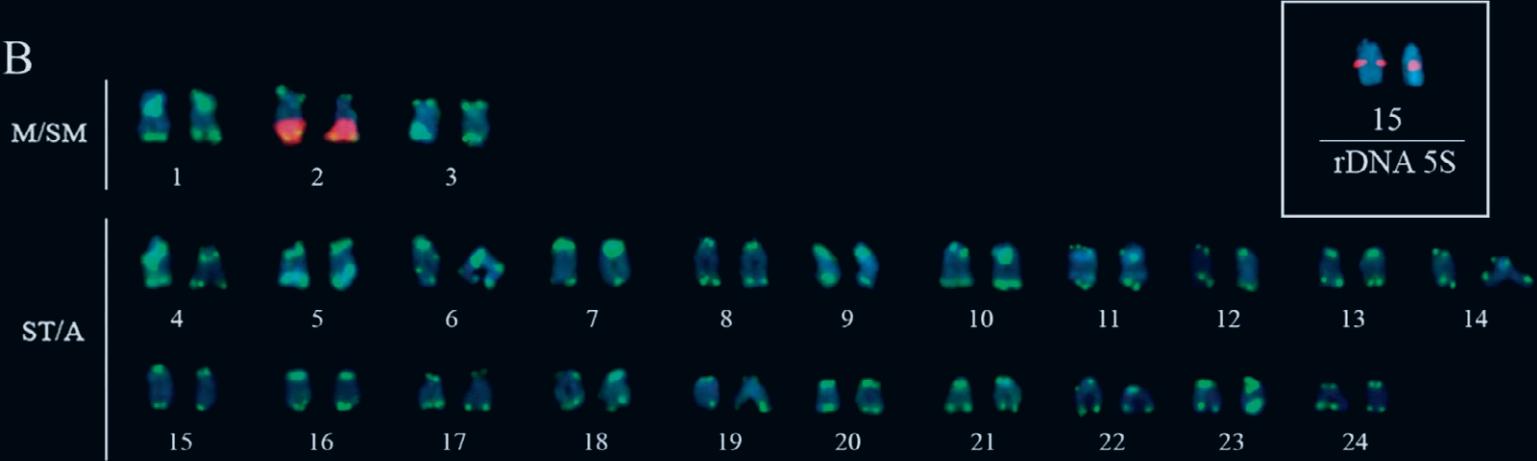
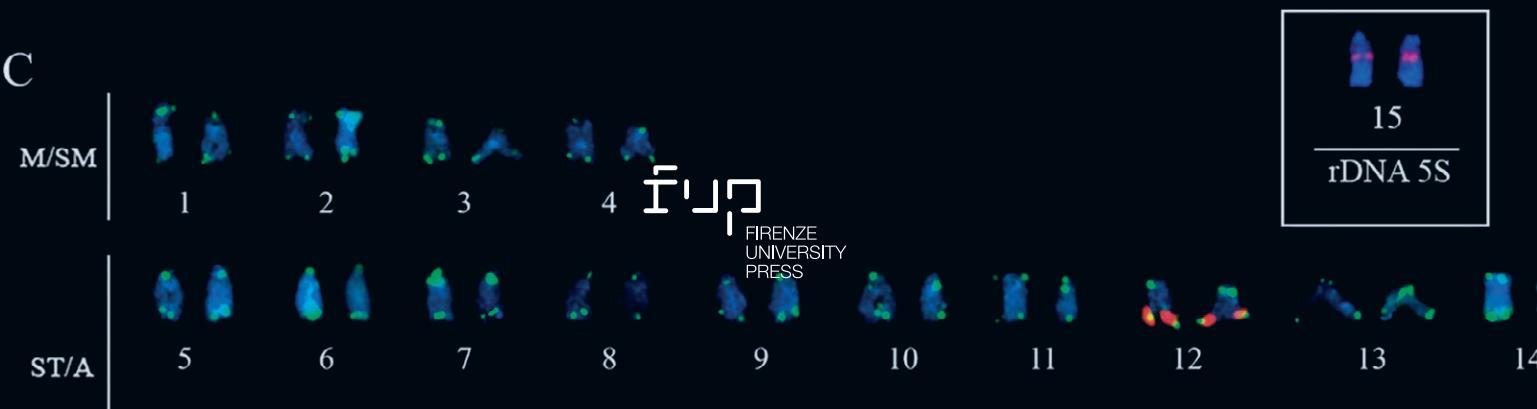


2025
Vol. 78 - n. 2


Caryologia

International Journal of Cytology,
Cytosystematics and Cytogenetics


A

B

C

Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics

Caryologia is devoted to the publication of original papers, and occasionally of reviews, about plant, animal and human karyological, cytological, cytogenetic, embryological and ultrastructural studies. Articles about the structure, the organization and the biological events relating to DNA and chromatin organization in eukaryotic cells are considered. *Caryologia* has a strong tradition in plant and animal cytosystematics and in cytotoxicology. Bioinformatics articles may be considered, but only if they have an emphasis on the relationship between the nucleus and cytoplasm and/or the structural organization of the eukaryotic cell.

Editor in Chief

Alessio Papini

Dipartimento di Biologia Vegetale

Università degli Studi di Firenze

Via La Pira, 4 – 0121 Firenze, Italy

Associate Editors

Alfonso Carabez-Trejo - Mexico City, Mexico

Katsuhiko Kondo - Hagishi-Hiroshima, Japan

Canio G. Vosa - Pisa, Italy

Subject Editors

MYCOLOGY

Renato Benesperi

Università di Firenze, Italy

PLANT CYTOGENETICS

Lorenzo Peruzzi

Università di Pisa

HISTOLOGY AND CELL BIOLOGY

Alessio Papini

Università di Firenze

HUMAN AND ANIMAL CYTOGENETICS

Michael Schmid

University of Würzburg, Germany

PLANT KARYOLOGY AND PHYLOGENY

Andrea Coppi

Università di Firenze

ZOOLOGY

Mauro Mandrioli

Università di Modena e Reggio Emilia

Editorial Assistant

Sara Falsini

Università degli Studi di Firenze, Italy

Editorial Advisory Board

G. Berta - Alessandria, Italy

D. Bizzaro - Ancona, Italy

A. Brito Da Cunha - Sao Paulo, Brazil

E. Capanna - Roma, Italy

D. Cavalieri - San Michele all'Adige, Italy

E. H. Y. Chu - Ann Arbor, USA

R. Cremonini - Pisa, Italy

M. Cresti - Siena, Italy

G. Cristofolini - Bologna, Italy

P. Crosti - Milano, Italy

G. Delfino - Firenze, Italy

S. D'Emerico - Bari, Italy

F. Garbari - Pisa, Italy

C. Giuliani - Milano, Italy

M. Guerra - Recife, Brazil

W. Heneen - Svalöf, Sweden

L. Iannuzzi - Napoli, Italy

J. Limon - Gdansk, Poland

J. Liu - Lanzhou, China

N. Mandahl - Lund, Sweden

M. Mandrioli - Modena, Italy

G. C. Manicardi - Modena, Italy

P. Marchi - Roma, Italy

M. Ruffini Castiglione - Pisa, Italy

L. Sanità di Toppi - Parma, Italy

C. Steinlein - Würzburg, Germany

J. Vallès - Barcelona, Catalonia, Spain

Q. Yang - Beijing, China

COVER: figure from the article inside by da Silva Fraude, L. F. et al. "Divergence in the chromosomal distribution of repetitive sequences in Neotropical cichlid species of the genus *Lugubria*", showing double FISH with telomeric sequence probes and 18S rDNA sequence probes in the karyotype of *L. cincta*, *L. strigata*, and *L. lugubris*.

Caryologia

**International Journal of Cytology,
Cytosystematics and Cytogenetics**

Volume 78, Issue 2 - 2025

Firenze University Press

Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics

<https://riviste.fupress.net/index.php/caryologia>

ISSN 0008-7114 (print) | ISSN 2165-5391 (online)

Direttore Responsabile: **Alessio Papini**

© 2025 Author(s)

Content license: except where otherwise noted, the present work is released under Creative Commons Attribution 4.0 International license (CC BY 4.0: <https://creativecommons.org/licenses/by/4.0/legalcode>). This license allows you to share any part of the work by any means and format, modify it for any purpose, including commercial, as long as appropriate credit is given to the author, any changes made to the work are indicated and a URL link is provided to the license.

Metadata license: all the metadata are released under the Public Domain Dedication license (CC0 1.0 Universal: <https://creativecommons.org/publicdomain/zero/1.0/legalcode>).

Published by Firenze University Press

Firenze University Press

Università degli Studi di Firenze
via Cittadella, 7, 50144 Firenze, Italy
www.fupress.com

OPEN ACCESS

Citation: Radmanesh, P. & Karimzadeh, G. (2025). Chromosome, ploidy analysis, and flow cytometric genome size of caper (*Capparis spinosa*) medicinal plant. *Caryologia* 78(2): 3-19. doi: 10.36253/caryologia-3633

Received: July 6, 2025

Accepted: September 30, 2025

Published: December 20, 2025

© 2025 Author(s). This is an open access, peer-reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

ORCID:

PR: 0000-0002-1825-0097

Chromosome, ploidy analysis, and flow cytometric genome size of caper (*Capparis spinosa*) medicinal plant

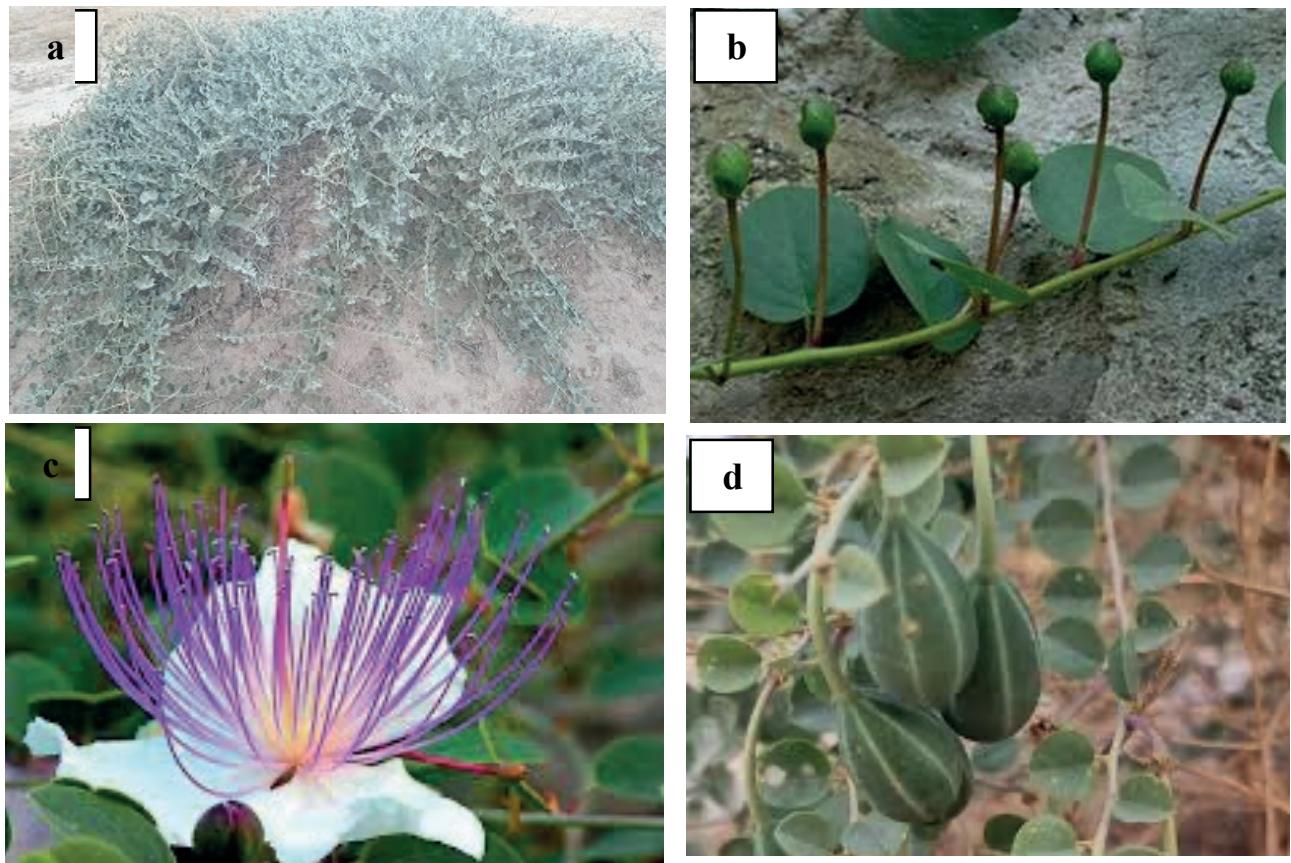
PARVIZ RADMANESH, GHASEM KARIMZADEH*

Department of Plant Genetics and Breeding, College of Agriculture, Tarbiat Modares University, Tehran P. O. Box 14115-336, Iran

*Corresponding author. Email: karimzadeh_g@modares.ac.ir

Abstract. Caper (*Capparis spinosa*) is a shrubby, deciduous perennial medicinal plant belonging to the Capparaceae family. Its use is in folk medicine, pharmacy, food, and spices. Chromosome, ploidy analysis, and flow cytometric genome size of 10 populations collected from different parts of Iran were analyzed. The results showed that all populations were diploid, with nine populations having $2n = 2x = 30$ (P1-P8, P10) and one population having $2n = 2x = 34$ (P9) chromosomes. The average chromosome length (CL) for these two chromosome groups was 1.05 and 0.97 μm , respectively. The mean monoploid genome sizes for the populations with 30 and 34 chromosomes were 0.646 and 0.633 pg, respectively. As a whole, the mean genome size of all populations was 0.643 pg. The chromosome number as well as the genome size are being reported for the first time. Cluster analysis and principal component analysis revealed a categorization of the caper population into four distinct groups. The first group comprised three populations (P1, P3, and P4), while the second group included only P2 population, the third group was represented by two populations (P5 and P7), and the fourth group encompassed four populations (P6, P8, P9, and P10). Future research on the genetic traits and breeding methodologies of this species can build upon the foundational findings of this study.

Keywords: caper, *Capparis spinosa*, chromosome, karyology, 2Cx DNA, genome size, flow cytometry.


INTRODUCTION

People of every culture have always experimented with endemic plants over thousands of years and have recognized that almost all of nature is used for food, clothing, shelter, and they have adapted based on the available resources. Plants that have beneficial pharmacological effects on the human body are called medicinal plants and are useful almost exclusively due to their natural ability to synthesize secondary metabolites (Sundarraj and Bhagtaney, 2023). The presence of various secondary metabolites such as flavonoids, alkaloids, saponins, tannins, terpenoids, and phenolic compounds in medicinal plants has anti-inflammatory, antimicrobial, and antioxidant

effects, confirming that the use of medicinal plants is a suitable alternative to current conventional methods in the treatment of many problems such as wounds (Cedillo-Cortezano *et al.*, 2024). Caper (*Capparis spinosa* L.) is a common member of the *Capparis* genus of the Capparaceae (Capparidaceae) family, which is a thorny perennial shrub and an aromatic plant common in many parts of the world, especially the Mediterranean regions (Shahrajabian *et al.*, 2021). This shrubby plant has woody stems and herbaceous branches with thick, shiny, bright green, oval-shaped, and alternate simple leaves. It has single, fragrant flowers with white to pinkish-white petals, and numerous long purple stamens. The fruit shape is oval-shaped and it has a dark green color (Condurso *et al.*, 2015; Chedraoui *et al.*, 2017) (Figure 1).

Although this plant is native to the Mediterranean, it grows well in Italy, North Africa, Greece, Central Asia, and Iran (Zarei *et al.*, 2021). Caper prefers a rainy spring and a hot, dry summer with intense sunlight, with temperatures exceeding 40 °C and an average annual rainfall of 350 mm (Barbera and Di Lorenzo, 1984). This plant grows both wild and cultivated, and prefers rocky

soils in semi-arid regions, limestone slopes, and crevices in old walls. Additionally, caper is tolerant to both salt and drought stresses. Due to its ability to grow in harsh environments, this plant is recommended to prevent land degradation, control soil erosion, and maintain and promote agriculture in areas exposed to severe climate change (Sakcali *et al.*, 2008). *C. spinosa* is one of the most common aromatic plants in Mediterranean cuisine. The flower buds of this plant are edible. The flowers, which are harvested in the spring before they open, are usually processed in brine, pickled in vinegar, or preserved in grain salt and used as a seasoning in salads, pasta, meat, sauces, and condiments to add a spicy and salty flavor and aroma to food (Cincotta *et al.*, 2022). The fruit, leaves, and the younger branches of the caper plant are edible and consumed salted or pickled in vinegar, or as fresh or cooked vegetables (Moghaddasi, 2011). Different parts of this plant, including the roots, bark, leaves, buds, and fruits, have traditionally been employed to alleviate conditions such as joint diseases, hemorrhoids, rheumatism, rheumatoid arthritis, gout, fever, cough, asthma, and inflammation (Chedraoui *et*

Figure 1. Whole plant (a), bud and leaf (b), flower (c), and fruit (d) of caper (*Capparis spinosa*) medicinal plant.

al., 2017). Furthermore, caper extract exhibits significant properties including antihypertensive, hepatoprotective, antidiabetic, anti-obesity, bronchodilator, antiallergic and antihistamine, antibacterial, antioxidant, and anti-cancer effects (Nabavi et al., 2016; Chedraoui et al., 2017; Merlino et al., 2024). Caper seeds are rich in antioxidant molecules and a source of omega-6, utilized in both the food and pharmaceutical industries (Ara et al., 2013; Tlili et al., 2015). On the other hand, *C. spinosa* contains bioactive lipids, glucosinolates (glucocaprin), and flavonoids (rutin); its seed oil is also rich in unsaturated lipids (Argentieri et al., 2012; Annaz et al., 2022). The most important phytochemical compounds identified, includes quercetin derivatives, kaempferol, isorhamnetin myristicin, eriodictyol, circimaritin, and gallicatechin (Bakr and El Bishbisy 2016). Moreover, it has the alkaloids caparicin A, caparicin B, and caparicin C, which are used in medical treatments (Marir, 2024).

Karyotype, as an important genetic feature, represents the phenotypic appearance of somatic chromosomes, including chromosome number and length (Ning et al., 2018; Vimala et al., 2021; Abbasi-Karin et al., 2022; Rasekh et al., 2023; Yari et al., 2024; Morovati et al., 2024), is used in systematic and evolutionary studies of plants (Peruzzi et al., 2017; Wang et al., 2020; Yari et al., 2024). The simplest technical feature related to the genome of a species is the chromosome number, which is the most fundamental feature. For this reason, since 1882 (Garbari et al., 2012), chromosome number data have been collected for many plant organisms worldwide, representing about one-third of the plant currently known in this respect (Stace, 2000). The Capparaceae family consists of about 40-45 genera and 700-900 species, whose members show significant diversity in terms of appearance, fruit, and floral features (Kamel et al., 2015). The most important genera of this family include *Capparis*, *Cadaba*, *Boscia*, and *Maerua* (Ali and Amar, 2020). The genus *Capparis* has about 250 species, the chromosome numbers for the few known species of this genus are ($2n = 18, 30, 38, 40$, and 84) (Rock, 2016). *Cadaba indica* and *Cadaba triphylla*, which are both species in the genus *Cadaba*, have chromosome numbers that are both 14 and 34, respectively reported by Subramanian and Pondmudi (1987). The species *Crataeva nurvala* belongs to the genus *Crataeva* has 26 chromosomes (Gupta and Gill, 1981). Another species of this genus, *Crataeva religiosa*, also has 26 chromosomes (Subramanian and Pondmudi, 1987). The species *Maerua arenaria* sensu Baillon (Subramanian and Pondmudi, 1987), (Khatoon and Ali, 1993) *M. arenaria* (DC.) Hook. f. & Thoms. and *M. crassifolia* Forssk. (Khatoon and Ali, 1993), belonging to the genus *Maerua* each have

40, 20, and 20 chromosome numbers, respectively. The species *Niebuhria linearis* DC. of the genus *Niebuhria* has 102 chromosomes (Sharma, 1968). *Capparis*, the largest genus in the Capparaceae family, has 250 species with various chromosome numbers, including *C. brevispina* DC. ($2n = 36$) (Subramanian and Pondmudi, 1987), *C. decidua* Pax ($2n = 40$) (Khatoon and Ali, 1993), (Subramanian and Pondmudi, 1987) *C. divaricata* ($2n = 160$), *C. diversifolia* Wight & Arn. ($2n = 98$) (Subramanian and Pondmudi, 1987), (Subramanian and Pondmudi, 1987) *C. grandis* L. f. ($2n = 42$), *C. leucophylla* DC. ($2n = 10, 20$) (Sandhu, 1989), *C. rotundifolia* ($2n = 42$) (Subramanian and Pondmudi, 1987), *C. sandwichiana* var. Zoharyi, O. Deg. & I. Deg. ($2n = 40$) (Carr, 1978), *C. sepiaria* ($2n = 40$) (Sharma, 1968; Subramanian and Pondmudi, 1987), *C. zeylanica* ($2n = 40, 44$) (Singhal and Gill, 1984; Subramanian and Pondmudi, 1987), *C. spinosa* ($2n = 24, 38$) (Magulaev, 1979; Al-Turki et al., 2000), *C. spinosa* subsp. *Rupestris* ($2n = 38$) (Runemark 1996), and *C. spinosa* var. *herbacea* (Willd.) ($2n = 42$) (Wang et al., 2022). Given the valuable medicinal and nutritional value of caper, this study aimed to investigate intraspecific diversity among Iranian populations in terms of karyotypic characteristics and genome size.

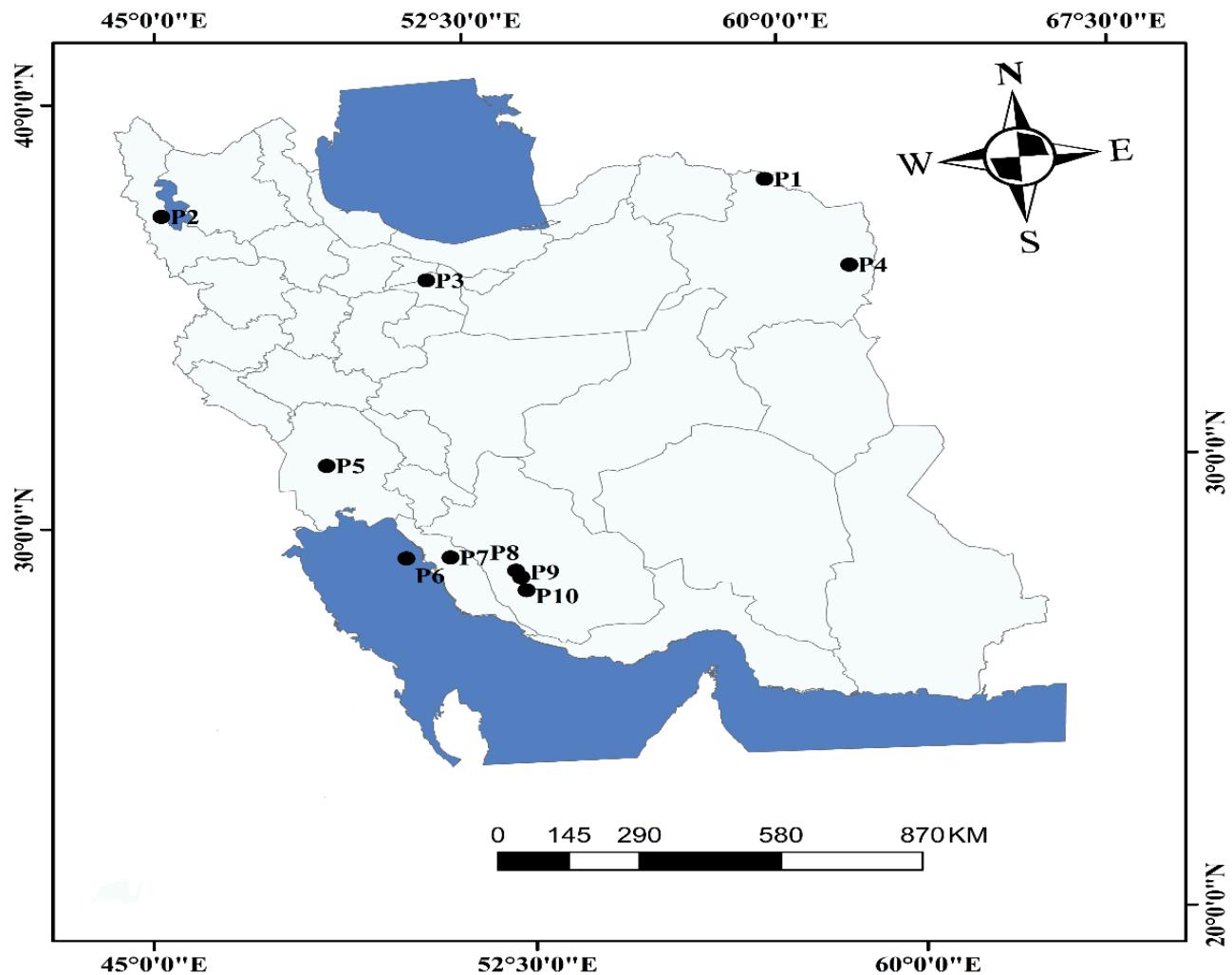
Genome size refers to the amount of genomic DNA present in the gametes of a species, which is generally constant in an organism and is represented as a C-value (Swift, 1950; Greilhuber et al., 2005; Pellicer et al., 2018; Kocjan et al., 2022). The C-value estimation is essential for sequencing and genomic analysis, as well as for plant species identification and classification (Gregory, 2005; Bourge et al., 2018; Sliwinska, 2018). Genome sizes vary considerably among the flowering plants overall, as well as within smaller taxonomic groups such as families or even genera. Monoploid genome size is refers to the amount of DNA of one chromosome set, 1 Cx-value, with chromosome base number x) and holoploid genome size to the amount of DNA of the whole chromosome complement, 1 C-value, with chromosome number n , regardless of the degree of polyploidy, aneuploidies, etc.) as described by Greilhuber et al. (2005). Flow cytometry (FCM) has been used to estimate the plant nuclear DNA content since the 1980s. It is commonly used in plant breeding (especially in polyploid and hybrid breeding) (e.g. Doležel and Bartoš, 2005; Doležel et al., 2007; Tavan et al., 2015; Bourge et al., 2018; Javadian et al., 2018; Hamidi et al., 2018; Tarkesh Esfahani et al., 2020) and seed production (Sliwinska, 2018). Recently, studies of karyomorphology and genome size, using flow cytometry technique have been conducted in a diverse array of plant communities, such as: *Thymus* species (Mahdavi and Karimzadeh, 2010; Tavan et al., 2015), *Satureja*

(Shariat *et al.*, 2013; Zare Teymoori *et al.*, 2021), *Tulipa* (Abedi *et al.*, 2015), *Papaver bracteatum* (Tarkesh Esfahani *et al.*, 2016), *Artemisia khorassanica* (Hamidi *et al.*, 2018), *Medicago monantha* (Zarabizadeh *et al.*, 2022), *Epilobium* spp. (Abbasi-Karin *et al.*, 2022), *Ferula assa-foetida* (Firoozi *et al.*, 2022), berry (Mohammadpour *et al.*, 2022), *Allium* spp. (Sayadi *et al.*, 2022), *Papaver somniferum* (Rasekh and Karimzadeh, 2023), *Cymbopogon olivieri* (Yari *et al.*, 2024), *Coriandrum sativum* (Khakshour *et al.*, 2024), *Sapindus mukorossi* (Gao *et al.*, 2024), *Cyphomandra clade* (Mesquita *et al.*, 2024), *Nigella* and *Garidella* species (Aydin *et al.*, 2024), and *Datura* spp. (Morovati *et al.*, 2024) have been used to identify intra- and inter-specific diversity.

MATERIALS AND METHODS

Plant materials

Seeds from 10 endemic Iranian caper (*Capparis spinosa* L.) populations were collected from various regions of Iran during the growing season within their natural habitats. Population codes, geographical coordinates (latitude, longitude), altitude (m), mean annual temperature (°C), and mean annual rainfall (mm) are presented in Table 1 and illustrated in Figure 2.


Chromosome analysis

Seeds mucilage was first removed by washing with water. The seed coats were then mechanically scarified to break dormancy (Olmez *et al.*, 2006; Agah *et al.*, 2020; Radmanesh *et al.*, 2023). For this purpose, seeds were disinfected by immersing in 5% (v/v) sodium

hypochlorite for 5 min, followed by 70% (v/v) ethanol for 1 min (Aguilar-Rito *et al.*, 2023; Qi *et al.*, 2023). Subsequently, healthy seeds were placed on a layer of Whatman filter paper within 9 cm diameter glass petri dishes (Honarmand *et al.*, 2016). To induce germination, seeds were moistened with distilled water at room temperature (RT). Petri dishes were then placed in a growth room under controlled conditions: 16/8 h light/dark at 25 °C (Honarmand *et al.*, 2016). Approximately, 0.5-mm length roots were incubated in a 0.002 M 8-hydroxyquinoline solution for 3 h in the dark at RT (Mehravi *et al.*, 2022a, b; Anjum *et al.*, 2023). Roots were fixed in Carnoy's fixative (glacial acetic acid:ethanol, 1:3 v/v) for a minimum of 24 h at 4 °C (Karimzadeh *et al.*, 2011; Firoozi *et al.*, 2022; Khakshour *et al.*, 2024; Yari *et al.*, 2024). Following fixation, Carnoy's fixative was removed by washing with distilled water for 5 min. Subsequently, root meristems were hydrolyzed in 1 M HCl for 10 min at 60 °C. Root samples were stained with 4% (w/v) hematoxylin solution for 3 h at RT in the dark (Mohammadpour *et al.*, 2022). Slides were prepared, using the squash method in 45% (v/v) acetic acid. Photomicrographs were taken with a DP12 digital camera (Olympus Optical Co., Tokyo, Japan) mounted on a BX50 Olympus microscope (Olympus Optical Co., Tokyo, Japan). In cytological studies of plants with small chromosomes (almost one micrometer), accurately measuring the lengths of the long and short arms are often challenging due to the difficulty in identifying the centromere (Morales Valverde, 1986; Mahdavi and Karimzadeh, 2010; Abbasi-Karin *et al.*, 2022; Rasekh and Karimzadeh, 2023, Yari *et al.*, 2024; Morovati *et al.*, 2024). Hence, in the current study, the chromosome length (CL) was measured, using MicroMeasure software version 3.3.

Table 1. Geographic distribution and climatic data of endemic Iranian caper (*Capparis spinosa*) populations.

Populations codes	Local collection locations	Latitude (N)	Longitude (E)	Altitude (m)	Mean Temp. (°C)	Mean rainfall (mm)
P1	Dargaz, Khorasan-e Razavi	37°26'33.25"	59° 6'26.06"	408	12.75	266.70
P2	Balanej, Azarbayjan-e Gharbi	37°24'6.72"	45° 9'54.19"	1303	14.20	341.00
P3	Tehran, Tehran	35°44'38.00"	51° 9'54.71"	1286	18.68	250.98
P4	Torbat-e-Jam, Khorasan-e Razavi	35°15'8.38"	60°35'42.42"	909	26.00	254.00
P5	Ahvaz, Khozestan	31°28'21.02"	48°43'21.48"	17	26.65	191.20
P6	Kharg Island, Bushehr	29°14'16.05"	50°18'58.48"	1	26.18	265.60
P7	Borazjan, Bushehr	29°13'12.64"	51°14'34.86"	104	27.63	283.10
P8	Firuzabad, Fars	28°50'23.45"	52°35'30.92"	1333	20.87	379.70
P9	Fathabad-e Deh-e Arab, Fars	28°40'42.01"	52°41'18.26"	1148	21.20	377.00
P10	Dasht-e Lar, Fars	28°22'11.55"	52°46'38.95"	924	25.70	302.20

Figure 2. Map of Iran showing the collection locations of endemic Iranian medicinal plant caper (*Capparis spinosa*) populations, using ArcGIS.

Flow cytometric genome size estimation

To estimate genome size, seeds were first germinated in petri dishes. After two weeks, the seedlings were transferred to pots containing a mixture of soil, sand, perlite, and cocopeat in the research greenhouse of the College of Agriculture at Tarbiat Modares University, where suitable growth conditions were maintained. During growth, NPK fertilizer was applied after five months when the grown plants having developed leaves suitable for flow cytometric analysis. Then, 1 cm² of young developed leaves from *C. spinosa* and radish (*Raphanus sativus* cv. Saxa; 2C DNA = 1.11 pg) as an internal reference standard (Doležel *et al.*, 1992) were chopped simultaneously with a sharp blade in a glass petri dish containing 1 ml of Woody Plant Buffer (WPB; Loureiro *et al.*, 2007).

No peaks were identified in the analysis. Hence, instead General Plant Buffer (GPB; 0.5 mM Spermine-4HCl, 30 mM Sodium citrate-3H₂O, 20 mM MOPS, 20 mM NaCl, 80 mM KCl, 1% PVP-10, and 0.5% v/v Triton X-100, pH 7.0) (Loureiro *et al.*, 2007) was used. The resulting nuclear suspension was passed through a 30 µm green nylon filter (Partec, Munster, Germany) to remove large tissue fragments and debris. This was followed by the addition of 50 µg ml⁻¹ of RNase (for RNA removal) (Sigma-Aldrich Corporation, MO, USA) and 50 µg ml⁻¹ of propidium iodide (PI, Fluka) fluorescent dye (for nuclear DNA staining) to the samples (Loureiro *et al.*, 2007). The nuclear suspension was then analyzed using a BD FACSCanto™ flow cytometer (Biosciences, Bedford, MA, USA) with BD FACSDiva™ software. The output data were transferred to FloMax ver. 2.4.1 software for gat-

ing the output histograms. Relative fluorescence intensity measurements of stained nuclei were performed on a linear scale, with at least 5,000 nuclei analyzed for each sample. The absolute DNA content of a sample was calculated based on the average G1 peak values. The following formula was used to determine the genomic DNA content (in pg) of an unreplicated gamete (2Cx DNA) based on the mean G1 peak values in caper (Doležel *et al.*, 2007; Loureiro *et al.*, 2007; Firoozi *et al.*, 2022; Sayadi *et al.*, 2022; Mehravi *et al.*, 2022a; Mohammadpour *et al.*, 2022).

