canada balsam to 
prepare permanent slides. Microphotographs of chro-
mosomal lesion or DNA damage were taken from tem-
porary and permanent slides by “Olympus” microphoto-
graphic unit.

2.5 Statistical interpretation

The results were analyzed and interpreted statisti-
cally using software SPSS version 20 for windows 10 
using one-way ANOVA.  For determinationof least sig-
nificant difference (LSD) at 5% and 10% probability (p 
< 0.05, 0.01), data analysis of variance, one-way ANOVA 
was done using Duncan’s Multiple Range Test (DMRT) 
(Duncan, 1955)

3. RESULTS

3.1 Effect of heavy metal stress on growth and morphologi-
cal parameter

3.1.1 Germination, survival and pollen fertility

Effects of cadmium stress on seedling growth were 
investigated on 15 days old seedling. It was observed that 
plant germination, survival and pollen fertility decreased 
linearly in dose-dependent manner. The inhibitory effect 
on germination and related parameters were evident at 
the highest concentration of heavy metal. Fig. 1A depicts 
a gradual decrease in these characters as concentration 
increases. The highest concentration (100 ppm) of mutagen 
exhibited a maximum reduction in all these parameters.

3.1.2 Effect of Cd heavy metal on root and shoot length 
(cm)

A more pronounced impact of cadmium stress on 
root and shoot lengths were observed in treated plants. 
Fresh weight of the seedlings decreased significantly 
with increase in cadmium concentration. The decrease 
was significantat 80 and 100 ppm for root length and in 
40-100 Cd(NO3)2 for shoot length.Inhibitory effect on 
the seedling growth was higher in the root than in the 
aerial segment. (Fig. 1B).

3.1.3 Plant height

At maturity plant height was found to be maximum 
in control 43.26±1.52 and decreased significantly from 
39.53±3.24 to 31.80±3.31 in 20 to100 ppm both at 5% (p 
< 0.05) and 1 % level (p < 0.01) (Table 1).

3.1.4 Number of branches per plant

Mean for number of branches per plant was found 
to be 3.86±0.49 in control and decreased significantly at 
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Figure 1. Effect of Cd(NO3)2 on germination, survival, and pollen fertility, root and shoot length (cm), photosynthetic pigments and proline 
content (µmoles/g dry wt) in Lens culinaris. Medik L. (M1 generation). Data means within columns followed by the same letter is not differ-
ent at the 5% level of significance, based on the Duncan Multiple Range Test.
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1% (p < 0.01) from lower to higher concentration. Coef-
ficient of variation increased with the increasing concen-
tration of mutagens (Table 1).

3.1.5 Yield attributing traits

Number of pods per plant, number of seeds per 
pod, total number of seeds per plant, 100 seed weight 
and total yield per plant are the yield related traits. All 
these parameters were found to reduce significantly at 
5% (p < 0.05) and 1% level (p < 0.01) when compared 
with their respective control (Table-1). Number of pods 
per plant decreased significantly at 1% level (p < 0.01) 
from 34.46±3.36 to 31.66±4.09 (60-100 ppm) concentra-
tion and the number of seeds per pod decreased at 1% 
level in 60-100 ppm Cd(NO3)2 (Table-1). Total number 
of seeds per plant, 100 seed weight and total yield per 
plant significantly decreased minimally from lower to 
higher doses of cadmium nitrate. Coefficient of variation 
increased with increasing concentration of cadmium 
which means the coefficient of variation is directly pro-
portional to the concentration of mutagen. 

3.2 Physiological and biochemical study

3.2.1. Photosynthetic pigment

Estimation of photosynthetic pigments revealed 
some significant variations in control and treated plants 
(Fig. 1C-E). Photosynthetic pigments reduced as Cd con-

centration increased. Chlorophyll ‘a’, ‘b’ and carotenoid 
significantly decreased from 40-100 ppm and the maxi-
mum reduction was recorded at highest concentrations-
with minimum chlorophyll contents. 

