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Abstract. Chromosome studies were conducted on bat species in the Nsukka Local 
Government Area of Enugu State, Nigeria, to determine their karyotypes and assess 
relatedness. Chromosomes were isolated from the bone marrow and testes of various 
bat species using 0.4% colchicine for cell division arrest. A calibrated eye-piece grati-
cule was used for counting and measuring chromosomes from prepared slides. Cal-
culations for arm ratios and centromeric indices were performed to categorize chro-
mosomes, and ideograms were created based on these measurements. Standard karyo-
types for each species were established using photomicrographs of mitotic metaphase 
chromosomes. A total of eight bat species were sampled, representing the suborders 
Yinpterochiropera and Yangochiroptera. The species included Epomophorus wahlbergi, 
Epomophorus gambianus, Microteropus pusillus from Yinpterochiropera, and Nycteris 
major, Nycteris grandis, Nycteris arge, Scotophilus diaganii, and Scotophilus leucogaster 
from Yangochiroptera. The diploid chromosome numbers (2n) and fundamental num-
bers (FN) were as follows: Epomophorus wahlbergi (2n=35, FN=70), Epomophorus 
gambianus (2n=36, FN=79), Microteropus pusillus (2n=36, FN=79), Nycteris major 
(2n=40, FN=80), Nycteris grandis (2n=42, FN=82), Nycteris arge (2n=40, FN=78), Sco-
tophilus diaganii (2n=36, FN=45), and Scotophilus leucogaster (2n=36, FN=54). Vari-
ations in 2n and FN were attributed to centric fission and loss of p arm segments in 
some chromosomal pairs, leading to different morphological traits observed in the bat 
species. The study highlights the rich diversity of bat species in Nsukka and supports 
the use of karyotyping as an effective method for species differentiation.

Keywords:	 chromosomes, megabats, centric fission, Epomophorus, Microteropus, Nyc-
teris, Scotophilus.

INTRODUCTION

Bats, constituting a significant percentage of living mammals, belong to 
the order Chiroptera, which is the second most diverse order of mammals 
(Wilson and Reeder 2005; Stevens and Willig 2002; Simmons and Conway 
2003). They exhibit unique adaptations such as flight, echolocation, and a 
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wide range of ecological roles, feeding on various food 
sources like fish, insects, blood, nectar, and fruit (Fenton 
et al. 2016; Teeling et al. 2012). Bats play essential eco-
logical roles, including seed dispersal, pest control, and 
pollination of crops (e.g., agave for tequila production) 
(McCracken et al. 2012; Bumrungsri et al. 2013).

Bats are also known reservoirs for several deadly 
viruses, including Ebola, SARS, rabies, and MERS, often 
remaining asymptomatic (Wang et al. 2011; Drexler et 
al. 2012; Anthony et al. 2017). Remarkably, they have 
long lifespans and low cancer rates, which may provide 
insights into aging and longevity (Austad 2010; Wang et 
al. 2011).

The taxonomic classification of bats has evolved, 
with a shift from the “wide” polytypic to the “narrow” 
monotypic species concept due to advancements in mor-
phological and karyological techniques (Strelkov 2006; 
Kruskop 2005). Recent taxonomic revisions have identi-
fied 14 new Far Eastern bat species (Kruskop et al. 2012; 
Ruedi et al. 2015). However, African bats remain under-
researched, with over 70% of fossil data missing, compli-
cating conservation efforts (Teeling et al. 2012).

This study aimed to investigate the cytotaxonomy 
of bat species in Nsukka LGA, Enugu State, Nigeria, by 
determining chromosome numbers and characteristics, 
constructing karyotypes, and assessing species related-
ness, addressing the lack of cytotaxonomic data in this 
region.

MATERIALS AND METHODS

The study was conducted in the Nsukka Local Gov-
ernment Area (LGA) of Enugu State, Nigeria, within 
the northern senatorial zone (Figure 1). Nsukka LGA 
is characterized by its green, steep terrain and includes 
villages such as Alor-Uno, Ede-Oballa, and Okpuje, cov-
ering an area of 1,810 km² with a population of 309,448 
(ANON, 2006). The study sites included Obimo, Ibagwa-
Ani, Nsukka, and Obukpa (Figure 2).

