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Abstract. Agricultural crop affected preliminary and the most prominent by the 
adverse effects of global climate change have to adapt to various abiotic factors that 
will occur as a result of climate fluctuations in the near-future and struggle to survive. 
Among abiotic factors, the one of the greatest impact on plant stress is high tempera-
ture. Therefore, the most important step to take action against the global threat is the 
development of new temperature tolerant varieties. Barley, which is the fourth most 
important cereal in the world after wheat, maize, and rice are affected by high ambi-
ent temperatures. In this work, the effects of their alone and in double, triple combina-
tions of ten various plant growth regulators (PGRs) on mitotic activity and chromo-
some behaviors in root meristems of barley exposed to high temperature (30°C) were 
investigated. In the experiments, Hordeum vulgare L. cv. Bülbül 89 variety and GA3, 
KIN, BA, E, EBR, TRIA and PAs (Spm, Spd, Put, Cad) as growth regulators were used. 
The results obtained were compared with each other and with those of the seeds ger-
minated at optimum temperature (20°C). Consequently; it has been determined that 
most of the PGRs studied, especially the GA3 and their combinations with GA3, exhibit 
a very successful performance on mitotic activity and cytogenetic aberrations in barley 
seeds germinated under high temperature stress- HTS conditions. The effects of these 
PGRs (except for EBR) and their combinations on mitotic activity and chromosome 
behaviors under HTS have been presented in this study for the first time.

Keywords: chromosomal aberrations, heat stress, Hordeum vulgare L., mitotic index, 
plant growth regulators.

INTRODUCTION

Climate change is an inevitable phenomenon globally, which affects all 
aspects mankind, including agricultural production worldwide today. Accord-
ing to IPCC report (2021) projects that in the coming decades climate chang-
es will increase in all regions and for 1.5°C of global warming there will be 
increasing heat waves- longer warm seasons and shorter cold seasons. And, 
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this temperature increases is particularly predicted to 
increase by about 1–3°C by the mid and by about 2–5°C 
by the late twenty-first century. The report shows that 
at 2°C of global warming, heat extremes would more 
often reach critical tolerance thresholds for agriculture 
and health. Therefore, it is staminal that a lot of coun-
tries especially in the south of 40° north latitude includ-
ing Turkey located in the geographic region where the 
adverse effects of climate change are possible struggle 
these climatic fluctuations, take action against anticipat-
ed threats, and revive strategies in this direction (Budak 
2022). It have predicted to climatological extremes are 
caused various abiotic stresses and have a general nega-
tive effect on plant growth and development as also likely 
all living. Thus, future agricultural crop production and 
thus global food security will encounter additional chal-
lenges with human population increase competing for 
environmental resources (Bita and Gerats 2013; Pereira 
2016). In this respect, performing genome-wide analyz-
es of stress-resistant genotypes from agricultural crop, 
revealing their tolerance and selective mechanisms to 
against adversely conditions, and cultivating new varie-
ties are of great importance to tackle all these challenges.

Barley (Hordeum vulgare L.) is one of the most sig-
nificant cereal crops farmed in Europe, the Middle East, 
North and South Africa, and Asia. This cereal, great 
economic value due to its use in both animal feed and 
the food industry are a cereal required grown in abiotic 
stress conditions that limit plant growth due to global 
climate changes in our current period. Furthermore, it is 
preferred as a model plant in cytogenetic researches for 
reasons such as its effortless supply, in vitro germination 
of seeds and small genome (Tabur and Demir 2010b; 
Özmen et al. 2022, 2023). Cytogenetic researches play 
an important role in understanding the chromosomal 
and genetic architecture of plant species. In particular, 
the chromosomal aberrations (CAs) have been accepted 
as an indicator of genetic damages and for those altera-
tions which ultimately lead to mutations (Saxena 2022). 
Therefore, performing the CAs test has vital significant 
to determine whether a test substance or abiotic stress 
factors can cause various types of mutations over time.

Among the abiotic stresses, temperature increase has 
major negative impact on agricultural crops susceptible 
to changes in temperature. Temperature stress occur 
result of the cumulative effect of the temperature sever-
ity, the time the plant is exposed to these unfavorable 
condition, and the degree at which the temperature is 
increasing and cause significant and irreversible dam-
age to plant growth and development (Hill and Li 2022). 
High temperatures are absolute effective as a stress fac-
tor in plants during germination, and the measures tak-

en by plants and their molecular responses under these 
stress conditions are completely different. Each plant 
species has a temperature range represented by a mini-
mum, maximum, and optimum in which it functions 
optimally, and outside this range all cellular metabo-
lisms and thus plant growth are adversely affected (Hat-
field and Prueger 2015). High temperature stress (HTS) 
disrupts the vital cellular phenomena by damaging gen-
erally physiological, biochemical and molecular mecha-
nisms in plants (Narayanan 2018; Jacott and Boden 
2020) and production of toxic metabolites and reactive 
oxygen species (ROS) takes place in the injured cells 
occurred as a result of aberrant metabolism (Wahid et 
al. 2007). Hence this situation causes total crop failure 
by decreasing in growth, product and quality (Shrestha 
et al. 2022; Khan et al. 2023). Increasing temperature 
inhibits different stages of plant development especially 
seriously reduces the germination and early seedling 
growth in a number of plant species including barley 
(Wahid et al. 2010). Additionally, it has been reported 
that HTS negatively affects cell division and micro-
tubule organization in tobacco, wheat and vetch thus 
leading to decreased mitotic index (MI) and irregular 
mitotic configurations (Abou-Deif and Mohamed 2007; 
Öney and Tabur 2013; Öney et al. 2015). Fareghi et al. 
(2015) asserted that Vicia dasycarpa that are normally 
diploid exhibit a mixoploid state with diploid, aneuploid 
and tetraploid cells after temperature shock (boiling the 
seeds at 90°C for 3 min.). However, the ability of a geno-
type to survive at high temperature depends on the type 
or variety of the plant, age, stage of development, the 
susceptibility of the cell types, the degree and duration 
of the elevated temperature (Wahid et al. 2007; Hasa-
nuzzaman et al. 2013).