Sample 2Cx DNA (pg) = (Sample G1 peak mean/Standard G1 peak mean) × Standard 2C DNA (pg)

Moreover, the size of the monoploid genome (2Cx DNA) in base pair terms is based on the converting formula proposed by Doležel *et al.* (2003), where 1 pg of DNA is equivalent to 978 Mbp.

Statistical analyses

The normality test was first applied to the residuals data of chromosome length (CL) and genome size data, the data were then analyzed according to a completely randomized design (CRD) with five and three replications, respectively, using Minitab 17 software (Cardoso *et al.*, 2023). Chromosome length data were not normalized; instead, they were transformed in the reverse way (Osborne, 2010), resulting in normalized data. Analysis of variance (ANOVA) and subsequent comparison of means, using the least significant difference (LSD) method (Hinkelmann, 2012) were performed with the general linear model (GLM) procedure in SAS 9.1 software (SAS Institute Inc., 2009). Furthermore, multivariate statistical analysis (MANOVA) of mean CL, genome size, and geographical parameters (Karimzadeh *et al.*, 2011) was conducted in Minitab 17 software (Yeshitila *et al.*, 2023).

RESULTS

Karyotype analysis

The karyotypic study results indicated that all 10 populations of the caper (*Capparis spinosa*) medicinal plant were diploid (2x) in terms of ploidy level. The results of ANOVA indicate a significant difference ($P < 0.01$) in chromosome length (CL) among the studied populations, reflecting intraspecific diversity (Table 2). Interestingly, within such a ploidy level, two chromosome numbers were identified. Hence, nine populations had $2n$

Table 2. Analysis of variance for chromosome length and monoploid genome size in populations of caper (*Capparis spinosa*).

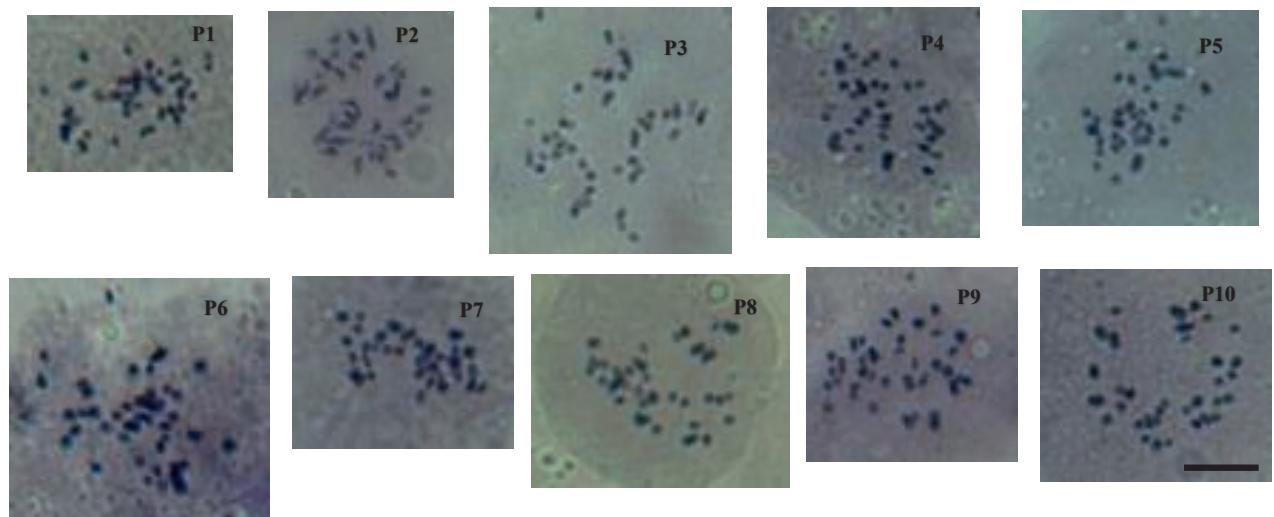
SOV	df	MS CL	df	MS 2Cx DNA
Population	9	0.2819**	9	0.0015 ^{ns}
Error	750	0.562	20	0.0009
CV%	-	23.4	-	4.71

ns, ** Non-significant at $P < 0.05$, significant difference at $P < 0.01$.

$= 2x = 30$ chromosomes, while one population (P9) had $2n = 2x = 34$ chromosomes (Fig. 3, Table 3). This study is being reported for the first time in Iran. The mean chromosome length (CL) in the nine populations (P1-P8, P10) with 30 chromosomes was 1.05 μm , ranging from 0.97 μm (P9) to 1.12 μm (P2). The P9 population, which had 34 chromosomes, also measured 0.97 μm , while the mean CL for all 10 populations was 1.05 μm .

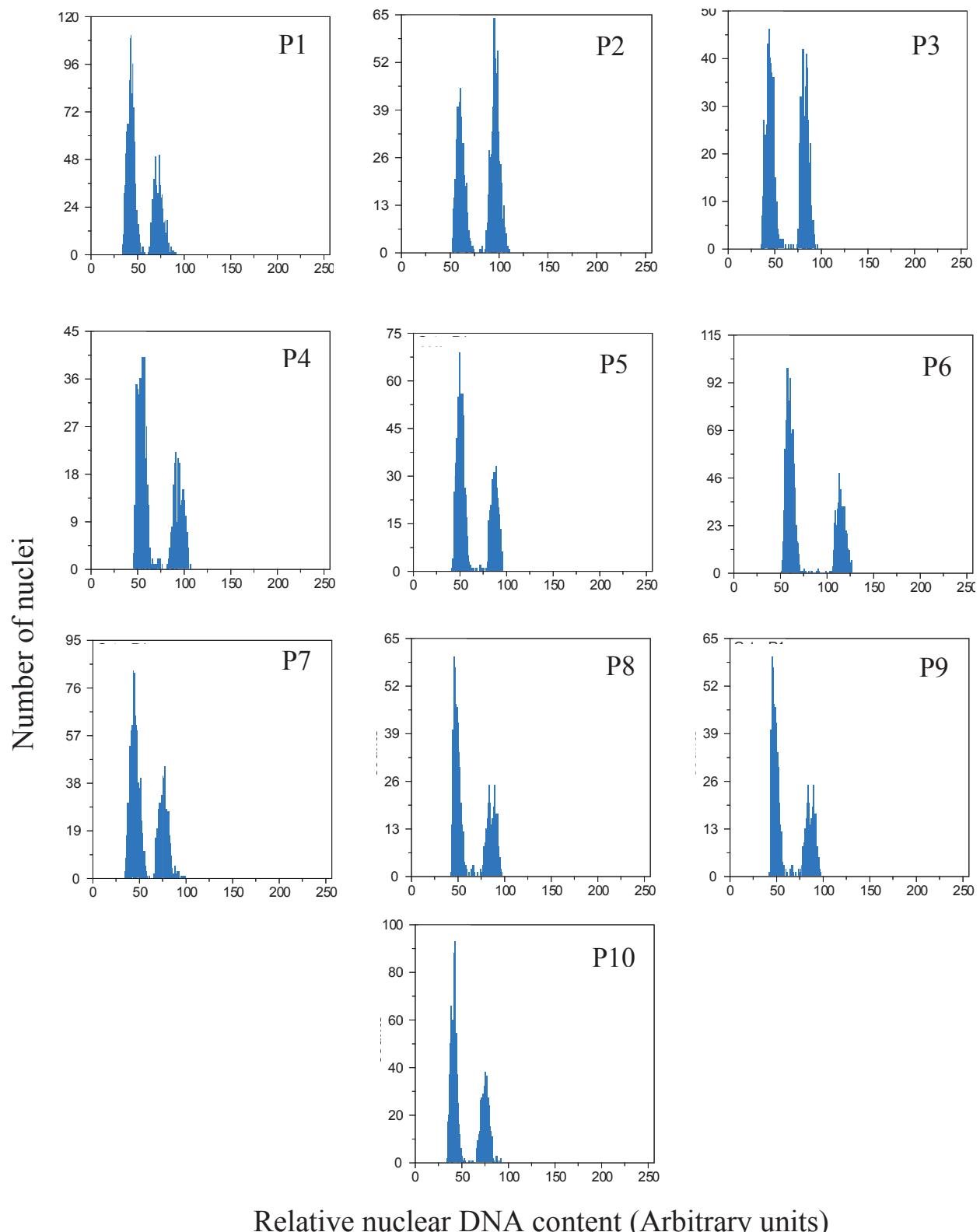
Means with the same symbol letters are not significantly different at either ($P < 0.01$) for CL column or ($P < 0.05$) for 2Cx DNA column, using LSD

Nuclear genome size estimation


The analysis of variance of monoploid genome size (2Cx DNA) revealed no significant differences ($P < 0.05$) among the studied populations (Table 2). The flow cytometric nuclear monoploid DNA amount (2Cx DNA) of the studied populations is shown in Figure 4. The mean genome size in the nine populations (P1-P8, P10) with 30 chromosomes was 0.646 pg, ranging from 0.608 pg (P10) to 0.677 pg (P2; Table 3). It was 0.633 pg in the P9 population with 34 chromosomes. Overall, the mean 2Cx DNA for all 10 populations was 0.643 pg or 628.85 Mbp (Table 3). However, to explore potential differences, mean comparisons were performed, using the LSD method at $P < 0.05$, indicating a significant difference between populations P2, P6, and P10 (Table 3). Additionally, histogram analysis complemented the karyotypic examination, confirming the diploid nature of the studied populations.

Multivariate statistical analysis

The correlation between mean monoploid genome size (2Cx DNA) and either chromosome length (CL), or geographical parameters (latitude, longitude, altitude, mean temperature, and mean rainfall) in the populations of the medicinal plant caper is presented in Table 4. The correlation coefficient between 2Cx


Table 3. Means comparison (\pm SE) chromosome length (CL) and monoploid genome size (2Cx DNA; pg) of populations of the Iranian endemic caper (*Capparis spinosa*).

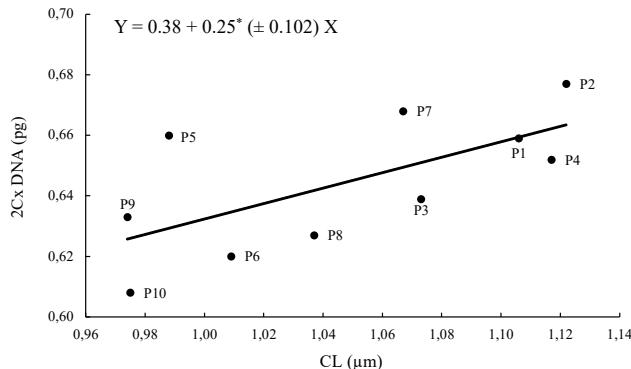
Pop.	Local collection locations	2n	CL ($\mu\text{m} \pm \text{Se}$)	Monoploid 2Cx DNA (pg)	Monoploid 2Cx DNA (Mbp)
P1	Dargaz	30	1.106 \pm 0.033 ^{ab}	0.659 \pm 0.005 ^{abc}	644.50
P2	Balanej	30	1.122 \pm 0.029 ^a	0.677 \pm 0.002 ^a	662.10
P3	Tehran	30	1.073 \pm 0.027 ^{abc}	0.639 \pm 0.028 ^{abc}	624.94
P4	Torbat-e-Jam	30	1.117 \pm 0.032 ^a	0.652 \pm 0.018 ^{abc}	637.66
P5	Ahvaz	30	0.988 \pm 0.030 ^c	0.660 \pm 0.008 ^{abc}	645.48
P6	Kharg	30	1.009 \pm 0.030 ^{bc}	0.620 \pm 0.022 ^{bc}	606.36
P7	Borazjan	30	1.067 \pm 0.028 ^{abc}	0.668 \pm 0.015 ^{ab}	653.30
P8	Firuzabad	30	1.037 \pm 0.029 ^{abc}	0.627 \pm 0.009 ^{abc}	613.20
P9	Fathabad-e Deh-e Arab	34	0.974 \pm 0.025 ^c	0.633 \pm 0.029 ^{abc}	619.08
P10	Dasht-e Lar	30	0.975 \pm 0.030 ^c	0.608 \pm 0.015 ^c	594.62
	Total		1.047	0.643	628.86
Means	P1-P8, P10	–	1.055	0.646	631.78
	P9		0.974	0.633	619.08
LSD	–	–	LSD _{1%} = 0.108	LSD _{5%} = 0.052	–

Figure 3. Somatic chromosomes of 10 populations of caper (*Capparis spinosa*). Scale bar = 5 μm .

DNA and CL was positive and significant ($P < 0.05$; $r = 0.66^*$). However, no significant differences were found for the geographical parameters. Given the significant correlation between monoploid genome size and CL, linear regression analysis ($b = 0.25^*$) was conducted (Figure 5). Additionally, cluster analysis was performed to identify distinct groups of individuals based on their genetic similarity. This analysis was based on mean original data for 2Cx DNA, chromosome length (CL), and the geographical parameters. To determine the distance between populations, Euclidean distance was calculated, and cluster merging was performed,

using the unweighted pair group method with arithmetic mean (UPGMA) method. Moreover, to evaluate the efficiency of the classification method, the cophenetic coefficient was calculated, using NTSYS 2.02e software. Various classification methods were tested with this software. Ultimately, the method that determined the Euclidean distance and merged the average cluster, which had a higher cophenetic coefficient value ($r = 0.92$), was selected to present the results (Table 5). It should be noted that the higher the cophenetic coefficient for a method, the better it is for cluster analysis (Batagelj, 1988; Gong *et al.*, 1995). Subsequently, cluster

Figure 4. Flow cytometric histograms illustrating the genome size of the medicinal plant caper (*Capparis spinosa*). The left peaks represent the G1 phase of the caper plant, while the right peaks correspond to the G1 phase of the internal standard, radish (*Raphanus sativus* cv. Saxa; 2C DNA = 1.11 pg).


Table 4. Correlation coefficients between monoploid genome size (2Cx DNA; pg) with either chromosome length (CL; μm) or geographical parameters in populations of caper (*Capparis spinosa*) medicinal plant.

Trait	CL (μm)	Latitude (N)	Longitude (E)	Altitude (m)	Mean Temp. ($^{\circ}\text{C}$)	Mean rainfall (mm)
2Cx DNA (pg)	0.66*	0.62 ns	-0.13 ns	-0.16 ns	-0.32 ns	-0.23 ns

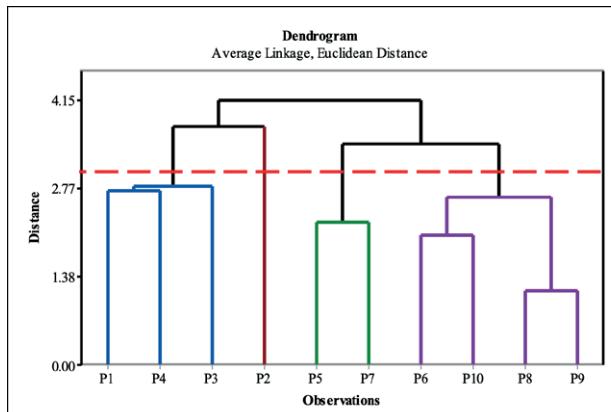

ns, * Non-significant and significant at $P < 0.05$.

Table 5. Cophenetic coefficient of different clustering methods for populations of the caper (*Capparis spinosa*) related to chromosome length parameter, genome size, and geographical parameters.

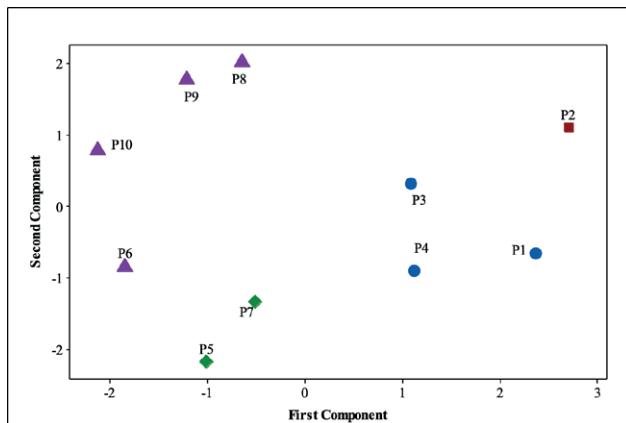

Linkage Method	Euclidean Distance			Squared Euclidean Distance		
	UPGMA	Single	Complete	UPGMA	Single	Complete
Cophenetic Coefficient	0.92	0.90	0.91	0.83	0.83	0.82

Figure 5. Linear relationship between monoploid genome size (2Cx DNA) and chromosome length (CL) in caper (*Capparis spinosa*) medicinal plant.

analysis was performed, using Minitab 17.0 software by standardizing the parameters. The results of the cluster analysis are presented in the form of a dendrogram (Figure 6). According to which, the populations of caper medicinal plant were divided into four groups. The first group included three populations of P1, P3, and P4, the second group included P2 population, the third group comprised two populations of P5 and P7, and the fourth group included four populations of P6, P8, P9, and P10 (Figure 7). Furthermore, to determine the total variation in populations and the contribution of parameters to this variation, principal component analysis (PCA) was performed on the 2Cx DNA, CL, and geographic parameters. The analysis revealed that the first four principal components accounted for 93% of the cumulative variation. The first two coordinates were displayed in a 2-dimensional graphic based on the desired param-

Figure 6. Dendrogram related to chromosome length parameter, genome size, and geographical conditions of the medicinal plant caper (*Capparis spinosa*), using Euclidean distance and unweighted pair group method with arithmetic mean (UPGMA; $r = 0.92$).

eters in four categories (Figure 6). The results showed that CL (0.53), 2Cx DNA (0.41), latitude (0.55), and mean annual temperature (-0.45) had a stronger correlation with the first coordinate, which accounted for 42% of the variation in the calculated data. In the second component, altitude (0.61), average annual precipitation (0.65), and average annual temperature (-0.31) played a vital role in explaining 20% of the total variation. In the third component, 2Cx DNA (0.38) and longitude (-0.91) had the highest contributions. In the fourth component, 2Cx DNA (-0.51), average annual rainfall (0.53), and average annual temperature (-0.40) played the most significant roles. Together, these two components accounted for 23% of the total variance (Table 6).

Figure 7. Population classification based on the first and second components in principal component analysis on the chromosome length parameter, genome size, and geographical conditions of populations of the medicinal plant *Caper (Capparis spinosa)*.

Table 6. Eigenvalues, relative and cumulative variances, and eigenvectors for the four principal components resulting from principal component analysis on the chromosome length, genome size, and geographical conditions of populations of *Caper (Capparis spinosa)* medicinal plant.

Characteristics	Components			
	First	Second	Third	Fourth
Eigenvalue	2.93	1.94	1.10	0.49
Relative variance	0.42	0.28	0.16	0.07
Cumulative variance	0.42	0.70	0.86	0.93
CL (μm)	0.53	-0.08	-0.11	-0.33
2Cx DNA (pg)	0.41	-0.28	0.38	-0.51
Latitude (N)	0.55	-0.11	-0.05	0.36
Longitude (E)	0.09	-0.10	-0.91	-0.21
Altitude (m)	0.18	0.61	-0.09	0.11
Mean temp. (°C)	-0.45	-0.31	-0.06	-0.40
Mean rainfall (mm)	-0.03	0.65	0.06	-0.53

DISCUSSION

The results of this study provide, for the first time, accurate snapshots of the chromosome number of endemic Iranian populations of the *Caper (Capparis spinosa)* medicinal plant. Little information is available about the chromosome number of this plant. In the studied populations, information on chromosome and monoploid genome size (2Cx DNA) was completely inadequate. As a result, this study provides basic cytogenetic, genetic, and genomic information for these populations, which is useful for constructing genetic and physical maps and for whole genome sequencing in the

future. The findings of the present study showed a diploid (2x) ploidy level, as well as two different chromosome numbers of 30 and 34. In previous studies, the chromosome numbers reported as 24 (Magulaev, 1979), 38 (Al-Turki *et al.*, 2000), and 42 (Wang *et al.*, 2022). Variation in somatic chromosome number has been reported in the root tips of many flowering plant species (angiosperms) (e.g. Kula, 1999; Winterfeld *et al.*, 2015, 2020; Mehravi *et al.*, 2022a). In the present report, the average chromosome length was determined to be 1.055 μm in populations (P1-P8, P10) with 30 chromosomes and 0.974 μm in a P9 population with 34 chromosomes.

Flow cytometry has been successfully employed to estimate nuclear genomic DNA content (Doležel and Bartoš, 2005; Doležel *et al.*, 2007; Bourge *et al.*, 2018) and to accurately determine ploidy levels in a diverse array of plant species (Mahdavi and Karimzadeh, 2010; Tavan *et al.*, 2015; Abedi *et al.*, 2015; Tarkesh Esfahani *et al.*, 2016, 2020; Javadian *et al.*, 2017; Hamidi *et al.*, 2018; Mehravi *et al.*, 2022a, b; Firoozi *et al.*, 2022; Mohammadpour *et al.*, 2022; Zarabizadeh *et al.*, 2022; Rasekh and Karimzadeh, 2023; Khakshour *et al.*, 2024; Morovati *et al.*, 2024; Yari *et al.*, 2024). In the current report, the genome size of *Caper (Capparis spinosa)* populations with 30 chromosomes (P1-P8, P10) was determined to be 0.646 pg (631.78 Mbp) and that of P9 population with 34 chromosomes was 0.633 pg (619.08 Mbp). Following a previous study on *Thymus* species (Lamiaceae) reported by Mahdavi and Karimzadeh (2010), in the present study, we calculated the average genome size per chromosome (pg/chr) by dividing the genome size by the chromosome number. Therefore, the average genome size per chromosome (pg/chr) for populations P1-P8 and P10 (30 chromosomes) and P9 (34 chromosomes) was 0.021 pg/chr and 0.019 pg/chr, respectively, or 20.54 and 18.58 Mbp/chr, respectively. Hence, such a slight smaller genome size of a 34-chr P9 population can be verified by its slight smaller chromosomes (0.974 μm; Table 3). In other words, such a reduction in DNA content in the 34-chr P9 population is fully consistent with the reduction in chromosome length compared to the 30-chr populations (P1-P8, P10). Our results can be compared to a study on *Caper (Capparis spinosa* var. *herbacea*) in China, which reported a chromosome number of 42 (2n = 2x), a genome size of 549.06 Mbp, and an average of 13.07 Mbp/chr (Wang *et al.*, 2022). Thus, the genome size of the *Caper* population studied in China, with 42 chromosomes, was approximately 57% and 42% smaller than that of 30- and 34-chr *Caper* populations studied in the current report, respectively. Consequently, it can be concluded that the chromosomes of the Iranian endemic *Caper* populations exhibit approximately twice

the genome size compared to the caper plant reported in China. This suggests that the average chromosome length of the endemic Iranian caper plant is likely to be longer than that of the Chinese plants.

Cytogenetic studies can be used to better understand the relationships between different species and populations of a species, and to guide the evolutionary trends of plants (Stebbins, 1971). The first step towards understanding the genetic characteristics of a plant is to determine the status of its chromosomes. Chromosomal information allows for the comparison of species and their populations (Singh 2016). Populations of each species exhibit their own genomic adaptations to the environment in which they grow. As adaptive differences increase, new varieties and even new species may emerge in plant habitats (Weigel and Nordborg, 2015). Therefore, chromosomes are suitable factors on which to determine the evolutionary process of plants (Levin, 2002). Chromosomal differences are different from morphological, physiological, and ecological differences (Caceres *et al.*, 1998). Because these differences reflect differences in the products of gene action that change due to environmental factors, while chromosomal differences are more or less due to the genetic content of individuals (Beckmann *et al.*, 2007). Differences in chromosome size can indicate differences in the gene products or proteins that an individual produces, or they can indicate duplication of genes that can affect the rate of synthesis of various proteins (Kondrashov *et al.*, 2002). Differences in karyotype morphology indicate differences in gene arrangement, which can significantly affect how genes segregate and recombine during Mendelian inheritance. Finally, differences in chromosome number can indicate differences in gene arrangement, gene duplication, or both (Stebbins 1950, 1971; Goldblatt *et al.*, 1979; Levin, 2002; Patwardhan *et al.*, 2022). The present study revealed significant variation in chromosome length (CL), providing evidence for intraspecific chromosomal diversity (Table 2). Chromosomal number variation among populations indicates that chromosomal structural changes may provide a valuable tool for differentiating closely related populations that exhibit minimal morphological divergence (Mayrose *et al.*, 2021). Chromosomal differences, such as variations in chromosome number and length, can be utilized in breeding programs to generate hybrid populations. Parental combinations exhibiting differences in chromosome number/length, particularly those affecting chromosome pairing, can facilitate successful hybridization (Hamidi *et al.*, 2018; Akbarzadeh *et al.*, 2021). On the other hand, in the present report, the P2 population exhibited the highest average genome size (0.677 pg) and the longest

average chromosome length (1.122 μm) among the studied Iranian caper populations. It is noteworthy that this population was placed in a separate group in the principal component analysis and cluster analysis compared to the other populations, as illustrated in Figs. 1 and 2. An increase in nuclear DNA content is typically associated with an increase in total chromosome volume and subsequently cell size, which can lead to larger seed size (Karimzadeh *et al.*, 2011). Considering that the fruits of this medicinal caper plant are edible and its seeds contain valuable oil for medicinal and industrial uses (Matthäus and Özcan, 2005; Ara *et al.*, 2013). Thus, the P2 population can potentially be a valuable resource for polyploidy induction or hybridization programs aimed at producing larger seeds with enhanced oil content. Furthermore, genome size can serve as an effective marker for identifying hybrids (Ellul *et al.*, 2002).

In the present report, the positive and significant correlation between chromosome length (CL) and 2Cx DNA content suggests a strong association between changes in nuclear DNA content and structural alterations in chromosomes. This finding is consistent with previous reports of such correlations in *Vicia* (Naranjo *et al.*, 1998), *Tulipa* (Abedi *et al.*, 2015), *Hypericum* (Mehravi *et al.*, 2022a), and *Pimpinella* (Mehravi *et al.*, 2022b). Cluster analysis based on cytological data and geographical conditions revealed four distinct clusters of populations. These results suggest that populations within a cluster exhibit the lowest metric distances and the highest degree of homology in terms of chromosome length, genome size, and geographical parameters. This information can be valuable for selecting parental lines in breeding programs aimed at maximizing genetic diversity. To assess the overall variation within the population and the relative contribution of different karyotypic parameters, principal component analysis (PCA) was also performed. The first two principal components explained 70% of the cumulative variation, and were subsequently visualized in a two-dimensional plot (Fig. 6). Furthermore, PCA analysis applied to different caper populations demonstrated the strong discriminatory power of karyological parameters, genome size, and geographical conditions in distinguishing between these populations. As previously reported, PCA is a valuable tool for establishing karyological relationships (Peruzzi and Altinordu, 2014). While karyological data provide valuable insights into evolutionary relationships, they are not sufficient on their own to establish robust phylogenetic relationships between species. It is crucial to integrate karyological data with independent sources of systematic information, such as morphological, molecular, and ecological data (Siljak-Yakovlev and Peruzzi, 2012;

Peruzzi and Eroğlu, 2013; Harpke *et al.*, 2015). Consequently, geographical data were incorporated into the cluster analysis and PCA to enhance the phylogenetic inference.

CONCLUSION

This study examined the genetic diversity of the medicinal plant *Capparis spinosa* across ten distinct populations in Iran, utilizing chromosome analysis, ploidy level assessment, and genome size determination via flow cytometry. The findings revealed that all populations were diploid, with two distinct chromosome counts observed: $2n = 30$ and $2n = 34$. This represents the first documented instances of these chromosome numbers in *C. spinosa*. Genome size assessment indicated that while there were no significant differences in genome size among the populations, notable variations in chromosome length were detected. Clustering and principal component analysis demonstrated significant genetic diversity across the populations, categorizing them into four separate groups. These results contribute essential baseline data regarding the karyotype and genome size of *C. spinosa* in Iran. Such information may be instrumental for future endeavors in genetic mapping, genome sequencing, and breeding programs for this valuable medicinal species. The observed genetic diversity among populations underscores the potential for developing new cultivars with desirable traits.

ACKNOWLEDGMENT

Authors gratefully acknowledge the academic financial support provided by the Tarbiat Modares University, Tehran, Iran

AUTHOR CONTRIBUTIONS

PR, and GK conceived and designed this study. PR conducted the experiments. PR and GK analyzed the data. PR wrote the manuscript. GK revised the manuscript.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s

FUNDING

This research was supported by the University of Tarbiat Modares University, Iran.

REFERENCES

Abbasi-Karin Sh, Karimzadeh G, and Mohammadi-Bazargani M. 2022. Interspecific chromosomal and genome size variations in *in vitro* propagated willow herb (*Epilobium* spp.) medicinal plant. *Cytologia* 87(2): 129-135. <https://doi.org/10.1508/cytologia.87.129>.

Abedi R, Babaei A, and Karimzadeh G. 2015. Karyological and flow cytometric studies of *Tulipa* (Liliaceae) species from Iran. *Plant Syst. Evol.* 301: 1473-1484. <https://doi.org/10.1007/s00606-014-1164-z>.

Agah F, Esmaeli M. A, Farzam M, and Abbasi R. 2020. Effect of dormancy breaking treatments and seed bed medium on seed germination and morphology of *Capparis spinosa* L. Seedlings. *Iran. J. Seed Sci. Technol.* 9(3): 45-57. <https://doi.org/10.22034/ijsts.2019.125542.1262>.

Aguilar-Rito M. G, Arzate-Fernández A. M, García-Núñez, H. G, and Norman-Mondragón T. H. 2023. Establishment of an efficient protocol for in vitro disinfection of seeds of seven *Agave* spp. species. *Rev. Mex. Fitopatol. Mex. J. Phytopathol.* 42. <https://doi.org/10.18781/r.mex.fit.2310-1>.

Ahmadi-Roshan M, Karimzadeh G, Babaei A, and Jafari H. 2016. Karyological studies of *Fritillaria* (liliaceae) species from Iran. *Cytologia (Tokyo)*. 81: 133-141. <https://doi.org/10.1508/cytologia.81.133>.

Akbarzadeh M, Van Laere K, Leus L, De Riek J, Van Huylenbroeck J, Werbrouck SP, and Dhooghe E. 2021. Can knowledge of genetic distances, genome sizes and chromosome numbers support breeding programs in hardy geraniums? *Genes (Basel)*. 12. <https://doi.org/10.3390/genes12050730>.

Ali MES, and Amar MH. 2020. A systematic revision of Capparaceae and Cleomaceae in Egypt: an evaluation of the generic delimitations of *Capparis* and *Cleome* using ecological and genetic diversity. *J. Genet. Eng. Biotechnol.* 18: 58. <https://doi.org/10.1186/s43141-020-00069-z>.

Al-Turki TA, Filfilan SA, and Mehmood SF. 2000. A cytological study of flowering plants from Saudi Arabia. *Willdenowia* 30: 339-358. <https://doi.org/10.3372/wi.30.30211>.

Anjum N, Dash CK, and Sultana SS. 2023. Karyological diversity among six medicinally important species

of Acanthaceae with three new chromosome counts. Nucl., 1-9. <https://doi.org/10.1007/s13237-023-00443-5>.

Annaz H, Sane, Y, Bitchagno GTM, Ben Bakrim W, Drissi B, Mahdi I, El Bouhssini M, and Sobeh M. 2022. Caper (*Capparis spinosa* L.): An updated review on its phytochemistry, nutritional value, traditional uses, and therapeutic potential. *Front. Pharmacol.* 13: 1-22. <https://doi.org/10.3389/fphar.2022.878749>.

Ara KM, Karami M, and Raofie F. 2014. Application of response surface methodology for the optimization of supercritical carbon dioxide extraction and ultrasound-assisted extraction of *Capparis spinosa*. Elsevier. <https://doi.org/10.1016/j.supflu.2013.10.016>.

Argentieri M, Macchia F, Papadia P, Fanizzi F P, and Avato P 2012. Bioactive compounds from *Capparis spinosa* subsp. *rupestris*. *Ind. Crops Prod.* 36(1): 65-69. doi.org/10.1016/j.indcrop.2011.08.007.

Aydin ZU, Eroğlu HE, Şenova MK, Martin E, Tuna M, and Dönmez AA. 2024. Chromosome characterization and genome size in *Nigella* and *Garidella* species (Ranunculaceae) with their taxonomic implications. *Cytologia* 89: 117-125. <https://doi.org/10.1508/cytologia.89.117>.

Bakr RO, and El Bishbisy MH. 2016. Profile of bioactive compounds of *Capparis spinosa* var. *aegyptiaca* growing in Egypt. *Rev. Bras. Farmacogn.* 26: 514-520. <https://doi.org/10.1016/J.BJP.2016.04.001>.

Barbera G, and Di Lorenzo R. 1984. The caper culture in Italy. *Acta Horticulturae*: 167-172. <https://doi.org/10.17660/actahortic.1984.144.21>.