DATA ANALYSIS

The data collected were analyzed based on observa-
tions from Abraham and Prasad (1983) and Adegoke and 
Ejere (1991). These observations facilitated the classifica-
tion of chromosomes into four groups: metacentric, sub-
metacentric, subtelocentric, and acrocentric. Additional-
ly, the relationships among the species were determined 
by measuring the chromosomes’ relative lengths and 
centromeric indices.

Trapping of experimental animals

Bats were trapped using a triple high mist net and 
a harp trap, following methods from Denys et al. (2013). 
Traps were set across potential flight paths for one night, 
checked every 10 to 20 minutes to prevent entanglement. 
Two bats (one male and one female) from each species 
were sacrificed for chromosome studies, with an addi-
tional specimen kept as a voucher.

Experimental design

The standard colchicine method was employed to 
prepare metaphase chromosome samples, following the 
protocol of Ejere and Adegoke (2001) with slight modi-
fications. This procedure involved administering an 
intraperitoneal injection of 0.1 ml of 0.4% colchicine 
to each bat species for 2 hours to halt mitotic cell divi-
sion. After euthanizing the bats with iso-fluorine, the 
hind leg bones were dissected and trimmed. Bone mar-
row was extracted using a heparinized syringe contain-
ing 3 ml of 0.55% KCl, which was then placed in labeled 
15 ml centrifuge tubes, homogenized, and allowed to 
sit for 15 minutes. The resulting suspensions were cen-
trifuged for 5 minutes at 1500 rpm, and the supernatant 
was discarded, leaving 0.5 ml of liquid in which the cells 
were resuspended. The cells were fixed with fresh cold 

Figure 1. Map of Enugu State showing Nsukka local government 
area. Source: Geospatial Analysis Mapping and Environmental 
Research Solution (2018). 
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Carnoy’s fixative and allowed to sit for about 30 seconds 
before undergoing centrifugation again, with the super-
natant removed. This centrifugation process in the fixa-
tive was repeated twice more, after which the cells were 
resuspended and diluted with the fixative prior to being 
spread on glass slides. The slides were stained in a Cop-
lin jar with 5 ml of Giemsa stain for 30 minutes, rinsed 
with tap water, and then placed in a slide warmer at 60 
°C for 2 hours. Stained slides were examined for divid-
ing cells under a light microscope at 10x magnification. 
Well-separated, countable metaphase chromosomes were 
measured and photographed under oil immersion at 
approximately 1000x magnification. The resulting pho-
tomicrographs were used to construct karyotypes (Ade-
goke and Ejere 1991; Ejere and Adegoke 2001).

Morphological identification

Morphological identification was performed accord-
ing to Happold and Happold (2013), and specimens were 
deposited at the University of Nigeria’s Zoology Muse-
um, tagged Ew, Ep, Mp, Nm, Ng, Na, Sa, and Sl.

Ethical approval

Ethical standards were upheld as per the Faculty of 
Biological Science Ethics and Biosafety Committee, Uni-
versity of Nigeria, Nsukka (Ref. Number: UNN/FBS/
EC/1013).

RESULTS

During the study, various species of bats from the 
families Yinpterochiropera and Yangochiroptera were 
identified in Nsukka LGA. The Yinpterochiropera fam-
ily included Epomophorus wahlbergi, Epomophorus gam-
bianus, and Microteropus pusillus, while the Yangochi-
roptera family featured Nycteris major, Nycteris grandis, 
and Nycteris arge. The Vespertilionidae family included 
Scotophilus leucogaster and Scotophilus diaganii. Table 
1 presents the chromosomal numbers and fundamental 
numbers (FN) along with karyotype diagrams.

For each bat species analyzed, distinct karyotypes 
were established based on size. For example, in Epomo-
phorus wahlbergi, the karyotype was categorized into 
three groups, with group one comprising four large 

Figure 2. Map of Nsukka Local Government Area showing the study area (Obimo, Ibagwa-ani, Nsukka and Obukpa).
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chromosomes, group two including medium-sized chro-
mosomes, and group three consisting of smaller chromo-
somes (Table 2). Similarly, Epomophorus gambianus and 
Microteropus pusillus displayed comparable karyotypic 
structures, with varying numbers of chromosomes in 
each size category (Tables 3 and 4).