Plant hormones are essential for regulating the 
interactions between plants and their complex biotic 
and abiotic environments. Most of the physiological 
activities occurring in the plant are under the control of 
these hormones. The effects of hormones always appear 
in a balance as complementary to each other (synergis-
tic) or reducing the effect of each other (antagonistic) 
(Aerts et al. 2021). Under single or multifactorial stress 
combination phenomenon, fluctuations in hormonal bal-
ance in plants bring about serious morphological, physi-
ological, biochemical and molecular changes (Goharrizi 
et al. 2021; Zandalinas et al. 2022 and their cited). For 
example, ABA (abscisic acid) plays a major role in differ-
ent stages of plant development such as stomata opening 
and closing, seed germination, and dormancy and trig-
gers many physiological mechanisms in plants. The plant 
growth is severely retarded and it increases the ABA 
concentration in cells under drought conditions. ABA 
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accumulation during this period controls transpiration 
and inhibit stomatal disclosure (Dong et al. 2018).

There are many studies that phytohormones or vari-
ous PGR agents have positive effects on plant growth 
and development, as well as various physiological and 
biochemical mechanisms, and increase plant resistance 
against many stresses. Because the role of different indi-
vidual phytohormones under abiotic stresses is too board 
to be covered here, we can direct readers to up-to-date 
research articles and reviews on the subject (Huyluoğlu 
et al., 2008; Moumita et al. 2019; Younis and Ismail 2019; 
Emamverdian et al. 2020; Islam and Mohammad 2020; 
Mangena 2020, 2022; Kosakivska et al. 2022; Kothari and 
Lachowiec 2021; Sharma 2021; El-Beltagi et al. 2022; Fat-
ma et al. 2022; Sarwar et al. 2022; Shao et al. 2022; Ver-
ma et al. 2022; Sultan et al. 2023). The constantly rising 
ambient temperature caused by rapidly changing climate 
warming is considered one of the most detrimental abiot-
ic stresses and heat tolerance in plants can be achieved by 
exogenous application of various protectant substances 
(Rasheed et al. 2011; Qureshi et al. 2022). Therefore, since 
especially recent ten years, the exogenous application of 
protectant substances such as osmoprotectants, phyto-
hormones, signal molecules, polyamines, trace elements 
and nutrients have studied by numberless researchers to 
alleviate the harmful effects of HTS on plant (Hasanuz-
zaman et al. 2012; Waraich et al. 2012; Öney and Tabur 
2013; Zaki et al. 2014; Öney et al. 2015; Kaur et al. 2018; 
Taheri and Haghighi 2018; Chen et al. 2019; Wu and 
Yang 2019; Alcázar et al. 2020; Jing et al. 2020; Li N. et 
al. 2021, Li Y. et al. 2023; Sharma et al. 2022; Wang et al. 
2022; Wu et al. 2022; Huang et al. 2023; Hudelson 2023; 
Mei et al. 2023).

As mentioned above, there are many studies that 
phytohormones have positive effects on plant growth, 
development, physiological processes, and yield and 
increase plant stress resistance against various stresses. 
On the other hand, the effects of various phytohormones 
or PGRs on mitotic activity and chromosomal behav-
iors under normal conditions (in a stress-free environ-
ment) have also investigated by many researchers since 
the 1970s (Powell et al. 1973; Oh and Clouse 1998; Hu 
et al. 2000; İsmailoğlu et al. 2004; Huyluoğlu et al. 2008; 
Kartal et al. 2009; Truta et al. 2011; El-Ghamrey et al. 
2013; El-Ghamery and Mousa 2017; Tabur et al. 2019; 
Tütünoğlu et al. 2019). It is a well-known fact that the 
exogenous application of both natural and synthetic 
PGRs contributes to the increase in the relative number 
of embryonic cells. Therefore most of these researchers 
agree that the exogenous phytohormones promotes cell 
division and proliferation and activates DNA replication 
and protein synthesis, but causes chromosomal aberra-

tions (CAs) by disrupting the mitotic balance. Further-
more, some of these researchers argue that PGRs are 
more effective on cell division at high concentrations, 
while others assert that they are more effective at low 
concentrations.

However, studies on PGRs effects on cell division, 
mitotic activity and chromosome behavior under various 
stress conditions (heavy metals, salinity and drought) 
are quite limited (Mansour and Kamel 2005; Tabur and 
Demir 2009; 2010a,b; Maraklı et al. 2014; Özmen et al. 
2022). Moreover, a single study was found on how effec-
tive only EBR are on these parameters (MI and CAs), 
especially under heat stress conditions as a result of our 
detailed literature research (Pradhan and Gupta 2013). 
For this reason, the effects of ten different PGRs either 
alone or double and triple combinations, mentioned on 
MI and chromosome behaviors under HTS have been 
comprehensively revealed in this study for the first 
time. As a result, aims of this work are (1) to determine 
the effect of HTS on MI and CAs, (2) to determine the 
effects of exogenous application of various PGRs alone 
or in double, triple combinations on the mitotic activ-
ity and chromosome behaviors in barley root meristems 
under nonstress conditions, (3) to comparatively evalu-
ate the effects of these PGRs on the mentioned param-
eters in barley root meristems under HTS and to fill 
the gap in the literature on this subject, (4) to clarify in 
detail to what extent all studied PGRs and their com-
binations can overcome HTS, whether they encourage 
cells to enter mitosis, and whether they cause any chang-
es in the structure and behaviors of chromosomes.