Batagelj V. 1988. Generalized Ward and related clustering problems. *Classification and Related Methods of Data Analysis*, 30: 67-74.

Beckmann J, Estivill X, and Antonarakis S. 2007. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. *Nat. Rev. Genet.* 8: 639-646. <https://doi.org/10.1038/nrg2149>.

Bourge, M., Brown, S. C., and Siljak-Yakovlev, S. (2018). Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. *Genet. Appl.* 2, 1-12. <https://hal.science/hal-03937019v1>.

Caceres M, De Pace C, Mugnozza GS, Kotsonis P, Cecarelli M, and Cionini PG. 1998. Genome size variations within *Dasyphyrum villosum*: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. *Theor. Appl. Genet.* 96: 559-567. <https://doi.org/10.1007/s001220050774>.

Cardoso FC, Berri RA, Lucca G, Borges EN, and Mattoos VLD. 2023. Normality tests: a study of residuals obtained on time series tendency modeling. *Exacta*. <https://doi.org/10.5585/2023.22928>.

Carr GD. 1978. Chromosome numbers of Hawaiian flowering plants and the significance of cytology in selected taxa. *Am. J. Bot.* 65: 236-242. <https://doi.org/10.1002/j.1537-2197.1978.tb06061.x>.

Carra A, Sajeva M, Abbate L, Siragusa M, Sottile F, and Carimi F. 2012. *In vitro* plant regeneration of caper (*Capparis spinosa* L.) from floral explants and genetic stability of regenerants. *Plant Cell Tiss. Org. Cult.* 109: 373-381. <https://doi.org/10.1007/s11240-011-0102-9>.

Carta A, Bedini G, and Peruzzi L. 2018. Unscrambling phylogenetic effects and ecological determinants of chromosome number in major angiosperm clades. *Sci. Rep.* 8: 14258. <https://doi.org/10.1038/s41598-018-32515-x>.

Cedillo-Cortezano M, Martinez-Cuevas LR, López JAM, Barrera López IL, Escutia-Perez S, and Petricevich VL. 2024. Use of medicinal plants in the process of wound healing: a literature review. *Pharmaceuticals*, 17(3): 303. <https://doi.org/10.3390/ph17030303>.

Chedraoui S, Abi-Rizk A, El-Beyrouthy M, Chalak L, Ouaini N, and Rajjou L. 2017. *Capparis spinosa* L. in A systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. *Front. Plant Sci.* 8. <https://doi.org/10.3389/fpls.2017.01845>.

Cincotta F, Merlini M, Verzera A, Gugliandolo E, and Condurso C. 2022. Innovative process for dried caper (*Capparis spinosa* L.) powder production. *Foods* 11. <https://doi.org/10.3390/foods11233765>.

Condurso C, Mazzaglia A, Tripodi G, Cincotta F, Dima G, Maria Lanza C, and Verzera A. 2016. Sensory analysis and head-space aroma volatiles for the characterization of capers from different geographic origin. *J. Essent. Oil Res.*, 28(3): 185-192. <https://doi.org/10.1080/10412905.2015.1113205>.

Doležel J, and Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. *Ann. Bot.* 95: 99-110. <https://doi.org/10.1093/aob/mci005>.

Doležel J, Bartoš J, Voglmayr H, and Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. *Cytometry. A* 51: 127-128; author reply 129. <https://doi.org/10.1002/cyto.a.10013>.

Doležel J, Greilhuber J, and Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. *Nat. Protoc.* 2: 2233-2244. <https://doi.org/10.1038/nprot.2007.310>.

Doležel J, Sgorbati S, and Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in

plants. *Physiol. Plant.* 85: 625-631. <https://doi.org/10.1111/j.1399-3054.1992.tb04764.x>.

Ellul P, Boscaiu M, Vicente O, Moreno V, and Rosselló JA. 2002. Intra- and inter-specific variation in DNA content in *Cistus* (Cistaceae). *Ann. Bot.* 90: 345-351. <https://doi.org/10.1093/aob/mcf194>.

Firoozi N, Karimzadeh G, Sabet MS, and Sayadi V. 2022. Intraspecific karyomorphological and genome size variations of *in vitro* embryo derived Iranian endemic *Asa-foetida* (*Ferula assa-foetida* L., Apiaceae). *Caryologia* 75: 111-121. <https://doi.org/10.36253/caryologia-1721>.

Gao Y, Zhao G, Xu Y, Hao Y, Zhao T, Jia L, and Chen Z. 2024. Karyotype analysis and genome size estimation of *Sapindus mukorossi* Gaertn. an economical important tree species in China. *Bot. Lett.* 171(12): 116-124. <https://doi.org/10.1080/23818107.2023.2244179>.

Garbari F, Bedini G, and Peruzzi L. 2012. Chromosome numbers of the Italian flora. From the Caryologia foundation to present. *Caryologia* 65: 62-71. <https://doi.org/10.1080/00087114.2012.678090>.

Goldblatt P. and Johnson ED. 1979. Index to plant chromosome numbers. Missouri Botanical Garden. Inc. Ann Arbor, Michigan. Available at: <http://www.tropicos.org/Project/IPCN>.

Gregory TR. 2005. Genome size evolution in animals. In the evolution of the genome. Academic Press. Pp. 3-87. <https://doi.org/10.1016/B978-012301463-4/50003-6>.

Greilhuber J, Doležel J, Lysák MA, Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. *Annals of Botany*, 95(1): 255-260. <https://doi.org/10.1093/aob/mci019>.

Guerra M. 2012. Cytotaxonomy: The end of childhood. *Plant Biosyst.* 146: 703-710. <https://doi.org/10.1080/1263504.2012.717973>.

Gupta RC, and Gill BS. 1981. In chromosome number reports LXXI. *Taxon* 30: 514. <http://www.jstor.org/stable/1220167>.

Hamidi F, Karimzadeh G, Rashidi Monfared S, and Salehi M. 2018. Assessment of Iranian endemic *Artemisia khorassanica*: Karyological, genome size, and gene expressions involved in artemisinin production. *Turk. J. Biol.* 42: 322-333. <https://doi.org/10.3906/biy-1802-86>.

Harpke D, Carta A, Tomović G, Randelović V, Randelović N, Blattner FR, and Peruzzi L. 2015. Phylogeny, karyotype evolution and taxonomy of *Crocus* series Verni (Iridaceae). *Plant Syst. Evol.* 301: 309-325. <https://doi.org/10.1007/s00606-014-1074-0>.

Hinkelmann K. 2012. Design and Analysis of Experiments. John Wiley & Sons. <https://doi.org/10.1002/9781118147634>

Honarmand SJ, Nosrati I, Nazari K, and Heidari H. 2016. Factors affecting the seed germination and seedling emergence of muskweed (*Myagrum perfoliatum*). *Weed Biol. Manag.* 16: 186-193. <https://doi.org/10.1111/wbm.12110>.

Jang TS. and Weiss-Schneeweiss H. 2018. Chromosome numbers and polyploidy events in Korean non-comelinids monocots: A contribution to plant systematics. *Korean J. Plant Taxon.* 48: 260-277. <https://doi.org/10.11110/kjpt.2018.48.4.260>.

Javadian N, Karimzadeh G, Sharifi M, Moieni A, and Behmanesh M. 2017. *In vitro* polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in *Linum album* (Linaceae). *Planta* 245: 1165-1178. <https://doi.org/10.1007/s00425-017-2671-2>.

Kamel W, Abd El-Ghani MM, and El-Bous M. 2009. Taxonomic study of Capparaceae from Egypt: revisited. *African J. Pl. Sci. Biotech.* 3: 27-35.

Karimzadeh G, Danesh-Gilevaei M., and Aghaalikhani M. 2011. Karyotypic and nuclear DNA variations in *Lathyrus sativus* (Fabaceae). *Caryologia* 64: 42-54. <https://doi.org/10.1080/00087114.2011.10589763>.

Khakshour A, Karimzadeh G, Sabet MS, and Sayadi V. 2024. Karyomorphological and genome size variation in Iranian endemic populations of coriander (*Coriandrum sativum* L.). *Cytologia* 89: 21-27. <https://doi.org/10.1508/cytologia.89.21>.

Khatoon S, and Ali SI. 1993. Chromosome atlas of the angiosperms of Pakistan. Karachi Univ. Karachi vii, 232 p., ISBN 1104765435.

Kocjan D, Dolenc Koce J, Etl F, and Dermastia M. 2022. Genome size of life forms of Araceae-A new piece in the C-value puzzle. *Plants* (Basel, Switzerland) 11. <https://doi.org/10.3390/plants1103034>

Kondrashov FA, Rogozin IB, Wolf YI, and Koonin EV. 2002. Selection in the evolution of gene duplications. *Genome Biol.* 3: 1-9. <https://doi.org/10.1186/gb-2002-3-2-research0008>.

Kula A. 1999. Cytogenetic studies in the cultivated form of *Bromus carinatus* (Poaceae). W. Szafer Institute of Botany, Polish Academy of Sciences. 101-106.

Levin DA. 2002. The role of chromosomal change in plant evolution. Oxford University Press, USA.

Loureiro J, Rodriguez E, Doležel J, and Santos C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. *Ann. Bot.* 100: 875-888. <https://doi.org/10.1093/aob/mcm152>.

Magulaev AJ. 1979. The chromosome numbers of flowering plants in the northern Caucasus. part 3. *Flora north Caucasus Quest. Its Hist.* 3: 101-106.

Mahdavi S, and Karimzadeh G. 2010. Karyological and nuclear dna content variation in some Iranian endemic *Thymus* species (Lamiaceae). *J. Agric. Sci. Technol.* 12: 447-458.

Mahmoudi S, and Mirzaghaderi G. 2023. Tools for Drawing Informative Idiograms Methods in Molecular Biology, (Springer). 515-527. https://doi.org/10.1007/978-1-0716-3226-0_31.

Marir EMA. 2024. Propagation of medicinal capers (*Capparis spinosa* L.) and production of some medicinal secondary metabolic compounds using plant tissue culture technology. *Euphrates J. Agric. Sci.* 16.

Matthäus B, and Özcan M. 2005. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from *Capparis spinosa* var. *spinosa* and *Capparis ovata* Desf. var. *canescens* (Coss.) Heywood. *J. Agric. Food Chem.* 53: 7136-7141. <https://doi.org/10.1021/jf051019u>.

Mayrose I, and Lysak MA. 2021. The evolution of chromosome numbers: mechanistic models and experimental approaches. *Genome Biol. Evol.* 13. <https://doi.org/10.1093/gbe/evaa220>.

Mehravi S, Karimzadeh G, Kordenaeej A, and Hanifei M. 2022a. Mixed-ploidy and dysploidy in *Hypericum perforatum*: A karyomorphological and genome size study. *Plants* 11(22): 3068. <https://doi.org/10.3390/plants11223068>.

Mehravi S, Ranjbar GA, Najafi-Zarrini H, Mirzaghaderi G, Hanifei M, Severn-Ellis AA, Edwards D, and Batley J. 2022b. Karyology and genome size analyses of Iranian endemic *Pimpinella* (Apiaceae) species. *Front. Plant Sci.* 13: 1-14. <https://doi.org/10.3389/fpls.2022.898881>.

Merlino M, Condurso C, Cincotta F, Nalbone L, Ziino G, and Verzera A. 2024. Essential oil emulsion from caper (*Capparis spinosa* L.) leaves: exploration of its antibacterial and antioxidant properties for possible application as a natural food preservative. *Antioxidants* 13(6) : 718. <https://doi.org/10.3390/antiox13060718>.

Mesquita AT, Braz GT, Shimizu GH, Machado RM, Romero-da Cruz MV, and Forni-Martins ER. 2024. Karyotype diversity and genome size in the *Cyphomandra* clade of *Solanum* L. (Solanaceae). *Bot. J. Linn. Soc.* <https://doi.org/10.1093/botlinnean/boae047>.

Moghaddasi MS. 2011. Caper (*Capparis* spp.) importance and medicinal usage. *Adv. Environ. Biol.* 5(5): 872-879.

Mohammadpour S, Karimzadeh G, and Ghaffari SM. 2022. Karyomorphology, genome size, and variation of antioxidant in twelve berry species from Iran. *Caryologia* 75: 133-148. <https://doi.org/10.36253/CARYOLOGIA-1633>.

Morales Valverde R. 1986. *Taxonomia De Los Generos Thymus (Excluida De La Seccion Serpyllum) Y Thymbra En La Peninsula Iberica*. CSIC – Real Jardin Botanico (RJB), Ruizia. Monografias del Jardin Botanico 3: 324 p. <http://hdl.handle.net/10261/66682>.

Morovati Z, Karimzadeh G, Naghavi MR, and Rashidi Monfared S. 2024. Chromosome, ploidy analysis, and flow cytometric genome size estimation of *Datura stramonium* and *D. innoxia* medicinal plant. *Caryologia*, 77(3): 53-61. <https://doi.org/10.36253/caryologia-2768>.

Nabavi SF, Maggi F, Duglia M, Habtemariam S, Rastrelli L, and Nabavi SM. 2016. Pharmacological effects of *Capparis spinosa* L. *Phyther. Res.* 30(11): 1733-1744. <https://doi.org/10.1002/ptr.5684>.

Naranjo CA, Ferrari MR, Palermo AM, and Poggio L. 1998. Karyotype, DNA content and meiotic behaviour in five South American species of *Vicia* (Fabaceae). *Ann. Bot.* 82: 757-764. <https://doi.org/10.1006/anbo.1998.0744>.

Ning H, Ao S, Fan Y, Fu J, and Xu C. 2018. Correlation analysis between the karyotypes and phenotypic traits of Chinese *Cymbidium* cultivars. *Hortic. Environ. Biotechnol.* 59: 93-103. <https://doi.org/10.1007/s13580-018-0010-6>.

Olmez Z, Gokturk A, and Gulcu S. 2006. Effects of cold stratification on germination rate and percentage of caper (*Capparis ovata* Desf.) seeds. *J. Environ. Biol.* 27(4): 667-670.

Osborne JW. 2010. Improving your data transformations: Applying the Box-Cox transformation. *Pract. Assessment, Res. Eval.* 15. <https://doi.org/10.7275/qbpc-gk17>.

Patwardhan D, Varshini SA, and Galoth L. 2022. Study of Chromosome. In *Genetics Fundamentals Notes*. Singapore: Springer Nature Singapore. pp 239-298. https://doi.org/10.1007/978-981-16-7041-1_5.

Pellicer J, Hidalgo O, Dodsworth S, and Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. *Genes (Basel)*. 9(2): 88. <https://doi.org/10.3390/genes9020088>.

Peruzzi L and Altinordu, F. 2014. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. *Comp. Cytogenet.* 8: 337-349. <https://doi.org/10.3897/CompCytogen.v8i4.8564>.

Peruzzi L and Eroğlu HE. 2013. Karyotype asymmetry: Again, how to measure and what to measure? *Comp. Cytogenet.* 7: 1-9. <https://doi.org/10.3897/CompCytogen.v7i1.4431>.

Peruzzi L, Carta A, and Altinordu F. 2017. Chromosome diversity and evolution in *Allium* (Allioideae, Amaryllidaceae). *Plant Biosyst.* 151: 212-220. <https://doi.org/10.1080/11263504.2016.1149123>.

Peruzzi L, Góralski G, Joachimiak AJ, and Bedini G. 2012. Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras. *Comp. Cytogenet.* 6: 371. <https://doi.org/10.3897/CompCytogen.v6i4.3955>.

Qi J, Liang W, Yunlin Z, Guiyan Y, Tianci T, Yingzi M, Zhenggang X. 2023. Methods for rapid seed germination of *Broussonetia papyrifera*. *Pak. J. Bot.* 55: 941-948. [https://doi.org/10.30848/PJB2023-3\(2\)](https://doi.org/10.30848/PJB2023-3(2)).

Radmanesh P, Karimzadeh G, Kashkoli AB, and Heidarzadeh A. 2023. Study on phytochemical traits and improving seed germination methods of Iranian endemic populations of caper (*Capparis spinosa* L.) medicinal plant. *Iran. J. Seed Sci. Res.* 10: 41-52. (In Persian with English Abstract). <https://doi.org/10.22124/jms.2023.23352.1729>.

Rasekh SZ and Karimzadeh G. 2023. Chromosomal and genome size variations in opium poppy (*Papaver somniferum* L.) from Afghanistan. *Caryologia*, 76(4): 15-22. <https://doi.org/10.36253/caryologia-1955>.

Rock BN. 2016. The woods and flora of the Florida Keys : "Pinnatae" /. woods flora Florida Keys "Pinatae" <https://doi.org/10.5962/bhl.title.123255>.

Runemark H. 1996. Mediterranean chromosome number reports 6 (590-678). *Flora Mediterr.* 6, 223-243.

Sakcali MS, Bahadir H, and Ozturk M. 2008. Eco-physiology of *Capparis spinosa* L.: A plant suitable for combating desertification. *Pak. J. Bot.* 40(4): 1481-1486. [https://www.academia.edu/download/31556522/PJB40\(4\)1481.pdf](https://www.academia.edu/download/31556522/PJB40(4)1481.pdf).

Sandhu PS. 1989. SOCGI plant chromosome number reports 8. *J. Cytol. Genet.* 24, 179-183.

Sayadi V, Karimzadeh G, Naghavi MR, and Rashidi Monfared S. 2022. Interspecific genome size variation of Iranian endemic *Allium* species (Amaryllidaceae). *Cytologia (Tokyo)*. 87: 335-338. <https://doi.org/10.1508/cytologia.87.335>.

Shahrajabian MH, Sun W, and Cheng Q. 2021. Plant of the millennium, caper (*Capparis spinosa* L.), chemical composition and medicinal uses. *Bull. Natl. Res. Cent.* 45. <https://doi.org/10.1186/s42269-021-00592-0>.

Shariat A, Karimzadeh G, and Assareh MH. 2013. Karyology of Iranian endemic *Satureja* (Lamiaceae) species. *Cytologia (Tokyo)*. 78: 305-312. <https://doi.org/10.1508/cytologia.78.305>.

Sharma A. (1968). Chromosome number reports of plants. In Annual Report, Cytogenetics Laboratory, Department of Botany, University of Calcutta. *Res. Bull.* 2: 38-48.

Siljak-Yakovlev S and Peruzzi L. 2012. Cytogenetic characterization of endemics: Past and future. *Plant Biosyst.* 146, 694-702. <https://doi.org/10.1080/11263504.2012.716796>.

Singh RJ. 2016. *Plant Cytogenetics* (3rd ed.). CRC Press. 548 p. <https://doi.org/10.1201/9781315374611>.

Singhal VK and Gill BS. 1984. SOCGI plant chromosome number reports II. *J. Cytol. Genet* 19: 115-117.

Sliwinska E. 2018. Flow cytometry-a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. *Folia Hortic.* 30: 103-128. <https://doi.org/10.2478/fhort-2018-0011>.

Stace CA. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. *Taxon* 49: 451-477. <https://doi.org/10.2307/1224344>.

Stebbins GL. 1950. *Variation and Evolution in Plants*. Columbia University Press, USA.

Stebbins GL. 1971. *Chromosomal Evolution in Higher Plants*. Edward Arnold Ltd, UK.

Subramanian D. and Pondmudi R. 1987. Cytotaxonomical Studies of South Indian Scrophulariaceae. *Cytologia (Tokyo)*. 52: 529-541. <https://doi.org/10.1508/cytologia.52.529>.

Sundarrajan P and Bhagtaney L. 2023. Traditional Medicinal Plants as Bioresources in Health Security. Apple Academic Press. <https://doi.org/10.1201/9781003352983-3>.

Swift HH. 1950. The constancy of deoxyribose nucleic acid in plant nuclei. *Proceedings of the National Academy of Sciences, Washington* 36: 643-654. <https://doi.org/10.1073/pnas.36.11.643>.

Tarkesh Esfahani S, Karimzadeh G, and Naghavi MR. 2016. 2C DNA value of Persian poppy (*Papaver bracteatum* Lindl.) medicinal plant as revealed by flow cytometry analysis; a quick effective criteria for distinguishing unidentified Papaver species. *International Journal of Advanced Biotechnology and Research*, 7(2): 573-578. <http://www.bipublication.com>.

Tarkesh Esfahani S, Karimzadeh G, and Naghavi MR. 2020. *In vitro* polyploidy induction in persian poppy (*Papaver bracteatum* Lindl.). *Caryologia* 73: 133-144. <https://doi.org/10.13128/caryologia-169>.

Tavan M, Mirjalili MH, and Karimzadeh G. 2015. *In vitro* polyploidy induction: changes in morphological, anatomical and phytochemical characteristics of *Thymus persicus* (Lamiaceae). *Plant Cell Tiss. Org. Cult.* 122: 573-583. <https://doi.org/10.1007/s11240-015-0789-0>.

Tkach N and Röser M. 2024. Genome sizes of grasses (Poaceae), chromosomal evolution, paleogenomics

and the ancestral grass karyotype (AGK). <https://doi.org/10.21203/rs.3.rs-3914153/v1>.

Tlili N, Mejri H, Anouer F, Saadaoui E, Khaldi A, and Nasri N. 2015. Phenolic profile and antioxidant activity of *Capparis spinosa* seeds harvested from different wild habitats. *Industrial Crops and Products*, 76: 930-935. <https://doi.org/10.1016/j.indcrop.2015.07.040>.

Vimala Y, Lavania S, and Lavania UC. 2021. Chromosome change and karyotype differentiation-implications in speciation and plant systematics. *Nucl.* 64: 33-54. <https://doi.org/10.1007/s13237-020-00343-y>.

Wang LJ, Gao MD, Sheng MY, and Yin J. 2020. Cluster analysis of karyotype similarity coefficients in *Epidendrum* (Berberidaceae): Insights in the systematics and evolution. *PhytoKeys* 161: 11-26. <https://doi.org/10.3897/PHYTOKEYS.161.51046>.

Wang L, Fan L, Zhao Z, Zhang Z, Jiang L, Chai M, and Tian C. 2022. The *Capparis spinosa* var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family. *Gigascience* 11: 1-14. <https://doi.org/10.1093/gigascience/giac106>.

Weigel D and Nordborg M. 2015. Population genomics for understanding adaptation in wild plant species. *Annu. Rev. Genet.* 49(1): 315-338. <https://doi.org/10.1146/annurev-genet-120213-092110>.

Winterfeld G, Ley A, Hoffmann MH, Paule J, and Röser M. 2020. Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). *Plant Syst. Evol.* 306: 1-17. <https://doi.org/10.1007/s00606-020-01663-x>.

Winterfeld G, Schneider J, Becher H, Dickie J, and Röser M. 2015. Karyosystematics of the Australasian stipoid grass *Austrostipa* and related genera: chromosome sizes, ploidy, chromosome base numbers and phylogeny. *Aust. Syst. Bot.* 28: 145-159. <https://doi.org/10.1071/sb14029>.

Xiaofeng G and Richman MB. 1995. On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. *J. Clim.* 8: 897-931. [https://doi.org/10.1175/1520-0442\(1995\)008<0897:otaoca>2.0.co;2](https://doi.org/10.1175/1520-0442(1995)008<0897:otaoca>2.0.co;2).

Yari A, Karimzadeh G, Rashidi Monfared ., and Sayadi S. 2024. Mixed-ploidy in Iranian endemic *Cymbopogon olivieri* (Boiss.) Bor: A chromosomal and holoploid genome size study. *Cytologia*, 89 (2): 127-131. <https://doi.org/10.1508/cytologia.89.127>.

Yeshitila M, Gedebo A, Tesfaye B, Demissie H, and Olango TM. 2023. Multivariate analysis for yield and yield-related traits of amaranth genotypes from Ethiopia. *Heliyon*. 9: 100184. <https://doi.org/10.1016/j.heliyon.2023.e18207>.

Zarabizadeh H, Karimzadeh G, Rashidi Monfared S, and Tarkesh Esfahani S. 2022. Karyomorphology, ploidy analysis, and flow cytometric genome size estimation of *Medicago monantha* populations. *Turk. J. Botany* 46: 50-61. <https://doi.org/10.3906/bot-2105-22>.

Zare Teymoori S, Karimzadeh G, and Shariat A. 2021. Chromosomal and genome size diversity in savory (*Satureja* spp.) medicinal plant. *Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research*, 29(2): 236-250. <https://doi.org/10.22092/ijrfpbgr.2021.354486.1383>. (In Persian with English abstract).

Zarei M, Seyed N, Maghsoudi S, Nejad MS, and Sheibani H. 2021. Green synthesis of Agnanoparticles on the modified graphene oxide using *Capparis spinosa* fruit extract for catalytic reduction of organic dyes. *Inorg. Chem. Commun.* 123. <https://doi.org/10.1016/j.inoche.2020.108327>.

Citation: Kim, H.-r. & Heo, K. (2025). Karyotype analysis and chromosome evolution in Menyanthaceae using FISH. *Caryologia* 78(2): 21-28. doi: 10.36253/caryologia-3431

Received: March 26, 2025

Accepted: July 17, 2025

Published: December 20, 2025

© 2025 Author(s). This is an open access, peer-reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

ORCID

HRK: 0000-0002-1415-9675

KH: 0000-0003-3785-3974

Karyotype analysis and chromosome evolution in Menyanthaceae using FISH

HYE-RIN KIM, KWEON HEO*

Department of Applied Plant Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea

*Corresponding author. E-mail: laurus@kangwon.ac.kr

Abstract. The Menyanthaceae, an aquatic plant family, is distinguished by extensive polyploidy and heterostyly. This study marks the first cytogenetic characterization of four Menyanthaceae species from Korea – *Menyanthes trifoliata*, *Nymphoides peltata*, *N. indica*, and *N. coreana* – employing fluorescence in situ hybridization (FISH) with 45S and 5S rDNA probes. All four species exhibit exclusively metacentric chromosomes, with *M. trifoliata* and *N. peltata* being hexaploid ($2n = 54$), *N. coreana* tetraploid ($2n = 36$), and *N. indica* diploid ($2n = 18$). FISH mapping revealed between one to four 45S rDNA loci and one to three 5S rDNA loci per species, showing that rDNA site number does not correlate directly with ploidy level. The karyotypic data suggest a conserved base chromosome number ($x = 9$) and largely symmetrical karyotypes across these species. Notably, *M. trifoliata* presents fewer rDNA loci than expected for a hexaploid, indicating genomic rearrangements and rDNA locus loss through diploidization. These observations highlight an evolutionarily stable genome structure in *M. trifoliata*, despite its polyploid nature. This study elucidates the chromosomal organization and evolutionary dynamics of the Menyanthaceae, emphasizing the role of polyploidy and rDNA evolution in genome structuring. The findings enhance our understanding of plant cytogenetics in aquatic ecosystems and serve as a foundation for further comparative genomic and evolutionary studies in Menyanthaceae.

Keywords: Menyanthaceae, polyploidy, karyotype analysis, Fluorescence *in situ* hybridization, rDNA loci.

INTRODUCTION

The Menyanthaceae family comprises perennial, floating-leaved aquatic plants prevalent across pantropical regions, including tropical America, Asia, and Australia. These plants are noted for heterostyly, a self-incompatible reproductive system that encourages outcrossing (Barrett 1992; Barrett and Shore 2008). The family predominantly exhibits distyly, though variants such as homostyly or other mating system alterations occur (Ornduff 1970, 1987, 1992). Reproduction is facilitated through both sexual (seed-based) and asexual (clonal propagation via root-derived turions) modes, promoting ecological resilience and adaptability in wetland habitats (Tipperry et al. 2008, 2009). In the Korean Peninsula, Menyanthaceae is represented by *Menyanthes tri-*

foliata L. and *Nymphoides peltata* (S. G. Gmel.). Kuntze, *Nymphoides indica* (L.) Kuntze, and *Nymphoides coreana* (H. Lév.) H. Hara, all crucial for biodiversity and ecological stability in aquatic environments (Ornduff 1970; Tippery et al. 2008, 2009; Watanabe 2022).

Understanding chromosomal organization in Menyanthaceae is crucial for unraveling their genetic and evolutionary dynamics, especially given their adaptation to aquatic environments. Cytogenetic studies have revealed substantial chromosomal variation within this family, including phenomena such as polyploidy, descending dysploidy, and chromosomal races, which contribute to speciation and environmental adaptation (Gillett 1968; Watanabe 2022; Leitch and Leitch 2013). In the genus *Nymphoides* ($x = 9$), detailed examinations reveal chromosome counts predominantly in diploid ($2n = 18$), tetraploid ($2n = 36$), and hexaploid ($2n = 54$) states, indicating dynamic karyotypic evolution (Ornduff 1970). Similarly, *M. trifoliata* shows a hexaploid chromosome count ($2n = 54$), contrasting with *Nephrophyllidium crista-galli*, which has been documented with $2n = 108$, highlighting extensive polyploidization within the Menyanthaceae (Gillett 1968; Tippery et al. 2008).

Fluorescence in situ hybridization (FISH) is a robust cytogenetic technique that facilitates the direct visualization of specific DNA sequences on chromosomes (Abbo et al. 1994). This method uses fluorescently labeled probes to map vital genomic elements, such as 45S and 5S rDNA loci, which act as molecular markers for assessing chromosomal polymorphisms and genetic diversity (Stebbins 1971; Stace 2000; Ilnicki 2014). Recent studies have underscored the role of rDNA loci in chromosomal evolution, particularly among plant species undergoing polyploidization and structural rearrangements (Weiss-Schneeweiss et al. 2013; Watanabe 2022).

This study aims to investigate the chromosomal architecture of *M. trifoliata* using FISH to map repetitive DNA sequences, including 45S and 5S rDNA loci. By analyzing the karyotype, we hope to elucidate the organization, composition, and evolutionary dynamics of the Men-

yanthaceae genome. Comparative analyses with related taxa will provide deeper insights into chromosomal evolution and adaptation strategies in wetland environments, contributing to broader knowledge in plant cytogenetics, genome stability, and conservation biology.

MATERIAL AND METHODS

Root sample preparation for chromosome

Plant materials were collected from natural populations (Table 1). Roots were pre-treated with 2 mM 8-hydroxyquinoline solution for 4 hours at 12°C. They were subsequently fixed in Carnoy's solution (3:1 ethanol: acetic acid) for 24 hours and stored in 70% ethanol at 4°C until use.

Chromosome spread preparation

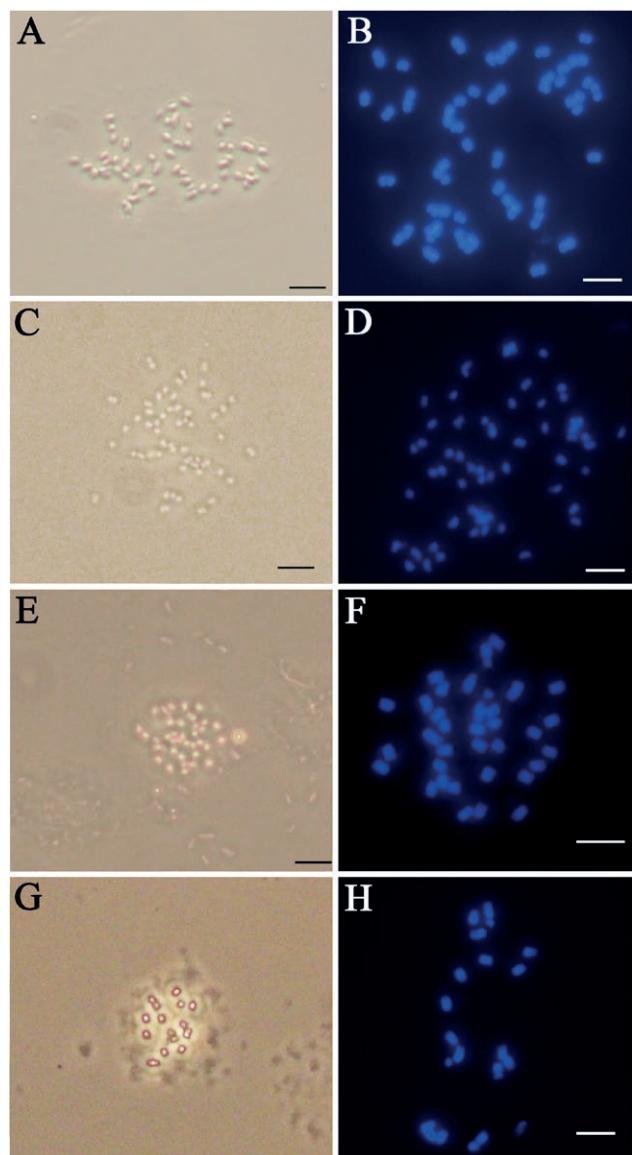
Somatic chromosome spreads were prepared using a modified version of the technique described by Kirov et al. (2014). After thorough washing with distilled water, the meristematic regions of the fixed root tips were excised and digested in an enzyme mix (2% cellulase, 1% pectolyase in 1× Citrate buffer) for 52 minutes at 37°C. The enzyme mix was removed, and 80 µL of Carnoy's solution was added; roots were suspended by vortexing, then centrifuged, and the pellet was resuspended in a 9:1 acetic acid–ethanol solution. Finally, the root suspension was dropped onto slides in a humid chamber to spread the chromosomes, and then the chromosomes were air-dried.