Nycteris major, Nycteris grandis, and Nycteris arge 
were also analyzed, revealing three main size groups 
in their karyotypes (Tables 5, 6 and 7). For Nycteris 
major, it was noted that males and females had dis-
tinct chromosome arrangements and FN. Compari-

sons between species showed that Yinpterochiropteran 
bats shared similarities, particularly in their larger 
chromosomes. Notably, Epomophorus wahlbergi and 
Epomophorus gambianus had similar chromosome 
structures, especially in larger and some medium-
sized chromosomes.

Scotophilus diaganii and Scotophilus leucogaster each 
had a single large chromosome (Tables 8 and 9), while 
other species exhibited a range of large and small chro-
mosomes, indicating potential phylogenetic relation-
ships. Differences in chromosomal counts and struc-

Table 1. Diploid chromosome and fundamental numbers of various sampled bat species from Nsukka LGA, Nigeria.

S/N Bat species Mitotic metaphase 
chromosome spread Karyotype Diagram

Diploid 
chromosome 

number

Funda-mental 
number (FN)

1. Epomophorus wahlbergi Plate 1A Plate 1B Plate 1C 2n=35 70
2. Epomophorus gambianus Plate 2A Plate 2B Plate 2C 2n=36 79
3. Epomophorus (Microteropus) pusillus Plate 3A Plate 3B Plate 3C 2n=36 79

4. Nycteris major Plate 4A & Plate 4B Plate 4C (male) & 
Plate 4D (female) 

Plate 4E (male) & 
Plate 4F (female) 2n=40 80

5. Nycteris grandis Plate 5A Plate 5B (female) Plate 5C 2n=42 82
6. Nycteris arge Plate 6A Plate 6B Plate 6C 2n=40 78
7. Scotophilus diaganii Plate 7A Plate 7B Plate 7C 2n=36 45
8. Scotophilus leucogaster Plate 8A Plate 8B Plate 8C 2n=36 54

Table 2. Epomophorus wahlbergi’s chromosomal nomenclature based on centromeric indices.

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 5.40 9.00 14.40 37.50 Nearly submedian (-) 
2.	  7.20 7.20 14.40 50.00 Median 
3.	  6.30 7.20 13.50 46.67 Nearly median
4.	  4.50 7.20 11.70 38.46 Nearly median 
5.	  3.60 6.30 9.90 36.36 Nearly submedian (-)
6.	  2.80 6.56 9.36 29.91 Nearly submedian (-)
7.	  3.60 5.76 9.36 38.46 Nearly median 
8.	  3.96 5.40 9.36 42.31 Nearly median 
9.	  3.60 5.40 9.00 40.00 Nearly median 
10.	  2.60 6.40 9.00 28.89 Nearly submedian (-) 
11.	  2.50 5.60 8.10 30.86 Nearly submedian (-)
12.	  3.60 4.32 7.92 45.45 Nearly median 
13.	  2.70 3.60 6.30 42.86 Nearly median 
14.	  2.70 3.60 6.30 42.86 Nearly median 
15.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
16.	  1.80 1.80 3.60 50.00 Median 
17.	  1.80 1.80 3.60 50.00 Median
X. 3.60 3.60 7.20 50.00 Median

The chromosomal centromeric index (i) was calculated using the method i = 100s/c. In the above table, the chromosome lengths were 
measured in microns as described under materials and methods, and then individually converted to percentages of total complement
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tural characteristics were highlighted, with telocentric 
chromosomes prevalent in the Scotophilus species. Table 
10 summarizes that all bat species had at least one large 

chromosome, with specific similarities and differences 
noted in their karyotypic features (Figure 3).

Table 3. Epomophorus gambianus chromosomal nomenclature based on centromeric indices.

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 5.40 7.20 12.60 42.86 Nearly median 
2.	  6.30 6.30 12.60 50.00 Median
3.	  5.40 6.84 12.24 44.12 Nearly median
4.	  5.40 6.30 11.70 46.15 Nearly median
5.	  3.60 6.30 9.90 36.36 Nearly submedian (-)
6.	  2.50 7.40 9.90 25.25 Nearly submedian (-)
7.	  3.60 6.30 9.90 36.36 Nearly submedian (-)
8.	  3.60 5.40 9.00 40.00 Nearly median
9.	  4.50 4.50 9.00 50.00 Median 
10.	  3.60 5.40 9.00 40.00 Nearly median
11.	  3.60 4.50 8.10 44.44 Nearly median
12.	  2.70 3.96 6.66 40.54 Nearly median
13.	  1.50 3.60 5.40 33.33 Nearly submedian (-)
14.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
15.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
16.	  0.80 2.80 3.60 22.22 Nearly submedian (+) 
17.	  0.00 3.60 3.60 0.00 Terminal
X. 3.78 3.78 7.56 50.00 Median
X. 3.78 3.78 7.56 50.00 Median

Table 4. The nomenclature of the chromosomes of Epomophorus (Microteropus) pusillus using the centromeric indices. 