3.2.2 Proline content

Proline content increased remarkably by Cd expo-
sure. Lowest concentration of proline was observed at 20 
and 40 ppm, i.e. 2.12 and 2.35 µ moles/g fw, respective-
ly compared to the other treatments, (Fig. 1F) while its 
production enhanced insignificantly with the increasing 
concentrations. Maximum significant increase in pro-
line concentration (3.24 µ moles/g fw) was recorded at 
100 ppm. Increased proline concentrations are common 
symptoms of metal stress and served as a non-specific 
index of Cd-toxicity.

3.2.3 Lipid peroxidation assay

Estimation of lipid peroxidation was done by deter-
mining the malondialdehyde content in control and 
cadmium stressed plants. The MDA content enhanced 
significantly in all concentrations over the control. The 
maximum increase of MDA content was 1.10 µ M g-1 at 
100 ppm of Cd(NO3)2 (Fig. 2A).

Table 1. Growth and Yield Studies in Cd(NO3)2treated Lens culinaris Medik.

Conc.
ppm
Cd(NO3)2

Plant Height
(cm)

Mean±SD
CV

No. of
Branches/Plant

Mean±SD
CV

No. of
Pods/Plant
Mean±SD

CV

 Length/pod
(cm)

Mean±SD
 CV

 No. of Seeds/
pod 

Mean±SD
CV

Total no. of
 Seeds/Plant
Mean±SD

CV

100-Seeds
Weight (g)
Mean±SD

CV 

Total Yield/
plant(g)

Mean±SD
 CV

Control
43.26±1.52

3.51
3.86±0.49

12.69
38.53±1.25

3.24
 1.06±0.16

 15.09
 2.0±0.36

18.0
 77.06±2.08

 2.69
3.10±0.20

6.45
2.38±0.45

18.90

20
 39.53*±3.24

 8.25
 2.93**±0.57

 19.45
 37.26±2.48

6.65
 1.00±0.23

 23.00
 1.66±0.44

26.50
 61.85**±4.42

 7.14
2.94±0.36

12.24
1.81±0.69

 38.12

40
 38.93*±3.31

 8.50
 2.73**±0.67

24.54
36.13±2.67

7.38
 0.96±0.24

25.00
 1.46*±0.48

 32.87
 52.74**±4.64

 8.79
2.88±0.39

13.54
1.51*±0.78

 51.65

60
 35.00**±4.22

 12.05
 2.66**±0.73

 27.44
 34.46**±3.36

 9.75
 0.92±0.25

27.17
 1.33**±0.49

 36.84
 45.83**±5.15

 11.23
2.80±0.41

14.64
1.28**±0.81

63.28

80
 32.46**±4.68

 14.41
 2.40**±0.80

33.33
 32.53**±3.79

 11.65
 0.87 ±0.27

31.03
 1.26**±0.49

 38.88
 40.98**±5.81

 14.17
 2.72*±0.46

16.91
 1.11**±0.75

 67.56

 100
 31.80**±4.96

 15.59
 2.26**±0.78

 34.51
 31.66**±4.09

 12.91
 0.84*±0.28

33.33
 1.20**±0.48

 40.00
 37.99**±6.09

 16.03
 2.68*±0.50

 18.65
 1.01**±0.70

 69.30

LSD at 5% (*)  3.37  0.60 2.70 0.20  0.41 4.28 0.34 0.64
LSD at 1% (**)  4.72  0.84  3.78 0.29  0.59 5.99 0.48 0.90

SD= Standard Deviation, CV= Coefficient of Variations, LSD= Least Significant Difference.
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3.2.4 Antioxidant enzyme activities

Antioxidant activity (CAT, SOD) in leaves were 
found disturbed under cadmium stress. The anti-
oxidant enzyme activity of lentil was found to be 
increased initially and then fall at higher doses. The 
catalase activity increases insignificantly over control 
in 20 and 40 ppm cadmium whereas it increased sig-
nificantly in 60-100 ppm (Fig. 2B). On the other hand, 
SOD activity was significantly enhanced at 40-80 ppm 
cadmium respectively and thereby decreases (0.71 mg-1 

protein) with their respective control (0.87 mg-1 pro-
tein) at 100 ppm (Fig. 2C).