Fluorescence in situ hybridization (FISH)

The 45S rDNA was labeled with digoxigenin-11-dUTP (Roche, Germany) via nick translation and detected with anti-digoxigenin FITC. The 5S rDNA was labeled with biotin-16-dUTP and detected with strepta-

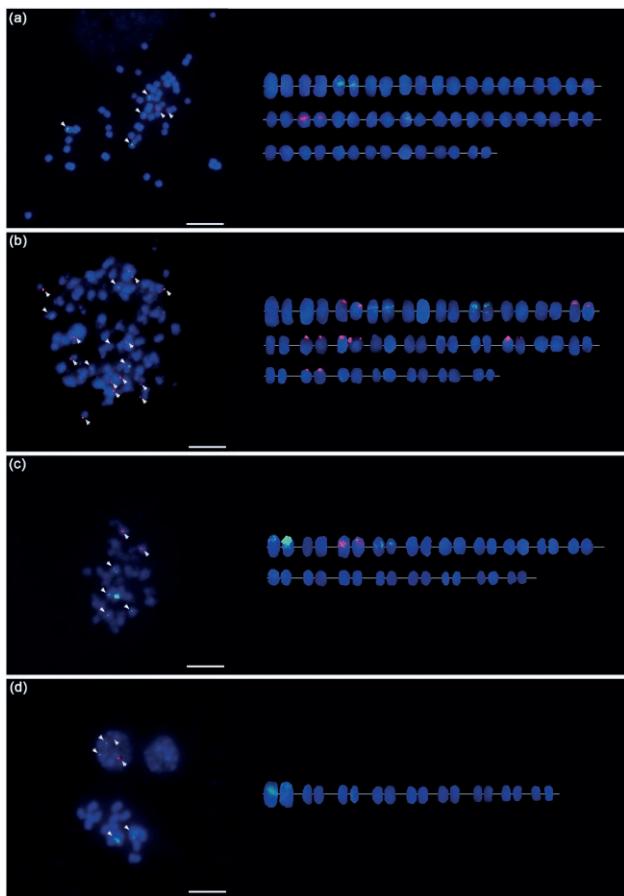
Table 1. Collection data of plant materials used in this study.

Taxa	Collection data
<i>Menyanthes trifoliata</i> L.	Korea, Gangwon-do, Goseong-gun, April 13, 2021, H. R. Kim and K. Heo s.n. (KWNU) Korea, Gangwon-do, Taebaek-si, May 25, 2021, H. R. Kim and K. Heo s.n. (KWNU)
<i>Nymphoides indica</i> (L.) Kuntze	Korea, Jeju-do, Jocheon-eup, August 8, 2023, K. Heo s.n. (KWNU) Korea, Jeju-do, Jocheon-eup, August 12, 2023, K. Heo s.n. (KWNU)
<i>Nymphoides coreana</i> (H.Lév.) H.Hara	Korea, Jeju-do, Seogwipo-si, July 30, 2023, H. R. Kim and J. S. Yang s.n (KWNU)
<i>Nymphoides peltata</i> (S.G.Gmel.) Kuntze	Korea, Gyeonggi-do, Yangpyeong-gun, September 11, 2022, H. R. Kim and K. Heo s.n. (KWNU)


Table 2. Primers used in this study.

Gene	Type	Sequence
5s rDNA	Forward	5'-CGGTGCATTAATGCTGGTAT-3'
	Reverse	5'-CCATCAGAACTCCGCAGTTA-3'
45s rDNA	Forward	5'-CGAACCTGCAAGAGCA-3'
	Reverse	5'-GTCTGATCTGGGTCGCAA-3'

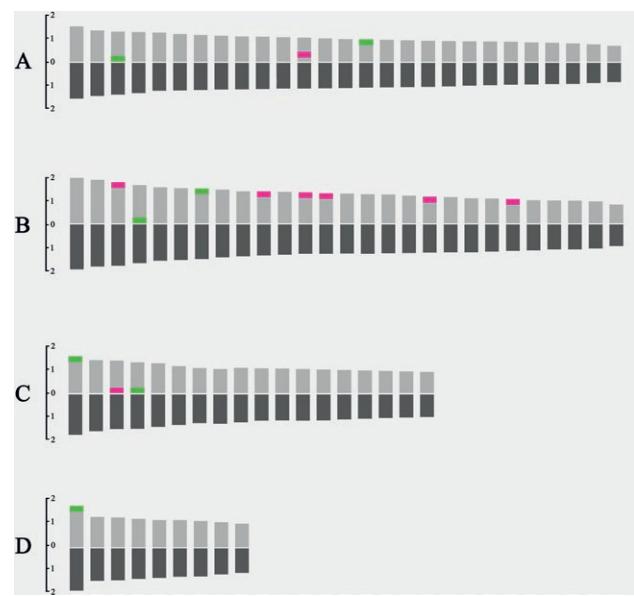
vidin-avidin Cy3 (Table 2). Labeled DNA fragments ranging from 100 to 500 bp were used as probes. The hybridization mixture for FISH contained 50% formamide, 10% dextran sulfate, 2×SSC, and 500 ng/μL of each probe DNA, adjusted with distilled water to a total volume of 50 μL per slide. The mixture was denatured at 90°C for 10 minutes and immediately cooled on ice for 10 minutes. After applying the probe mixture, chromosome slides were denatured at 80°C for 3 minutes on a hotplate. The slides were then incubated in a humid chamber at 37°C for 18 hours to facilitate hybridization. Subsequently, the slides were treated with 2x SSC for 5 minutes at RT and 1x detection buffer for 10 minutes at RT. Biotin-labelled 5S rDNA and digoxigenin labelled 45S rDNA were detected using Cy3-conjugated streptavidin and anti-digoxigenin-fluorescein isothiocyanate (FITC) at 37°C for 1 hour. Excess reagents were removed by washing three times in 1x detection buffer for 5 minutes each. The slides were dehydrated in a series of ethanol (70%, 90%, and 100%) for 3 minutes at RT, and air-dried. Then, the slides were counterstained with DAPI in VECTASHIELD. Chromosome spreads were examined using a phase-contrast fluorescence microscope (Axio Imager M2, Carl Zeiss, Germany). Chromosome length measurements and image acquisition were performed with ZEN software (Carl Zeiss).


RESULTS

This study provides the first cytogenetic characterization of four Menyanthaceae species using double-FISH. All species were found to possess exclusively metacentric chromosomes (Figs 1, 3). Chromosome counts confirm that *M. trifoliata* and *N. peltata* are hexaploid ($2n = 54$, Fig. 2A, B), *N. coreana* is tetraploid ($2n = 36$, Fig. 2C), and *N. indica* is diploid ($2n = 18$, Fig. 2D). Chromosome lengths varied from approximately 1.0 μm to 3.7 μm across these four species (Table 3; Fig. 3). FISH mapping identified between one and four 45S rDNA loci and one to three 5S rDNA loci per species, indicative of some variation in rDNA copy number among the genomes (Fig. 2).

Figure 1. Somatic metaphase chromosomes of Menyanthaceae. (A, B) *M. trifoliata* ($2n = 54$), (C, D) *N. peltata* ($2n = 54$), (E, F) *N. coreana* ($2n = 36$), (G, H) *N. indica* ($2n = 18$). Scale bars 5 μm for A to H.

The precise chromosomal positions of the rDNA signals were determined for each species. In *M. trifoliata*, green fluorescence signals corresponding to 45S rDNA were detected on chromosomes 3 and 15, while red fluorescence signals for 5S rDNA were observed on chromosome 12. In *N. peltata*, 45S rDNA signals were detected on chromosomes 4 and 7, and 5S rDNA signals on chromosomes 3, 10, 12, 13, 23, and 27. *N. coreana* exhibited 45S rDNA signals on chromosome 3 and 5S rDNA signals on chromosomes 1 and 4. *N. indica* displayed a 45S rDNA signal on chromosome 1 and a single 5S rDNA


Figure 2. FISH signals in metaphase chromosomes of Menyanthaceae species which were distributed across the chromosomes in (A) *M. trifoliata*, (B) *N. peltata*, (C) *N. coreana* and (D) *N. indica*. Localization of 5S rDNA (red), and 45S rDNA(green). The white arrow indicates the 45S signal, while the black arrow represents the 5S signal. Scale bars 5 μ m for A to D.

signal, which exact position could not be determined (Table 3; Fig. 3).

DISCUSSION

Genetic evolutionary dynamics in Menyanthaceae

The evolutionary trajectory of Menyanthaceae is characterized by extensive chromosomal variation and a prevalence of polyploidization, a key driver of speciation and morphological diversification. For example, the retention or breakdown of heterostyly can influence gene flow and mating patterns within Menyanthaceae populations (Haddadchi 2013, 2015; Barrett and Shore 2008). Studies on *Villarsia* (Menyanthaceae) reveal distinct stigma morphology differences between distylous and non-

Figure 3. Ideogram of metaphase chromosomes of Menyanthaceae. (A) *M. trifoliata*, (B) *N. peltata*, (C) *N. coreana* and (D) *N. indica*. Red and green area indicated 5S and 45S rDNA loci.

heterostylous species, supporting the role of reproductive adaptations in lineage diversification (Dulberger and Ornduff 2000).

Cytogenetic studies have consistently revealed a base chromosome number of $x = 9$ across the family (Ornduff 1970), with species exhibiting diploid ($2n = 18$), tetraploid ($2n = 36$), and hexaploid ($2n = 54$) karyotypes (Cook 1996). The genus *Nymphoides* exemplifies this pattern, wherein polyploidization appears to have enhanced ecological adaptability and geographic expansion (Soltis and Soltis 2016). Similar polyploidy-associated genomic modifications have been observed in other aquatic plant groups (Martel et al. 2004; Watanabe 2022).

Polyploidy is a recurrent feature in angiosperm evolution, yet its interaction with descending dysploidy remains an active area of research (Kadereit 2007). At the molecular level, FISH has provided critical insights into chromosomal evolution, especially concerning the organization of ribosomal DNA (rDNA) loci. Studies have revealed substantial variation in both the number and chromosomal positioning of rDNA loci across *Nymphoides* species, suggesting that post-polyploidization genomic reorganization is common (Rosato et al. 2015; Silvestri et al. 2015). Additionally, evidence of descending dysploidy – where chromosome number is reduced following polyploidization – indicates that Menyanthaceae species undergo structural karyotypic modifications to stabilize their genomes (Semple and Watanabe 2023). This ongoing genomic reorganization underscores

Table 3. Chromosome analysis of Menyanthaceae species.

Ch. No	<i>M. trifoliata</i>			<i>N. peltata</i>			<i>N. coreana</i>			<i>N. indica</i>		
	CL (μm) (mean±SD)	AR (μm) (mean±SD)	Type									
1	3.01±0.37	1.14±0.05	m	3.88±0.45	1.04±0.10	m	3.26±0.28	1.04±0.05	m*	3.71±0.30	1.14±0.06	m°
2	2.82±0.35	1.12±0.05	m	3.68±0.33	1.12±0.07	m	2.87±0.33	1.12±0.12	m	2.80±0.33	1.12±0.06	m
3	2.57±0.26	1.05±0.06	m*	3.06±0.38	1.11±0.05	m°	2.70±0.33	1.11±0.10	m°	2.75±0.22	1.05±0.04	m
4	2.42±0.22	1.08±0.08	m	3.31±0.31	1.03±0.13	m*	2.68±0.34	1.03±0.07	m*	2.61±0.25	1.08±0.07	m
5	2.34±0.22	1.09±0.04	m	3.20±0.36	1.07±0.06	m	2.56±0.38	1.07±0.05	m	2.52±0.14	1.09±0.04	m
6	2.27±0.18	1.08±0.06	m	3.17±0.57	1.07±0.10	m	2.52±0.39	1.07±0.13	m	2.47±0.28	1.08±0.05	m
7	2.21±0.17	1.09±0.09	m	3.13±0.28	1.01±0.05	m*	2.52±0.17	1.08±0.06	m	2.42±0.50	1.09±0.10	m
8	2.17±0.16	1.09±0.05	m	2.95±0.50	1.04±0.08	m	2.46±0.22	1.04±0.10	m	2.27±0.22	1.09±0.08	m
9	2.14±0.15	1.10±0.09	m	2.08±0.22	1.11±0.04	m	2.41±0.28	1.12±0.05	m	2.14±0.17	1.10±0.08	m
10	2.10±0.16	1.11±0.07	m	2.79±0.37	1.06±0.03	m°	2.37±0.60	1.06±0.08	m			
11	2.04±0.16	1.08±0.07	m	2.75±0.19	1.09±0.04	m	2.35±0.54	1.09±0.04	m			
12	1.99±0.14	1.08±0.04	m°	2.68±0.25	1.01±0.02	m°	2.31±0.31	1.01±0.03	m			
13	1.96±0.14	1.07±0.09	m	2.64±0.23	1.06±0.05	m°	2.25±0.19	1.06±0.03	m			
14	1.93±0.13	1.09±0.10	m	2.61±0.17	1.01±0.05	m	2.23±0.25	1.01±0.05	m			
15	1.91±0.13	1.06±0.04	m*	2.58±0.15	1.05±0.06	m	2.22±0.25	1.07±0.02	m			
16	1.88±0.14	1.09±0.12	m	2.56±0.60	1.14±0.06	m	2.22±0.19	1.14±0.05	m			
17	1.85±0.13	1.10±0.03	m	2.50±0.33	1.06±0.05	m	2.21±0.36	1.06±0.07	m			
18	1.83±0.12	1.09±0.02	m	2.45±0.16	1.00±0.03	m°	2.02±0.19	1.00±0.04	m			
19	1.79±0.12	1.11±0.02	m	2.38±0.15	1.14±0.07	m						
20	1.76±0.12	1.12±0.06	m	2.38±0.12	1.04±0.04	m						
21	1.72±0.11	1.10±0.05	m	2.30±0.19	1.08±0.05	m						
22	1.67±0.11	1.06±0.03	m	2.17±0.27	1.11±0.07	m°						
23	1.63±0.12	1.10±0.09	m	2.11±0.22	1.07±0.10	m						
24	1.59±0.10	1.12±0.06	m	2.09±0.23	1.04±0.05	m						
25	1.52±0.10	1.11±0.10	m	2.06±0.14	1.12±0.03	m						
26	1.46±0.09	1.09±0.05	m	1.97±0.20	1.08±0.10	m						
27	1.37±0.07	1.10±0.04	m	1.86±0.24	1.10±0.13	m						

CL: Chromosome length, AR: Arm ratio, SD: Standard deviation, m: Metacentric chromosome, *: 45s rDNA, °:5s rDNA.

the dynamic evolutionary landscape of the family, where a whole-genome duplication (WGD) is often followed by selective gene loss and structural rearrangements.

Genomic status of Menyanthes trifoliata

Despite cytogenetic confirmation that *Menyanthes trifoliata* is a hexaploid species with $2n = 54$ chromosomes (Peruzzi and Cesca 2004), its genetic behavior raises fundamental questions about whether it functions as a true hexaploid or has undergone extensive diploidization. Unlike certain polyploid *Nymphoides* species displaying cytotype diversity, *M. trifoliata* has remained cytogenetically uniform across its widespread circum boreal distribution. This stability suggests it may represent an ancient hexaploid lineage that has functionally revert-

ed to a diploid-like state through genomic restructuring (Raabová et al. 2010).

Several lines of evidence support the hypothesis that *M. trifoliata* has undergone diploidization. First, cytogenetic analyses indicate predominantly bivalent chromosome pairing during meiosis, characteristic typically associated with diploid-like inheritance (Mlinarec et al. 2012). Second, its rDNA organization deviates from what would be expected in a simple hexaploid genome, with fewer detectable rDNA loci than a direct tripling of the diploid number (Rosato et al. 2015). These patterns suggest that genomic streamlining has eliminated redundant rDNA arrays, favoring a more functionally efficient karyotype. Third, its consistent chromosome number across various geographic populations, with no evidence of aneuploidy or unstable cytotypes, further supports the notion of an evolutionarily stable genome structure

(Soltis and Soltis 2016). Similar cases of diploidization have been observed in other polyploid plant taxa, including *Nicotiana* allopolyploids, where rDNA homogenization has played a role in genomic stabilization (Kovarik et al. 2008).

The precise origins of *M. trifoliata* remain unresolved. It may have arisen from autopolyploidy due to successive WGD events, or from allopolyploidy, in which hybridization between distinct ancestral genomes contributed to its karyotype (Watanabe 2022). Comparative genomic studies of *M. trifoliata* and closely related *Nymphoides* species could offer deeper insight into whether its hexaploid genome originated from hybridization or from independent lineage expansion (Watanabe 2022). Advances in high-throughput sequencing technologies will be key in resolving this issue by enabling a comprehensive analysis of genome duplication patterns and homeologous gene retention. Importantly, these genomic and cytogenetic observations can be interpreted within the framework of existing molecular phylogenies. Phylogenetic analyses based on chloroplast DNA and nuclear ITS regions have consistently placed *Menyanthes* as sister to a clade of polyploid *Nymphoides* species (Tippery et al. 2008; Watanabe 2022). Our FISH-based findings support this phylogenetic position by providing cytogenetic evidence that complements molecular data. Specifically, *M. trifoliata* exhibits diploid-like chromosomal behavior during meiosis and possesses fewer rDNA loci than would be expected under a strict hexaploid model. These features are consistent with a scenario in which a whole-genome duplication event occurred before the divergence of *Menyanthes*, followed by substantial genomic reorganization and diploidization. Furthermore, the extensive chromosomal variation observed among *Nymphoides* species aligns with their high level of molecular divergence, suggesting that polyploidy and subsequent chromosomal restructuring have played a major role in driving diversification within the genus. Thus, the cytogenetic patterns revealed in this study provide a structural and evolutionary context that complements and reinforces existing phylogenetic hypotheses for Menyanthaceae.

Discrepancy between FISH signals and ploidy level

An intriguing anomaly in Menyanthaceae cytogenetics is the absence of a direct correlation between the number of rDNA signals (as detected by FISH) and the ploidy level. Theoretically, a polyploid lineage derived from a diploid ancestor should display a proportional increase in rDNA loci. Yet, *M. trifoliata* exhibits fewer rDNA signals than expected for a strict hexaploid model (Fultz and Pikaard 2023). This discordance suggests that

polyploid genomes undergo significant restructuring following duplication, leading to selective retention, loss, or relocation of rDNA loci. Notably, similar observations have been made in certain polyploid Solanaceae, where fewer rDNA loci are present than expected for their ploidy level.

One plausible explanation for this discrepancy is the selective loss of redundant rDNA loci. Polyploidization often results in an initial surplus of rDNA copies, but genome evolution may favor the retention of only the most functionally necessary loci, leading to the eventual elimination of extraneous rDNA sites (Mlinarec et al. 2012). A targeted analysis using quantitative PCR or whole-genome sequencing could help determine whether the observed reduction in rDNA FISH signals corresponds to actual sequence loss. Another contributing factor could be rDNA transposition and homogenization. In some polyploids, rDNA loci are not static; instead, they may undergo concerted evolution, where a subset of rDNA sites expands while others diminish or relocate to different chromosomes (Rosato et al. 2015). This pattern is also observed in maize, where rDNA transposition significantly influences chromosomal architecture (Li and Arumuganathan 2001). Such processes may explain why *M. trifoliata* exhibits a lower-than-expected number of 45S and 5S rDNA loci despite its hexaploid genome structure. Employing FISH with additional chromosomal markers, such as probes for transposable elements, could reveal whether rDNA sites have been repositioned within the genome. Epigenetic modifications, particularly nucleolar dominance, further complicate the relationship between rDNA loci and ploidy. In allopolyploids and some autopolyploids, nucleolar dominance can result in the silencing of rDNA loci from one parental genome, leading to a functional reduction in active rDNA sites despite their genomic presence (Fultz and Pikaard 2023). If *M. trifoliata* exhibits such a mechanism, certain rDNA loci may not be transcriptionally active, making them undetectable by FISH. RNA-seq analyses of rRNA transcription levels could elucidate whether epigenetic silencing contributes to the observed reduction in rDNA signals. The inconsistency between FISH signal number and ploidy level underscores the complexity of genome evolution in polyploids. Rather than a straightforward duplication of all genetic elements, polyploid genomes undergo intricate modifications, including chromosomal rearrangements, rDNA loss, and epigenetic regulation. Future research integrating molecular cytogenetics, high-resolution sequencing, and transcriptomic analyses will be essential to fully characterize the evolutionary dynamics of *M. trifoliata* and other polyploid Menyanthaceae taxa.

ACKNOWLEDGMENTS

This study was supported by the Korea Research Foundation (KRF) with a grant under project number RS-2021-NR065781 (2021R1I1A2043432).

REFERENCES

Abbo, S., Miller, T. E., Reader, S. M., Dunford, R. P. and King, I. P. 1994. Detection of ribosomal DNA sites in lentil and chickpea by fluorescent in situ hybridization. – *Genome* 37: 713–716.

Barrett, S. C. H. 1992. Heterostylous genetic polymorphisms: Model systems for evolutionary analysis. – *Am. Nat.* 139: 421–435.

Barrett, S. C. H. and Shore, J. S. 2008. New insights on heterostyly: Comparative biology, ecology and genetics. – *Philos. Trans. R. Soc. B* 363: 491–508.

Cook, C. D. K. 1996. *Aquatic Plant Book*. SPB Academic Publishing, Amsterdam.

Dulberger, R. and Ornduff, R. 2000. Stigma morphology in distylous and non-heterostylous species of *Villarsia* (Menyanthaceae). – *Plant Syst. Evol.* 225: 171–184.

Fultz, D. and Pikaard, C. S. 2023. Reaching for the off switch in nucleolar dominance. – *Plant J.* 115: 642–652.

Gillett, J. M. 1968. The systematics of the Asiatic and American populations of *Fauria crista-galli* (Menyanthaceae). – *Can. J. Bot.* 46: 92–96.

Haddadchi, A. 2013. Stylar polymorphism, reciprocity and incompatibility systems in *Nymphoides montana* (Menyanthaceae) endemic to southeastern Australia. – *Plant Syst. Evol.* 299: 389–401.

Haddadchi, A. and Fatemi, M. 2015. Self-compatibility and floral traits adapted for self-pollination allow homostylous *Nymphoides geminata* (Menyanthaceae) to persist in marginal habitats. – *Plant Syst. Evol.* 301: 239–250.

Ilnicki, T. 2014. Cytogenetic analysis of selected species using fluorescence in situ hybridization (FISH). – *Caryologia* 67: 192–196.

Kadereit, J. W. 2007. Menyanthaceae. In: Kadereit, J.W. and Jeffrey, C. (eds.), *The Families and Genera of Vascular Plants*, vol. 8. Springer, Berlin, pp. 225–242.

Kirov, I., Divashuk, M., Van Laere, K., Soloviev, A., and Khrustaleva, L. 2014. An easy “SteamDrop” method for high quality plant chromosome preparation. – *Molecular Cytogenetics*. 7: 1–10.

Kovarik, A., Dadejova, M., Lim, Y. K., Chase, M. W., Clarkson, J. J., Knapp, S. and Leitch, A. R. 2008. Evolution of rDNA in *Nicotiana* allopolyploids: a potential link between rDNA homogenization and epigenetics. – *Ann. Bot.* 101: 815–823.

Leitch, I. J. and Leitch, A. R. 2013. Genome size diversity and evolution in land plants. – *New Phytol.* 200: 3–18.

Li, L. J. and Arumuganathan, K. 2001. Physical mapping of sorted chromosomes 45S and 5S rDNA on maize metaphase by FISH. – *Hereditas* 134: 141–145.

Martel, E., Poncet, V., Lamy, F., Siljak-Yakovlev, S., Lejeune, B. and Sarr, A. 2004. Chromosome evolution of *Pennisetum* species (Poaceae): implications of ITS phylogeny. – *Plant Syst. Evol.* 249: 139–149.

Mlinarec, J., Malenica, N., Garfí, G., Bogunić, F., Satovic, Z., Siljak-Yakovlev, S. and Besendorfer, V. 2012. Evolution of polyploid *Anemone* was accompanied by rDNA locus loss. – *Ann. Bot.* 110: 703–712.

Ornduff, R. 1970. Cytogeography of *Nymphoides* (Menyanthaceae). – *Taxon* 19: 715–719.

Ornduff, R. 1987. Distyly and incompatibility in *Villarsia congestiflora* (Menyanthaceae), with comparative remarks on *V. capitata*. – *Plant Syst. Evol.* 159: 81–83.

Ornduff, R. 1992. Intrapopulation variation in the breeding system of *Villarsia lasiosperma* (Menyanthaceae). – *Plant Syst. Evol.* 180: 227–233.

Peruzzi, L. and Cesca, G. 2004. Chromosome numbers of flowering plants from Calabria, S. Italy, II. – *Informatore Bot. Ital.* 36: 79–85.

Raabová, J., Münzbergová, Z. and Fischer, M. 2010. Consequences of polyploidization for phenotypic variation, fitness, and mating patterns in diploid and hexaploid *Anemone nemorosa*. – *Ann. Bot.* 105: 527–540.

Rosato, M., Kovarik, A., Garilleti, R. and Rosselló, J. A. 2015. Evolutionary site-number changes of ribosomal DNA loci during speciation. – *AOB Plants* 7: plv135.

Semple, J. C. and Watanabe, K. 2023. Index to chromosome numbers in Asteraceae (ICNA). – *Plant Cytogenet.* 58: 289–312.

Silvestri, M. C., Ortiz, A. M. and Lavia, G. I. 2015. rDNA loci and heterochromatin positions support a distinct genome type for ‘x = 9 species’ of section *Arachis* (Leguminosae). – *Plant Syst. Evol.* 301: 555–562.

Soltis, D. E. and Soltis, P. S. 2016. Ancient WGD events as drivers of key innovations in angiosperms. *Curr. Opin. – Plant Biol.* 30: 159–165.

Stace, C. A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. – *Taxon* 49: 451–477.

Stebbins, G. L. 1971. *Chromosomal Evolution in Higher Plants*. Edward Arnold, London.

Tippery, N. P., Les, D. H. and Hilu, K. W. 2008. Phylogeny and character evolution in the aquatic plant family Menyanthaceae. – *Syst. Bot.* 33: 736–751.

Tippery, N. P., Les, D. H. and Schafer, J. L. 2009. Phylogenetics of *Nymphoides* (Menyanthaceae): Evidence for

a polyphyletic origin of aquatic heterophyly. – *Syst. Bot.* 34: 595–612.

Watanabe, K. 2022. Chromosomal evolution and descending dysploidy in Menyanthaceae. – *Plant Genome Evol.* 9: 221–235.

Weiss-Schneeweiss, H., Schneeweiss, G. M., Stuessy, T. F. and Mabuchi, T. 2013. Evolutionary patterns of rDNA loci in polyploid plants. – *Ann. Bot.* 111: 457–468.

Citation: Dolatyari, A. (2025). Karyological data of five autumn-flowering *Crocus* L. species from Iran. *Caryologia* 78(2): 29-43. doi: 10.36253/caryologia-3356

Received: March 1, 2025

Accepted: September 30, 2025

Published: December 20, 2025

© 2025 Author(s). This is an open access, peer-reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

ORCID

AD: 0009-0001-8395-3442

Karyological data of five autumn-flowering *Crocus* L. species from Iran

ALIREZA DOLATYARI

Plant Bank, Iranian Biological Resource Centre (IBRC), Iranian Academic Centre for Education, Culture & Research (ACECR), Tehran, Iran
alirezadolatyari@yahoo.com, alirezadolatyari@acecr.ir

Abstract. Corms and herbarium vouchers of 23 accessions belonging to five autumn-flowering *Crocus* species were gathered from nine Iranian provinces. For the materials under investigation, chromosome numbers, karyotype formulas and idiograms were documented. Chromosome number of $2n = 12$ is reported for the first time in *C. archibaldiorum* and in the studied accessions of *C. speciosus* aggregate. Also, $2n = 24$ were found in *C. caspius*, $2n = 8$ and 10 in *C. damascenus*, and $2n = 14$ and 16 in *C. haussknechtii*. In the latter two species, variation in chromosome number was correlated with karyotypic differences. Notably, *C. archibaldiorum* ($2n = 12$) had a longer total haploid of chromosome length than *C. caspius* ($2n = 24$). On a distribution map, possible correlations between karyological data and geography were indicated. To quantify variation in karyotypes, three inter- and intra-asymmetric karyotypic parameters were estimated. Also, statistical analyses were performed on five karyotypic characters to infer karyological relationships. The members of section *Crocus* (only *C. haussknechtii*) and section *Nudiscapus* occupied distinct positions. Furthermore, at the species level, all accessions of the same species tended to group together. The remarkable karyotypic variation among the studied accessions of *C. damascenus* and *C. haussknechtii* supported the previous assumption that these taxa still include undescribed species. It is underlined that changes in chromosome number and structure have played an important role in the evolution of the genus *Crocus*.

Keywords: chromosome number, crocuses, cytobotany, idiogram, Iridaceae, karyotype.

INTRODUCTION

The genus *Crocus* L. (Iridaceae) currently comprises more than 260 species (Rukšāns 2017a, 2023; Advay and Rukšāns 2024; Dolatyari et al. 2024), naturally distributed in the region extending approximately between 10°W to 80°E and 30°N to 50°N. The Balkan Peninsula and Asia Minor are the main centers of diversity where more than half of the recognized species occur. The majority of species occur within the Mediterranean and Irano-Turanian floristic regions, both of which are characterized by cool to cold winters, autumn-winter-spring precipitation, and warm summers with very little rainfall (Saxena 2010). Crocuses are well adapted to such conditions by compact

underground corms. They flower either in spring, then they develop leaves together with flowers, or in autumn, then leaves often remain dormant till spring.

In the “Flora Iranica”, Wendelbo and Mathew (1975) recognized only eight *Crocus* species for Iran. They excluded *C. sativus* L. probably because it is a crop plant. However, in more recent years, 15 additional taxa have been newly described from Iran (Rukšāns 2014a, b, 2015, 2017a, b; Kerndorff et al. 2017; Dolatyari and Rukšāns 2022; Rukšāns 2022, 2023). In a recent revision, Dolatyari et al. (2024) summarized all available taxonomic knowledge for the Iranian *Crocus* species. Most recently, Advay and Rukšāns (2024) added the new species *C. avromanicus* Advay & Rukšāns from West Iran. Hence, a total of 25 species are currently known to occur in Iran, 19 of which are endemics, an exceptionally high percentage. Except *C. michelii* B. Fedtsch., which is found in Kopet Dag Mountains, all other species occur along the Zagros and Alborz Mountain ranges. All four Iranian species of *Crocus* section *Crocus*, and four out of 21 species of *Crocus* sect. *Nudiscapus* B. Mathew flower in autumn (Advay and Rukšāns 2024; Dolatyari et al. 2024).

Karyological data may provide valuable insights into phylogenetic relations and help characterize taxonomic entities. Although earlier chromosome counts by many researchers showed various numbers, these data were based largely on material from cultivated or unspecified origins (Mather 1932; Pathak 1940; Darlington and Wylie 1955; Karasawa 1956; Bolkhovskikh et al. 1969). However, Brighton et al. (1973) listed chromosome numbers for 88 *Crocus* species cultivated at Kew Garden, originating from known localities across the entire distribution range of the genus. Additionally, karyological data have been published for several taxonomically complex aggregates (Brighton 1976, 1977a, b, 1980; Brighton et al. 1983; Goldblatt and Takei 1997) and for material collected from distinct countries (Baldini 1990; Candan et al. 2009; Schneider et al. 2012; Karamplianis et al. 2013). The large number of earlier reported chromosome counts shows that the genus is an example of extreme karyological variation with $2n = 6, 8, 10, 11, 12, 14, 16, 18, 20, 22, 23, 24, 26, 27, 28, 30, 34, 44, 48, 64$ chromosome numbers. Also, remarkable intraspecific variation in karyotypic features has been documented, accompanied by the presence of up to 11 B chromosomes in some species (Mather 1932; Feinbrun 1957, 1958; Brighton et al. 1973; Brighton 1977a, b; Brighton et al. 1983). This huge karyological diversity highlights the role of dysploidy and polyploidy in the infrageneric evolution of the genus (Harpke et al. 2013; Raca et al. 2023).

In the literature, chromosome counts have been reported for seven Iranian *Crocus* species and members of

the *C. biflorus* Mill. and *C. speciosus* M. Bieb. aggregates (see Table 3; detailed taxonomic information in Dolatyari et al. 2024), representing chromosome numbers of $2n = 8, 10, 12, 14, 16, 20, 22$ and 24 . Only a single B chromosome has been reported in a population of *C. damascenus* Herb. by Ghaffari and Djavadi (2007). Having in mind that 16 species have been described only during the last decade, it is not surprising that around 70% of Iranian *Crocus* species remain karyologically unknown.

In the frame of a larger karyological research project on Iranian crocuses, here karyotypic variation in 20 accessions of *C. archibaldiorum* (Rukšāns) Rukšāns, *C. caspius* Fisch. & C. A. Mey. ex Hohen., *C. damascenus*, and *C. haussknechtii* (Boiss. & Reut. ex Maw) Boiss., as well as three accessions of *C. speciosus* aggregate shall be presented employing appropriate statistical analysis to test the significance of karyotypic relationships among these autumn-flowering taxa.

MATERIAL AND METHOD

Corms and herbarium vouchers were collected from populations in natural habitats. The corms were planted in a trial field, and the vouchers were deposited in the Iranian biological resource center herbarium (IBRC). Table 1 presents the collecting localities and herbarium sheet numbers, and Figure 1 illustrates photos of all taxa studied. A complete list of Iranian *Crocus* species, along with previously reported chromosome numbers is provided in Table 3.

Randomly selected corms were planted in a moistened mixture of coarse and fine perlite (1:1 ratio) and kept in a refrigerator. Root tips measuring 2–3 cm in length were pretreated in 0.029% aqueous solution of 8-hydroxyquinaline for 3 h and fixed in Carnoy's I solution (3: 1 v/v 95% ethanol: glacial acetic acid) for 24 h at room temperature. Then root tips were hydrolyzed in 1n HCl for 14 min at 60°C and stained with 2% aceto-orcein for 3 h. The commonly applied squash technique was carried out to prepare slides. An Olympus BX51 light microscope equipped with a DP25 digital camera was used to take photos of as many good metaphase spreads as possible.