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 6.40 8.00 14.40 44.44 Nearly median
2.	  7.20 7.20 14.40 50.00 Median 
3.	  6.30 7.20 13.50 46.67 Nearly median
4.	  4.50 5.40 9.90 45.45 Nearly median
5.	  4.14 5.40 9.54 43.40 Nearly median
6.	  3.60 5.76 9.36 38.46 Nearly median 
7.	  3.60 5.76 9.36 38.46 Nearly median 
8.	  1.80 5.76 7.56 23.81 Nearly submedian (+)
9.	  2.20 5.36 7.56 29.10 Nearly submedian (-) 
10.	  3.60 3.96 7.56 47.62 Nearly median 
11.	  3.60 3.60 7.20 50.00 Median 
12.	  3.40 3.80 7.20 47.22 Nearly median
13.	  2.70 3.60 6.30 42.86 Nearly median 
14.	  1.80 2.70 4.50 40.00 Nearly median 
15.	  1.80 2.70 4.50 40.00 Nearly median 
16.	  1.80 1.80 3.60 50.00 Median 
17.	  0.00 3.60 3.60 0.00 Terminal
X. 3.60 3.60 7.20 50.00 Median
X. 3.60 3.60 7.20 50.00 Median
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Table 5. The nomenclature of the chromosomes of Nycteris major using the centromeric indices. 

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 5.40 9.90 15.30 35.29 Nearly sub-median (-)
2.	  5.40 8.64 14.04 38.46 Nearly median 
3.	  6.30 6.30 12.60 50.00 Median 
4.	  5.40 5.40 10.80 50.00 Median 
5.	  3.60 7.20 10.80 33.33 Nearly submedian (-)
6.	  3.60 6.30 9.90 36.36 Nearly submedian (-)
7.	  2.40 7.50 9.90 24.24 Nearly submedian (+)
8.	  3.60 5.76 9.36 38.46 Nearly median 
9.	  3.60 5.76 9.36 38.46 Nearly median 
10.	  3.60 5.40 9.00 40.00 Nearly median 
11.	  3.60 4.50 8.10 44.44 Nearly median 
12.	  1.80 6.30 8.10 22.22 Nearly sub median (+)
13.	  1.80 5.40 7.20 25.00 Submedian 
14.	  3.42 3.78 7.20 24.62 Nearly submedian (+)
15.	  2.70 3.60 6.30 42.86 Nearly median 
16.	  2.70 3.60 6.30 42.86 Nearly median 
17.	  2.70 3.60 6.30 42.86 Nearly median 
18.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
19.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
X. 3.60 3.60 7.20 50.00 Median
X. 3.60 3.60 7.20 50.00 Median
Y. 0.00 3.60 3.60 0.00 Terminal

Table 6. The nomenclature of the chromosomes of Nycteris grandis using the centromeric indices. 

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 7.20 9.00 16.20 44.44 Nearly median 
2.	  7.20 7.20 14.40 50.00 Median 
3.	  6.75 6.75 13.50 50.00 Median 
4.	  6.30 6.30 12.60 50.00 Median 
5.	  6.30 6.30 12.60 50.00 Median 
6.	  5.40 7.20 12.60 42.86 Nearly median 
7.	  5.85 5.85 11.70 50.00 Median 
8.	  4.50 6.84 11.34 39.68 Nearly median 
9.	  3.96 7.20 11.16 34.14 Nearly submedian (-)
10.	  5.04 5.40 10.80 46.67 Nearly median
11.	  4.50 5.40 9.90 45.45 Nearly median 
12.	  3.60 6.30 9.90 36.36 Nearly submedian (-)
13.	  1.80 7.20 9.00 20.00 Nearly submedian (+)
14.	  3.60 5.40 9.00 36.36 Nearly submedian (-)
15.	  2.80 6.20 9.00 31.11 Nearly submedian (-)
16.	  1.80 7.20 9.00 20.00 Nearly submedian (+)
17.	  3.60 5.40 9.00 36.36 Nearly submedian (-)
18.	  2.70 3.60 6.30 42.86 Nearly median 
19.	  2.70 3.60 6.30 42.36 Nearly median 
20.	  0.00 2.70 2.70 0.00 Terminal 
 X. 3.80 3.80 7.60 50.00 Median
 X. 3.80 3.80 7.60 50.00 Median
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Table 7. The nomenclature of the chromosomes of Nycteris arge using the centromeric indices 