MATERIALS AND METHODS

Preparation of the seeds and PGRs

The barley seeds (Hordeum vulgare cv. Bülbül 89) 
were kindly provided from Field Crops Research Insti-
tute, Ankara/Turkey. PGRs used in the experiments were 
obtained from Fluka and Sigma-Aldrich Firm. To forbid 
contamination before germination experiments, the bar-
ley seeds were surface sterilized by immersion in 1% (w/v) 
NaClO solution for 10 min, rinsed thoroughly five times 
with sterile distilled water and dried on filter papers at 
room temperature. Ten different PGRs were used in the 
study: GA3 (gibberellic acid), KIN (kinetin), BA (benzy-
ladenine), E (ethylene), EBR (24-epibrassinolide), TRIA 
(triacontanol), Spm (spermine), Spd (spermidine), Put 
(putrescine) and Cad (cadaverine). The concentration of 
each PGR (as μM, micromolar), which reduces the dam-
aging effect of HTS (30°C) on germination, was deter-
mined as a result of a preliminary study (Figure 1). 
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Germination experiments

First of all, germination experiments were carried 
out at different temperatures between 22 and 35°C and 
the tolerance limit of barley seeds against heat stress 
was determined as 30°C. Germination processes were 
carried out at constant temperatures of 20°C (control) 
and 30°C in the dark and in an incubator. For this pro-
cess, full-looking, robust and uniform sized 20 seeds 
were selected first. These previously sterilized seeds 
were pretreated in 50 mL distilled water (control), GA3, 
KIN, BA, E, EBR, TRIA, Spm, Spd, Put and Cad alone 
and in their double-triple combinations for 24 hours at 

room temperature. At the end of this pretreatment ses-
sion, the solutions were filtered and the seeds were vac-
uum-dried. Then, the seeds for each application were 
arranged in Petri dishes covered with two sheets of fil-
ter paper moistened with 7 ml of distilled water. Imme-
diately after sowing, the Petri dishes were placed in the 
above-mentioned 20°C and 30°C constant temperature 
incubators for germination. At the specified tempera-
tures, they could not be studied because suitable and 
sufficient germination did not occur in combinations 
other than double combinations GA3+KIN, GA3+EBR, 
KIN+EBR and triple combinations GA3+KIN +EBR, 
GA3+KIN+E.

Figure 1. Diagram showing PGRs solvents, prepared stocks and concentration of solutions used in the study. Stock solutions were prepared 
by dissolving each of PGRs with appropriate solvents and made up to liter (μM, micromolar) with distilled water. The stock solutions were 
diluted and the concentrations of solutions used in the study were obtained. For this, PGR concentrations which reduce the damaging effect 
of 30°C, the tolerance limit of barley seeds against heat stress were used. Seeds were pretreated in 50 mL distilled water (control), PGRs 
alone and their double-triple combinations for 24 hours at room temperature. Germination process carried out at constant temperatures of 
20°C (control) and 30°C in an incubator.
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Cytogenetic examinations 

For cytogenetic examinations, the root tips reached 
about 1 cm length after 5-7 day were excised, pretreated 
with a saturated solution of paradichlorobenzene for 4 h 
at 20 °C, fixed in solution absolute ethanol:glacial acetic 
acid (3:1, v/v) for overnight, and stored in 70% alcohol at 
refrigerator until used again. The root tips were hydro-
lyzed in 1 N HCl at 60 °C for 15–18 min, stained for 1-2 
h in accordance with the standard procedure for Feul-
gen staining, smashed in a drop of 45% acetic acid and 
squashed (Elçi and Sancak 2013). After 24 h, microscopic 
slides were made permanent by mounting with alcohol 
vapor exchange method. The best mitotic phases and 
mitotic aberrances were photographed (100X) with digi-
tal camera (Olympus C-5060) mounted on an Olympus 
CX41 microscope.

Data analyses and statistical evaluations

For detect the effect of PGRs and HTS on the MI, 
the prepared slides were examined under the microscope 
at 100X magnification, and MI, i.e. percentage of divid-
ing cells were accounted by counting at least 6000 cells 
for per application (three repeat, 2000 per slide). The MI 
was calculated using the following equation:

𝑀𝑀𝑀𝑀	(%) =
total	number	of	dividing	cells
total	number	of	analyzed	cells × 100 

 At the same time, CAs occurring at all stages of 
mitosis during microscopic observation of the slides 
were calculated according to the following the equation 
for each per-application as the percentage of 350 divid-
ing cells counted.

𝐶𝐶𝐶𝐶	(%) =
total	number	of	aberrant	cells
total	number	of	dividing	cells × 100 

 All experiments were repeated three times. Statisti-
cal evaluation concerning all obtained parameters was 
realized by using SPSS 14.0 program according to Dun-
can’s multiple range test, at p ≤ 0.05 level of significance 
(Duncan 1955).

RESULTS

As explained in detail in the Introduction, it is 
known that under normal conditions, GA3, cytokinins 
(CKs= BA and KIN) and E generally promote cell divi-
sion and cell elongation, thereby increasing growth. 

However, the effects of EBR, TRIA and PAs (Spm, Spd, 
Put and Cad) on cell division have not yet been fully elu-
cidated. Therefore, the present study aimed to clarify the 
counterchecks of these chemicals alone or in combina-
tion on MI and CAs, under both optimum (20˚C) and 
HTS (30˚C).

Counterchecks of PGRs against the adverse effects of HTS 
on MI

The MI values calculated as a result of cell count-
ing of barley meristems after pre-application of various 
PGRs alone or in combinations at 20°C and 30°C are 
presented in Figure 2. 

