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Abstract. The cytogenetics of the southern short-horned tree dragon (Acanthosaura 
meridiona) are not reported yet. This study describes the karyotype of Acanthosaura 
meridiona Trivalairat, Sumontha, Kunya & Chaingkul, 2022 from southern Thailand. 
We using Giemsa staining, Ag-NOR banding, and fluorescence in situ hybridization 
(FISH) techniques using microsatellites d(CA)15, d(TA)15, d(CGG)10, and d(CAA)10 
probes to analyze the chromosome. The karyotype of the A. meridiona is 2n = 34 
chromosomes (fundamental number of 46), of which 5 pairs were large metacentric 
chromosomes, 2 pairs small metacentric chromosomes, and 20 microchromosomes 
(chromosome formula: 2n=34=Lm

10+ Sm
4+20mi). There are no sex differences in karyo-

types between males and females. The NORs loci were on pair 5 of the large metacen-
tric macrochromosomes. The FISH technique showed d(CA)15 and d(CGG)10 repeats 
on specific regions microchromosomes, while signals of d(TA)15 and d(CAA)10 repeats 
interspersed on macro- and microchromosomes. This study is significant for enhances 
our comprehension of the evolutionary mechanism of agamid lizards and promotes the 
conservation of biodiversity in tropical rainforests. 

Keywords: Acanthosaura meridiona, chromosome marker, fluorescence in situ hybrid-
ization (FISH), microsatellite pattern, Draconinae.
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INTRODUCTION

The agamid lizards belonging to the genus Acan-
thosaura Gray, 1831, possess spinose scales with spines 
on heads and above eyes, along with a prominent spiky 
crest down their spine (Grismer 2011). All of these spe-
cies are active during the day and live in trees of South-
east Asia’s forested areas, including Myanmar, Thailand, 
Cambodia, Laos, Vietnam, Yunnan, the Indochinese and 
Thai-Malay Peninsula, Sumatra, and the Anambas and 
Natunus Archipelagos (Ananjeva et al. 2008; Manthey 
2008; Grismer 2011). The genus Acanthosaura currently 
contains 20 species (Ananjeva et al. 2020; Liu et al. 2020; 
Trivalairat et al. 2022; Liu et al. 2022; Uetz and Haller-
mann. 2024).

Currently, there are seven species of Acanthosaura in 
Thailand, namely, A. armata, A. aurantiacrista, A. car-
damomensis, A. crucigera, A. lepidogaster, A. meridiona, 
and A. phuketensis (Uetz and Hallermann. 2024). Acan-
thosaura meridiona is present in Trang Province, Krabi 
Province, Nakhon Si Tammarat Province, Songkhla 
Province, Surat Thani Province, Satun Province, Thai-
land. Acanthosaura meridiona is similar to A. crucig-
era and was previously regarded as an identical species. 
Wood et al. (2010) found that the southern population of 
A. crucigera exhibited different characteristics that were 
not present in the true A. crucigera population from 
western Thailand. Nevertheless, A. cf. crucigera from 
the southern population has undergone separation into 
A. meridiona (Trivalairat et al. 2022), with the Phuket 
mountain range acts as a barrier separating the two spe-
cies. Acanthosaura is possible that the extent of vari-
ety within this genus is still underestimated. Therefore, 
cytogenetic research on agamid lizards must achieve 
greater precision in species differentiation.

Information about karyotypes in Acanthosaura only 
concerns one report in A. armata with conventional tech-
nique. The karyotypes of Draconinae vary from 2n=32 to 
2n=46, with both macrochromosomes and microchromo-
somes, and absence of sex chromosomes (Ota and Hikida 
1989; Sharma and Nakhasi 1980; Li et al. 1981; Ota 1988; 
Solleder and Schmid 1988; Kritpetcharat et al. 1999; 
Diong et al. 2000; Ota et al. 2002; Singh and Banerjee 
2004; Zongyun et al. 2004; Patawang et al. 2015). 