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 5.40 9.00 14.40 37.50 Nearly submedian (-)
2.	  5.40 7.20 12.60 42.86 Nearly median 
3.	  3.60 7.20 10.80 33.33 Nearly submedian (-)
4.	  5.40 5.40 10.80 50.00 Median 
5.	  3.96 5.40 9.36 42.31 Nearly median 
6.	  3.60 5.76 9.36 38.46 Nearly median 
7.	  3.78 5.40 9.18 41.18 Nearly median 
8.	  3.60 5.40 9.00 40.00 Nearly median 
9.	  3.60 5.40 9.00 40.00 Nearly median 
10.	  3.60 5.04 8.64 41.67 Nearly median 
11.	  3.60 4.50 8.10 44.44 Nearly median 
12.	  3.60 4.32 7.92 45.45 Nearly median 
13.	  3.60 3.60 7.20 50.00 Median
14.	  3.00 4.20 7.20 41.67 Nearly median
15.	  2.40 4.80 7.20 33.33 Nearly submedian (-) 
16.	  3.24 3.60 6.84 47.37 Nearly median
17.	  2.88 3.60 6.48 44.44 Nearly median 
18.	  2.70 3.60 6.30 43.86 Nearly median 
19.	  0.00 3.60 5.40 0.00 Terminal
X. 3.60 3.60 7.20 50.00 Median
X. 3.60 3.60 7.20 50.00 Median

Table 8. The nomenclature of the chromosomes of Scotophilus diagonal using the centromeric indices

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 5.20 5.60 10.80 48.15 Nearly median 
2.	  3.60 5.40 9.00 40.00 Nearly median 
3.	  2.20 5.00 7.20 30.56 Nearly submedian (-) 
4.	  1.80 5.40 7.20 25.00 Submedian 
5.	  0.00 6.30 6.30 0.00 Terminal 
6.	  0.00 6.30 6.30 0.00 Terminal 
7.	  0.00 6.30 6.30 0.00 Terminal 
8.	  0.00 6.30 6.30 0.00 Terminal 
9.	  0.00 6.30 6.30 0.00 Terminal
10.	  0.00 6.30 6.30 0.00 Terminal 
11.	  0.00 6.30 6.30 0.00 Terminal 
12.	  0.00 6.30 6.30 0.00 Terminal 
13.	  0.00 6.30 6.30 0.00 Terminal 
14.	  0.00 5.40 5.40 0.00 Terminal 
15.	  0.00 5.40 5.40 0.00 Terminal 
16.	  0.00 4.50 4.50 0.00 Terminal 
17.	  0.00 4.50 4.50 0.00 Terminal 
X. 2.80 2.80 5.60 50.00 Median
Y. 0.00 3.60 3.60 0.00 Terminal
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Table 9. The nomenclature of the chromosomes of Scotophilus lecuogaster using the centromeric indices