At optimum temperature (20°C), the application of 
GA3, BA and Put, respectively, from the PGRs studied 
here showed statistically quite a lot successful effect on 
the MI of barley root meristems compared to the con-
trol group. Especially, at GA3 the MI were reached to 
the highest value by increasing from 6,2±0,3 (at 20°C, in 
distilled water) to 15,1±0,8 (approx. 2.5 fold). While E, 
Spm and Cad applications were partially successful on 
this parameter KIN, EBR, TRIA and Spd applications 
exhibited an inhibitory effect on the MI. Considering 
the alone PGRs pre-applications, GA3 treatment on the 
MI was more successful than all other treatments, while 
TRIA had the most negative effect. Among the double 
combinations of PGRs, GA3+KIN showed a more suc-
cessful effect on the MI than the control group and oth-
er double combinations. In addition, both of the triple 
combinations studied (GA3+KIN+EBR and GA3+KIN+E) 
displayed an excellent performance by showing a very 
successful effect on the MI compared to all other treat-
ments except GA3 alone. Considering all the PGRs appli-
cations both alone and in double/triple combinations, 
the most positive effect on the MI was obtained with the 
application of GA3 alone and GA3+KIN+E from the tri-
ple combinations. But, at the KIN+EBR, one of the dou-
ble-combinations, the MI were recorded as the lowest 
value by decreasing from 6,2±0,3 to 1,5±0,5 (Figure 2).

At HTS (30°C), the MI in barley root meristem cells 
germinated in distilled water medium decreased by 35% 
compared to the control (at 20°C). When applied alone, 
it was determined that the PGRs, which showed a very 
successful performance on the MI of meristem cells at 
HTS compared to own control group (in distilled water/at 
30°C), were GA3, BA, E, Put and Spm, respectively. How-
ever, KIN, EBR, TRIA, Spd and Cad alone were not suc-
cessful in alleviating the negative effect of HTS on the MI. 
Considering the pre-applications of all PGRs alone, GA3 
treatment increased from 5,7±0,3 (at 30°C, in distilled 
water) to 15,3±0,7 was more successful than the others in 



26 Selma Tabur, Ş. Betül Yilmaz-Ergün, Serkan Özmen

mitigating the negative effect of HTS on the MI, but Spd 
was extremely unsuccessful on this parameter. Among the 
double combinations of PGRs, again GA3+KIN was quite 
a lot successful in mitigating the negative effect of HTS on 
the MI compared to its control group and other double 
combinations. However, the KIN+EBR double combina-
tion had the lowest MI value together with Spd from the 
single combinations. Similarly, both of the triple combina-
tions studied resulted in a statistically significant increase 
in the MI under HTS (Figure 2).

Among all studied applications, GA3, E, GA3+KIN 
and KIN+EBR showed a more positive effect on the MI 
compared to those at optimum temperature in barley 
meristem cells exposed to HTS. None of the other appli-
cations under HTS could reach MI values under own 
self optimum conditions. Under these conditions, double 
combinations (except GA3+EBR) were more successful 

than single PGRs. Especially, while KIN+EBR had the 
lowest MI value (1,5±0,5) under optimum conditions, 
this value increased approximately twice and reached 
2,9±1,3 at HTS (Figure 2).

Counterchecks of PGRs against the adverse effects of HTS 
on CAs

The percentages of CAs into barley meristem cells 
germinated in distilled water and at 20°C (control) and 
30°C after pretreatment of various PGRs alone or in 
double/triple combinations were summarized in Fig-
ure 3. Representative images of CAs for all applica-
tions were given in Figure 4. As a result of cytological 
examinations, no aberration was found in the chromo-
some structures of barley meristem cells germinated in 

Figure 2. Mitotic index scores in meristem cells of barley exposed to high temperature stress after plant growth regulators 
supplementation.*Values with insignificant difference (P ≤ 0.05) for each column are indicated with same letters (± Standard deviation). 
Seeds were germinated at constant temperatures of 20°C (control) and 30°C in the dark and in an incubator. As test solution, 900 μM GA3, 
100 μM KIN, 100 μM BA, 400 μM E, 3μM EBR, 10 μM TRIA and 10 μM PAs (Spm, Spd, Put and Cad) were used. The pretreatment process 
of seeds was performed by soaking 24 h in constant volumes (50 mL) of distilled water (control) or each PGR. All data were evaluated as 
three replicates.
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distilled water and at 20°C and all of the mitotic stages 
were observed normally (Fig. 4 A-D). Whereas, the rate 
of CA in samples subjected to HTS (30°C) was deter-
mined to be 20,0±2,2%. Also, in terms of genotoxic-
ity, these aberrations were observed to increase signifi-
cantly (p≤0.05) with all PGR treatments compared to 
the control, as evidenced by the CA percentages. Under 
optimum conditions, the highest CA frequency was 
detected in KIN+EBR, one of the double combinations 
by increasing from 0,00 ±0,0% to 22,3±9,3%, followed 
by KIN (13,2±2,3%), TRIA (12,2±2,4%), Cad (11,8±3,4%) 
and GA3+KIN+E (11,4±2,7%). The applications with the 
lowest CA frequency are also GA3 alone (5,5±1,3%) and 
triple combination GA3+KIN+EBR (5,6±1,2%) (Figure 3).

Under HTS, most of the PGR pretreatments studied 
greatly attenuated the negative effect on CA percent-
ages in barley meristem cells. At the temperature level 
in mentioned, however, the percentage of CAs respec-

tively, at BA (27,1±7,0%), KIN+EBR (23,6±7,8%) and 
TRIA (23,1±7,2%), increased even more compared to 
own control group (20,0±2,2%). It was determined that 
the GA3 application alone was the most successful appli-
cation (almost the same as optimum conditions) com-
pared to all other combinations studied by reducing the 
detrimental effect of HTS on the percentage of CA from 
20,0±2,2% to 5,9±2,0% (Figure 3).