The Lengths of long (L) and short arms (S) of all chromosomes of at least five mitotic metaphase plates per accession were measured using IdeoKar software (<http://agri.uok.ac.ir/ideokar/index.html>). The total haploid length of chromosomes (THL), an approximate equivalent for genome size (Peruzzi et al. 2009), was assessed for all accessions. Mean centromeric asymmetry (M_{CA}), coefficient of variation of chromosome length (CV_{CL}), and coefficient of variation of centromeric

Table 1. Characterization of the studied taxa and accessions of the genus *Crocus* (in alphabetical order), Her. No. = number of herbarium voucher.

Species	IBRC No.	Locality	Her. No.
<i>C. archibaldiorum</i>	P1015055	Guilan: Asalem to Khalkhal, 1 km after Larzaneh road station. 37° 36' 1.7" N; 48° 43' 2.3" E, 2020m.	3490
	P1015056	Guilan: Asalem to Khalkhal, 2 km after Charasu village to Almas pass. 37° 35' 53.8" N; 48° 48' 2.2" E, 1080m.	3489
<i>C. caspius</i>	P1015044	Mazandaran: Qaem Shahr to Sari, Arteh, railway signalling station. 36° 29' 42.5" N; 52° 55' 26.8" E, 20m.	3497
	P1015045	Mazandaran: Sari to Semnan, Pahnehkolah, around cemetery. 36° 27' 38.4" N; 53° 5' 19.3" E, 140m.	3495
	P1015049	Mazandaran: Tonekabon, Sehezar to Alamut, Tuskakuti village, Emamzadeh Seyed Yahya. 36° 41' 14.2" N; 50° 50' 48.8" E, 400m.	3492
	P1015058	Guilan: Sangar to Lahijan, ca. 100 m after Siahkal entrance. 37° 10' 19.1" N; 49° 52' 26.3" E, 30m.	3488
	P1015059	Guilan: 2 km a Saravan to Sangar, Balamahaleh Shahrestan. 37° 06' 39.1" N; 49° 40' 10" E, 55m.	3501
<i>C. damascenus</i>	P1015062	Markazi: ca. 30 km before Golpayegan a Khomein. 33° 37' 50.5" N; 50° 11' 19.6" E, 1855m.	3639
	P1015063	Esfahan: 6 km before Khonsar a Golpayegan. 33° 20' 7.4" N; 50° 20' 25" E, 2030m.	3709
	P1015064	Esfahan: Khonsar-Boein-Miandasht road, just 1 km after the pass. 33° 13' 10.2" N; 50° 15' 29.7" E, 2820m.	3640
	P1015065	Esfahan: 25 km a Aligoudarz to Damaneh. 33° 15' 36.5" N; 49° 56' 10.9" E, 2405m.	3641
	P1015089	W Azerbaijan: N of Urumieh. 38° 00' 53.8" N; 44° 56' 37.6" E, 1875m.	3710
	P1015091	W Azerbaijan: 15 km before Oshnavieh, a soil road towards West. 37° 10' 47.3" N; 45° 04' 17.3" E, 2170m.	3712
	P1015102	W Azerbaijan: W of Oshnaviye. 36° 57' 21.1" N; 45° 00' 30.7" E, 1775m.	3711
	P1015119	Kurdestan: around Marivan dam. 35° 35' 51.1" N; 46° 18' 50.5" E, 1420m.	3713
	P1015128	Kurdestan: Marivan to Tizh Tizh. 35° 31' 29.6" N; 46° 23' 1.3" E, 1570m.	3638
	P1015138	Kermanshah: between Songhor and Sahneh. 34° 38' 39.8" N; 47° 35' 21.7" E, 1980m.	3714
<i>C. haussknechtii</i>	P1015067	Lorestan: 42 km before Khorramabad a Doroud. 33° 31' 18" N; 48° 45' 37" E, 1835m.	3716
	P1015131	Kurdestan: Sanandaj, Salavat Abad pass. 35° 16' 30.2" N; 47° 08' 25.5" E, 2010m.	3718
	P1015136	Kurdestan: Dehgolan to Ghorveh, on the road to Songhor. 34° 04' 48" N; 47° 33' 36" E, 2190m.	3715
<i>C. speciosus</i> s.l. (= <i>C. archibaldiorum</i>)	P1015060	Guilan: Rostamabad, hills NE Shamam village, between jungle trees. 36° 55' 48.1" N; 49° 28' 36.3" E, 880m.	3499
<i>C. speciosus</i> s.l.	P1015042	Tehran: 3 km a Gaduk pass to Veresk. 35° 51' 16" N; 52° 56' 49.2" E, 2065m.	3498
	P1015070	Guilan: Totekabon to Jirandeh. 36° 48' 33.3" N; 49° 38' 8.6" E, 1010m.	3719

index (CV_{CI}) were estimated to quantify the inter- and intra-chromosomal asymmetries and heterogeneity in centromere positions, respectively (Peruzzi and Altinordu 2014). The chromosome terminology of Levan et al. (1964) was applied. All additional details including methods of statistical analysis (Principal Coordinate Analysis, PCoA, and Discriminant Analysis, DA), and the software employed, follow the procedures described in Peruzzi and Altinordu (2014). ArcMap 10.7.1 software was used to draw the distribution map.

RESULTS AND DISCUSSION

Mitotic spreads and idiograms for 23 accessions (125 individuals) belonging to four species and one aggregate are shown in Figs. 2 & 3, and in Figs. 4-7, respectively.

Chromosome numbers, karyotype formulas, together with the calculated karyotypic parameters are given in Table 2. A distribution map (Fig. 8) indicates possible correlations between karyological data and geography. The result of PCoA analysis based on five karyotypic parameters is presented in Fig. 9. The idiograms underline that the basic chromosome number for each accession equals half of the total somatic number. In *C. damascenus* and *C. haussknechtii* several chromosome numbers and karyotypes were detected, while unique karyotypes were found in *C. archibaldiorum*, *C. caspius*, and the *C. speciosus* group.

Section *Crocus*, *C. haussknechtii*

This section is represented by *C. gilanicus* B.Mathew, *C. hakkariensis* (B.Mathew) Rukšāns, *C. haussknechtii* and

Figure 1. Photos of the studied taxa. a) *C. archibaldiorum*; b) *C. caspius*; c, d) *C. damascenus*; e, f) *C. haussknechtii*; g, h, i) *C. speciosus* s.l. (P1015042); j, k, l) *C. speciosus* s.l. (= *C. archibaldiorum*, P1015060), m) *C. speciosus* s.l. (P1015070). Photos: a-e and m by Jānis Rukšāns, the rest by the author.

C. sativus in Iran. Here, three accessions of *C. haussknechtii* were studied. Chromosome numbers of $2n = 14$ in two accessions (P1015131, P1015136) from Kurdistan province, and $2n = 16$ in P1015067 from Lorestan province were recorded. These results confirm intraspecific variation in chromosome numbers and also significant differences in karyotype formulas among accessions with different chromosome numbers (Brighton et al. 1973; Brighton 1977a; Sanei et al. 2007). The karyotype of $2n = 16$ consists of ten subtelocentric plus six submetacentric chromosomes, whereas in $2n = 14$ karyotypes, solely metacentric and submetacentric chromosomes occur. The M_{CA} and CV_{CI} parameters also confirm that the karyotype in P1015067 is more asymmetric than in the other two investigated

accessions. The coefficient of variation of chromosome length (CV_{CL}), giving a measure of interchromosomal asymmetry (Peruzzi and Altinordu 2014), showed the highest amounts for the three studied accessions of this species among the examined taxa (Table 2).

Brighton (1977a) presented a karyotype in two collections (as *C. pallasii* subsp. *haussknechtii*) from Iran (Kazerun and Firouzabad) with $2n = 16$ chromosomes, to which the karyotypes of my samples from Lorestan province completely coincide. Brighton et al. (1973) also reported $2n = 14$ chromosomes for a collection from Zagros Mts., but without presenting its karyotype. However, Mathew et al. (1979) presented the karyotype for an accession of this species with $2n = 14$ from Sanandaj

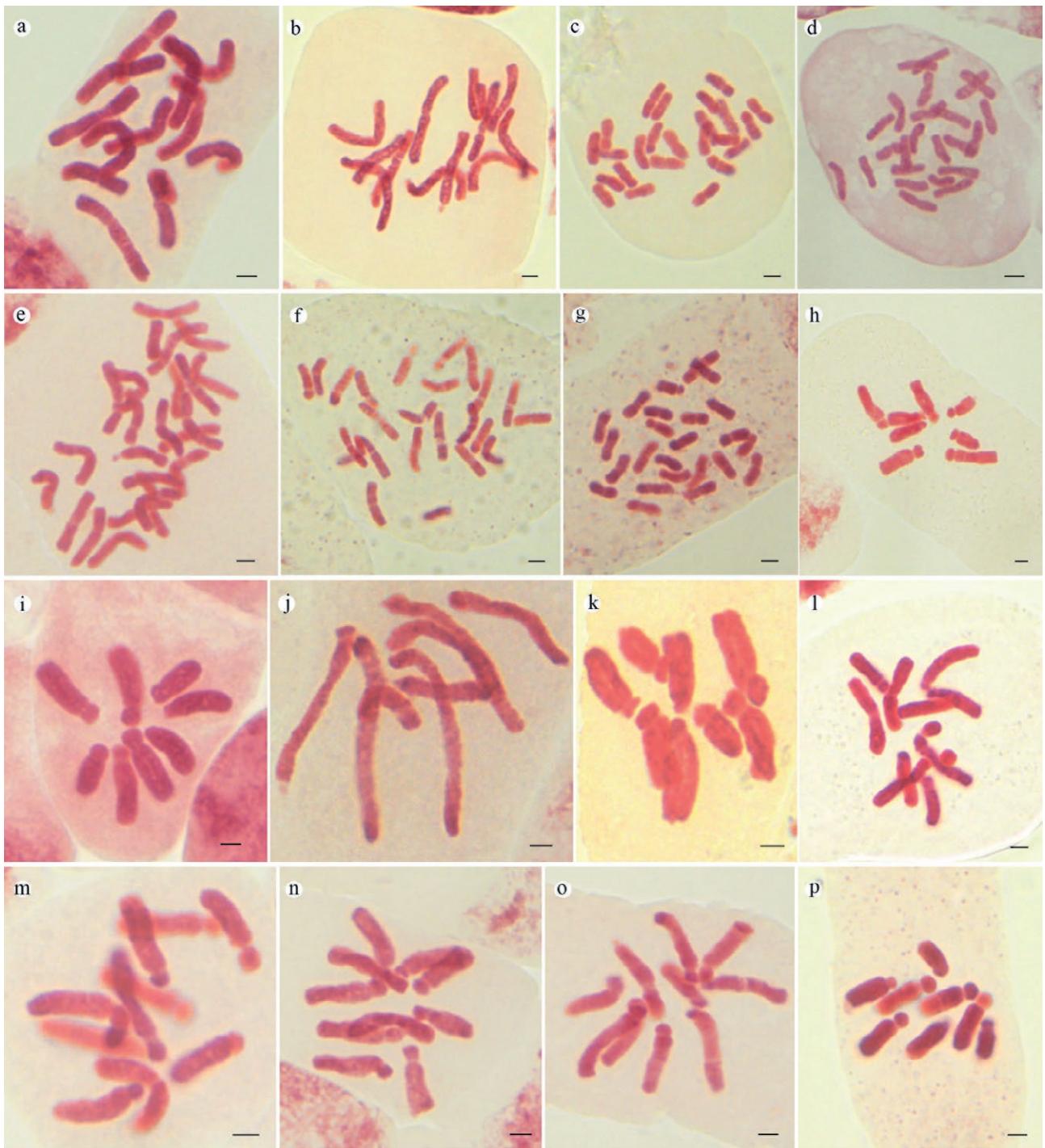
Table 2. Karyological data of the investigated accessions. No. inv. cor. = number of investigated corms; Fig. refer. = figure reference; SAT chr. no. = number of satellites chromosomes; THL = total haploid length of chromosomes; MCA = mean centromeric asymmetry; CVCL = coefficient of variation of chromosome length; CVCI = coefficient of variation of centromeric index.

Species	IBRC No.	No. inv. cor.	Fig. refer.	2n	Karyotype formula	SAT. Chr. No.	THL	M _{CA}	CV _{CL}	CV _{CI}
Section Crocus										
<i>C. haussknechtii</i>	P1015067	4	3e	16	6sm+10st, 6sm+8st+2st ^{sat}	0, 2	48.19	41.73	39.109	25.29
	P1015131	4	3f	14	2m ^{sat} +6m+6sm	1, 2	47.39	22.78	44.59	15.81
	P1015136	4	3g	14	2m+12sm, 1m_1m ^{sat} +12sm	0, 1	42.71	30.32	43.91	16.72
Section Nudiscapus Mathew										
<i>C. archibaldiorum</i>	P1015055	8	2a	12	12m, 9m+3m ^{sat} , 10m+2m ^{sat}	0, 2, 3	75.45	18.2	14.84	4.74
	P1015056	6	2b	12	10m+2m ^{sat}	1, 2	70.29	20.18	11.75	3.25
<i>C. caspius</i>	P1015044	9	2c	24	18m+6sm, 16m+2m ^{sat} +6sm	0, 2	62.19	22.02	13.65	8.14
	P1015045	7	2d	24	18m+6sm, 17m+1m ^{sat} +6sm	0, 1	65.43	19.34	12.46	7.11
	P1015049	8	2e	24	18m+6sm, 18m+5sm+1sm ^{sat} , 18m+4sm+2sm ^{sat}	0, 1, 2	60.74	20.89	11.24	9.46
	P1015058	6	2f	24	16m+8sm,	0, 1, 2	75.13	22.63	12.08	8.53
	P1015059	5	2g	24	16m+8sm, 14m+9sm+1sm ^{sat}	0, 1	63.71	22.61	14.73	8.33
<i>C. damascenus</i>	P1015062	6	2h	8	8st	0	28.68	62.97	20.42	16.81
	P1015063	4	2i	8	8st	0	32.64	66.13	18.22	12.65
	P1015064	2	2j	8	8st, 7st+1st ^{sat}	0, 1	46.59	68.47	18.12	19.63
	P1015065	4	2k	8	8st, 7st+1st ^{sat}	0, 1	38.18	65.96	17.13	18.45
	P1015089	5	2l	10	2m+2sm ^{sat} + 6st	2	41.25	47.67	21.78	40.81
	P1015091	6	2m	10	1m+2sm+1sm ^{sat} +6st, 2sm+2sm ^{sat} + 6st	1, 2	36.42	52.08	10.35	22.68
	P1015102	7	2n, o	10	2sm+ 8st, 1sm+1sm ^{sat} +8st, 2sm+7st+1st ^{sat}	0, 1, 2	42.81	54.43	11.74	35.9
	P1015119	4	2p	8	8st	0	27.52	59.59	17.39	12.66
	P1015128	3	3a, b	8	8st, 7st+1st ^{sat} , 6st+2st ^{sat} , 5st+3st ^{sat}	0, 1, 2, 3	35.21	66.53	17.1	20.81
	P1015128	1	3c	8	1m+7st, 1m+6st+ 1st ^{sat}	0, 1	33.54	56.84	23.49	47.18
	P1015138	5	3d	8	7st+1st ^{sat} , 6st+2st ^{sat} , 5st+3st ^{sat}	1, 2, 3	28.5	62.98	16.14	18.48
<i>C. speciosus</i> s.l. (= <i>C. archibaldiorum</i>)	P1015060	5	3j	12	12m, 11m+1m ^{sat} , 10m+2m ^{sat}	0, 1, 2	71.87	16.97	13.16	3.9
<i>C. speciosus</i> s.l.	P1015042	5	3h, i	12	12m, 11m+1m ^{sat} , 10m+2m ^{sat} , 9m+3m ^{sat}	0, 1, 2, 3	42.95	21.94	12.1	5.28
	P1015070	7	3k	12	12m, 11m+1m ^{sat}	0, 1	51.28	20.53	13.93	4.46

(Kurdistan), which corresponds to the karyotype of accession P1015136. Sanei et al. (2007) stated that their karyotype of $2n = 12$ (from Kermanshah province) was very similar to the $2n = 14$ cytotype of Mathew et al. (1979) when the smallest pair was missing. Totally, three cytotypes ($2n = 12, 14$ and 16) have been reported for *C. haussknechtii* from Iran so far.

The reported karyotypic differences among the studied cytotypes are much greater than that could have been simply overlooked earlier. Maybe, in the past such substantial variation was considered as commonly present (Feinbrun 1957; Brighton 1976; Rudall et al. 1984). However, reflecting the currently accepted species concept in the genus, such a peculiar chromosome polymorphism, especially at the infraspecific level, is anomalous. Detailed molecular and morphological analyses seem essential prior to making any taxonomic decisions.

Section Nudiscapus


Twenty-one species of this section are distributed in Iran. Among them, only *C. damascenus* is widely distributed, the others are either steno-endemics or sub-endemic elements. In the present study, detailed karyotypic data are provided for 15 accessions of *C. caspius* and *C. damascenus*, and also five accessions of *Crocus speciosus* aggregate (the series *Speciosi*).

Crocus caspius

All five investigated accessions from Mazandaran and Guilan provinces (Table 1) showed $2n = 24$, confirming earlier chromosome counts (Brighton et al. 1973; Mathew and Brighton 1977; Heywood 1983). The estimated karyotypic parameters (Table 2) showed little variation among

Table 3. *Crocus* species currently occurring in Iran, and previous chromosome counts for them (in alphabetical order).

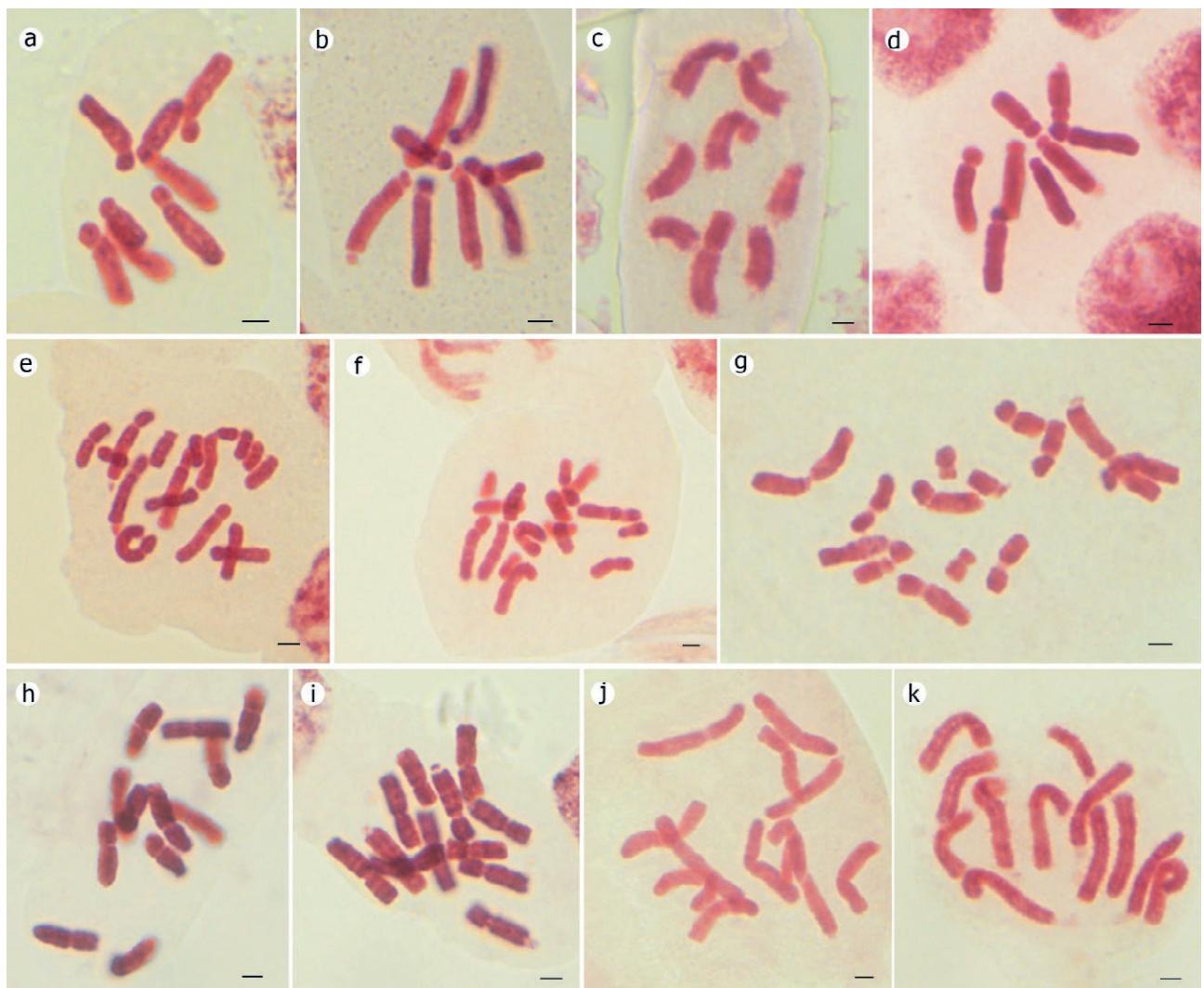

Section	Species	n	2n	Origin	Reference(s)
<i>Nudiscapus</i>	<i>Crocus almehensis</i> C.D.Brickell & B.Mathew		20	Bojnurd	Brighton et al. 1973
	<i>Crocus archibaldiorum</i> (Rukšāns) Rukšān				
	<i>Crocus azerbajianicus</i> Dolatyari & Ruksans				
	<i>Crocus caspius</i> Fisch. & C.A.Mey. ex Hohen.	24	Sari Rasht		Brighton et al. 1973
		24	Guilan		Mathew and Brighton 1977
		12	24	Rasht, Mt. Sefidrud, Amol	Heywood CA 1983
	<i>Crocus chiaicus</i> Dolatyari & Ruksans				
	<i>Crocus chionophilus</i> Dolatyari & Ruksans				
	<i>Crocus damascenus</i> Herb.	8, 10, 12	Damaneh, Urumieh, Khoi		Brighton et al. 1973
		8	Golpayegan		Ebrahimzadeh et al. 1998
		4	8, 8+1B	Arak, Sefid-khani	Ghaffari and Djavadi 2007
			8	Golpayegan	Sanei et al. 2006
		8, 10, 12	Damaneh, Salmas, Khoi		Brighton 1977b
	<i>Crocus dolatyarii</i> Rukšāns				
<i>Crocus</i>	<i>Crocus gilanicus</i> B.Mathew	24	W of Rustamabad		Mathew and Brighton 1976
			Siah Bisheh		Ebrahimzadeh et al. 1998
<i>Nudiscapus</i>	<i>Crocus gunae</i> Rukšāns				
<i>Crocus</i>	<i>Crocus hakkariensis</i> (B.Mathew) Rukšān				
	<i>Crocus haussknechtii</i> (Boiss. & Reut. ex Maw) Boiss.	12	Islam Abad-e Qarb		Sanei et al. 2007
		14	Zagros Mts.		Brighton et al. 1973
		16	Kazerun, Firouzabad		Brighton 1977a
<i>Nudiscapus</i>	<i>Crocus inghamii</i> Rukšāns				
	<i>Crocus iranicus</i> Ruksans				
	<i>Crocus kurdistanicus</i> (Maroofi & Assadi) Ruksans				
	<i>Crocus marandicus</i> Dolatyari & Ruksans				
	<i>Crocus michelsonii</i> B. Fedtsch.	20	W of Bojnurd, NW of Ghochan, N of Ghochan		Brighton et al. 1973
	<i>Crocus pseudoiranicus</i> Dolatyari & Ruksans				
	<i>Crocus reinhardii</i> Ruksans				
	<i>Crocus sanandajensis</i> Kernd. & Pasche				
<i>Crocus</i>	<i>Crocus sativus</i> L.	24	Cultivated plant origin from Iran		Agayev 2002, Ebrahimzadeh et al. 1998, Estilai 1976, Estilai and Aghamohammadi 1977, Ghaffari 1986, Ghaffari and Bagheri 2009
<i>Nudiscapus</i>	<i>Crocus zagrosensis</i> Kernd. & Pasche				
	<i>Crocus zanjanensis</i> Kernd. & Pasche				
	<i>Crocus zubovii</i> Ruksans				
	<i>Crocus biflorus</i> aggregate, C. aerius Herb.	22	Urumieh, Sanandaj,		Brighton et al. 1973
	<i>Crocus biflorus</i> aggregate, C. adamii J. Gay	20	Bojnurd		Brighton et al. 1973
	<i>Crocus speciosus</i> M.Bieb. aggregate	12	Golestan forest S Aliabad, S Sangdeh, E Chalus, Ardabil, between Astara and Ardabil		Ebrahimzadeh et al. 1998 Brighton et al. 1983

Figure 2. Mitotic metaphase plates of the investigated accessions. *C. archibaldiorum*: a) P1015055, b) P1015056; *C. caspius*: c) P1015044, d) P1015045, e) P1015049, f) P1015058, g) P1015059; *C. damascenus*: h) P1015062, i) P1015063, j) P1015064, k) P1015065, l) P1015089, m) P1015091, n, o) P1015102, p) P1015119. All scale bars = 2 μ m.

the studied accessions, reflected in their close positions occupied in the PCoA analysis (Fig. 9). Although $2n = 24$ is the largest chromosome number among the examined

taxa, the estimated total haploid length (THL) for most studied accessions of *C. caspius* (except for P1015058) was shorter than that was measured in *C. archibaldiorum* ($2n$

Figure 3. Mitotic metaphase plates of the investigated accessions. *C. damascenus*: a, b, c) P1015128, d) P1015138; *C. haussknechtii*: e) P1015067, f) P1015131, g) P1015136; *C. speciosus* s.l.: h, i) P1015042, j) P1015060, k) P1015070. All scale bars = 2 μ m.

= 12). Schneider et al. (2012) found larger chromosomes in taxa with lower chromosome numbers, and concluded that the numerical diploidization events were caused by chromosome fusions.

Crocus damascenus

Wendelbo and Mathew (1975) recognized this species as *C. cancellatus* Herb. subsp. *damascenus* (Herb.) B. Mathew. Phylogenetic studies strongly ruled out the subspecies concept of Mathew (1982) in crocuses and this subspecies, like many others, was raised to species level (Harpke et al. 2013; Rukšāns 2014a, b, 2015; Harpke et al. 2016).

Among 10 accessions analyzed from five Iranian provinces, three accessions from province W Azerbaijan had $2n = 10$ chromosomes, while the other seven accessions showed $2n = 8$ (Table 2). Identical counts were earlier published for collections from W Azerbaijan (Brighton et al. 1973, $2n = 10$), Markazi and Esfahan provinces (Brighton et al. 1973; Ebrahimzadeh et al. 1998; Sanei et al. 2007; Ghaffari and Djavadi 2007, $2n = 8$). Also, a chromosome number of $2n = 12$ was counted in plants from Khoi (W Azerbaijan province) by Brighton et al. (1973) and Brighton (1977b). In addition, Ghaffari and Djavadi (2007) reported one B chromosome in *C. damascenus* from an Arak population, but no B chromosome was seen in the examined materials here.

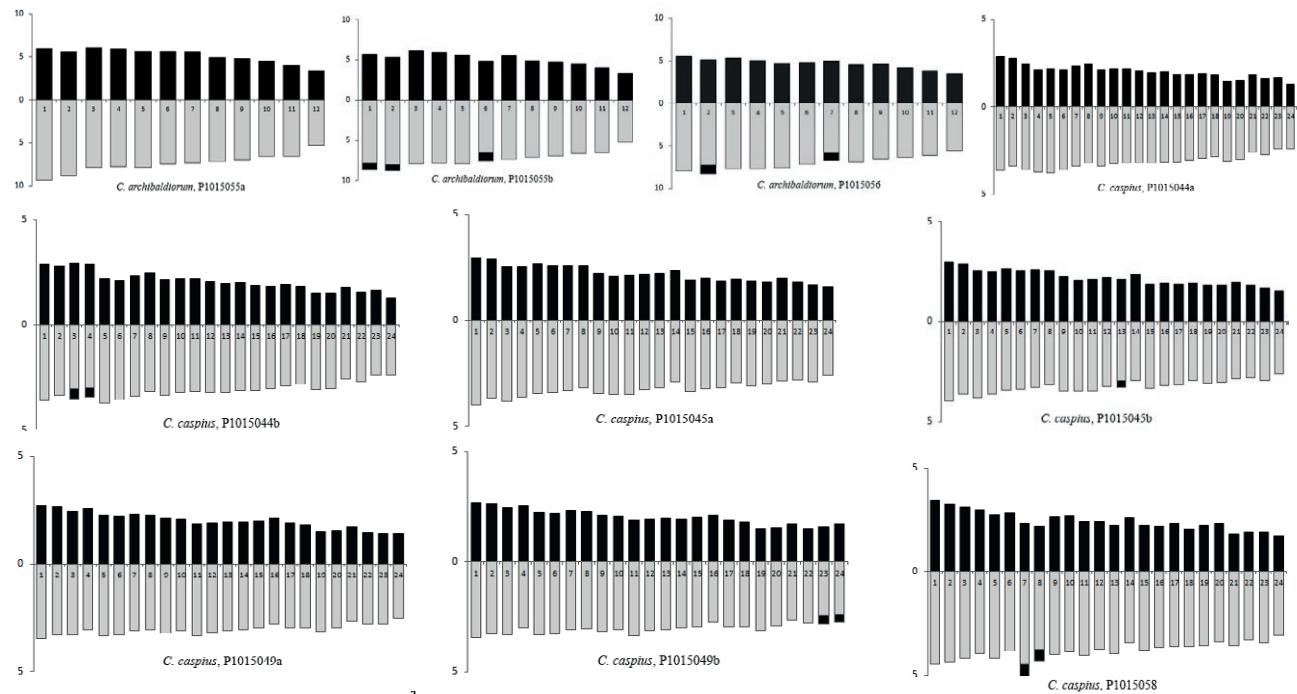


Figure 4. Idiograms of the investigated accessions of the genus *Crocus*.

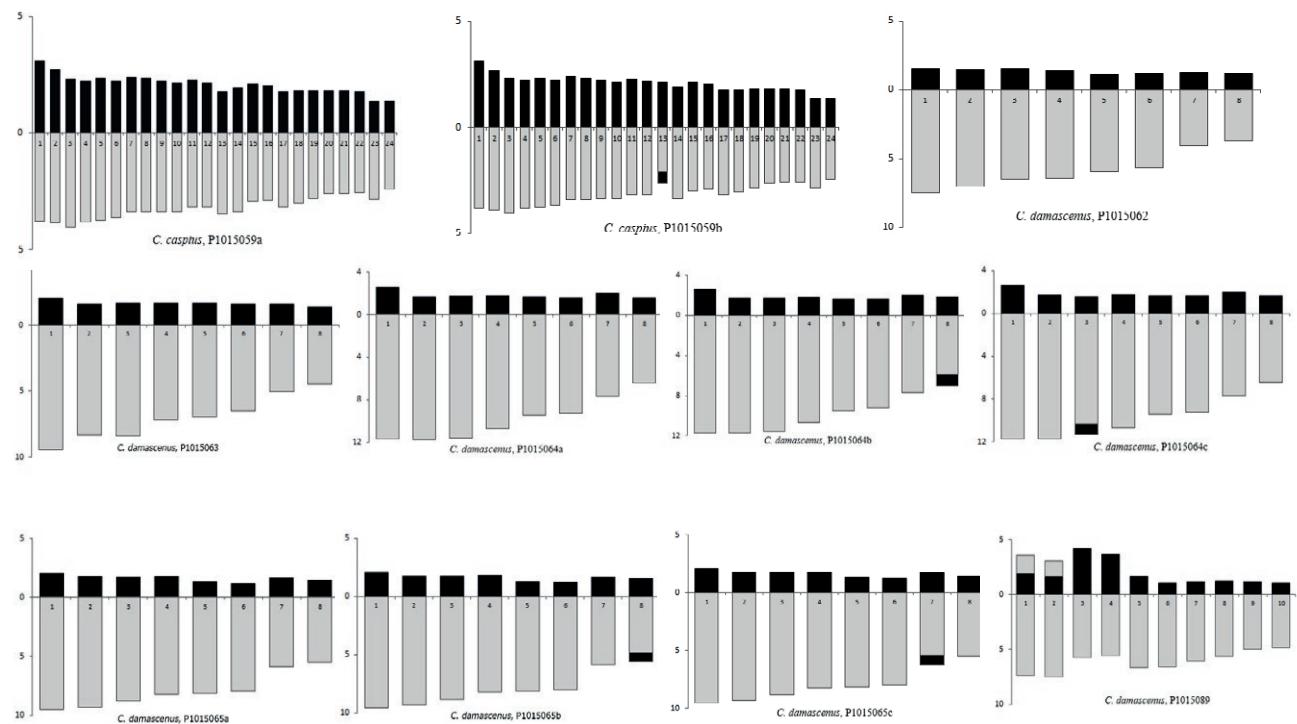


Figure 5. Idiograms of the investigated accessions of the genus *Crocus*.