Chromosome 
Number

Short Arm 
(S) %

Long Arm 
(L) Total Length (C) % Centromeric Index 

(I) Nomenclature

1.	 5.40 6.30 11.70 46.15 Nearly median 
2.	  4.50 5.40 9.90	 45.45 Nearly median
3.	  3.60 5.40 9.00 40.00 Nearly median
4.	  1.80 7.20 9.00 20.00 Nearly submedian (+)
5.	  2.70 5.40 8.10 33.33 Nearly sub median (-)
6.	  0.00 8.10 8.10 0.00 Terminal
7.	  0.00 7.20 7.20 0.00 Terminal 
8.	  0.00 7.20 7.20 0.00 Terminal 
9.	  0.00 7.20 7.20 0.00 Terminal 
10.	  0.00 7.20 7.20 0.00 Terminal 
11.	  3.00 4.20 7.20 41.67 Nearly median 
12.	  0.00 7.20 7.20 0.00 Terminal 
13.	  0.00 6.64 6.84 0.00 Terminal 
14.	  0.00 6.84 6.84 0.00 Terminal 
15.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
16.	  1.80 3.60 5.40 33.33 Nearly submedian (-)
17.	  0.00 3.60 3.60 0.00 Terminal 
X. 4.05 4.05 8.10 50.00 Median
X. 4.05 4.05 8.10 50.00 Median

Table 10. A table showing the relationship among the bat species using autosomal chromosomes

Chromosome 
Number

Epomophorus 
wahlbergi

Epomophorus 
gambianus

Microteropus 
pusillus

Nycteris 
major

Nycteris 
grandis

Nycteris 
species Nycteris arge

Scotophilus 
diaganii 
(yellow-

bellied bat)

Scotophilus 
lecuogaster 

(white-bellied 
bat)

1.	  L, Sm L, Sm L, Sm L, Ac L, Sm L, Ac L, Ac L, Mc L, Sm
2.	  L, Mc L, Mc L, Mc L, Sm L, Mc L, Ac L, Sm M, Sm M, Sm
3.	  L, Sm L, Sm L, Sm L, Mc L, Mc L, Ac L, Ac M, Tc M, Sm
4.	  L, Sm L, Sm M, Sm L, Mc L, Mc L, Sm L, Mc M, Ac M, Sm
5.	  M, Ac M, Ac M, Sm L, Ac L, Mc L, Sm M, Sm S, Tc M, Sm
6.	  M, Ac M, Ac M, Sm M, Ac L, Sm L, Ac M, Sm S, Tc M, Ac
7.	  M, Sm M, Ac M, Sm M, Ac L, Mc L, Ac M, Sm S, Tc M, Tc
8.	  M, Sm M, Sm M, Ac M, Mc L, Sm L, Mc M, Sm S, Tc M, Tc
9.	  M, Sm M, Mc M, Ac M, Mc L, Ac L, Sm M, Sm S, Tc M, Tc
10.	  M, Ac M, Sm M, Sm, M, Mc L, Sm M, Ac M, Sm S, Tc M, Tc
11.	  M, Ac M, Sm M, Mc M, Mc M, Sm M, Sm M, Sm S, Tc M, Tc
12.	  M, Sm S, Sm M, Sm M, Ac M, Ac M, Sm M, Sm S, Tc M, Tc
13.	  S, Mc S, Ac M, Ac M, Ac M, Ac M, Sm M, Mc S, Tc S, Tc
14.	  S, Sm S, Ac S, Sm M, Ac M, Ac M, Sm M, Sm S, Tc S, Tc
15.	  S, Ac S, Ac S, Sm S, Sm M, Ac M, Sm M, Sm S, Tc S, Ac
16.	  S, Mc S, Ac S, Sm S, Sm M, Ac M, Sm S, Sm S, Tc S, Ac
17.	  S, Mc S, Tc S, Tc S, Sm M, Ac M, Sm S, Sm S, Tc S, Tc
18.	     S, Ac S, Sm S, Sm S, Sm   
19.	     S, Ac S, Sm S, Tc S, Ac   
20.	      S, Tc S, Tc    
21.	       S, Tc    

Key: L = Large; M = Medium; S = Small; Submetacentric = Sm; Metacentric = Mc; Acrocentic = Ac; Telocentric =Tc.
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DISCUSSION

This study identified bat species from the Megachi-
roptera (frugivorous bats) and Microchiroptera (insec-
tivorous bats), each exhibiting one large chromosome. 
The diploid chromosome number (2n) of the bat species 
analyzed ranged from 35 to 42, aligning with the known 
chromosome diversity in bats (2n=14 to 64) (Cibele et al. 
2017). This indicates a high degree of conservation in 
diploid chromosome numbers among bat groups (Cibele 
et al. 2017).