3.2.5 Estimation of protein content

Result of estimation of protein content in Lens culi-
naris is depicted in (Fig. 2D). Protein content decreased 
as cadmium concentration increased. Highest concen-
tration (100 ppm) showed lower percentage of protein 
(23.0%) over control. An inverse relationship between 
cadmium concentration and protein content was 
observed. Statistical analysis shows a significant dif-
ference in each treatment except 20 ppm of Cd at (p < 
0.05). 

Figure 2. Effect of different concentrations of Cd(NO3)2 on lipid peroxidation (MDA content µmoles/g FW), catalase activity (CAT) 
(µmoles min-1g-1) and superoxide dismutase (SOD) (U mg-1 Protein) and protein content (%) in Lens culinaris Medik. Data means within 
columns followed by the same letter is not different at the 5% level of significance, based on the Duncan Multiple Range Test.
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3.2.6 Stomatal behavior and mineral element analysis

Variation in structure of guard cells in treated 
populations was determined through scanning electron 
microscopy (SEM). Th e SEM image showed variation in 

shape, length and width of guard cells in treated popula-
tions. Cadmium treatment induced partially closed sto-
mata. Stomatal opening slightly increases over control in 
lower doses while it reduced in higher doses with their 
respective control (Fig. 3; a-f). EDX profi ling of leaf was 

Figure 3. Scanning electron micrographs exhibiting morphology of stomata in control (A) and diff erent shape and size of stomata in vari-
ous concentrations of cadmium nitrate (20-100 ppm) (B-F). 
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(a) 

  (b) 

 (c)            

Element Weight % Atomic % 

C K 47.80 60.92 

O K 37.58 35.96 

Mg K 0.89 0.56 

K  K 1.98 0.78 

Ca K 2.44 0.93 

Zn K 0.77 0.18 

Au M 8.53 0.66 

Element Weight % Atomic % 

C K 44.04 58.09 

O K 38.97 38.58 

Mg K 0.95 0.62 

K  K 2.40 0.97 

Ca K 1.99 0.79 

Zn K 0.12 0.03 

Au M 11.54 0.93 

Element Weight % Atomic % 

C K 33.56 46.67 

O K 46.44 48.48 

Mg K 0.93 0.64 

Cl K 1.20 0.57 

K  K 4.35 1.86 

Ca K 1.58 0.66 

Fe K 0.53 0.16 

Au M 11.41 0.97 

Figure 4. EDX profiling of mineral content of leaf (a) control; (b) 40 ppm Cd; (c) 80 ppm Cd.
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(a)  (b) 

(c) 
Figure 5. Graphical representation of EDX profiling of mineral content of treated plant of lentil along with control plant. 
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also done via energy dispersive X-ray analyser (EDX)to 
estimate mineral element of control as well as treated 
plants. Treated populations exhibited a slight reduction 
and enhancement in mineral elements as compared to 
control when expressed in percentage content (Fig. 4 and 
5a-c)

3.3 DNA damage 

Meiotic studies in pollen mother cells treated with 
different concentrations of Cd are shown in Fig. 6. The 
aberrant cells increased as heavy metal concentrations 
increased. Untreated plants exhibited normal meiotic 
cells at metaphase I (control) (Fig. 6a).Various chromo-

          a b c            

        d e f 

       g h i

Figure 6. a: Metaphase I (control), b: Metaphase I (precocious movement of chromosome), c: Anaphase I (unequal division with two lag-
gards), d: Telophase I (sticky chromosomes), e: Metaphase II (stray chromosomes), f: Anaphase II (disturbed polarity with multi bridge for-
mation) g, h: Anaphase II (disturbed polarity), i: Telophase II (two micronuclei).
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somal anomalies in pollen mother cells of treated popu-
lations were observed, such as precocious movement of 
two univalents at metaphase I (Fig. 6b), unequal division 
with two laggards at anaphase I (Fig. 6c), stickiness at 
telophase I (Fig. 6d), stray chromosomes at metaphase 
II (Fig. 6e), disturb polarity with multi bridge formation 
at anaphase II (Fig. 6f), disturbed polarity at anaphase 
II (Fig. 6g), laggards at telophase II (Fig. 6h), two micro-
nuclei  at telophase II (Fig. 6i). In the present investiga-
tion, chromosomal aberrations and frequency of meiotic 
abnormalities at each concentration were calculated in 
percentage (Table 2). Maximum frequencies of chro-
mosomal aberrations were observed at 100 ppm. The 
total percentage of abnormal PMCs ranged from 8.88 to 
38.34% (Table 2, Fig. 7)