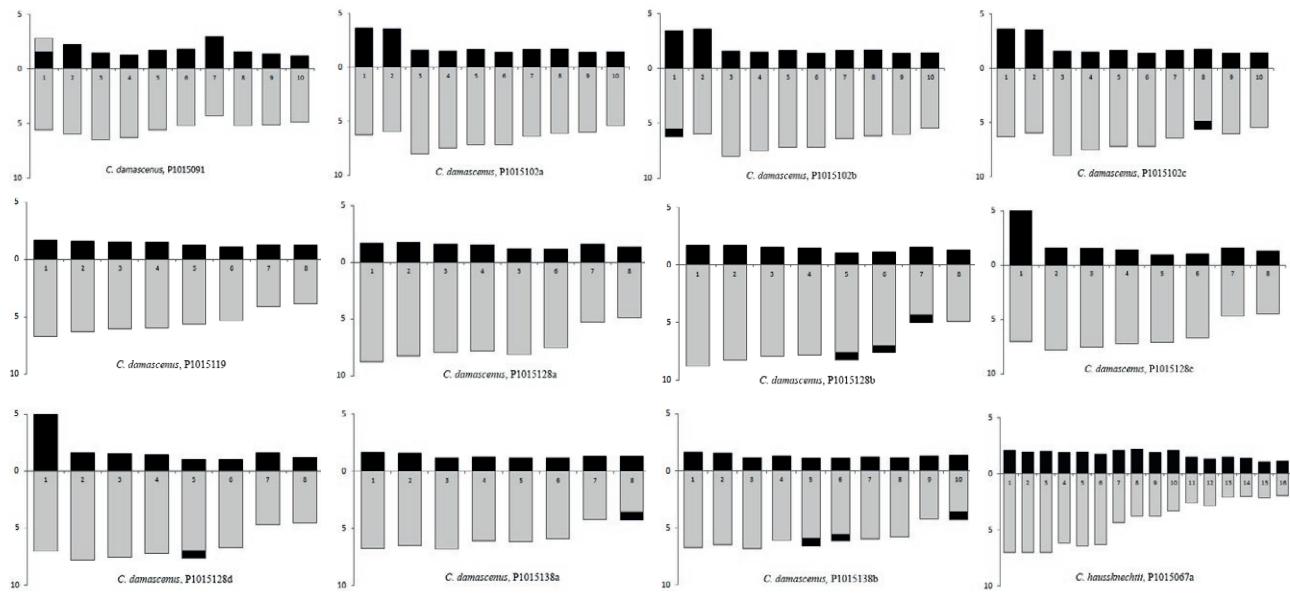


Figure 6. Idiograms of the investigated accessions of the genus *Crocus*.

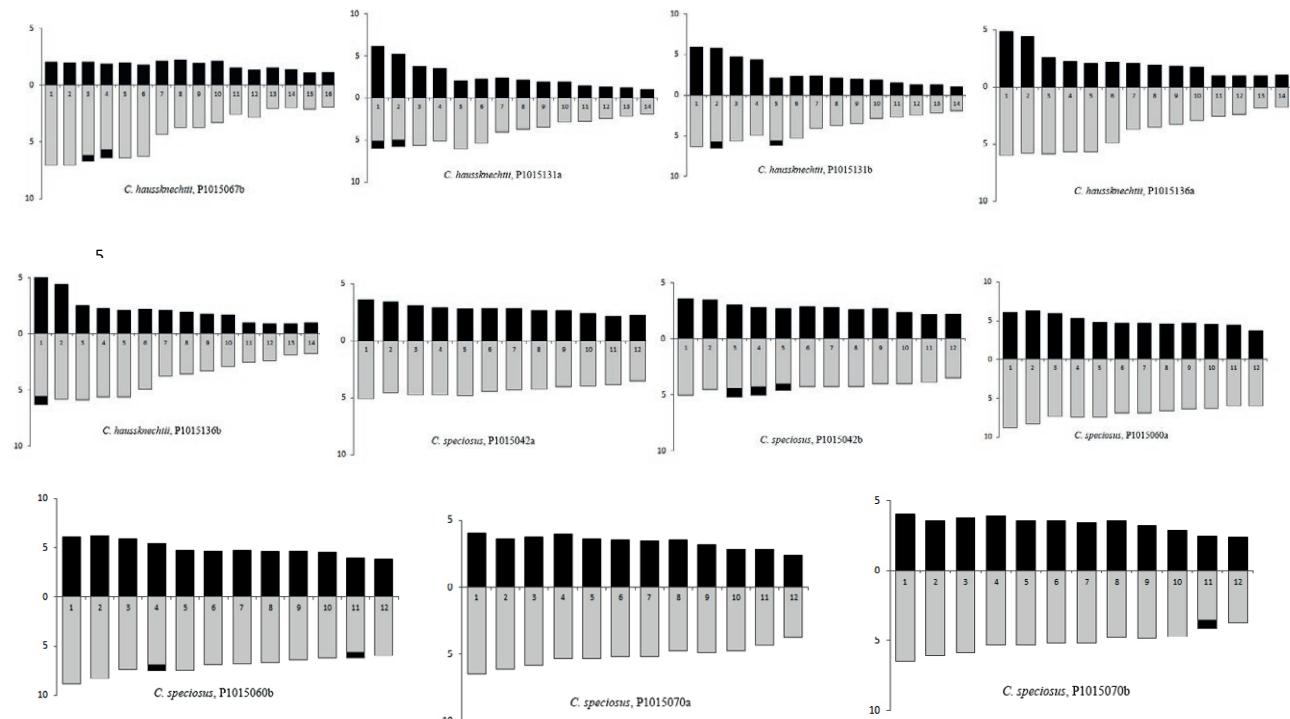
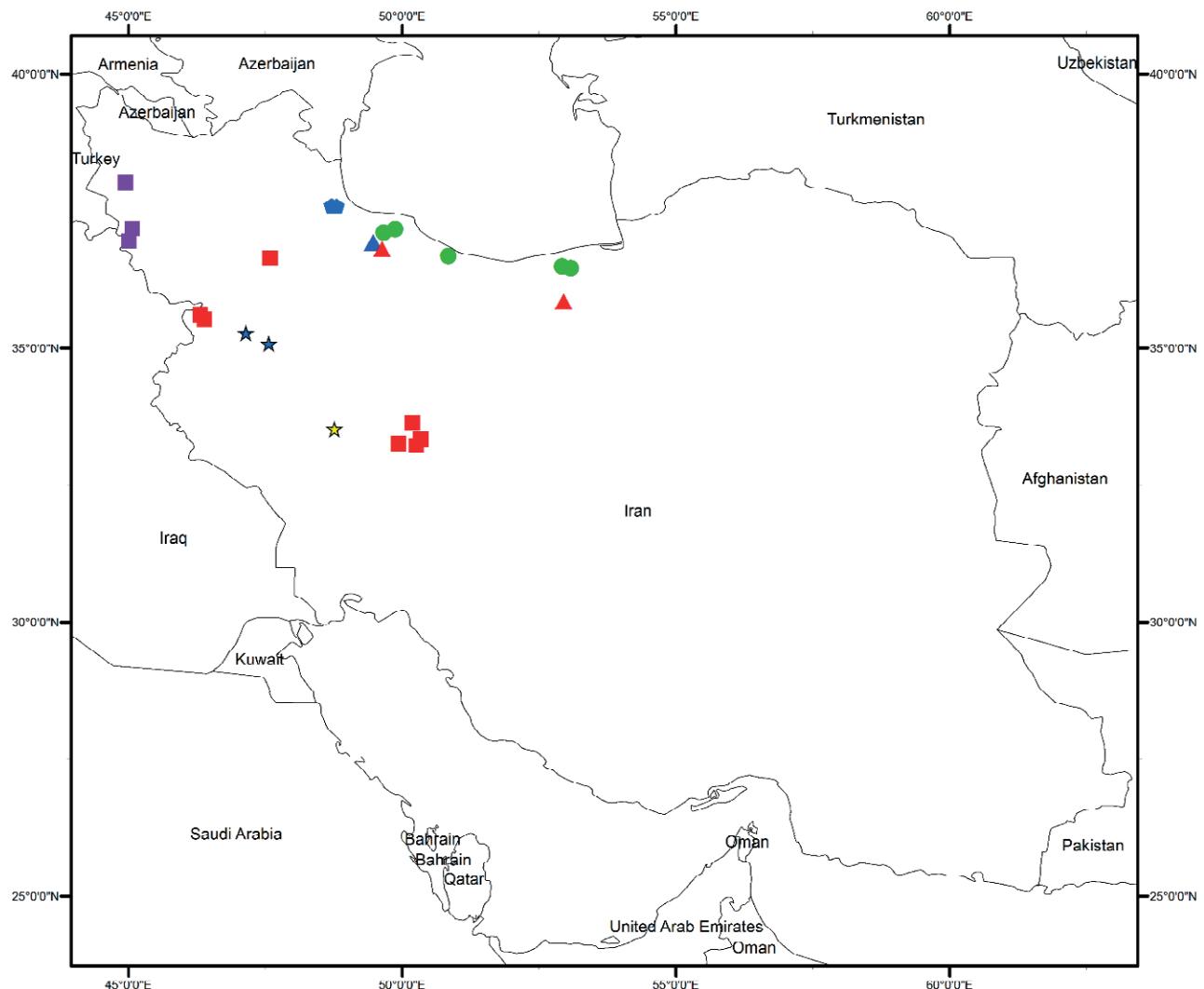



Figure 7. Idiograms of the investigated accessions of the genus *Crocus*.

Brighton (1977b) reported $2n = 8, 10, 12, 14$ and 16 chromosomes in 90 investigated collections of *C. cancellatus* aggregate. Altogether, she found 1-9 B chromosomes in the $2n = 10$ and $2n = 16$ cytotypes, and three distinct karyotypes having $2n = 8, 10$ and 12 chromosomes. Four

of her collections were from Iran: one from Damaneh (Esfahan province, $2n = 8$, karyotype 1: only acrocentric or subtelocentric chromosomes), two from Salmas and Urumieh ($2n = 10$, karyotypes 1 and 3: like type 1 but one acrocentric chromosome was replaced by one meta-

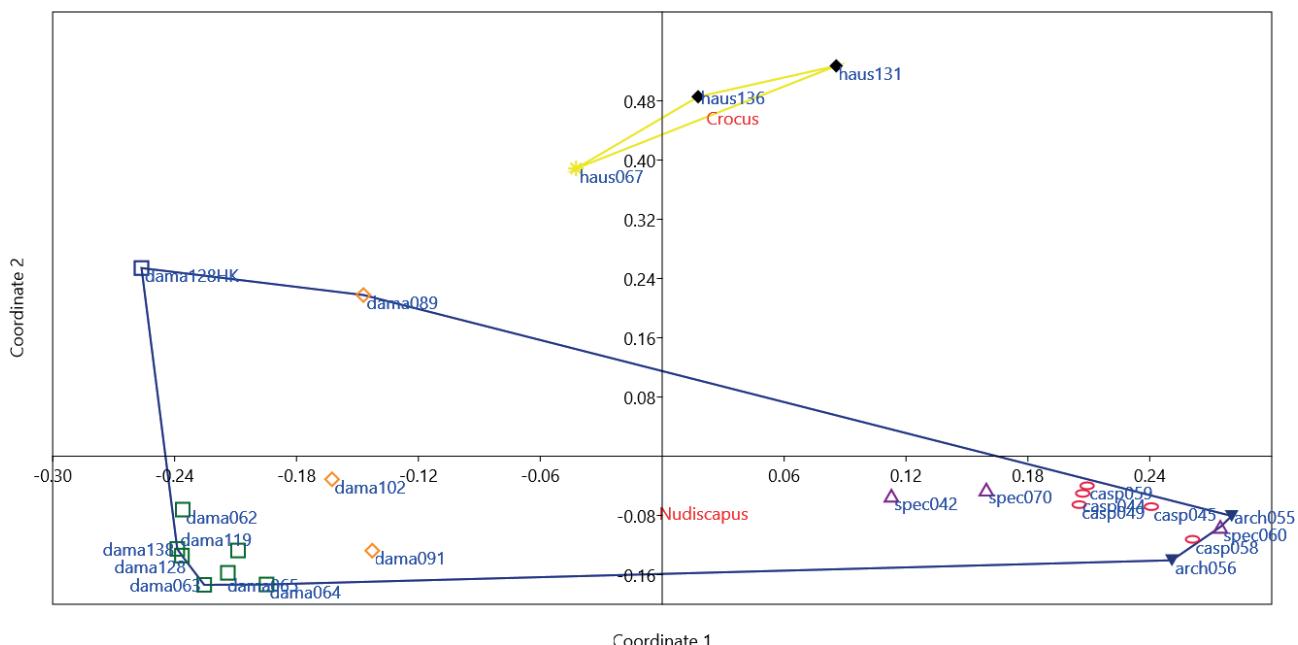


Figure 8. Distribution map of the studied accessions of *Crocus* species. *C. archibaldiorum* (blue pentagons), *C. caspius* (green dots), *C. damascenus* ($2n = 8$ red squares, $2n = 10$ purple squares), *C. haussknechtii* ($2n = 14$ blue asterisks, $2n = 16$ yellow asterisk), *C. speciosus* s.l. = *C. archibaldiorum* ($2n = 12$, blue triangle), *C. speciosus* s.l. ($2n = 12$, red triangles).

centric chromosome), and one collection from Khoi ($2n = 12$, karyotype 2: consisted of 1-3 pairs of submetacentric or metacentric chromosomes besides a varied number of acrocentric ones). I did not find $2n = 12$, probably because I did not study samples from Khoi. In accordance to her results, karyotypes in my examined collections with $2n = 8$ were constant and consisted of only eight subtelocentric chromosomes (karyotype 1, Figs. 5 & 6). However, in one individual each of accessions P1015128 ($2n = 8$) and P1015091 ($2n = 10$), karyotype 3 was found that was reported by Brighton (1977b) only in $2n = 10$ cytotypes and not in $2n = 8$ ones from Iran. However, Feinbrun (1957, 1958) reported karyotype 2 for $2n = 8$ cytotypes of *C. damascenus* samples from Lebanon, Jordan and Syria.

West Azerbaijan accessions ($2n = 10$) possessed one or two pairs of metacentric and/or submetacentric chromosomes (karyotype 2) observed by Brighton (1977b) in plants from Iran having $2n = 12$ chromosomes.

The ten examined accessions showed substantial intraspecific polymorphism in chromosome number and structure. However, the estimated total haploid length (THL) did not vary remarkably among these collections. Like previous researchers (Brighton 1977b; Brighton et al. 1983; Harpke et al. 2015), I attribute these karyological alterations to Robertsonian translocation events having occurred frequently during the generic evolution. It seems also possible that, in this species with variable karyotypes, the karyological diversity could have been

Figure 9. PCoA analysis of the investigated accessions based on five quantitative karyological parameters. Four first letters of species name plus three last numbers of IBRC codes were used to mark each accession, section names in red letters.

caused by infraspecific hybridization events in the contact zone of various phytogeographical regions (Brighton 1977b; Harpke et al. 2015).

Keeping in mind all available data, I hesitate considering the occurrence of three different chromosome numbers ($2n = 8, 10$ and 12) and three distinct karyotypes as characteristic of the widely distributed *C. dama-scenus* (Rukšāns 2017a). In my opinion, the currently accepted concept of this species needs substantial re-evaluation.

Crocus speciosus aggregate

Crocus speciosus aggregate is one of the most complicated taxonomic groups within the genus. Its members are distributed from Greece, Turkey and Crimea (Ukraine) to the southern coast of the Caspian Sea in N Iran. Mathew (1982) accepted three subspecies within *C. speciosus*, and subsumed under the typical subspecies karyologically very dissimilar samples with $2n = 8, 10, 12, 14$, and 18 chromosomes (Brighton et al. 1983). Until now, *C. archibaldiorum*, *C. zubovii* Rukšāns and *C. hyrcanus* Rukšāns & Zubov have been split from the Iranian members of *C. speciosus* (Rukšāns 2014a, 2017a, Rukšāns and Zubov 2025). For now, I apply the name *C. speciosus* s.l. for any other materials from this aggregate not belonging to these three species.

Two accessions of *C. archibaldiorum* were karyologically investigated and showed $2n = 12$ metacentric chromosomes. These are the first chromosome counts for this species.

In three collections of the *C. speciosus* aggregate from N Iran (Tables 1 and 2), $2n = 12$ metacentric chromosomes were counted, and the karyological data for accession P1015060 were identical to those of *C. archibaldiorum*. Since this accession occupied a position close to accessions of the latter species in PCoA analysis (Fig. 9), I re-examined it morphologically and concluded that it was another population of *C. archibaldiorum* (confirmed by J. Rukšāns, personal communication). Also the separate position of two other accessions of the *C. speciosus* group may be considered as a good support for the assumption of Dolatyari et al. (2024) that possibly several undescribed species from this group occur in Iran.

Brighton et al. (1983) studied five collections of *C. speciosus* subsp. *speciosus* from N Iran and reported $2n = 12$ with the karyotype formula of $6m + 6sm$ for them, to which mine virtually correspond. Ebrahimzadeh et al. (1998) also reported the same number and karyotype for this subspecies from Golestan province. Among the studied accessions, the largest total haploid length of chromosome set (THL) was measured in accession P1015055 of *C. archibaldiorum*.

Statistical analysis

To correctly highlight karyological relations among the studied taxa, I analysed five karyological parameters ($2n$, THL, M_{CA} , CV_{CL} , CV_{CI}) of all investigated accessions using the principal coordinates (PCoA) method (Fig. 9). The cumulative variance explained by the first two axes was 81.07. Wherever I was going to test previous groupings, discriminant analysis (DA) was performed (Peruzzi and Altinordu 2014). Remarkably, DA correctly attributed the studied accessions to their two corresponding sections. This clustering pattern at the sectional level was in accordance with the findings of recent palynological studies on Iranian *Crocus* species, which similarly revealed clear distinctions between sections based on pollen morphology (Dolatyari and Dehghani 2025). This congruence between karyological and palynological data supports the reliability of both approaches in resolving taxonomic relationships within the genus. The most important characterizing karyological features were $2n$, CV_{CL} and THL. However, it must be noted that the heterogeneity of the investigated samples could have influenced the statistical results. In other words, another result seems possible if more samples of the sect. *Crocus* were analysed.

At the species level, all accessions of the same species occupied close and distinct positions. The isolated position of *C. haussknechtii* (sect. *Crocus*) far from the other four species (sect. *Nudiscapus*) was particularly striking. *Crocus caspius* ($2n = 24$) was positioned more closely to *C. archibaldiorum* and *C. speciosus* aggregate (both $2n = 12$). These three taxa are distributed in northern Iran (Fig. 8).

At the infra-specific level, close and isolated positions of the five studied accessions of *C. caspius* mirrored its constant and distinct karyotypes. On the other hand, in *C. damascenus*, the isolated position of accession P1015089 (North of Urumieh) needs special attention. This accession greatly differed from the other two $2n = 10$ accessions in CV_{CL} and CV_{CI} parameters, and having one pair of long metacentric chromosomes that are absent in the other accessions. These results shows that this accession may represent a distinct taxon demanding a future detailed taxonomic investigation.

CONCLUDING REMARKS

The findings of this paper are in line with previous findings and confirm extreme karyological variation in crocuses. The extremely wide range of reported chromosome numbers ($2n = 6$ to 64) makes it difficult to infer ploidy levels directly from somatic chromosome com-

plements. However, substantial changes in chromosome number and structure imply the pivotal role of karyological events, particularly dysploidy and polyploidy, in the genus evolution (Goldblatt and Takei 1997; Harpke et al. 2013; Raca et al. 2023).

The number and type of satellite chromosomes in the genus seem to be good karyological markers, but it remains unclear whether they are taxon-specific, since comprehensive publications, like those available for *Allium* (Dolatyari et al. 2018), are still missing to determine the taxonomic importance of such variation in crocuses. This issue is intended to be addressed in detail in the next publication.

Currently, the subspecies concept is no longer accepted in the genus *Crocus*, and all former infraspecific entities are recognized as distinct species. This attitude helped to resolve many long-standing karyologically characterized complexes. Additionally, accurate review of available chromosomal data suggests that most *Crocus* species possess constant karyotypes, with little intra-populational heterozygosity. In cases where different cytotypes are observed within one species, e.g. in *C. damascenus* and *C. haussknechtii*, it should be regarded as a strong signal for a future taxonomic revision.

ACKNOWLEDGMENT

I am very grateful to Dr. R.M. Fritsch for his careful review of the manuscript. His wise observations have significantly raised the manuscript's coherence and clarity. I also want to acknowledge Dr. Doerte Harpke for her insightful scientific recommendations. Additionally, I thank Dr. Mehdi Dehghani for his crucial help with the final language check.

FUNDING INTERESTS

Funding for the project no. P-1401-01 of Iranian biological resource center is gratefully acknowledged.

REFERENCES

- Advay M, Rukšāns J. 2024. A new *Crocus* species from series *adamii* from western Iran. Int Rock Gard. 172: 3-29.
- Agayev YM. 2002. New features in karyotype structure and origin of saffron, *Crocus sativus* L. Cytol. 67(3): 245-252.
- ArcGIS Desktop (ver. 10.7.1). 2019. Esri Inc. <https://desktop.arcgis.com/en/>.

Baldini RM. 1990. Caryological observations on two *Crocus* species (Iridaceae) from Tuscany (Italy). *Caryologia*. 43(3-4):341-345.

Bolkhovskikh Z, Grif V, Matvejeva T, Zakharyeva O. 1969. Chromosome numbers of flowering plants. Komarov VL. Botanical Institute, Academy of Sciences of the USSR, Leningrad. Russian

Brighton CA, Mathew B, Marchant CJ. 1973. Chromosome counts in the genus *Crocus* (Iridaceae). *Kew Bull.* 28(3):451-464.

Brighton CA. 1976. Cytological problems in the genus *Crocus* (Iridaceae): I. *Crocus vernus* aggregate. *Kew Bull.* 31(1):33-46.

Brighton CA. 1977a. Cytology of *Crocus sativus* and its allies (Iridaceae). *Plant Syst Evol.* 128:137-157.

Brighton CA. 1977b. Cytological problems in the genus *Crocus* (Iridaceae): II. *Crocus cancellatus* aggregate. *Kew Bull.* 32(1):33-45.

Brighton CA. 1980. Cytology of *Crocus vallicola* and its allies (Iridaceae). *Notes RBG Edin.* 38(3):399-412.

Brighton CA, Mathew B, Rudall P. 1983. A detailed study of *Crocus speciosus* and its ally *C. pulchellus* (Iridaceae). *Plant Syst Evol.* 142:187-206.

Candan F, Sik L, Kesercioglu T. 2009. Cytotaxonomical studies on some *Crocus* L. taxa in Turkey. *Afr J Biotechnol.* 8(18):4374-4377.

Darlington CD, Wylie AP. 1955. Chromosome atlas of flowering plants. George Allen and Unwin Ltd., London.

Dolatyari A, Saeidi Mehrvarz S, Shahzadeh Fazeli SA, Naghavi MR, Fritsch RM. 2018. Karyological studies of Iranian *Allium* L. (Amaryllidaceae) species with focus on sect. *Acanthoprason*. 1. Mitotic chromosomes. *Plant Syst Evol.* 304(5):583-606.

Dolatyari A, Rukšāns J. 2022. Five new *Crocus* species (Liliiflorae, Iridaceae) from north-western and western Iran (preliminary publication). *Int Rock Gard.* 150:47-93.

Dolatyari A, Tolyat Abolhasani M, Ardalani F, Rukšāns J. 2024. A taxonomic revision of the genus *Crocus* (Iridaceae) in Iran. *Nord J Bot.* e04270. <https://doi.org/10.1111/njb.04270>.

Dolatyari A, Dehghani M. 2025. Palynomorphological analysis of the genus *Crocus* L. (Iridaceae) in Iran and its taxonomic implications. *Microsc. Res. Tech.* doi: 10.1002/jemt.70036.

Ebrahimzadeh, H, Saboora A, Noori-Daloii MR, Ghaffari SM. 1998. Chromosomal studies on four Iranian *Crocus* species (Iridaceae). *Iran J Bot.* 7(2):179-192.

Estilai A. 1976. Chromosome number and sterility in saffron (*Crocus sativus* L.). *Bull Fac Sci Tehran Univ.* 8(1):33-41.

Estilai A, Aghamohammadi Z. 1977. Pollen stainability and pollen germination in relation to sterility of saffron (*Crocus sativus* L.). *Bull Fac Sci Tehran Univ.* 9(1):10-15.

Feinbrun N. 1957. The genus *Crocus* in Israel and neighboring countries. *Kew Bull.* 12(2):269-285.

Feinbrun N. 1958. Chromosome numbers in *Crocus*. *Genet.* 29:172-192.

Ghaffari SM. 1986. Cytogenetic studies of cultivated *Crocus sativus* (Iridaceae). *Plant Syst Evol.* 153:199-204.

Ghaffari SM, Bagheri A. 2009. Stigma variability in saffron (*Crocus sativus* L.). *Afr J Biotechnol.* 8(4):601-604.

Ghaffari SM, Djavadi SB. 2007. Chromosome study on *Crocus cancellatus* subsp. *damascenus* from Iran. *Iran J Bot.* 13(1):1-3.

Goldblatt P, Takei M. 1997. Chromosome cytology of Iridaceae: patterns of variation, determination of base number, and modes of karyotype change. *Ann Mo Bot Gard.* 84:285-304.

Harpke D, Meng S, Rutten T, Kerndorff H, Blattner FR. 2013. Phylogeny of *Crocus* (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. *Mol Phylogenet Evol.* 66:617-627.

Harpke D, Carta A, Tomović G, Randelović V, Randelović N, Blattner FR, Peruzzi L. 2015. Phylogeny, karyotype evolution and taxonomy of *Crocus* series *Verni* (Iridaceae). *Plant Syst Evol.* 301:309-325.

Harpke D, Kerndorff H, Pasche E, Peruzzi L. 2016. Neotyphification of the name *Crocus biflorus* Mill. (Iridaceae) and its consequences in the taxonomy of the genus. *Phytotaxa.* 260(2):131-143.

Heywood CA. 1983. Meiosis in some species and cultivars of *Crocus* (Iridaceae). *Plant Syst Evol.* 143:207-225.

Karamplianis T, Tsiftsis S, Constantinidis T. 2013. The genus *Crocus* (Iridaceae) in Greece: some noteworthy floristic records and karyotypes. *Phytol Balc.* 19(1):53-66.

Karasawa K. 1956. Karyological studies in *Crocus* IV. *Genetica.* 28:31-34.

Kerndorff H, Pasche E, Harpke D. 2017. *Crocus adamii* Gay (Liliiflorae, Iridaceae) and some of its relatives in Iran. *Stapfia.* 107:3-10.

Levan A, Fredga K, Sandberg AA. 1964. Nomenclature for centromeric position on chromosomes. *Hered* (Lund). 52:201-220.

Mather K. 1932. Chromosome variation in *Crocus* I. *J Genet.* 26:129-142.

Mathew B, Brighton CA. 1977. Four central Asian *Crocus* species (Liliaceae). *Iran J Bot.* 1(2):123-135.

Mathew B, Brighton CA, Baytop T. 1979. Taxonomic and cytological notes on Asiatic *Crocus*. Notes from R Bot Gard, Edinb. 37:469–474.

Mathew B. 1982. The *Crocus*, a revision of the genus *Crocus* (Iridaceae). Timber Press Inc., Portland, pp. 224.

Pathak GN. 1940. Studies in the cytology of *Crocus*. Ann Bot. 4(14):227–256.

Peruzzi L, Leitch IJ, Caparelli KF. 2009. Chromosome diversity and evolution in Liliaceae. Ann Bot. 103:459–475. <https://doi.org/10.1093/aob/mcn230>.

Peruzzi L, Altinordu F. 2014. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. Comp Cytogenet. 8(4):337–349. doi: 10.3897/CompCytogen.v8i4.8564.

Raca I, Blattner FR, Waminal NE, Kerndorff H, Randelović V, Harpke D. 2023. Disentangling *Crocus* series *Verni* and its polyploids. Biol. 12, 303. <https://doi.org/10.3390/biology12020303>.

Rudall PJ, Owens SJ, Kenton AY. 1984. Embryology and breeding systems in *Crocus* (Iridaceae). A study in causes of chromosome variation. Plant Syst Evol. 148:119–134.

Rukšāns J. 2014a. *Crocus danfordiae* Maw and *C. chrysanthus* (Herbert) Herbert (Iridaceae) and some of their allies in Turkey and Iran. Int Rock Gard. 52:2–31.

Rukšāns J. 2014b. The genus *Crocus* (Iridaceae) in Iran, three new species from the so-called “*Crocus biflorus*” aggregate. Int Rock Gard. 61:2–26.

Rukšāns J. 2015. Some new *Crocus* taxa (Iridaceae) from Western Turkey and East Aegean Islands. Int Rock Gard. 64:2–36.

Rukšāns J. 2017a. The World of Crocuses. The Latvian Academy of Sciences, Riga, pp. 568.

Rukšāns J. 2017b. *Crocus inghamii* Rukšāns, a new *Crocus* species from NW Iran. Int Rock Gard. 89:3–18.

Rukšāns J. 2022. *Crocus dolatyarii* Rukšāns, a new species from W Iran. Int Rock Gard. 149:70–90.

Rukšāns J. 2023. The World of Crocuses, the first supplement. The Latvian Academy of Sciences, pp. 144.

Rukšāns J., Zubov D. 2025. Three new *Crocus* taxa (Iridaceae) described from the series *Speciosi*. Int Rock Gard. 182:12–53.

Sanei M, Rahimyan H, Agayev YM, Soheilivand S. 2007. New cytotype of *Crocus pallasii* subsp. *haussknechtii* from west of Iran. Acta Hortic. 739:107–111.

Saxena RB. 2010. Botany, taxonomy and cytology of *Crocus sativus* series. AYU. 31(3):374–380.

Schneider I, Kerndorff H, Pasche E. 2012. Chromosome numbers of Turkish *Crocus* (Liliiflorae, Iridaceae) and their geographical distribution. Feddes Repert. 123(1):73–79.

Wendelbo P, Mathew B. 1975. Iridaceae. In Rechinger, K. H. (Ed.) Flora Iranica vol. 112. Akademische Druck- und Verlagsanstalt, Graz, Austria.

OPEN ACCESS

Citation: da Silva Fraude, L. F., Vasconcelos dos Santos, C. E., Ribeiro de Almeida, B. R., Nagamachi, C. Y., Pieczarka, J. C., Santos do Nascimento, L. A., Martins, C., Lima Cardoso, A. & Coelho Rodrigues Noronha, R. (2025). Divergence in the chromosomal distribution of repetitive sequences in Neotropical cichlid species of the genus *Lugubria*. *Caryologia* 78(2):45-52. doi: 10.36253/caryologia-3718

Received: August 10, 2025

Accepted: October 3, 2025

Published: December 20, 2025

© 2025 Author(s). This is an open access, peer-reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

ORCID

LFSF: 0000-0001-9706-4817
CEVS: 0009-0007-9839-6697
BRRA: 0000-0002-6080-5826
CYN: 0000-0003-1516-2734
JCP: 0000-0003-2951-8877
LASN: 0000-0001-9947-4078
CM: 0000-0003-3534-974X
ALC: 0000-0002-7287-5039
RCRN: 0000-0001-9150-8544

Divergence in the chromosomal distribution of repetitive sequences in Neotropical cichlid species of the genus *Lugubria*

LUAN FELIPE DA SILVA FRADE¹, CARLOS EDUARDO VASCONCELOS DOS SANTOS¹, BRUNO RAFAEL RIBEIRO DE ALMEIDA², CLEUSA YOSHIKO NAGAMACHI³, JULIO CESAR PIECZARKA³, LUÍS ADRIANO SANTOS DO NASCIMENTO⁵, CESAR MARTINS⁴, ADAUTO LIMA CARDOSO⁴, RENATA COELHO RODRIGUES NORONHA^{1,*}

¹ *Laboratory of Genetics and Cell Biology, Center for Advanced Studies in Biodiversity, Federal University of Pará, Belém, Pará, Brazil*

² *State University of Pará, Campus Cametá. Av. Inácio Moura - bairro São Benedito, Cametá - PA, 68400-000, Brazil*

³ *Cytogenetics Laboratory, Center for Advanced Studies in Biodiversity, Federal University of Pará, Belém, Pará, Brazil*

⁴ *Integrative Genomics Laboratory, Institute of Biosciences, Paulista State University, Botucatu, São Paulo, Brazil*

⁵ *Amazon Oil Laboratory, Federal University of Pará, Belém 66075-110 Pará, Brazil*

*Corresponding author. E-mail: renatarcrn@gmail.com

Abstract. Cytogenetic studies provide valuable insights into the evolutionary dynamics of fish genomes, particularly in groups with high species diversity and ecological relevance. Among Neotropical cichlids, chromosomal data have revealed both conservation patterns and significant structural variations, reflecting intense karyotypic diversification. In this context, mapping repetitive DNA sequences has proven useful in aiding understanding of genomic organization and chromosomal evolution. However, information remains scarce for several cichlid genera. The present study investigated the chromosomal distribution of repetitive sequences, such as 18S and 5S ribosomal genes, as well as telomeric sequences, in three Amazonian species of *Lugubria*: *L. cincta*, *L. strigata*, and *L. lugubris*. The results revealed a diploid number of $2n = 48$, along with variations in the karyotypic formula among the species. Mapping of repetitive sequences revealed distinct patterns of 18S rDNA distribution, with clusters located on different chromosome pairs. Conversely, the 5S rDNA showed a conserved position on a subtelocentric/acrocentric pair in all three species. Furthermore, the presence of interstitial telomeric sequences in *L. cincta* and *L. strigata* indicates greater genomic plasticity in these species, suggesting more pronounced chromosome dynamics in the genus *Lugubria*. These data contribute to the understanding of chromosomal evolution and diversification in this diverse group of Neotropical cichlids and may aid in future cytotaxonomic studies.

Keywords: repetitive DNAs, neotropical cichlids, ribosomal genes.