The Pteropodidae family (fruit bats) displayed a 
chromosome range of 35-36, similar to the 2n range of 
24-58 reported by Sotero-Caio et al. (2017). Specifically, 
Epomophorus wahlbergi was found to have 2n=35 and 
FN=70, differing from Kenyan and Zimbabwean species 
with 2n=36, FN=68 (Dulic and Mutere 1975; Peterson 
and Nagorsen 1975). This study confirms Epomopho-
rus wahlbergi follows the X0 sex chromosome system. 

Epomophorus gambianus exhibited 2n=36 and FN=70, 
aligning with the XX system for Epomophorus species. 
Microteropus pusillus currently known as Epomophorus 
pusillus also displayed 2n=36 and FN=70, contrasting 
with prior reports of 2n=35, FN=64 in Cameroon (Haid-
uk et al. 1981).

The Nycteridae family was characterized by varying 
diploid numbers, with Nycteris major showing 2n=40 
(FN=79 for males, FN=80 for females) and Nycteris 
grandis reported as 2n=42 (FN=82) (Porter et al. 2010). 
There were notable morphological and chromosomal 
differences observed among species within this fam-
ily, which is classified into Nycteris with diploid counts 
ranging from 2n=34 to 42 (Denys et al. 2013).

In the Vespertilionidae family, Scotophilus diaganii 
presented 2n=36 and FN=45, consistent with South Afri-
can specimens but differing in FN (52 and 50) reported by 
Schlitter et al. (1980) and Ruedas et al. (1990). Scotophilus 
leucogaster’s karyotype showed 2n=36, FN=54, differing 

Figure 3. Cluster relationship of the bat species using chromosomal indices.
Key:
• Epomophorus wahlbergi = E.w.,
• Epomophorus gambianus = E.g., 
• Microteropus pusillus = M.p.,
• Nycteris major = N.m., 
• Nycteris grandis = N.g., 
• Nyceris arge = N.a., 
• Sctotophilus diaganii = S.d., and Scotophilus lecuogaster = s.l
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from reports of 50 for specimens in Namibia and Burkina 
Faso (Ruedas et al. 1990; Volleth et al. 2006).

The chromosomes of these bat species differ from 
those of lizards, suggesting genus-specific variations. As 
research advances to molecular levels, previously mis-
classified species are being correctly positioned within 
taxonomic frameworks, revealing geographic influences 
on chromosomal variations (Foley et al. 2017). Notable 
patterns of karyotype similarities were identified across 
species, potentially linked to cryptic species and geo-
graphical isolation (Cibele et al. 2017).

In summary, this detailed study of the cytogenetics 
of bat species in Nsukka reported karyotypes for eight 
species: Epomophorus wahlbergi (2n=35), Epomophorus 
gambianus (2n=36), Microteropus pusillus (2n=36), Nyc-
teris major (2n=40), Nycteris grandis (2n=42), Nycteris 
arge (2n=40), Scotophilus diaganii (2n=36), and Scotophi-
lus leucogaster (2n=36). Further research utilizing mod-
ern cytogenetic techniques is needed to fill knowledge 
gaps in this field.
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Plate 1A . Mitotic metaphase chromosome of Epomophorus 
wahlbergi;Sex. Female.

Plate 1B. The karyotype of Epomophorus wahlbergi.

Plate 1C. A diagram of Epomophorus wahlbergi.
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Plate 2B. The karyotype of Epomophorus gambianus.

Plate 2A. Mitotic metaphase chromosome of Epomophorus gambi-
anus; Sex. Female. Plate 2C. A diagram of Epomophorus gambianus.
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Plate 3A. Mitotic metaphase chromosome of Microteropus pusillus; 
Sex. Female.

Plate 3B. The karyotype of Microteropus pusillus.

Plate 3C. A diagram of Microteropus pusillus.
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Plate 4F. A diagram of Nycteris major; Sex. Female.

Plate 4A. Mitotic metaphase chromosome of Nycteris major; Sex. Male.

Plate 4B. Mitotic metaphase chromosome of Nycteris major; Sex. 
Female.

Plate 4C. The karyotype of Nycteris major; Sex. Male.

Plate 4D. The karyotype of Nycteris major; Sex. Female.

Plate 4E. A diagram of Nycteris major; Sex. Male.
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Plate 5B. The karyotype of Nycteris grandis; Sex. female.

Plate 5A. Mitotic metaphase chromosome of Nycteris grandis; Sex. 
Female.