4. DISCUSSION 

As reported earlier by many researchers, Cd is a 
non-essential element that is readily taken by plants 
and inhibits plant physiological processes such as water 
absorption, photosynthesis, stunted foliage, withering 
of leaf and alters normal meiotic division (Patra et al. 
2004).The present study showed that exposure of lentil 
genotypes to different doses of heavy metal (Cd) exhib-
ited substantial alterations in the phenotypic and geno-
typic makeup of the plant. During growth and develop-
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mental stages, morpho-physiological parameters were 
examined as well as biochemical parameters, antioxidant 
enzymes activity, DNA damage, SEM and EDX analysis 
of leaf were also performed to evaluate the overall effect 
of Cd on plant ecology. 

4.1. Growth and morphology

4.1.1 Seed Germination, Survival and pollen fertility 

Germination percentage, survival and pollen fertil-
ity were found to decrease as cadmium doses increased 
in the present investigation. Similar observations were 
reported by (Choudharyet al. 2012) in Trigonella, (Shah-
war et al. 2016) in Vicia faba and (Shahwar et al. 2018, 
Sharma et al. 2022) lentil, (Petrescu et al. 2020) in Oci-
mum. Inhibition in germination and root development 
was due to Cd (Pandit and Prasannakumar 1999) low 
water uptake, reduction in cell division and metabolic 
activity and enlargement of the embryo. It was reported 
by (Moreno et al. 1999) Cd disrupts the uptake of water 
and nutrients in plants and suppresses cell division (Liu 
et al. 2003). Kabir et al. (2008) and Farooqi et al. (2009) 
suggested that inhibition in germination percentage, 
seedling length, tolerance index and dry mass of root and 
shoot is due to heavy metal. The reason behind reduc-
tion in germination percentage under Cd stress might 
be due to escalated breakdown of reserved food material 
in seed embryo. Depletion in survival may be due to dif-
ferent cytological and physiological disturbances (Girija 
et al. 2013) and inability to maintain balance between 
growth regulators and promoters (Meherchandani 1975). 
The descending fertility is an outcome of chromosomal 
breakages and anomalies which affect microsporogenesis 
leading to generation of non-viable gametes and decreas-
ing plant fertility (Kumar and Singh, 2020). 

4.1.2 Root and shoot length 

In the present investigation, root and shoot lengths 
minimized linearly as Cd doses increased. Similar result 
was also reported by Choudhary et al. (2012). Decrease 
in seedling length following metal treatment might be 
due to reduction in meristematic cells and also due to 
alteration in hydrolytic enzymes; sufficient food does 
not reach the developing radical and plumule, resulting 
in stunting of seedlings (Shafiq et al. 2008). According 
to Elloumi et al. (2007), effect of Cd exposure on root 
growth was more compared to shoot growth since roots 
are the first organ to contact the heavy metal and carry 
out the process of absorption (Guilherme et al. 2015) 

4.1.3 Plant height and yield attributing traits

In the present work, metal treated plants exhibited 
linearly declined plant height in comparison to the con-
trol plants and this depletion was due to chromosomal 
damage. Reason behind the yield depletion was meiot-
icturbulences whichaffected the production of normal 
microspores and megaspores resulting in low fruit set. 
Higher concentration of Cd causes growth inhibition 
which ascribes to cell division or various desecrations 
in the plant genome. Thilagavathi and Mullainathan 
(2011) reported that adecrease in quantitative traits have 
been ascribed to the physiological perturbation or due to 
chromosomal breakage. Yield is considered an impor-
tant agronomical parameter in breeding program.Data 
regarding yield and related traits, exhibited significant 
decrease in yield at higher concentrationwhich might 
be due to metal induced genotoxicity resulting in altera-
tions of physiological mechanisms, chromosomal aberra-
tions and high pollen sterility.