In all PGR applications studied, HTS significantly 
increased CAs compared to own optimum conditions. 
Especially with BA, GA3+KIN+EBR and TRIA applica-
tions respectively, CA rates increased by 2 times or more 
compared to own optimum conditions in HTS.

Microscopic images of a wide range of CAs observed 
in the preparations prepared with root tips belonging to 
all application groups are shown in Figure 4. Generally, 
the most extensive aberrations observed in all applica-
tion were micronucleus (Figure 4 a, b), disorderly pro-

Figure 3. Frequency of chromosome aberrations in meristem cells of barley exposed to high temperature stress after plant growth regulators 
supplementation. *Values with insignificant difference (P ≤ 0.05) for each column are indicated with same letters (± Standard deviation). 
Seeds were germinated at constant temperatures of 20°C (control) and 30°C in the dark and in an incubator. As test solution, 900 μM GA3, 
100 μM KIN, 100 μM BA, 400 μM E, 3μM EBR, 10 μM TRIA and 10 μM PAs (Spm, Spd, Put and Cad) were used. The pretreatment process 
of seeds was performed by soaking 24 h in constant volumes (50 mL) of distilled water (control) or each PGR. All data were evaluated as 
three replicates.
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Figure 4. Representative images of microphotographs of normal mitotic stages (A-D) and aberrations (a-t) observed in all application 
groups studied in barley plant. A prophase, B metaphase (2n=14), C anaphase, D telophase. a, b micronucleus (arrows) c disorderly pro-
phase with micronucleus d uncoiled chromosomes e chromosomal ringing (arrow) f vacuolated sequencing at metaphase g sticky chro-
mosomes h chromosomal irregularity in the equatorial plane i stellar anaphase j disorderly anaphase k, l anaphase with multiple bridges m 
alignment anaphase with vagrant chromosome (arrow) n laggards in anaphase (arrows) o multipolar anaphase p polar slip in anaphase q 
bridges in telophase r laggard in telophase (arrow) s vagrant chromosome in telophase (arrow) t polar slip in telophase. Scale bar = 10 µm.
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anaphase (Figure 4 c, j), uncoiled chromosomes (Figure 
4 d), sticky chromosomes (Figure 4 g), chromosomal 
irregularity in the equatorial plane (Figure 4 h), align-
ment anaphase (Figure 4 m), multipolar anaphase (Fig-
ure 4 o), laggard and vagrant chromosomes (Figure 4 m, 
n, r, s), bridges (Figure 4 k, l, q) and polar slip (Figure 
4 p, t) in ana-telophase. The minimal level aberrations 
recorded were chromosome ringing (Figure 4 e), vacu-
olated sequencing at metaphase (Figure 4 f) and stellar 
anaphase (Figure 4 i). 

DISCUSSION

As a result of the extensive literature review, ade-
quate study were not found on the effects of some of the 
PGRs studied here (especially EBR, TRIA and PAs) on 
cell division and chromosomal behaviors. Moreover, it 
was seen that there is still no consensus among research-
ers about the role of also GA3, KIN, BA and E on these 
parameters. For this reason, it was found appropriate to 
compare the effects of these parameters under optimum 
conditions before moving on to the effects of the above 
mentioned PGRs under HTS conditions.

Effects of exogenous PGRs on cytotoxicity and genotoxicity 
at optimum conditions

In this part of the study, the effects cytotoxic and 
genotoxic the effects of hormone/with hormone-like 
activity shown chemicals such as exogenously GA3, KIN, 
BA, E, EBR, TRIA and PAs in the barley meristem cells 
of at optimum conditions were investigated. The results 
were compared with the relevant literature and among 
themselves.

According to our findings, while the MI value of 
barley seeds in the control group (in distilled water, at 
20°C) was 6,2±0,3%; KIN, EBR, TRIA, Spd, GA3+EBR 
and KIN+EBR treatments could not reach this (see Fig-
ure 2). Similarly, some researchers suggested that exter-
nally applied GA3, KIN, BA (Tabur and Demir 2010a; 
Tütünoğlu et al. 2019) and TRIA application (Tabur 
and Demir 2008a) under stress-free conditions reduced 
mitotic activity in barley root meristems. In that case, 
it can be said that exogenously application of some 
stimulatory growth regulators under normal condi-
tions without stress may be useless. On the other hand, 
it has been reported that exogenous GA3 (Mansour and 
Kamel 2005; MacDonald and Little 2006), low concen-
tration BA (Huyluoğlu et al. 2008; Truta et al. 2011; El-
Ghamrey et al. 2013) and TRIA (Hangarter and Ries 
1978) applications promote cell division and thus MI 

during germination under normal conditions. How-
ever, the effects of E, BRs and PAs on cell division have 
not been fully elucidated. It has been stated that these 
PGRs may have positive or negative effects on cell divi-
sion. Some researchers asserted that these PGRs pro-
mote cell division and MI at low concentrations (Kartal 
et al. 2009; Maraklı et al., 2014), while at high concen-
trations reported that they had an inhibitory effect (Hu 
et al., 2000; İsmailoğlu et al., 2004; Tabur and Demir, 
2009, 2010 a,b; Özmen et al. 2022). Our findings reveal 
that the application of GA3, BA and Put alone had sta-
tistically a very successful effect on the MI of barley 
seeds compared to the control group and also E, Spm 
and Cad applications were had partially successful. But, 
TRIA, EBR, Spd and KIN applications had an inhibitory 
effect on this parameter (see Figure 2). Considering the 
PGRs studied, either alone or in double-triple combina-
tions, it is seen that the most positive effect on the MI 
is obtained with GA3 pre-application alone (15,1±0,8%) 
and generally the combinations with GA3 are statisti-
cally more significant than the control group (6,2±0,3%). 
For example, the GA3+KIN+EBR triple combination cre-
ated with the addition of GA3 to the KIN+EBR double 
application, where the most negative effect on the MI 
was observed, increased statistically significantly the MI 
compared to the control group. Moreover, considering 
all the PGR applications studied, the most positive effect 
on the MI was obtained with the application of GA3 
alone and GA3+KIN+E from the triple combinations (see 
Figure 2). This indicates that GA3 has an indispensable 
place in cell division. Data on double and triple com-
binations of PGRs studied here on MI under optimum 
conditions are presented for the first time in this study.