This study looks at the cytogenetic points of view 
that constitute useful tools of genetic sex chromosome 
systems, different evolutionary lineages and to delineate 
evolutionary trends in a great number of taxa (Mezzasal-
ma et al. 2021 and Mezzasalma et al. 2024). This paper 
first describes Acanthosaura meridiona’s chromosomal 
features, using conventional staining, Ag-NOR banding, 
and fluorescence in situ hybridization techniques. 

MATERIALS AND METHODS

Five adult male and five female specimens of barred 
gliding lizard (Acanthosaura meridiona) were collected 
from Ban Wang Sai, Mae Wat subdistrict, Than To Dis-
trict, in Yala Province, Thailand. The agamid lizards were 
transferred to the laboratory and identified according to 
the morphological criteria (Chan-Ard et al. 2015; Das 
2015). Experiments were performed in accordance with 
ethical protocols, as approved by the Ethics Committee 
of Prince of Songkla, Pattani Campus (Ref.AI001/2024).

Chromosomes were directly prepared in vivo (Pata-
wang et al. 2018) as follows. Metaphasic and meiotic 
chromosomes were obtained from bone marrow and tes-
tis, according the colchicine-hypotonic-fixation-air dry-
ing technique (provide references). The chromosomes 
were stained with 20% Giemsa’s for 30 minutes, Ag-
NOR staining was conducted according to Howell and 
Black (1980). Chromosomal checks were performed on 
mitotic metaphase cells under light microscope. 

FISH experiments were performed with microsatel-
lite sequences, specifically (TA)15, (CA)15, (CAA)10, and 
(CGG)10 using high stringency conditions (Yano et al. 2017). 
The sequences were directly labeled by Cy3 at the 5’end 
(Sigma, St. Louis, MO, USA) as described by Kubat et al. 
(2008). FISH was performed under stringent conditions 
and hybridization in a moist chamber at 37 °C overnight 
(Sassi et al. 2023). Chromosomes were counterstained with 
4’,6-Diamidino-2-phenylindole dihydrochloride (DAPI, 1.2 
μg/ml) mounted in antifade solution (Vector, Burlingame, 
CA, USA,) (Aiumsumang et al. 2021; Patawang et al. 2022; 
Prasopsin et al. 2022; Thongnetr et al. 2022a).

At least 20 metaphase spreads per individual were 
analyzed to confirm the diploid number, karyotype 
structure, NORs and FISH data. Chromosomes were 
classified according to centromere position as metacen-
tric (m), submetacentric (sm), acrocentric (a), and telo-
centric (t) (Turpin and Lejeune 1965). For the chromo-
somal arm number (NF; fundamental number); m, sm 
and a were scored as bi-armed while t as mono-armed. 
The microchromosomes are chromosomes that are 5 
times less long than the largest pair of chromosomes 
(Patawang et al. 2016; 2017; 2018). 

RESULTS AND DISCUSSION

Mitotic chromosome features from Giemsa staining

Agamidae includes 585 species, of which 94 have 
been karyologically investigated (Mezzasalma et al. 
2024). Karyotypes are discontinuous with a variable 
chromosome number of macro- and/or micro-chromo-
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somes, namely macrochromosomes ranging from 10 to 
28, and microchromosomes from 0 to 24 (Mezzasalma 
et al. 2024). In Draconinae, based on 21 species reports, 
karyotypes range from 2n=32- to 46 (Table 2). Howev-
er, so far the present study first reports the karyotype 
of Acanthosaura meridiona, loci of NORs, and by Fluo-
rescence in situ hybridization the distribution of (TA)15, 
(CA)15, (CAA)10, and (CGG)10 microsatellites.