Plate 5C. A diagram of Nycteris grandis.
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Plate 6B. The karyotype of Nycteris arge.

Plate 6C. A diagram of Nyceris arge.

Plate 6A. Mitotic metaphase chromosome of Nycteris arge; Sex. 
Female.
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Plate 7A. Mitotic metaphase chromosome of Scotophilus diaganii; 
Sex. Male.

Plate 7C. A diagram of Sctotophilus diaganii.

Plate 7B. The karyotype for Scotophilus diaganii.
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Pate 8B. The karyotype for Scotophilus leucogaster.

Plate 8A. Mitotic metaphase chromosome of Scotophilus leu-
cogaster; Sex. Female.

Plate 8C. A diagram of Scotophilus leucogaster.
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Material 1. Ideogram of the karyotype of Epomophorus wahlbergi showing. (A) length variations (xxy shows sex chromosome of the male 
bat) and (B) centromeric locations.

								        A)� B)

Material 2. Ideogram of the karyotype of Epomophorus gambianus showing. (A) length variations (xx shows sex chromosome of the female 
bat) and (B) centromeric locations.

							       A)� B)

Material 3. Ideogram of the karyotype of Microteropus pusillus showing. (A) length variations (xx shows sex chromosome of the female 
bat) and (B) centromeric locations.

							       A)� B)

APPENDIX
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Material 4. Ideogram of the karyotype of Nycteris major showing. (A) length variations (xy shows sex chromosome of the male bat) and 
(B) centromeric locations. 

							       A)� B)

Material 5. Ideogram of the karyotype of Nycteris grandis showing. (A) length variations (xx shows sex chromosome of the female bat) and 
(B) centromeric locations. 

							       A)� B)

Material 6. Ideogram of the karyotype of Nycteris sp. showing. (a) length variations (xx shows sex chromosome of the female bat) and (b) 
centromeric locations.

							       A)� B)
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Material 7. Ideogram of the karyotype of Nycteris arge showing. (A) length variations (xx shows sex chromosome of the female bat) and 
(B) centromeric locations.

							       A)� B)

							       A)� B)

Material 8. Ideogram of the karyotype of Scotophilus diaganii showing. (A) length variations (xy shows sex chromosome of the male bat) 
and (B) centromeric locations. 

							       A)� B)

Material 9: Ideogram of the karyotype of Scotophilus lecuogaster showing: (A) length variations (xy shows sex chromosome of the male 
bat) and (B) centromeric locations.
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Material 10. Giemsa Stain Preparation.

0.5g of Giemsa powder was dissolved in 33ml glycerol and kept in an Erlmyer bottle in a dark compartment overnight. The next day, it 
was heated in a water bath set at 60°C for 2 hours and allowed to cool, after which 33 ml of methanol was added and thoroughly mixed. 
This solution was then stored in an amber-coloured bottle as the stock Giemsa stain. 6% of the stock Giemsa stain was diluted as described 
below: 
3 ml of the Giemsa stain, was diluted to 50 ml in Phosphate buffer, P.H. 6.8. The phosphate buffer was prepared fresh each time before 
usage by mixing 25 ml each of 9.464g of M/15 Na2HPO4 and 9.073g of M/15 KH2PO4, simultaneously.

Material 11. Chromosome Nomenclature in Relation to Centrometric Indices (Abraham and Prasad, 1982).

Nomenclature Notation R1 S/L R2 L/S I1 100s/c I2 100L/C

Median M 1.00 1.00 50.00 50.00
Nearly median Nm 0.99–0.61 1.01–1.63 49.99–38.01 50.01–61.99
Nearly submedian nsm(-) 0.60–0.34 1.64–2.99 38.00–25.00 62.00–74.99
Sub-median SM 0.33 3.00 25.00 75.00
Nearly submedian nsm(+) 0.32–0.23 3.01–4.26 24.95–18.20 75.01–81.80
Nearly subterminal nst(-) 0.22–0.15 4.27–6.99 18.10–12.51 81.81–87.49
Subterminal ST. 0.14 7.00 12.50 87.50
Nearly subterminal nst(+) 0.13–0.07 7.01–14.38 12.49–5.01 87.51–94.99
Nearly terminal nt 0.06–0.01 14.39–19.99 5.00–0.01 95.00–99.99
Terminal T 0.00 0.00 0.00 100.00