INTRODUCTION

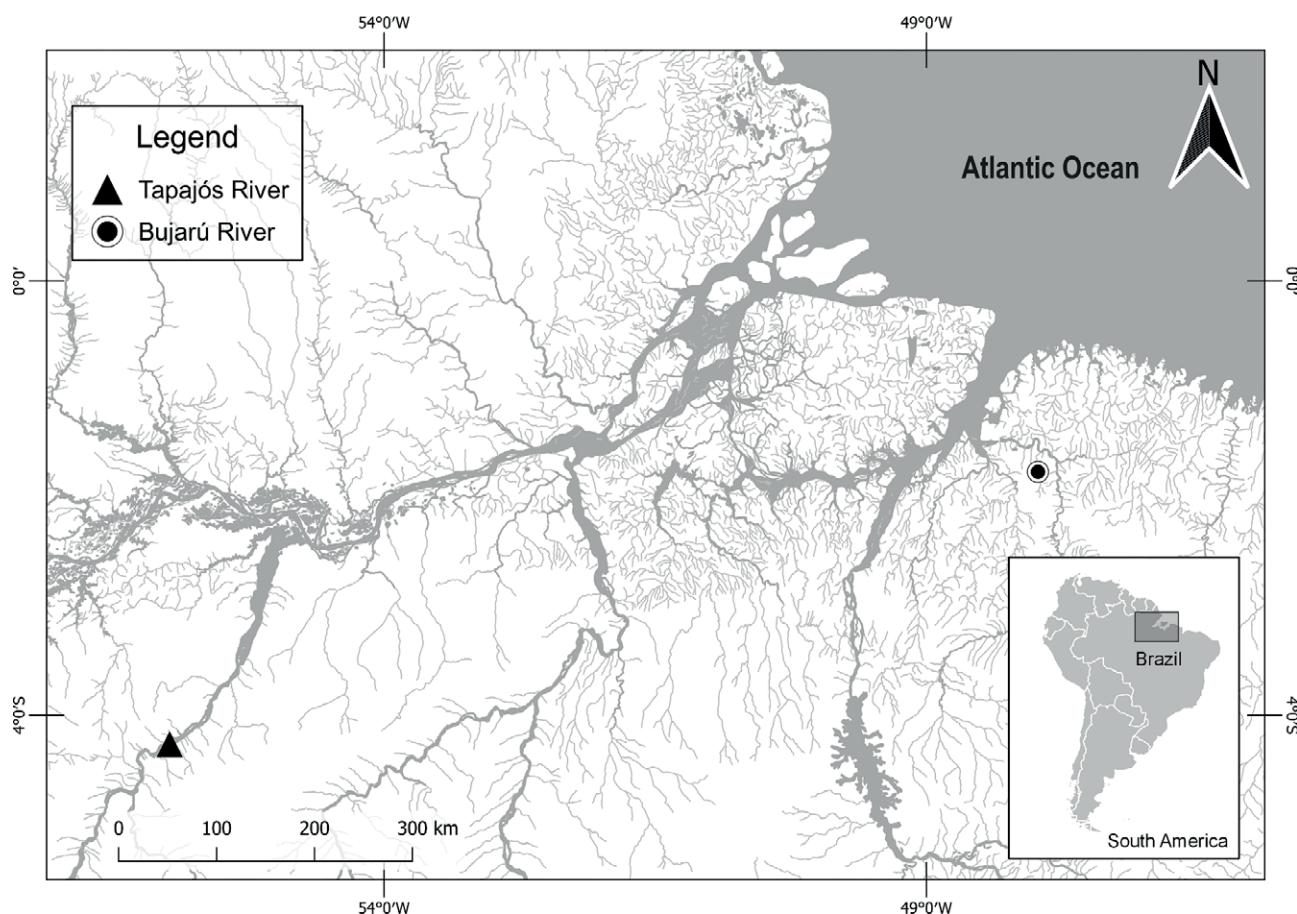
The Cichlidae family is one of the largest and most diverse families of freshwater fish in the world, and its geographic distribution spans most continents, including North, Central, and South America (Turner, 2007; Fricke et al. 2024). Neotropical cichlids constitute a prominent group within this family, comprising a wide variety of species adapted to different aquatic environments (Kullander, 2003; Kullander et al. 2010; Chakrabarty, 2004; Genner, 2023) and exhibiting a wide range of complex reproductive strategies, including territorial behavior and pronounced parental care (Balshine & Abate, 2021). Due to the rapid adaptive radiation of these species, cichlids have been considered important models for evolutionary studies (Matschiner et al. 2020; Singh et al. 2022). Neotropical cichlids, in particular, have been the subject of numerous scientific studies not only because of their diversity and intriguing behavior, but also because many species are threatened with extinction due to the degradation of their natural habitats and the introduction of exotic species into their ranges (ICMBio, 2018). The study of the genetic characteristics of this group has enabled a more comprehensive understanding of their evolutionary history, supporting insights into the kinship relationships among different species and genera, as well as contributing to taxonomic classification and understanding of their evolutionary trajectories (Arbour & López-Fernández, 2014; Torres-Dowdall et al. 2021).

The genus *Lugubria* comprises 16 large species distributed throughout the Amazon Basin, the Orinoco River, and Guiana. These species exhibit changes in body coloration related to sexual maturity throughout their life cycle (Varella et al., 2023). To date, chromosomal data are available for only four members of this genus, and these data remain largely limited to classical analyses. In general, *Lugubria* exhibits a diploid number of $2n = 48$, the absence of heteromorphic sex chromosomes, and 18S rDNA and 5S rDNA sites typically located on a single chromosome pair. However, inter-population variations in the karyotypic formula have been recorded for *Lugubria johanna*, *Lugubria cincta*, and *Lugubria lugubris*, suggesting a high rate of chromosomal rearrangements in this genus (Frade et al., 2019; Paiz et al., 2024).

Repetitive DNA refers to segments of DNA that occur in multiple copies within an organism's genome (Lower et al., 2019; Kejnovský & Jedlička, 2022). These sequences can be organized in tandem, forming highly repetitive regions—such as telomeric and centromeric sequences—which are involved in chromosome pro-

tection and proper segregation during cell division, or they may be dispersed throughout the genome, such as transposons and retrotransposons, which can influence genome evolution and are associated with chromosomal rearrangements and genetic diversification (Ayarpadikanan & Kim, 2014; Kejnovský & Jedlička, 2022; Šatović-Vukšić & Plohl, 2023). The function of repetitive DNA in the genome has been the subject of intense investigation because, although many of these elements do not encode proteins, they play essential roles in gene expression regulation, chromosomal structure, and genomic stability (Bernstein & Allis, 2005; Liao et al., 2023).

Ribosomal DNA (rDNA) is organized as tandem repeat arrays that encode crucial structural and functional components of the ribosome and is typically found as 45S and 5S clusters within eukaryotic genomes (Mishra et al., 2021). The process of rDNA evolution involves mutations, recombination, and concerted evolution, promoting both homogenization and diversity, and through these processes, enabling adaptation and stability within species over time (Wang et al., 2023). Telomeric DNA, in turn, plays essential roles in maintaining genomic stability, protecting against the loss of genetic information, and preventing cellular aging (Alanazi, Parkinson, & Haider, 2024). The study of telomeric regions is fundamental for understanding chromosome structure and behavior during cell division, as well as for identifying potential chromosomal rearrangements and anomalies. The evolution of these sequences involves recombination and mutation events, along with variations in telomeric length, which may be associated with mechanisms of adaptation and speciation (Belyayev et al., 2023).


This work presents the description of new cytotypes and the mapping of ribosomal DNA and telomeric sequences in three Amazonian species of *Lugubria*. Studying these repetitive DNA markers can help elucidate the processes that promote chromosomal diversification and genome organization through the construction of cytogenetic maps in *Lugubria*, as well as expand the available karyotypic data for the genus.

MATERIAL AND METHODS

The sample data used in this study are presented in Table 1, and the collection sites are shown in Figure 1. The specimens were cataloged in the collection of the Genetics and Cell Biology Laboratory at the Federal University of Pará. The taxonomic identification of *L. cincta*, *L. strigata*, and *L. lugubris* was performed based on the existing literature. Samples were collected under SISBIO license No. 89443, and the study was conducted

Table 1. General data of the samples analyzed in the present study.

Species	Sample size	Sex	Localization	Geographical coordinates
<i>Lugubria cincta</i>	4	Male	Bujarú River	1°45'28.4"S 47°58'14.5"W
<i>Lugubria strigata</i>	3	Male	Bujarú River	1°45'28.4"S 47°58'14.5"W
<i>Lugubria lugubris</i>	3	Male	Tapajós River	4°15'56.5"S 55°58'30.0"W

Figure 1. Map indicating the collection sites of the *Lugubria* samples analyzed in this study.

with approval from the Ethics Committee on the Use of Animals of the Federal University of Pará (CEUA 8803211223).

Chromosome preparations were obtained according to Bertollo et al. (2015). Chromosomes were classified according to Levan et al. (1964).

The total genomic DNA of *Lugubria* was extracted using the GenElute Mammalian Genomic DNA Mini-prep kit (Sigma-Aldrich, St. Louis, MO, USA). 18S and 5S rDNA sequences for Fluorescent *in situ* Hybridization (FISH) were amplified by Polymerase Chain Reaction (PCR) following the protocol of Martins & Vicari (2012),

using the genomic DNA of *Lugubria*, with the following set of primers: 18S rDNA: 18SF (5'-CCG CTT TGG TGA CTC TTG AT-3') and 18SR (5'-CCG AGG ACC TCA CTA AAC CA-3') (Gross et al. 2010); 5S rDNA: 5SF (5'-GCC ACA CCA CCC CTG AAC AC-3') and 5SR (5'-GCC TAC GAC ACC TGG TAT TC-3') (Suarez et al. 2017), and labeled with biotin using the BioNick kit (Invitrogen) following the manufacturer's protocol. Telomeric sequences were amplified and labeled by PCR using digoxigenin-11-dUTP with complementary primers (TTAGGG)_n and (CCCTAA)_n, without using template DNA, according to Ijdo et al. (1991).

FISH was performed according to Pinkel et al. (1986). The hybridization solution composed of 2 μ L of probe, 50% formamide, 2xSSC, and dextran sulfate was denatured together with chromosomal DNA in a thermoblock at 90°C for 10 min. Hybridization occurred overnight at 37°C. Probes were detected with avidin-CY3 or antidigoxigenin-FITC. Chromosomes were counterstained with 4',6-diamidino-2-phenylindole (DAPI) containing Vectashield antifading.

The slides were analyzed using an Olympus BX41 microscope and photographed with a Canon Powershot A95 digital camera. FISH images were captured with an AxioCam camera coupled to a Zeiss D2 epifluorescence microscope using Zen2 software (Zeiss). Image editing, including brightness and contrast adjustments and karyotype assembly, was performed using Adobe Photoshop CS6.

RESULTS

Lugubria cincta, *L. strigata* and *L. lugubris* presented a diploid number $2n=48$ (Figure 2). *L. cincta* and *L. lugubris* presented a fundamental number $FN=56$, while *L. strigata* showed $FN=54$. The karyotypes observed in the three species demonstrated the following karyotypic formulas: *L. cincta* (8m/sm+40st/a), *L. strigata* (6m/sm+42st/a) and *L. lugubris* (8m/sm+40st/a). Sex chromosomes with morphological differentiation were not observed in the analyzed males.

FISH with the 18S rDNA probe revealed clusters in a single chromosome pair in each species. In *L. cincta*, 18S rDNA was observed in the terminal region of the short arm of metacentric pair 1 (Figure 2a). In *L. strigata*, this sequence showed a large cluster extending from the interstitial to the terminal region of the long arm of submetacentric pair 2 (Figure 2b). In *L. lugubris*, this sequence was observed in the terminal region of the long arm of subtelocentric pair 12 (Figure 2c).

The 5S rDNA was detected in the karyotypes of *L. cincta*, *L. strigata* and *L. lugubris* in the interstitial region of the long arm of pair 15 (Figure 2).

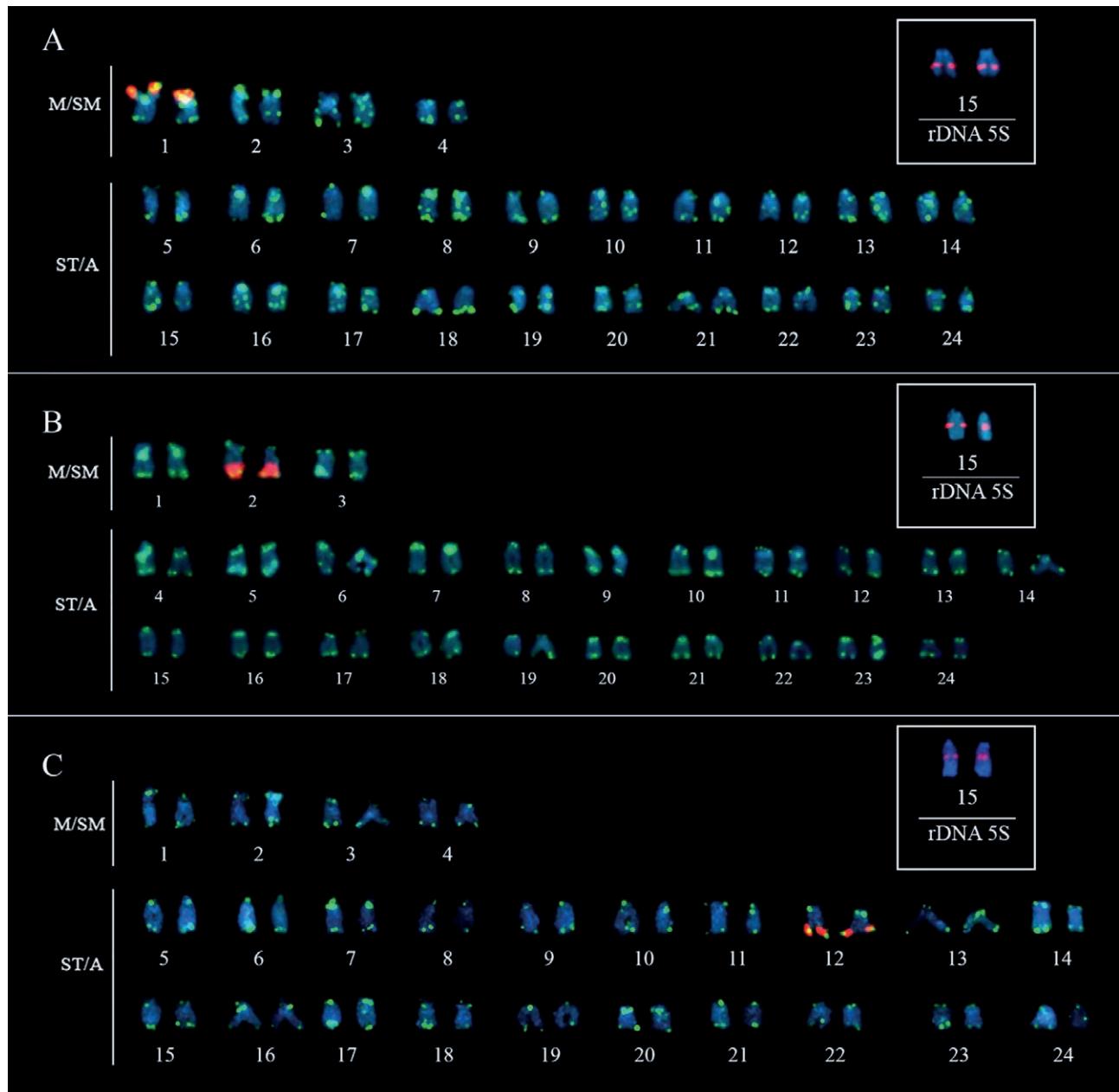

FISH with a telomeric probe demonstrated, in all species, the presence of these sequences at the ends of all chromosome arms, in addition to interstitial telomeric sequences (ITSs) in *L. cincta*, in pairs 1, 2, 3, 6, 8, 10, 14, 16 and 17 and in *L. strigata*, in pairs 1 and 6 (Figure 2).

Figure 3 presents an idiogram showed the locations of the repetitive sequences analyzed in this study.

DISCUSSION

The karyotypes observed in *L. cincta*, *L. strigata*, and *L. lugubris* in this study corroborate those previously described by other authors. Interestingly, the previous populations of these species analyzed cytogenetically are located in regions distant from the sampling sites of the present study. Benzaquem et al. (2008), for example, described the karyotypes of *L. cincta* and *L. lugubris* from specimens from Lake Catalão, in Amazonas State (1,300 km away); Poletto et al. (2010) and Valente et al. (2012) used specimens of *L. strigata* from the Araguaia-Tocantins River (Mato Grosso State- more than 1,600 km away) to characterize the karyotype of this species. Thus, our results promote an increase in the geographic distribution of these cytotypes and reveal a great conservation of the karyotypic macrostructure in the members of *Lugubria*. Similar findings were described between two distinct populations of *Lugubria johanna* (Frade et al. 2019). Despite the karyotypic stability observed in Cichlidae (Majtánová et al., 2019), Paiz et al. (2024) recorded in specimens from Lake Catalão (Amazonas State) karyotypic formulas of *L. cincta* (2m + 4sm + 32st + 10a) and *L. lugubris* (6sm + 22st + 20a) divergent from the findings of the present study and Benzaquem et al. (2008); considering that fish from lake environments present a high rate of chromosomal alterations (MacGuigan et al., 2023), this may be a case of intraspecific polymorphism in the Catalão Lake region, originated by inversion-type rearrangements (considering the conservation of $2n = 48$), maintained by intrinsic factors of this population.

The distribution of rDNA sequences, specifically the 18S and 5S ribosomal RNA genes, in cichlid chromosomes has been the subject of extensive research. Regarding 5S rDNA, Nakajima et al. (2012) observed that, in 48 cichlid genomes analyzed, more than 52% presented clusters of these sequences located in the interstitial region of the long arm of subtelocentric/acrocentric chromosomes, as observed in the findings of the present study, confirming the conserved behavior of these sequences, especially among Neotropical cichlids, which presented this pattern in 82% of cases. On the other hand, in Amazonian peacock bass species, Quadros et al. (2020) showed distinct distribution patterns of 5S rDNA located in interstitial and distal positions in different chromosome pairs. These findings collectively demonstrate conserved and variable distribution patterns of 5S rDNA sequences in cichlids, reflecting the complex evolutionary dynamics of these genomic elements (Schneider et al., 2013). The position of the 5S rDNA sites in *Lugubria* shows that this sequence is

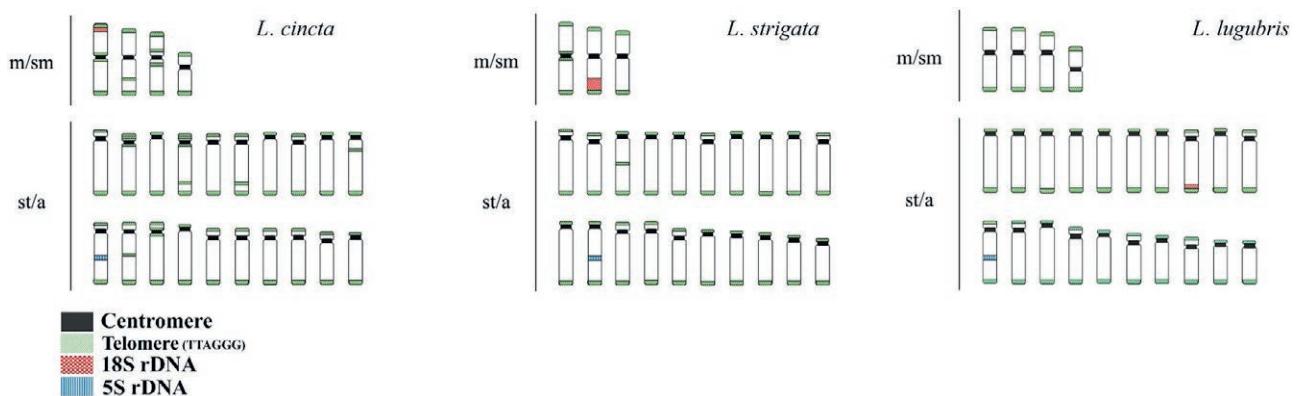


Figure 2. Double FISH with telomeric sequence probes (green signal) and 18S rDNA sequence probes (red signal) in the karyotype of (A) *L. cincta*, (B) *L. strigata*, and (C) *L. lugubris*. Yellow signals represent syntenic regions. The highlighted boxes show FISH with 5S rDNA sequence probes (red signal). All chromosomes were counterstained with DAPI.

highly conserved in this group. This is because, in addition to having an invariable diploid number ($2n=48$), the location of this sequence in the interstitial region of the long arm of an st/a pair remains constant in all studies carried out to date, including the present work (Frade et al. 2019, Paiz et al. 2024) (Table 2).

The presence of multiple 18S rDNA sites in cichlid genomes, with varying numbers in different species,

indicates a dynamic evolutionary process shaping the chromosomal distribution of these sequences (Gross et al. 2009; Nakajima et al., 2012; Frade et al. 2019; Nirchio et al., 2020). The present study is the first to generate data on the physical mapping of 18S rDNA in *L. strigata*, locating it in pair 2 of this species. The pattern found for *L. cincta* is similar to that described for the specimens studied by Paiz et al. (2024). In both cases, our FISH

Figure 3. Idiogram of the metaphases of *L. cincta*, *L. strigata*, and *L. lugubris* indicating the proposed positioning for the telomeric sequences (green / diagonal lines), 18S rDNA sequences (red / grid of squares) and 5S rDNA sequences (blue / vertical lines). Centromeres are shown in solid gray.

data corroborate the number of Ag-NOR bands observed by Benzaquem et al. (2008) and Valente et al. (2012) for *L. cincta* and *L. strigata*, respectively. Our results revealed only one ribosomal site located in pair 12 for *L. lugubris*, which disagrees with the findings of Paiz et al. (2024), who showed ribosomal cistrons in several pairs of the karyotype of this species. This result highlights the occurrence of pericentric inversions during the chromosomal evolution of the genus *Lugubria*, ratifying the evolutionary trend influenced by pericentric inversions, generating chromosomes with two arms, proposed by Feldberg et al. (2003) for Neotropical cichlids. In contrast, a large number of 18S rDNA sites were evidenced in *L. johanna* (Frade et al., 2019). Unlike other members of *Lugubria*, the colocalization of 18S rDNA and interstitial telomeric sequences (ITSs) may have contributed to greater plasticity of this ribosomal DNA in *L. johanna*, since this association can generate unstable sites in the chromosomes (Frade et al., 2019). The different distribution patterns of 18S rDNA in the chromosomes of the four *Lugubria* species karyotypes, as demonstrated in this study and by Frade et al. (2019), allow us to differentiate them, contributing to their cytntaxonomy, which highlights the relevance of these markers in understanding the evolution and phylogeny of these species.

Additionally, the presence of several ITSs in the karyotypes of *Lugubria cincta* and *Lugubria strigata* raises several questions and possible interpretations. First, the presence of these ITSs suggests additional genomic complexity in these organisms, as these sequences may play important roles in chromosome stability and gene regulation (Lee et al. 2021; Lu & Liu, 2024). The observed pattern of telomeric sequence distribution corroborates the high variability in the distribution pattern of these repetitive sequences observed in Cichlinae species

(Frade et al. 2019; Nirchio et al., 2020; Quadros et al. 2020). ITSs can arise during DNA break repair; however, when considering the evolutionary lines proposed for the karyotype of Neotropical cichlids (Feldberg et al. 2003), it can be concluded that many of the observed ITSs are artifacts of recent chromosomal rearrangements.

The identification and characterization of ITSs in *Lugubria* can provide valuable insights into genome evolution in the Crenicichlina, as well the possible mechanisms of adaptation and genetic diversification. Furthermore, such information contributes to a better understanding of the dynamics of chromosomal rearrangements, genomic plasticity, and the evolutionary processes that have shaped the genome of these fishes over time (Ocalewicz, 2013; Lafuente & Beldade, 2019; Vicari et al. 2022).

In summary, the data presented in this work reveals a duality in the distribution of rDNA sequences in Neotropical cichlids, highlighting both conserved patterns, such as the position of 5S rDNA, and variable patterns such as the distribution of 18S rDNA and the great diversity of ITSs. Taking into account that rDNA sequences cluster during interphase to form one or more nucleoli (Cazaux et al. 2011), the location of 5S and 18S rDNA clusters in different chromosomal regions enables complex evolutionary dynamics within the Crenicichlina, since these sequences can directly or indirectly influence chromosome structure and composition, as suggested by Molina & Galetti-Jr. (2002) for species of the genus *Cromis*, by Cazaux et al. (2011) for rodents of the genus *Mus*, and by Marajó et al. (2022) for species of the genus *Rineloricaria*. The observation of multiple 18S rDNA sites and telomeric sequences in different *Lugubria* species not only reflects genomic plasticity within cichlids but also suggests a fundamental role for these sequences in the genome evolution of these organisms (Ocalewicz,

Table 2. Repetitive sequence mapping data in *Lugubria*. The acronyms represent (st/a) subtelocentric/acrocentric chromosome, (t) terminal region, (i) interstitial region, (UN) unidentified pair, (*) signal observed in only one of the homologues, (All) signal observed in all chromosomes, (pc) pericentromeric region.

Species	2n	Repetitive sequences			Reference	Group
		18S rDNA	5S rDNA	Telomeric		
<i>Lugubria johanna</i> AB	48	1p st , 5q ^t , 6q st , 17q st , 22p st	st/aUNq ⁱ	All ^t , 1p st , 5q ^t , 6q st , 17q st , 22p st	Frade et al. (2019)	<i>Lugubris</i>
<i>Lugubria johanna</i> CA	48	2p - all over the arm, 16q st	st/aUNq ⁱ	All ^t , 2p - all over the arm, 16q st	Frade et al. (2019)	<i>Lugubris</i>
<i>Lugubria cincta</i>	48	1p ^t	18q ⁱ	All ^t , 2q ⁱ , 3pc, 6pc, 8q ⁱ , 10q ⁱ , 14q ⁱ , 16q ⁱ , 17q ⁱ	Present study	<i>Lugubris</i>
<i>Lugubria strigata</i>	48	2q ^t	17q ⁱ	All ^t , 1pc, 6q ⁱ	Present study	<i>Lugubris</i>
<i>Lugubria lugubris</i>	48	12q ^t	15q ⁱ	All ^t	Present study	<i>Lugubris</i>

2013; Bolzán, 2017). Understanding the distribution of repetitive DNAs in cichlids not only contributes to our understanding of their evolutionary biology but also provides insights into the mechanisms underlying cichlid diversification and adaptation.

ACKNOWLEDGEMENTS

We are also thankful to the Chico Mendes Institute for Biodiversity Conservation (ICMBio) for granting license to collect biological samples. The authors also thank to Dean Research and Postgraduate Studies (CAPES/PROPESP/UFPA), ULTRACARGO, BASA CNPQ. The authors would like to thank FAPES-PA (167/2024) and productivity grants for RCRN (309711/2023-1).

REFERENCES

Alanazi AFR, Parkinson GN, Haider S. 2024. Structural motifs at the telomeres and their role in regulatory pathways. *Biochemistry*. 63(7):827–842. <https://doi.org/10.1021/acs.biochem.4c00023>.

Arbour JH, López-Fernández H. 2014. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes). *J Evol Biol*. 27(11):2431–2442. <https://doi.org/10.1111/jeb.12486>.

Ayarpadikannan S, Kim HS. 2014. The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. *Genomics Inform*. 12(3):98–104. <https://doi.org/10.5808/GI.2014.12.3.98>.

Balshine S, Abate ME. 2021. Parental care in cichlid fishes. In: The behavior, ecology and evolution of cichlid fishes. Cham (CH): Springer. p. 541–586. https://doi.org/10.1007/978-94-024-2080-7_15.

Belyayev A, Kalendar R, Josefiová J, Paštová L, Habibi F, Mahelka V, Mandák B, Krak K. 2023. Telomere sequence variability in genotypes from natural plant populations: unusual block-organized double-monomer terminal telomeric arrays. *BMC Genomics*. 24(1):96. <https://doi.org/10.1186/s12864-023-09657-y>.

Bernstein E, Allis CD. 2005. RNA meets chromatin. *Genes Dev*. 19(14):1635–1655. <https://doi.org/10.1101/gad.1324305>.

Bolzán AD. 2017. Interstitial telomeric sequences in vertebrate chromosomes: origin, function, instability and evolution. *Mutat Res Rev Mutat Res*. 773:51–65. <https://doi.org/10.1016/j.mrrev.2017.04.002>.

Cazaux B, Catalan J, Veyrunes F, Douzery EJP, Britton-Davidian J. 2011. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus *Mus* (Rodentia, Muridae). *BMC Evol Biol*. 11:124. <https://doi.org/10.1186/1471-2148-11-124>.

Fricke R, Eschmeyer WN, van der Laan R, editors. 2024. Eschmeyer's catalog of fishes: genera, species, references. [accessed 2024 Mar 6]. <http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcat-main.asp>.

Genner MJ. 2023. Cichlid fish seized an ecological opportunity to diversify. *Nature*. 622(7982):243–244. <https://doi.org/10.1038/d41586-023-03014-5>.

Gross MC, Schneider CH, Valente GT, Martins C, Feldeberg E. 2010. Variability of 18S rDNA locus among *Sympodus* fishes: chromosomal rearrangements. *J Fish Biol*. 76(5):1117–1127. <https://doi.org/10.1111/j.1095-8649.2010.02550.x>.

Instituto Chico Mendes de Conservação da Biodiversidade. 2018. Livro vermelho da fauna brasileira ameaçada de extinção: Volume VI – Peixes. Brasília (DF): ICMBio.

Kejnovský E, Jedlička P. 2022. Nucleic acids movement and its relation to genome dynamics of repetitive DNA. *BioEssays*. 44(4):e2100242. <https://doi.org/10.1002/bies.202100242>.

Lafuente E, Beldade P. 2019. Genomics of developmental plasticity in animals. *Front Genet.* 10:720. <https://doi.org/10.3389/fgene.2019.00720>.

Lee K, Kim D, Kim W. 2021. Regulation of gene expression by telomere position effect. *Int J Mol Sci.* 22(23):12807. <https://doi.org/10.3390/ijms222312807>.

Liao X, Zhu W, Zhou J, et al. 2023. Repetitive DNA sequence detection and its role in the human genome. *Commun Biol.* 6:954. <https://doi.org/10.1038/s42003-023-05322-y>.

Lower SE, Dion-Côté AM, Clark AG, Barbash DA. 2019. Special issue: repetitive DNA sequences. *Genes.* 10(11):896. <https://doi.org/10.3390/genes10110896>.

Lu X, Liu L. 2024. Genome stability from the perspective of telomere length. *Trends Genet.* 40(2):175–186. <https://doi.org/10.1016/j.tig.2023.10.013>.

MacGuigan DJ, Krabbenhoft TJ, Harrington R, Wainwright DK, Backenstose NJC, Near TJ. 2023. Lacustrine speciation associated with chromosomal inversion in a lineage of riverine fishes. *Evolution.* 77(7):1505–1521. <https://doi.org/10.1093/evolut/qpad067>.

Majtánová Z, Indermaur A, Nyom ARB, Ráb P, Musilova Z. 2019. Adaptive radiation from a chromosomal perspective: evidence of chromosome set stability in cichlid fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon. *Int J Mol Sci.* 20(20):4994. <https://doi.org/10.3390/ijms20204994>.

Marajó L, Viana PF, Ferreira AMV, Py-Daniel LHR, Cioffi MDB, Sember A, Feldberg E. 2022. Chromosomal rearrangements and the first indication of an $\text{QX1X1X2X2}/\text{CX1X2Y}$ sex chromosome system in *Rineloricaria* fishes (Teleostei: Siluriformes). *J Fish Biol.* 102(2):443–454. <https://doi.org/10.1111/jfb.15275>.

Martins C, Vicari MR. 2012. Hibridização *in situ* em cromossomos de peixes. In: Guerra M, editor. *Citogenética molecular: protocolos comentados*. Ribeirão Preto (SP): Sociedade Brasileira de Genética. p. 89–106.

Matschiner M, Böhne A, Ronco F, Salzburger W. 2020. The genomic timeline of cichlid fish diversification across continents. *Nat Commun.* 11:5895. <https://doi.org/10.1038/s41467-020-17827-9>.

Molina WF, Galetti PM Jr. 2002. Robertsonian rearrangements in the reef fish *Chromis* (Perciformes, Pomacentridae) involving chromosomes bearing 5S rRNA genes. *Genet Mol Biol.* 25(4):373–377. <https://doi.org/10.1590/S1415-47572002000400004>.

Ocalewicz K. 2013. Telomeres in fishes. *Cytogenet Genome Res.* 141(2–3):114–125. <https://doi.org/10.1159/000354278>.

Paiz LM, Gavazzoni M, Antoniazi GJ, Baumgärtner L, Graça WJ, Feldberg E, Lui RL, Margarido VP. 2024. Trends in chromosome evolution in *Crenicichlina* (Cichliformes, Cichlidae, Cichlinae): a new perspective based on the recent classification of the pike cichlids. *Rev Fish Biol Fish.* 34(2):849–866. <https://doi.org/10.1007/s11160-024-09842-6>.

Šatović-Vukšić E, Plohl M. 2023. Satellite DNAs—From localized to highly dispersed genome components. *Genes.* 14(3):742. <https://doi.org/10.3390/genes14030742>.

Singh P, Irisarri I, Torres-Dowdall J, Thallinger G, Svardal H, Lemmon EM, Lemmon AR, Koblmüller S, Meyer A, Sturmbauer C. 2022. Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. *Ecol Evol.* 12(7):e9077. <https://doi.org/10.1002/ece3.9077>.