The results revealed that the chromosome number 
of A. meridiona was 34 (14 macrochromosomes, and 
20 microchromosomes). The karyotype comprised ten 
large metacentric chromosomes, four small metacentric 
chromosomes, and 20 microchromosomes (Table 1 and 
Figure 1). This result differs with from that of A. arma-
tus of 2n=32 with 12 metacentric macrochromosomes, 
20 microchromosomes. The fundamental number (NF) 
of A. meridiona and A. armatus was 46 and 44, respec-
tively. It is possible that the different macrochromosome 
numbers may have been caused by an event of tandem 
fusion and centromere deletion involving the chromo-
some number and NF variation. A similar process of 
autonomous reduction in total chromosomal number 
through autosome translocation has been reported in 
other lizard families, including Anguidae, Scincidae, 
Iguanidae, Gekkonidae, and Phrynosomatidae (Adegoke 
and Ejere 1991; Trifonov et al. 2015). 

There is no evidence of differentiated sex chromo-
somes in this species which agreeable with all species of 
Draconinae (Ota and Hikida 1989; Sharma and Nakha-
si 1980; Li et al. 1981; Ota 1988; Solleder and Schmid 
1988; Kritpetcharat et al. 1999; Diong et al. 2000; Ota 
et al. 2002; Singh and Banerjee 2004; Zongyun et al. 
2004; Patawang et al. 2015). Squamates exhibit a con-
siderable degree of variability in their chromosome sex 
determination systems. Various families exhibit diverse 
sex-chromosome systems, which can be either simple 
or multiple, and include either male (XX/XY) or female 
(ZZ/ZW) heterogamety. These systems encompass all 
hypothesized stages of heterogametic sex chromosomes, 
including homomorphic and pseudo-autosomal to heter-
omorphic and completely heterochromatic chromosomes 
(Alam et al. 2018 and Mezzasalma et al. 2021). 

Nucleolar organizer region from Ag-NOR banding

Ag-NOR banding, a species-specific marker, primar-
ily identifies karyotypes. Silver staining, on the other 
hand, only detects the nucleolar organizer areas that are 
actively involved in transcription (Silva et al. 2008). The 
improvement of the Ag-NOR staining method has been 
very important in comparing NOR variation because it 

Table 1. Mean length of short arm chromosome (Ls), length of long arm chromosome (Ll), length of total chromosomes (LT), relative 
length (RL), centromeric index (CI), and standard deviation (SD) from 20 metaphases of male and female of the southern short-horned tree 
dragon (Acanthosaura meridiona) 2n=34.

Chro.
Pair

Ls
(µm)

Ll
(µm)

LT
(µm) RL±SD. CI±SD.

Chro.

Size Type

1 2.022 2.772 4.794 0.165±0.014 0.575±0.029 Large metacentric
2 1.634 1.736 3.371 0.117±0.006 0.517±0.021 Large metacentric
3 1.411 1.794 3.205 0.110±0.007 0.556±0.031 Large metacentric
4 1.371 1.684 3.055 0.106±0.005 0.551±0.026 Large metacentric
5* 1.270 1.509 2.779 0.096±0.004 0.543±0.025 Large metacentric
6 1.059 1.136 2.195 0.076±0.003 0.516±0.021 Small metacentric
7 0.982 1.082 2.064 0.071±0.004 0.524±0.022 Small metacentric
8 0.000 0.813 0.813 0.029±0.002 1.000±0.000 microchromosome
9 0.000 0.762 0.762 0.027±0.003 1.000±0.000 microchromosome
10 0.000 0.761 0.761 0.027±0.005 1.000±0.000 microchromosome
11 0.000 0.762 0.762 0.027±0.003 1.000±0.000 microchromosome
12 0.000 0.699 0.699 0.024±0.003 1.000±0.000 microchromosome
13 0.000 0.679 0.679 0.024±0.003 1.000±0.000 microchromosome
14 0.000 0.632 0.632 0.022±0.002 1.000±0.000 microchromosome
15 0.000 0.573 0.573 0.020±0.003 1.000±0.000 microchromosome
16 0.000 0.540 0.540 0.019±0.003 1.000±0.000 microchromosome
17 0.000 0.469 0.469 0.016±0.003 1.000±0.000 microchromosome