No any chromosomal abnormalities (CA) were 
came across in barley root meristems germinated under 
optimum conditions. However, as a result of the PGRs 
pretreatment studied here, either alone or in double/
triple combinations, various types and percentages of 
CAs were generally observed (see Figure 3-4). This is 
due to the fact that even any externally applied stimu-
lator under optimum conditions is perceived as a stress 
factor by the plant. The least percentage of CA was 
obtained with GA3 pretreatment alone. In particular, it 
was determined that the percentage of CA in seeds with 
KIN pretreatment was higher than other PGRs applied 
alone. Among all the combinations studied, the most CA 
again was observed in the KIN+EBR application, which 
is one of the double combinations by increasing from 
0,00±0,0% abnormal cells (at distilled water, control) to 
22,3±9,3%. Moreover, the CA ratio was reduced in the 
GA3+KIN+EBR triple combination (5,6±1,2%) formed 
by adding GA3 to this double combination until to the 
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level in the GA3 application alone (5,5±1,3%) (see Figure 
3). In this case, as mentioned above, we can say that the 
negative effect of KIN+EBR double application on the 
MI also is due to these CAs caused by the mitotic irreg-
ularities during cell division. Again, data on double and 
triple combinations of PGRs studied under optimum 
conditions on CAs also are presented for the first time 
in this study.

In our study, it was observed that CKs and E caused 
the formation of CAs such as micronucleus, disorder-
ly pro-anaphase, chromosome ringing, chromosomal 
irregularity in the equatorial plane, multipolar anaphase, 
sticky and uncoiled chromosomes, especially bridges in 
ana-telophase. In addition, CAs such as sticky chromo-
somes, chromosome ringing, laggard and vagrant chro-
mosomes in ana-telophase, and alignment anaphase 
were frequently encountered in GA3, EBR and TRIA 
applications. On the other hand, it has been determined 
that PAs cause CAs in the form of sticky chromosomes, 
disorderly anaphase, chromosome bridges in ana-telo-
phase, and polar slip in ana-telophase (see Figure 4 a-t).

Information on the effects of various PGRs on chro-
mosome behavior under optimum conditions is limited 
to only a few studies conducted in the last 20 years. It 
has been reported that high concentrations of CKs nega-
tively affect chromosomal behaviors with a clastogenic 
effect and cause different types of genetic and chro-
mosomal variations (Huyluoğlu et al. 2008; Truta et al. 
2011; El-Ghamrey et al. 2013; El-Ghamery and Mousa 
2017). However, Tabur and Demir (2010a) reported in 
their study that BA and GA3 application did not cause 
any chromosomal abnormality, but KIN and E applica-
tion increased CAs significantly compared to the con-
trol. According to Tütünoğlu et al. (2019) argue that 
increasing GA3 concentrations depending on time and 
dose show cytotoxic and genotoxic effects and the dif-
ference between control and treatment groups is statisti-
cally significant, while Mansour and Kamel (2005) argue 
that there is statistically an insignificant increase in CAs. 
Again, some researchers reported that exogenous applied 
TRIA, EBR and HBRs under optimum conditions nega-
tively affect chromosomal behavior in barley meristems 
(Tabur and Demir, 2008a, 2009; Kartal et al., 2009). 
Similarly, Ünal et al. (2002) on barley seeds, İsmailoğlu 
et al. (2004) on diploid, tetraploid and hexaploid wheat 
seeds in their studies stated that also PAs cause mitotic 
irregularities. Tabur and Demir (2010b) reported that 
PAs inhibited the MI in barley meristems, significant-
ly increased the CAs of other PAs except Spd and Put 
had the highest abnormality rate in total. Özmen et al. 
(2022) also stated that PAs significantly increased the 
CA rate by causing various mitotic abnormalities, and 

the PA with the highest abnormality percentage was 
Spm. If a comparison is made in the light of all these 
studies; it can be said that the effects of PGRs on MI and 
CAs under optimum conditions may differ depending 
on the plant species studied, plant development stages, 
genotype, used concentration, exposure time and pre-
application method.

Effects of exogenous PGRs on cytotoxicity and genotoxicity 
at HTS conditions

HTS may inhibit seed germination and mitosis, 
thereby reducing germination rate (Çavuşoğlu and 
Kabar, 2007; Sharma et al. 2022) and mitotic activ-
ity (Öney and Tabur, 2013; Öney et al. 2015). It may be 
cause a decrease in the amount of protein and stop the 
synthesis of proteins that act as osmoprotectants that 
play a role in temperature tolerance (Xu et al. 2021). 
According to the results obtained from our study, it has 
been confirmed once again that HTS reduces the MI 
also in barley plant, and limited literature information 
on this subject has been contributed. The reason for the 
decrease in mitotic activity at high temperature may be 
directly or may be related to the loss of enzyme activa-
tion, which is responsible for mitosis, and also proteins 
denaturation and lipid peroxidation (Sheikhi et al. 2023).