Similar results were recorded in soyabean (Pavadi 
and Dhanavel, 2004), cotton (Sundaravadivelu et al. 2006) 
Trigonella (Choudhary et al. 2012), Vicia faba (Shahwar et 
al 2016) and Capsicum annum (Aslam et al. 2017).

4.2. Physio and biochemical aspects

4.2.1 Photosynthetic pigment 

Photosynthetic pigment is an important param-
eter directly correlated with plant growth and biomass 
(Acosta-Motos et al. 2017). In our study, photosynthetic 
pigment was inversely proportional to cadmium doses, 
their content decreased with enhancing concentration of 
cadmium relative to the control. Zengin and Munzuro-
glu (2006) and Elloumi et al. (2007) demonstrated the 
same result in sunflower and almonds, respectively. The 
decline in the chlorophyll content in plants might be due 
to suppression of enzymes such as δ-aminolevulinic acid 
dehydratase and protochlorophyllide reductase (Van Ass-
che and Clijsters 1990), which are necessary for chloro-
phyll biosynthesis. Leeet al. (2004) and Siler et al. (2007) 
while working on Paspalum vaginatum (L.) and Centau-
rium erythraea (L.) respectively reported that total chlo-
rophyll diminished along with the enhanced metal con-
centration. Carotenoids are an important constituent of 
photosynthetic pigments which absorb light energy to 
make food for plant. Carotenoids also save chlorophyll 
from photo damage. In the present study, photosynthetic 
pigment, stomatal length and width reduce by cadmium 
treatment. This reduction is probably due to nutritional 
imbalance (Wong and Wong 1990). 
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4.2.2 Proline content 

Proline, a non-enzymatic antioxidant, scavenger 
of ROS, which accumulates in plants when exposed 
to abiotic stress (Saradhi et al. 1993). Itis considered as 
stress signaling molecule having capability to act as an 
antioxidative defense molecule. (Maggaio et al. 2002). It 
was reported by researchers that proline accumulation 
might act as compatible osmolyte in cells, maintains the 
configuration of macromolecule and organelles and its 
enhanced production confirms the osmo-tolerance in 
plants (Nanjo et al. 1999; Junaid et al. 2008). Dhir et al. 
(2004) demonstrated that proline accumulates in shoots 
of higher plants such as B. juncea, T. aestivum and Vigna 
radiata in response to Cd toxicity.

4.2.3 Protein content 

In present investigation, it was observed that cad-
mium treatments affected greatly protein synthesis. A 
significantnegative difference was seen between treated 
plants and control. Similar results were also found by 
Bavi et al. (2011) in pea plants and Choudhary et al. 
(2012) in Trigonella. Balestrasse et al. (2003) reported 
that decline in protein content might be due to inhibi-
tion in protein synthesis or an increase in the rate of 
protein degradation. Higher concentration of cadmium 
inhibits protease activity and total protein content. This 
shows toxic effect of cadmium concentration on mecha-
nism of protein synthesis resulting in decreased protein 
content. Despite of these Chen et al. (2007) found that 
protein content decreased in Vigna unguiculata under 
the salt stress (sodium chloride). 

4.2.4 Antioxidant and lipid peroxidation 

Heavy metal stress may have detrimental effects on 
plant stress machinery. Andre et al. (2010) suggested 
that antioxidant enzymes are considered an essential 
defense element against stress and improve the activity 
of antioxidant system to overcome stress generated by 
ROS. ROS are known as the natural by-products of aero-
bic organisms and are generated during mitochondrial 
electron transport (Debnath et al. 2021). In the present 
investigation, dose-dependent enhancements in anti-
oxidant enzyme activity were recorded, suggesting ROS 
production due to severity of Cd stress. Salama et al. 
(2009) and Shehab et al. (2010) observed that antioxidant 
activity elevates as concentration increases but decreases 
at higher concentrations, probably due to chronic stress 
exposure. SOD plays a crucial role to safeguard plants 

against stressby converting O2
- to H2O2 with the help 

of POX and subsequently reducing it into H2O (Alscher 
et al. 2002). The results are supported by Arleta et al. 
(2001); Dixit et al. (2001); Choudhary et al. (2012).  Ele-
vated malondialdehyde (MDA) levels indicated enhanced 
lipid peroxidationincreasing concentration of Cd con-
firming metal induced oxidative stress in lentil plant. 
Similar results are recorded by Malecka et al. (2001); 
Unavyar et al. (2006).