* = NORs bearing chromosomes, Chro. = Chromosome.
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lets us find the metaphase chromosomal locations that 
are linked to NOR. The present study, the chromosome 
markers of A. meridiona observable NORs on the telo-
meric region of large metacentric macrochromosome 
pair 5th (Figure 2). Similarly, the previous report of NOR 
position in Draconinae was located on telomeric region 
of q-arm in 4 species of Calotes consisting of C. cristate-
llus, C. emma, C. mystaceus, and C. versicolor (Solleder 
and Schmid 1988; Patawang et al. 2015). However, find-
ings from both traditional and molecular cytogenetics 

suggest that the location of NOR loci on microchromo-
somes is usually thought of as an ancestral trait in most 
families and genera (Mezzasalma et al. 2021; Waters et 
al. 2021; Deakin and Ezaz 2019).

Microsatellite pattern

Microsatellites, also known as simple sequence 
repeats (SSRs), are short DNA sequences consisting of 

Table 2. Comparative chromosome studies of subfamily Draconinae.

Species 2n Karyotype NOR Locality References

Acanthosaura armata 32 12m+20mi - Malaysia Ota et al. (2002)
A. meridiona 34 14m+20mi 5qter Thailand This study
Bronchocela cristatella 34 14m+20mi - Singapore Ota et al. (2002)

34 12m/sm+22mi 2qter Asia Solleder and Schmid (1988)
Calotes emma alticristatus 34 12m/sm+22mi 2qter Asia Solleder and Schmid (1988)

34 12m/sm+22mi - Thailand Kritpetcharat et al. (1999)
34 12m+22mi - Malaysia Ota et al. (2002)
34 - - India Singh and Banerjee (2004)

C. jerdoni 34 12m/sm+22mi - India Sharma and Nakhasi (1980)
34 - - India Singh and Banerjee (2004)

C. mystaceus 34 12m/sm+22mi 2qter Asia Solleder and Schmid (1988)
34 12m/sm+22mi - Thailand Kritpetcharat et al. (1999)
34 - - India Singh and Banerjee (2004)
34 10m+2m+22mi 2qter Thailand Patawang et al. (2015)

C. versicolor 34 12m/sm+22mi 2qter Asia Solleder and Schmid (1988)
34 12m/sm+22mi - Thailand Kritpetcharat et al. (1999)
34 12m+22mi Singapore Ota et al. (2002)
34 12m/sm+22mi 2qter Thailand Patawang et al. (2015)

C. vultuosus 32, 34 - - India Singh and Banerjee (2004)
34 12m/sm+22mi - India Sharma and Nakhasi (1980)

Draco cornutus 34 16m+18mi -
D. haematopogon 34 16m+18mi - Malaysia Ota and Hikida (1989)
D. quinquefasciatus 34 16m+18mi -
Diploderma splendidum 34 12m+22mi - China Zongyun et al. (2004)
D. swinhonis 36 

40 
46

10bi+26a
6bi+34a

46a

-
-
-

Central Taiwan
Central Taiwan

Northern Taiwan

Ota (1988)

Gonocephalus 
chamaeleontinus

42 22m+20mi -

G. liogaster 42 22m+20mi -
G. bellii 42 22m+20mi - Malaysia Diong et al. (2000)
G. grandis 42 22m+20mi -
G. robinsonii 32 12m+20mi -
Japalura variegata 34 - - India Singh and Banerjee (2004)
J. varcoae 34 12m+22mi - China Li et al. (1981)
Ptyctolaemus gularis 34 12m/sm+22mi - India Sharma and Nakhasi (1980)