At the same time, HTS showed quite unfavorable 
effects on the chromosome behavior of barley seeds. In 
our study, it was determined very high rate and various 
types of chromosome aberrations in barley root mer-
istems germinated at 30°C (see Figure 3-4). These aber-
rations may be due to the damaging effects of HTS on 
microtubule organization (Wahid et al. 2007), which 
may have led to irregular mitotic configurations and 
CAs, mainly involving spindle fibers and metaphase 
(Abou-Deif and Mohamed, 2007). In addition, it has 
been reported that reactive oxygen species (ROS) such 
as hydroxyl (OH), superoxide (O2-), hydrogen peroxide 
(H2O2) and single oxygen (1O2), which occur due to HTS 
may be cause deaggregation of DNA, RNA and nucleic 
acids (Liu and Huang, 2000). Faraghi et al. (2015) sug-
gest that Vicia dasycarpa, which is normally diploid, 
exhibits a mixoploid state with aneuploid and tetraploid 
cells after temperature shock. However, Öney and Tabur 
(2013) reported in their study that high temperature 
(30°C) did not cause any CA in Vicia faba root meristem 
cells. In the light of all these studies, we can emphasize 
again that heat stress may have different effects depend-
ing on the type of plant used, the severity and duration 
of the application of stress. Because the upper and lower 
threshold limits of abiotic stresses can show different 
effects in different species, sometimes even in different 
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varieties of the same species (Wahid et al. 2007; Heman-
taranjan et al. 2014).

On the other hand, it was determined that PGRs 
were effective at different degrees in mitigating the nega-
tive effects of HTS on the MI, and this difference was sta-
tistically significant (see Figure 2). Especially KIN, EBR, 
TRIA, Spd, Cad, GA3+EBR and KIN+EBR applications 
have not been successful in alleviating the negative effects 
of HTS on the MI. It was observed that the most negative 
effect on the MI occurred with Spd application alone and 
KIN+EBR application from double combinations. In this 
case, it would not be right to expect every stimulator to 
be successful in overcoming the heat stress on this param-
eter. Indeed, it has been emphasized by many researchers 
that the type(s) and concentrations of stimulators may 
vary from species to species in overcoming various abi-
otic stresses (Mirza and Bagni 1991; Tabur and Demir 
2010a,b; Korek and Marzec 2023). However, considering 
all PGR pre-applications, either alone or in double/triple 
combinations, in our study, more than half of the tested 
applications showed a successful performance in alleviat-
ing the unfavorable effect of HTS on the MI. In particu-
lar, the most positive effect was obtained with the applica-
tion of GA3 alone, GA3+KIN from double combinations, 
and GA3+KIN+E from triple combinations (see Figure 2). 
In addition, in the case of HTS alone GA3 and GA3+KIN 
double combinations reached a higher value than they 
have shown success under optimum conditions. Moreo-
ver, considering the success of other combinations with 
GA3 on the MI, it is seen that again GA3 has an indis-
pensable place in alleviating the negative effects of stress 
compared to their own control groups (at 30°C in distilled 
water). Similarly, GA3+KIN (8,2±1,3%) combination was 
more successful than KIN alone (4,0±0,4%) and GA3+EBR 
(4,5±0,8%) combination was more successful than EBR 
alone (3,1±0,9%) in overcoming HTS on the MI. Also, 
the excellent success of the GA3+KIN+EBR (8,0±1,4%) 
triple combination on the MI compared to the KIN+EBR 
(2,9±1,3%) double combination indicates that GA3 cre-
ates a noticeable synergism with these PGRs. It has also 
been emphasized in previous reports that combinations 
with GA3 against abiotic stresses are more effective role 
on seed germination and MI (Çavuşoğlu and Kabar 2007; 
Tabur and Demir 2008b). With this together, consider-
ing that the internal amount of stimulators such as CKs 
(El-Mashad and Kamel, 2001) and GAs (Prakash and 
Prathapasenan, 1990) decreases in seeds under stress con-
ditions, these externally applied promoters is not surpris-
ing that they increase mitotic activity; it can be expect.

Although the information about the response of 
PGRs to stress factors during cell division has not been 
sufficiently clarified, it is known that various priming 

applications increase resistance to stress factors by pro-
moting cell division, DNA replication (Giri and Schil-
linger 2003) and antioxidative defense (Afzal et al. 2006). 
The most common response under stress conditions 
is the acceleration of synthesis of protective compo-
nents, especially osmoprotectants. Based on general lit-
erature information, it would be correct to say that the 
PGRs may have been successful in alleviating the dam-
aging effect of HTS on the MI by increasing the activ-
ity of enzymes involved in cell division or by accelerat-
ing the synthesis of proteins that act as osmoprotectants 
that play a role in temperature tolerance. However, as 
mentioned in the Introduction, there is only one study 
(Pradhan and Gupta 2013) on the effects of these PGRs 
on mitotic activity, especially under high temperature 
conditions. In this previous study, it was reported that 
only EBR application was studied and increased the MI 
in Brassica oleracea var. botrytis root meristems ger-
minated under low (4°C) and high (44°C) temperature 
stress. Contrary to our findings, these researchers sug-
gested that increasing concentrations of EBR under high 
and low temperature stress increased MI. This paradox 
may be due to the type of plant, the concentration of 
EBR used and the applied temperature degree.

As for CAs, so far no studies have been conducted 
on the effects of all the above-mentioned PGRs on this 
parameter under HTS. Therefore, our study includes 
the first findings describing the data obtained on this 
parameter in detail. Accordingly, it was determined 
that the studied PGRs also showed statistically signifi-
cant effects on the percentages of CAs in barley seeds 
germinated under HTS (see Figure 3). Although most 
of the PGRs applied alone or in double/triple combina-
tions were successful in improving the CAs caused by 
HTS, only BA, TRIA and KIN+EBR applications could 
not show sufficient success on this parameter. Especially 
among all applications, the most positive effect on CAs 
was obtained again with the GA3 application alone, 
while the most damaging effect was in BA application. 
Thus, the GA3 application demonstrated once again on 
CAs its successful performance on the MI under HTS. 
For example; GA3+KIN double application (10,0±2,5%) 
was more successful than KIN application alone 
(13,5±3,3%) in ameliorating the damaging effects of HTS 
by reducing the percentage of CAs.