4.3. DNA damage 

Chromosomal anomalies are induced due to factors 
that affect DNA synthesis and replication or on nucleo-
proteins, resulting in chromosomal breakages or mal-
functioning of spindle apparatus and abnormal chro-
mosomal segregation (Sutan et al. 2018). In our inves-
tigation, adverse effect of cadmium on the frequency of 
chromosomal anomalies were observed, presumably due 
to mutagenic effect of subject heavy metal in inducing 
alterations in DNA. While we observed normal mei-
otic cells in control group, a spectrum of anomalies was 
observed in treated individuals. The frequency of chro-
mosomal aberrations was directly proportional to the 
concentration of cadmium. The anomalies induced by 
cadmium nitrate were of broad spectrum and compara-
tively included a higher proportion of sticky chromo-
somes. Khan et al. (2012) suggested the occurrence of 
sticky chromosome as a result of improper folding of 
chromosome fibers and their intermingling. Jayabalan 
and Rao (1987) reported that stickiness was caused by 
the segregation of histone proteins and alterations in the 
pattern of cyto-chemically balanced reactions. Bhat et 
al. (2007) suggested that stray chromosomes may be due 
to spindle dysfunction and clustering of chromosomes. 
Anaphasic bridges originate due to unequal separation 
of dicentric chromosomes (Singh and Khanna, 1988) 
or presence of sticky chromosomes which remain con-
nected by chromosome bridges during anaphase because 
of incomplete separation of the daughter chromosomes 
(Kabarity et al. 1974).  Laggards were observed at ana-
phase and telophase in Cd treated plants, and it origi-
nates due to disruption of spindle. Das and Roy (1989) 
hold the view that spindle fibers fail to carry chromo-
somes to their respective poles due to mutagen reac-
tion leaving the chromosome behind as a lagging chro-
mosome or laggard. Stickiness of chromosomal end, 
delayed terminalization and failure of chromosomes to 
move at opposite poles were also possible reasons behind 
laggard production (Verma et al. 2012). Disturbed 
polarity at anaphase and telophase might be attributed 
to disturbances in the spindle fibers (Bhat et al. 2007). 
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Utsunomiya et al. (2002) had opinion that formation of 
micronuclei is because of non-oriented chromosomes 
which are unable to reach the pole. Ruan et al. (1992) 
suggested that micronuclei are kind of abnormality 
which culminates into loss of chromosomal material and 
is regarded as an indicator of mutagenicity.

Our result suggested a close colinearity between the 
treatments and percentage of chromosomal anomalies, 
higher the concentration, more the damage chromo-
some undergoes. Similar observations were also reported 
by treatment of different metals and chemicals by other 
workers such as Srivastava and Kapoor (2008); Khan 
et al. (2009b); Kumar and Yadav (2010);Tripathi and 
Kumar (2010); Jafri et al.(2011); Gulfishan et al. (2012); 
Shahwar et al. (2016, 2017, 2018, 2019, 2020); Aslam et al. 
(2017), Khan et al. (2019).

5. CONCLUSION

During the present investigation, it was concluded 
that cadmium induced morphological, physiological, 
biochemical variation and DNA damage over control in 
Lens culinaris. Genotypes of lentils were greatly affect-
ed due to the treatment of cadmium, recommending 
genetic variation in the subsequent generation. It was 
observed in this study that at their lower concentrations, 
cadmium was tolerable by the plant without losing via-
bility, while higher concentrations were genotoxic and 
induce variation/mutation in the genotypes as well as 
phenotypes and causing more variation and developing 
variants/mutant of better quality and selected it. There-
fore, plants with better characteristics should be isolated 
and selected for crop improvement programmes. Fur-
ther molecular techniques or various genetic engineering 
techniques should be carried out to check the mutation 
at genic level as it will be acoherent tool to isolate the 
desired characters and produce a new variety of lentil 
through breeding program. 
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