Note: 2n: diploid chromosome number, m: metracentric, sm: submetracentric, a: acrocentric, bi: biarms, mi: microchromosome, and qter: 
long arm of chromosome.
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1–6 base pairs. They are distinguished by the presence 
of repetitive units, which can range from 4 to 40 repeats 
in a sequence (Tautz and Renz 1984; Ellegren 2004; 
Chistiakov et al. 2006). They appear either dispersed or 
clustered in euchromatin and heterochromatin regions, 
widely distributed across eukaryotic genomes. They show 

a significant variation in the number of copies of genet-
ic material (Ellegren 2004). Microsatellite repeat pat-
terns of A. meridiona indicated the presence of specific 
regions on microchromosomes, including pair 13 and 15 
with d(CA)15 repeats, and pair 15 and 16 with d(CGG)10 
repeats. While d(TA)15 and d(CAA)10, showed cumu-
lative signals dispersed throughout the chromosomes 
(Table 3, Figure 3). The microsatellite loci exhibited a 
significant level of evolutionary advancement. Thus, it 
is common for many species to have diverse patterns of 
repeated sequences. Most of them and scattered them 
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Figure 1. Metaphase plates and standardized karyotypes of male 
(A.), female (B.) and Idiogram (C.) of the southern short-horned tree 
dragon, Acanthosaura meridiona, 2n=34 by conventional staining.
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Figure 2. Metaphase plates and standardized karyotypes of male 
(A.), female (B.) and Idiogram (C.) of the southern short-horned 
tree dragon, Acanthosaura meridiona, 2n=34 by Ag-NOR banding, 
arrows indicate NORs.
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Figure 3. Metaphase plates and hybridization patterns with micro-
satellite probes d(CA)15 (A.), d(CGG)10 (B.), d(TA)15 (C.), and 
d(CAA)10 (D.) (red signals) on metaphase plates of the southern 
short-horned tree dragon, Acanthosaura meridiona, 2n=34, chro-
mosomes were counterstained with DAPI (blue).

Table 3. The hybridization patterns with microsatellite probes 
d(CA)15, d(CGG)10, d(TA)15, and d(CAA)10 of the southern short-
horned tree dragon (Acanthosaura meridiona).

Probe Signal

d(CA)15 Pair 13 & 15
d(CGG)10 Pair 15 & 16
d(TA)15 Throughout genome (weak)
d(CAA)10 Throughout genome (strong)
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across the genome (Thongnetr et al. 2019; 2022a; 2022b; 
Khawporntip et al. 2024). However, in certain species, 
they may localize into specific regions (Srikulnath et 
al. 2009; Alam et al. 2021). Interestingly, signals of the 
d(CA)15 probe specifically is on a chromosome of pair 13, 
a finding that is unclear and remains unexplained. This 
suggests that using Fluorescence in situ Hybridisation 
(FISH), the process of mapping cDNA or BAC clones to 
the chromosomes of southern short-horned tree dragon 
has successfully addressed certain constraints (O’Meally 
et al. 2009; Alföldi et al. 2011; Srikulnath et al. 2015; 
Young et al. 2013; Deakin et al. 2016; Badenhorst et al. 
2015). By integrating data from several species, one can 
obtain intra-sequence information that enhances our 
understanding of the evolution of chromosome in lizards. 

In conclusion, we first present the karyotype, NORs 
and microsatellite d(CA)15, d(TA)15, d(CGG)10, and 
d(CAA)10 patterns on the chromosomes of the southern 
short-horned tree dragon. Acanthosaura meridiona has 
2n=34 chromosomes (14 macrochromosomes, and 20 
microchromosomes), NF=46. The karyotype consisting 
of 5 pairs of large metacentric chromosomes, 2 pairs of 
large metacentric chromosomes, and 20 microchromo-
somes. NORs were located on the telomeric region of 
large metacentric macrochromosome pair 5th. Micros-
atellite repeat patterns indicated the presence of specific 
regions on microchromosomes, including pair 13 and 15 
with d(CA)15 repeats, and pair 15 and 16 with d(CGG)10 
repeats. While d(TA)15 and d(CAA)10, showed cumula-
tive signals dispersed throughout the chromosomes. 
This study is valuable for improving our understanding 
of the evolutionary process of agamid lizards and advo-
cating for biodiversity protection in tropical rainforests. 
Moreover, we suggest that more species be studied using 
cytogenetics and that techniques be investigated further 
to gain a deeper understanding of chromosomal diver-
sity and evolution within this genus.
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