Various mitotic aberrations were observed during 
microscopic scans of root meristem cells of barley seeds 
belonging to all application groups (see Figure 4 a-t). 
Aneugenic and clastogenic impacts that form an impor-
tant portion of CAs might have been largely resulted 
from spindle dysfunction and chromosomal breaks 
respectively. The CAs, such as bridges and break, are 
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indicators of a clastogenic action, whereas chromosome 
losses, laggards, sticky, multipolarity and C-metaphase 
originate from aneugenic effects (Silveira et al. 2017). 
As known, accurate chromosome segregation in mitosis 
requires that sister kinetochores attach to microtubules 
emanating from opposite spindle poles (biorientation). 
Because kinetochore attachment is a stochastic process, 
it is error prone and can result in chromosome malori-
entation (Banerjee et al. 2020). Mitodepressive actions 
such as disorderly pro-anaphase, alignment anaphase, 
multipolar anaphase, stellar anaphase, bridges and 
polar slip in ana-telophase may be mainly the result of 
the above reasons. Moreover, Tabur and Demir (2010b) 
asserted that the nucleoplasmic bridges in ana-telophase 
might have been occurs as a consequence of inversions 
while Bonciu et al. (2018) have asserted originate from 
dicentric chromosomes or occur as a result of as faulty 
longitudinal break of sister chromatids during anaphase. 
Fiskesjö (1997) have claimed also that bridges are clasto-
genic effects, both resulting from chromosome and chro-
matid breaks. The large micronucleus (MN) in the cell 
indicates aneugenic effect resulting from chromosome 
loss while small MN indicates clastogenic effect due to 
chromosome breaks (Kontek et al. 2007). Briand and 
Kapoor (1989) have reported that the MNs are likely the 
consequence of vagrant chromosomes and fragments. 
Uncoiled chromosomes and chromosome ringing’s may 
be the result of a weak mitotic effect and irregular chro-
mosome contractions (Tabur and Demir 2010b). Asita 
and Mokhobo (2013) asserted that sticky chromosomes 
could be originated from abnormal DNA condensa-
tion, irregular chromosomal wrapping and inactiva-
tion of the axes. At the same time, such aberrations may 
be a result of improper folding of the chromatin fibers 
(Klášterská et al. 1976). According to some researchers, 
sticky chromosomes are a marker of high toxic effect 
on chromatin and irreversibility of the change (Fiskesjö 
and Levan 1993; Türkoğlu 2007). Chromosomal irregu-
larity in the equatorial plane and vacuolated sequencing 
at metaphase may originate from unequal distribution 
of chromosome and spindle dysfunction. Laggard and 
vagrant chromosomes occurs during the anaphase where 
one or more chromatids gets detached from the rest of 
the chromatids and is incapable of moving towards the 
poles. Aberrations of these kinds may have occurred due 
to a weak mitotic impresses a consequence of failures in 
chromosomal attachment to the mitotic spindle (Patil 
and Bhat 1992). 

Generally, it was concluded that BA, E, Put and Spm, 
respectively, among the PGRs alone studied, including at 
first GA3, showed a very successful performance statisti-
cally in mitigating the negative effect of HTS on the MI. 

In addition, when the effects of the double/triple com-
binations of these PGRs on this parameter were evalu-
ated, it was determined that all the studied combina-
tions, except the KIN+EBR application from the double 
combinations, showed a superior success in overcoming 
the negative effect of HTS on the MI. In fact, this suc-
cess was higher than most of the PGRs applied alone (see 
Figure 2). On the other hand, as a result of the statistical 
evaluations, it was proved that all PGRs studied, except 
for KIN+EBR, BA and TRIA applications, both alone and 
in double/triple combinations, showed an important suc-
cessfully in the improvement of CAs (see Figure 3 ).

CONCLUSION

Various growth agents can be effective in differ-
ent events in different species, even in individuals of the 
same species, and can be found in different amounts. 
Accordingly, which hormone is in effective concentration 
in any event in a plant this hormone would be respon-
sible for growth and development events by perform-
ing its function. Indeed, as Khan (1971) points out, any 
event is unlikely to be governed by the absolute presence 
or absence of a hormone. In response to environmental 
conditions, some hormones in the plant may be more 
effective, some may be less effective or not effective at all. 
Therefore, it seems more plausible that whichever hor-
mone is most effective, it functions in the relevant case.

In our study, the interactions between mitotic activ-
ity and mitotic irregularities and various stimulating 
growth agents, which can be counted as possible mech-
anisms of tolerance to increased heat stress as a result 
of global climate changes, were examined in barley, an 
important cereal crop. Thus, it has been tried to serve 
to fill a gap in the literature regarding these parameters. 
It is thought that the use of suitable PGRs for plants 
that will be grown in regions exposed to high tempera-
tures will provide very beneficial results economically. 
However, a detailed investigation of the effects of these 
chemicals on basic metabolic events such as hydrolase 
synthesis and activity, nucleic acid metabolism, protein 
and enzyme synthesis, which can be directly or indirect-
ly effective on mitotic activity, will help to elucidate the 
mechanism in question.

Consequently, thanks to these and similar studies, it 
can be contribute to the development of genetically tem-
perature-tolerant products by changing the plant’s sens-
ing, signaling and regulatory pathways without disturb-
ing other vital processes. In addition, a comprehensive 
explanation of the response of plants to high tempera-
ture tolerance and temperature tolerance mechanisms 
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and the development of possible strategies in this regard 
are mandatory. Therefore, it is necessary to map gene 
loci related to thermotolerance and to elucidate different 
genetic approaches that provide tolerance to heat stress 
(Asthir, 2015).
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