Suarez P, Barroso ICGP, Silva DS, Milhomem SSR, Cabral-De-Mello DC, Martins C, Pieczarka JC, Nagamachi CY. 2017. Highest diploid number among Gymnotiformes: first cytogenetic insights into *Rhabdolichops* (Sternopygidae). *Zebrafish.* 14(3):272–279. <https://doi.org/10.1089/zeb.2016.1405>.

Torres-Dowdall J, Karagic N, Härer A, Meyer A. 2021. Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. *Mol Ecol.* 30(8):1880–1891. <https://doi.org/10.1111/mec.15855>.

Turner GF. 2007. Adaptive radiation of cichlid fish. *Curr Biol.* 17(19):R827–R831. <https://doi.org/10.1016/j.cub.2007.07.026>.

Varella HR, Kullander S, Menezes NA, Oliveira C, López-Fernández H. 2023. Revision of the generic classification of pike cichlids using an integrative phylogenetic approach (Cichlidae: tribe Geophagini: subtribe Crenicichlina). *Zool J Linn Soc.* 198(4):982–1034. <https://doi.org/10.1093/zoolinnean/zlad021>.

Vicari MR, Bruschi DP, Cabral-de-Mello DC, Nogaroto V. 2022. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. *Genet Mol Biol.* 45(suppl 3):e20220071. <https://doi.org/10.1590/1678-4685-gmb-2022-0071>.

Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. 2023. Intragenic rDNA variation – the product of concerted evolution, mutation, or something in between? *Heredity.* 131(3):179–188. <https://doi.org/10.1038/s41437-023-00634-5>.

Citation: Eren, Y. (2025). Cytotoxic effects of %70 Thiophanate methyl fungicide. *Caryologia* 78(2): 53-57. doi: 10.36253/caryologia-3626

Received: July 5, 2025

Accepted: October 7, 2025

Published: December 20, 2025

© 2025 Author(s). This is an open access, peer-reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

Cytotoxic effects of %70 Thiophanate methyl fungicide

YASIN EREN

Department of Pathology Laboratory Techniques, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
E-mail: ysneren@gmail.com, yasin.eren@afsu.edu.tr

Abstract. In this study, Triticum growth inhibition test was used to determine the effects of this fungicide on root and stem growth and % mitotic index. For this purpose, Kate A1 Russian wheat variety was used as test material. According to the Triticum root growth test, the concentration value that halves the root length is known as the 50 EC50 (effective concentration) value. According to the test, root length of the control group was 9.38 ± 0.66 cm and stem length was 9.56 ± 0.88 cm. According to Triticum test, the EC50 value of the fungicide was found to be approximately 5000 ppm. Some doses of this fungicide used (2500, 5000 and 10000 ppm) were observed to inhibit root and stem growth and all the results were statistically significant according to Dunnett-t test. % In the root mitotic index analysis studies, 5000 cells were counted for the doses and it was observed that the tested concentrations of 1250, 2500, 5000 and 10000 ppm decreased mitotic activity. It was observed that the concentration of 10000 ppm decreases the mitotic index (11.02 ± 2.35 cm) the most. The highest recommended dose of the tested fungicide in the fight against agricultural pests is 1000 ppm and the EC50 value is determined as 5000 ppm according to the test results indicating that the cytotoxic effects of this fungicide will be limited. In MTT assay, toxic effects were observed at all concentrations and time applications of 70% Thiophanate Methyl fungicide. Dose and time dependent decreases in cell viability were observed. These results show that the fungicide has a cytotoxic effect on MDBK cells at the doses used.

Keywords: Thiophanate methyl, Triticum test, MTT assay, cytotoxicity.

INTRODUCTION

Thiophanate-methyl chemical's approved common name for dimethyl 4,4-(o-phenylene) bis (3-thioallophanate) (IUPAC). Thiophanate-methyl is a systemically active benzimidazole fungicide that inhibits the synthesis of β tubulin (FAO, 1995). Thiophanate-methyl chemical structure was shown in Figure 1.

Some of the toxicity researches with thiophanate-methyl in mice, rats and dogs indicated the most sensitive organs were liver and thyroid. Thiophanate-methyl does not cause gene mutations; it causes changes in chromosome number in vitro and in vivo. (Marshall, 1997a). In animals admin-

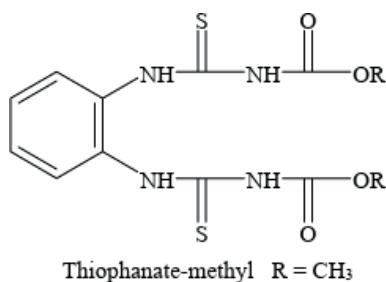


Figure 1. 70% Thiophanate methyl chemical structure.

istered thiophanate-methyl, a significant decrease in the proportion of immature erythrocytes was observed in animals sampled after 24 hours, while a dose-dependent increase in the frequency of micronucleated immature erythrocytes was observed in other time applications. (Proudlock, 1999).

Barale et al. (1993) conducted an in vivo cytogenetic micronucleus test in mice and reported that a dose of 1000 mg/kg thiophanate-methyl had very little effect (1 polyploidy in 600 cells). Furthermore, a 2000 mg/kg dose of thiophanate-methyl was compared with the control group and caused a slight increase in micronucleated erythrocytes (Proudlock 1999). In rats, a 5000 mg/kg dose resulted in cytogenetic effects in bone marrow and spermatogonial cells. (Makita et al 1973). These results shows that thiophanate methyl has a low aneugenic potential and therefore, it is unlikely to be the cause of the in vivo cytogenetic presence.

The MTT assay is a widely used and reproducible test. The assay can also be used for floating cancer cells and is suitable for detecting cell replication and cell death (Mosmann 1983). In testing anti-proliferative drugs, both the Triticum assay and other proliferation assays have been observed to show the same effect. For this purpose, this study investigated the cytotoxic effect of fungicides at different concentrations on the root growth of wheat seeds (Komlodi-Pasztor et al 2012). Other plants have also been used as tools for screening toxicity, similar to Triticum. Plant tests are low-cost and correlate with other toxicity tests (Czerniawska-Kusza et al. 2006; Jităreanu et al. 2013; Radić et al. 2010).

In a short-term toxicity study conducted in accordance with US EPA test guidelines, groups consisting of four male and four female beagle dogs were administered gelatin capsules containing thiophanate-methyl at doses of 0, 50, 200, or 800 mg/kg body weight daily for 3 months. Due to severe toxicity, the final dose was reduced to 400 mg/kg body weight daily on day 50 of the test. One male at the highest dose was sacrificed on day 41 because of severe toxicity; one male at 50 mg/kg

bw per day died on day 36, but this death did not appear to be related to treatment (Auletta, 1991).

MATERIALS AND METHODS

70% Thiophanate Methyl fungicide was purchased from agricultural pesticide sales centers. *Triticum* test were carried out with Kate A1 Russian (obtained from Transitional Zone Agricultural Research Institute)wheat and different concentrations of the 70% Thiophanate Methyl fungicide (1250, 2500, 5000 and 10000 ppm), were used for the root and stem growth inhibition test.

Root and Stem Growth Inhibition Test (EC₅₀ determination)

Various concentrations of the 70% Thiophanate Methyl (1250, 2500, 5000 and 10000 ppm), were used for the root and stem growth inhibition test. The wheats were grown in freshly made distilled water for 24 h and then exposed for 96 h to the control group and other concentrations of 70% Thiophanate Methyl. In order to determine efficient concentration (EC50) values, ten roots from each wheat were cut off at the end of the treatment period, and the root and stem's length were measured. The concentration that decreased root growth about 50% when compared to the negative control group (distilled water), was accepted as EC50 value.

Mitotic index (MI) determination

Root tips were cut and fixed in ethanol:glacial acetic acid (3:1)end of the 72 h, then they were hydrolyzed in 1N HCl at 60°C for 7 min. Roots from each dose treatment were stained with Feulgen dye for 1 h. Five slides were prepared for each concentration and 1000 cells/per slide were counted. 5000 cells were observed for each concentration. Example slide photos were given in Figure 2. In mitotic index (MI) determination, about 5000

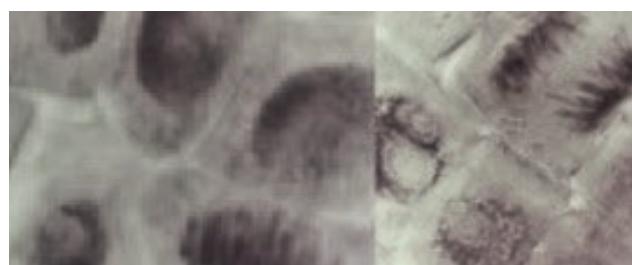


Figure 2. Mitotic division of *Triticum* sp.

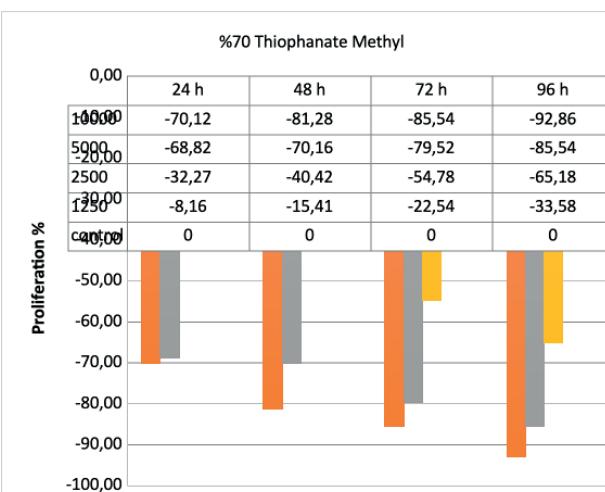
cells were counted, and MI% was determined with the following formulation:

$$MI\% = \frac{\text{divided cell number}}{\text{total cell number}} \times 100$$

MTT Assay

This test was performed with MDBK cells (obtained from Sigma) according to Mosmann, (1983) and the test was repeated three times. Cells were incubated with different doses of fungicide. Then test materials were removed at the end of the incubation period. Cells were incubated with 5mg/ml MTT solution about 2 h in CO₂ incubator. Then MTT dyes were removed and 100 μ l DMSO was added to the wells. Plates were analysed by ELISA at 540 nm wavelength. Cell proliferation of control group was accepted "0" (Mosmann, 1983).

RESULTS


In this study, the cytotoxic effect of thiophanate methyl fungicide was determined using Triticum and MTT tests. Both of these tests have been proven effective in determining cytotoxicity in previous studies, and it has been stated in the literature that these two tests yield mutually supportive results.

In this root mitotic index analysis study, 5000 cells were counted for the doses and it was observed that the tested concentrations of 1250, 2500, 5000 and 10000 ppm decreased mitotic activity. It was observed that the concentration of 10000 ppm decreases the mitotic index (11.02 ± 2.35 cm) the most. The highest recommended dose of the tested fungicide in the fight against agricultural pests is 1000 ppm and the EC50 value is determined as 5000 ppm according to the test results indicating that the cytotoxic effects of this fungicide will be limited, like previous studies. In MTT assay, toxic effects were observed at all concentrations and time applications of 70% Thiophanate Methyl fungicide. Dose and time dependent decreases in cell viability were observed. The results about root and stem growth inhibition test results with Triticum test of 70% Thiophanate methyl were shown in Table 1. In MTT assay, toxic effects were observed at all concentrations and time applications of 70% Thiophanate Methyl fungicide. Dose and time dependent decreases in cell viability were observed. MTT results were given in Figure 3.

As a result these findings show that used fungicide has a cytotoxic effect on MDBK cells at the doses used. But our doses were higher than previous studies and these results suggested that doses above 1250 ppm may

Table 1. Root and stem growth inhibition test results with Triticum test of 70% Thiophanate methyl. * significant according to Dunnett test ($p < 0.05$).

Dose	Stem length	Root mitotic index	Stem length
Control (dH ₂ O)	9.38 \pm 0.66	9.56 \pm 0.88	37.61 \pm 5.60
1250 ppm	7.45 \pm 0.92	8.20 \pm 0.61	32.23 \pm 5.02
2500 ppm	6.25 \pm 0.26*	7.65 \pm 0.55*	26.25 \pm 5.40*
5000 ppm	5.20 \pm 0.35*	5.05 \pm 0.48*	21.66 \pm 4.84*
10.000 ppm	2.75 \pm 0.41*	3.95 \pm 0.25*	11.02 \pm 2.35*

Figure 3. MTT results of 70% Thiophanate methyl.

be cytotoxic. According to Triticum test, the EC50 value of the fungicide was found to be approximately 5000 ppm. Some doses of this fungicide used (2500, 5000 and 10000 ppm) were observed to inhibit root and stem growth. The highest recommended dose of the tested fungicide against agricultural pests is 1000 ppm and the EC50 value is determined as 5000 ppm, the cytotoxic activity of this fungicide may be limited at the doses required.

DISCUSSION

The clastogenic potential of thiophanate-methyl has been demonstrated through both in vivo and in vitro tests; however, its gene mutation potential is weak in neither bacterial nor mammalian cells. There is no assumed threshold for the clastogenic properties of thiophanate-methyl; therefore, toxicological reference values (such as acceptable daily intake (ADI) in the diet and acute reference dose cannot be derived (Arena et al., 2018). In this

study cytotoxic activity was studied and these results suggested that above 1250 ppm doses may be cytotoxic for MTT assay and 5000 ppm was found EC50 concentration for *Triticum* mitotic activity test.

When administered orally at a dose of 5000 mg/kg bw with 96.55% purity, thiophanate-methyl did not cause any signs of toxicity or mortality (Souma and Nishibe, 1990a). After acute inhalation of the compound with 95.3% purity at concentrations close to the LC50 (1.7-1.9 mg/liter), signs of toxicity included ataxia, decreased motor activity, tremors, and convulsions (Saika and Nishibe, 1987). No evidence of genotoxicity or mutagenicity has been found. But in this study some of the doses showed cytotoxic effects. The aneugenic potential of thiophanate-methyl was tested with mice administered an oral dose of 1000 mg/kg bw. Bone marrow cells were analyzed for micronuclei, chromosomal aberrations, hyperdiploidy, and polyploidy 16, 24, 36, and 48 hours after treatment. Large micronuclei were significantly induced, but the response was relatively weak. No increase was observed in the frequency of chromosomal aberrations. At 24 and 36 hours, a treatment-related increase was observed in the frequency of polyploid and hyperdiploid cells, which is of borderline significance given the very low frequency of changes in ploidy (Barale et al., 1993).

Chromosomal aberration study on CHO cells at 100, 200, 300, 400 ppm concentrations showed negative results with thiophanate-methyl (Murli, 1988). Reverse mutation assay with *S. typhimurium* TA98 TA100, TA1535, TA1537 strains at doses of 312.5, 625, 1250 ppm gave negative results (Kanaguchi and Nishibe, 1990).

Thiophanate methyl showed different risk results with various living organisms. Thiophanate methyl was found lethal toxic to zebrafish adult (12.1 ppm), juvenile (25.2 ppm), larvae (20.9 ppm) and embryo (12.1 ppm) forms (Wang et al., 2021). For thiophanate-methyl in beans and wheat, the acute risk to mammals is low; however, its use in grapes has been assessed as high (Arena et al., 2018). Although the type of organism and life forms used in the study differed, cytotoxic activity was detected at higher doses than those used in these studies. The selection of doses used in our study was based on the EC50 dose.

REFERENCES

Arena Maria, Domenica Auteri, Stefania Barmaz, Giulia Bellisai, Alba Brancato, Daniela Brocca, Laszlo Bura, Harry Byers, Arianna Chiusolo, Daniele Court Marques, Federica Crivellente, Chloe De Lentdecker,

Mark Egsmose, Zoltan Erdos, Gabriella Fait, Lucien Ferreira, Marina Goumenou, Luna Greco, Alessio Ippolito, Frederique Istace, Samira Jarrah, Dimitra Kardassi, Renata Leuschner, Christopher Lythgo, Jose Oriol Magrans, Paula Medina, Ileana Miron, Tunde Molnar, Alexandre Nougadere, Laura Padovani, Juan Manuel Parra Morte, Ragnor Pedersen, Hermine Reich, Angela Sacchi, Miguel Santos, Rositsa Serafimova, Rachel Sharp, Alois Stanek, Franz Streissl, Juergen Sturma, Csaba Szentes, Jose Tarazona, Andrea Terron, Anne Theobald, Benedicte Vagenende, Alessia Verani and Laura Villamar-Bouza (2018) Peer review of the pesticide risk assessment of the active substance thiophanate-methyl. *Efsa Journal* 16(1): 5133.

Auletta, C.S. (1991) A subchronic (3-month) oral toxicity study in the dog via capsule administration with thiophanate-methyl. Unpublished report No. RD-9119, project No. 89-3525 from Bio/dynamics Inc., East Millstone, New Jersey, USA. Submitted to WHO by Nippon Soda Co. Ltd, Tokyo, Japan.

Barale R, Scapoli C, Meli C, Casini D, Minunni M, Mazzarini A, Loprieno N, Barrai I. (1993) Cytogenetic effects of benzimidazoles in mouse bone marrow. *Mutation Research* 300: 15-28.

Czerniawska-Kusza I, Ciesielczuk T, Kusza G, Cichoń A (2006) Comparison of the Phytotoxkit microbiotest and chemical variables for toxicity evaluation of sediments. *Environ Toxicol*. 21: 367-372.

FAO, (1995) Specifications For Plant Protection Products Thiophanate-Methyl (Agp:Cp/331), Food And Agriculture Organization Of The United Nations Rome.

Jităreanu A, Pădureanu S, Tătărîngă G, Tuchilus GC, Stănescu U (2013) Evaluation of phytotoxic and mutagenic effects of some cinnamic acid derivatives using the *Triticum* test. *Turk J Biol*. 37: 748-756.

Kanaguchi, Y. and Nishibe, T. (1990) Thiophanate-methyl reverse mutation study on bacteria. Unpublished report No. RD-9065 from Nippon Soda Co. Ltd. Submitted to WHO by Nippon Soda Co. Ltd, Tokyo, Japan.

Komlodi-Pasztor E, Sackett DL, Fojo AT. (2012) Inhibitors targeting mitosis: Tales of how great drugs against a promising target were brought down by a flawed rationale. *Clin Cancer Res*. 18: 51-63.

Makita T, Hashimoto Y, Noguchi T (1973) Mutagenic, cytogenic and teratogenic studies on Thiophanate-methyl. *Tox. Applied. Pharmacol*. 24: 206-215.

Marshall R (1997a) Thiophanate-methyl technical: Induction of micronuclei in cultured human peripheral blood lymphocytes. Corning Hazelton, New Yorkshire, England. Report number: 68/151-1052. Report date: February 1997.

Murli, H. (1988) Mutagenicity test on Topsin M technical (thiophanate- methyl) in an in-vitro cytogenetic assay measuring chromosomal aberration frequencies in Chinese hamster ovary (CHO) cells. Unpublished report HLA Study No 10345-0-437 (RD-9120) from Hazleton Laboratories America, Inc. Submitted to WHO by Nippon Soda Co. Ltd, Tokyo, Japan.

Proudlock, R.J. (1999) Thiophanate-methyl mouse micronucleus test. Unpublished report No. NOD 024/983714 from Huntingdon Life Sciences Ltd., Huntingdon, Cambridgeshire, England. Submitted to WHO by Nippon Soda Co., Ltd. Tokyo, Japan.

Radić S, Stipaničev D, Vučić V, Rajčić MM, Širac S, Pevalek-Kozlina B (2010) The evaluation of surface and wastewater genotoxicity using the Allium cepa test. *Sci Total Environ.* 408: 1228–1233.

Saike, O. and Nishibe, T. (1987) Thiophanate-methyl: Acute inhalation toxicity study in rats. Unpublished report No. 0219 from Nisso Institute for Life Sciences, Kanagawa, Japan. Submitted to WHO by Nippon Soda Co. Ltd, Tokyo, Japan.

Souma, S. and Nishibe, T. (1990a) Thiophanate-methyl acute oral toxicity study in rats. Unpublished report No. RD-9083 from Nisso Institute for Life Sciences, Kanagawa, Japan. Submitted to WHO by Nippon Soda Co. Ltd, Tokyo, Japan.

Wang Y, Lu L, Xu C, Wang D, Yang G, Wang X, Weng H and Wang Q (2021) Mixture toxicity of thiophanate-methyl and fenvalerate to embryonic zebrafish (*Danio rerio*) and its underlying mechanism. *Sci Total Environ.* 756: 143754.

OPEN ACCESS

Citation: de Oliveira Machado, L., Severo Salau, H., Rodrigues Pereira, L., Koslovski Sassi, A., Pimentel Torres, F., del Valle Garnero, A. & José Gunski, R. (2025). Avian DNA extraction: An economical and efficient alternative for Farmer-fixed samples. *Caryologia* 78(2): 59-65. doi: 10.36253/caryologia-3420

Received: March 19, 2025

Accepted: October 10, 2025

Published: December 20, 2025

© 2025 Author(s). This is an open access, peer-reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

ORCID:

LDOM: 0000-0002-4172-2283

HSS: 0009-0009-0979-3661

LRP: 0000-0003-0031-0124

AKS: 0009-0000-6007-4659

FPT: 0009-0009-5514-0522

ADVG: 0000-0003-4252-8228

RJG: 0000-0002-7315-0590

Avian DNA extraction: An economical and efficient alternative for Farmer-fixed samples

LILIAN DE OLIVEIRA MACHADO^{1,2*}, HYBRAIM SEVERO SALAU^{1,2}, LARISSA RODRIGUES PEREIRA^{1,2}, ADRIANA KOSLOVSKI SASSI³, FABIANO PIMENTEL TORRES¹, ANALÍA DEL VALLE GARNERO^{1,2}, RICARDO JOSÉ GUNSKI^{1,2*}

¹ Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, RS 97300-162, Brazil

² Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil

³ Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil

*Corresponding author. E-mail: lilianmachado.aluno@unipampa.edu.br, ricardogunski@unipampa.edu.br

Abstract. Cytogenetics laboratories often accumulate vast collections of cells fixed in Farmer's solution (3 parts methanol to 1-part glacial acetic acid), stored long-term in freezers. While many of these samples are unsuitable for conventional cytogenetic analyses, they hold potential for molecular applications, especially as ethical restrictions around the collection of biological material through invasive procedures (e.g., biopsies, tissue excision, bone marrow aspiration) become increasingly stringent. However, extracting DNA from these cells presents significant challenges, such as structural fragility induced by the fixative and potential genetic material degradation, which can compromise subsequent analyses, including PCR. This study developed and standardized a protocol for extracting DNA from Farmer-fixed avian cells using accessible and low-cost reagents. The method proved economical and efficient, even for decades-old samples, recovering DNA suitable for cytogenomic and molecular studies. This approach significantly advances sustainable practices in science by utilizing long-stored samples that might otherwise be discarded, this approach provides a cost-effective strategy that reduces the need for new collections and aligns with current ethical guidelines in molecular genetics research. Compared to commercial kits, the protocol demonstrated economic viability while expanding the use of biological collections in genetic research and evolutionary studies.

Keywords: DNA extraction, cell preservation, cytogenomics, sustainable methods, 3Rs principles.

INTRODUCTION

Biological sample fixation is widely used to preserve cells and tissues, ensuring structural integrity essential for subsequent analyses (Tan and Yiap, 2009). In the field of cytogenomics, understood here as the integration of cytogenetic and genomic approaches, the primary fixation method employs Farmer's solu-

tion, a 3:1 mixture of methanol and acetic acid, which dehydrates and stabilizes cells (Coleman and Tsongalis, 1997; Amorim et al., 2007). While effective for long-term preservation, fixation alters the chemical and physical properties of cells, making them more prone to fragmentation and chemical or cross-DNA contamination. These factors can compromise DNA quality and hinder molecular analyses (Schrader et al., 2012; Floridia et al., 2023).

Long-term storage exacerbates these challenges, as variations in temperature, exposure to contaminants, and infrequent fixative replacement can degrade genetic material (Pereira, 2015). Nonetheless, using fixed samples offers significant bioethical advantages. These samples enable genetic analysis without requiring new collections, contributing to species conservation, minimizing impact on wild populations, and adhering to the 3Rs principles (replacement, reduction, and refinement) (Díaz et al., 2020; Hubrecht and Carter, 2019). While commercial DNA purification kits are available, most target blood samples are costly, have limited shelf lives, and are impractical for processing large sample volumes (Kulkarni et al., 2020).

This study proposes a protocol adapted and optimized for Farmer-fixed avian cells, making use of accessible, low-cost reagents. Effective for cytogenomic and evolutionary research, the approach also emphasizes sustainable practices by preserving vital genetic data from existing biological collections. Furthermore, this work introduces an optimized protocol tailored for fixed avian samples, with potential applicability to other vertebrates. By utilizing affordable reagents, the protocol not only ensures efficiency but also promotes the expanded use of preserved biological collections in future studies. This method facilitates the preservation of essential genetic data while advancing sustainable and ethical practices in data collection (Srinivasan, 2002; Miyaki, 2001).

MATERIALS AND METHODS

Cell suspensions were obtained from avian samples collected between 1998 and 2024 from Antarctic research stations (Carlini and Orcadas Bases) and Brazilian biomes (Pampa and Atlantic Forest) (Table 1). Lymphocyte cultures were prepared from blood collected with heparinized syringes following Moorhead et al. (1960). Cultures were incubated at 39°C for 72 hours in RPMI 1640 medium supplemented with 20% fetal bovine serum, 0.25 mL penicillin/streptomycin, and 0.2 mL phytohemagglutinin. Colchicine (0.05%) was added one hour before harvest. Hypotonic treatment (0.075 M KCl) and fixation with Farmer's solution were performed

as described in Garnero and Gunski (2000). Samples were stored at -20°C. The bone marrow was suspended in 10 mL of Hank's balanced solution (HBSS), together with 0.1 mL of 0.05% colchicine, and incubated at 37°C for 1 hour. After this period, the suspension was centrifuged at 120 g for 8 minutes and the supernatant was removed. Then, 10 mL of hypotonic solution (0.075 M KCl) was added and the sample was incubated again at 37°C for 30 minutes. After incubation, the sample was centrifuged again at 120 g for 8 minutes, discarding the supernatant. The cell pellet was fixed with a solution of methanol and acetic acid (3:1) and centrifuged at the same speed. This fixation procedure was repeated three times to ensure the integrity of the preparations (Table 1). Finally, the samples were stored in a freezer at -20°C.

DNA Extraction

Cell suspensions were centrifuged at 12,000 g for 5 minutes at 4°C, the supernatant was removed, and the cells were resuspended in 500 µL of 10% phosphate-buffered saline (PBS) at 4 °C (Amorim et al., 2007), repeating washes up to three times to remove as much fixative residue as possible. Add 20 µL Proteinase K (20 mg/mL) and lyse cells with 400 µL lysis buffer (0.1 M Tris-HCl, 0.1 M EDTA, 1% SDS, 0.06 M NaCl) at 56°C for 30 minutes. RNase A (20 µL at a concentration of 4 mg/mL) was added to all samples, except for the *Colaptes melanochloros* specimen from Santana da Boa Vista. Precipitated DNA with 2 volumes of ice-cold ethanol; incubated at -20°C overnight.

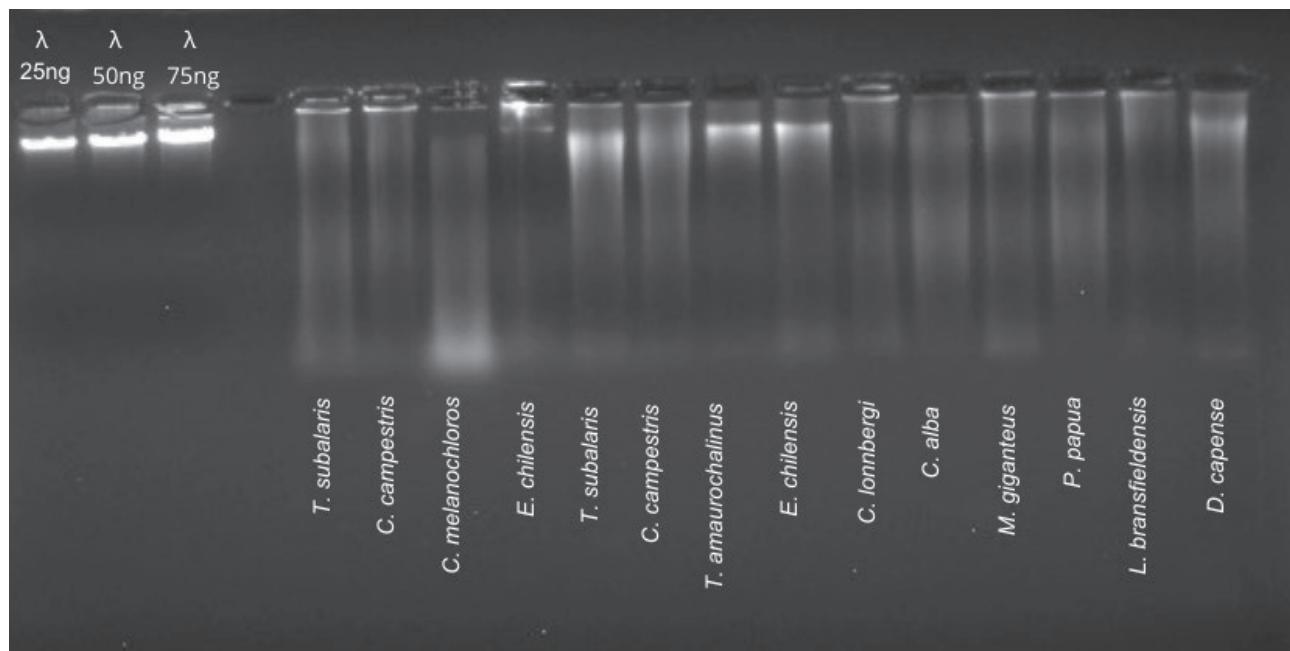
Afterwards, centrifuged at 15,000 g for 10 minutes at 4°C; washed pellet twice with 70% ethanol and once with 90% ethanol. The material was centrifuged at 15,000 g for 8 min at 4°C, dry pellet at 45°C for ~15 minutes and eluted in 50 µL of ultrapure water. Store at -20°C. DNA quality and quantity were assessed using a Nanovue spectrophotometer and agarose gel electrophoresis. PCR amplification targeted avian 18S rDNA (559 bp) with specific primers, evaluated under standard cycling conditions.

RESULTS

The DNA was isolated from samples collected and fixed up to 26 years ago on scientific bases in Antarctica, as well as more recent samples collected in 2015, 2022, and 2024 in the Pampa Biome and the Atlantic Forest. As is characteristic of materials fixed and stored for long periods, the extracted DNA showed a significant degree of degradation, as shown in Figure 1.

Table 1. Details of the analyzed samples: bird species, method of obtaining metaphases, origin, geographical location and year of collection.

Species	Method of obtaining metaphase	Origin of the sample	Coordinates	Year of collection
<i>Daption capense</i>	Peripheral blood leukocyte culture	Carlini Scientific Station, Antarctica	62° 14' S, 58° 40' O	1998
<i>Pygoscelis papua</i>	Peripheral blood leukocyte culture	Carlini Scientific Station, Antarctica	62° 14' S, 58° 40' O	1998
<i>Catharacta lönbergi</i>	Peripheral blood leukocyte culture	Orkney Base, Antarctica	60° 44' 17" S, 44° 44' 17" O	1999
<i>Chionis alba</i>	Peripheral blood leukocyte culture	Orkney Base, Antarctica	60° 44' 17" S, 44° 44' 17" O	1999
<i>Macronectes giganteus</i>	Peripheral blood leukocyte culture	Orkney Base, Antarctica	60° 44' 17" S, 44° 44' 17" O	1999
<i>Leucocarbo bransfieldensis</i>	Peripheral blood leukocyte culture	Orkney Base, Antarctica	60° 44' 17" S, 44° 44' 17" O	1999
<i>Turdus subalaris</i>	Bone marrow culture	Porto Vera Cruz, Atlantic Forest	27° 44' 09" S, 54° 54' 03" O	2015
<i>Colaptes campestris</i>	Bone marrow culture	Porto Vera Cruz, Atlantic Forest	27° 44' 09" S, 54° 54' 03" O	2015
<i>Colaptes melanochloros</i>	Bone marrow culture	Santana da Boa Vista, Pampa Biome	30° 52' S 53° 07' O	2022
<i>Colaptes campestris</i>	Bone marrow culture	Porto Vera Cruz, Atlantic Forest	27° 44' 09" S, 54° 54' 03" O	2015
<i>Turdus amaurochalinus</i>	Bone marrow culture	Santana da Boa Vista, Pampa Biome	30° 52' S 60° 41' 47,88" O	2022
<i>Elaenia chilensis</i>	Bone marrow culture	São Gabriel, Pampa Biome	30° 20' 09" S, 53° 07' O	2024


Cost analysis highlighted significant savings, with the protocol costing \$0.05-\$0.10 per sample compared to \$2.50-\$3.00 for commercial kits, such as the ReliaPrep™ gDNA Tissue Miniprep System. This difference represents a saving of up to 98%, making the reagent-based protocol a viable option for large-scale studies or in laboratories with budget constraints. For comparison purposes, DNA was also extracted using the ReliaPrep™ gDNA Tissue Miniprep System (Promega). Some degree of degradation was observed in both the samples isolated using the protocol developed in this study and those extracted using the commercial kit. However, the samples extracted with the commercial kit showed better integrity. In the samples extracted using the protocol developed, no significant differences were observed between the samples collected in 2024 and those collected between 1998-1999. Notably, the oldest sample, corresponding to *Daption capense* and stored for 26 years, showed integrity comparable to the most recent samples and to those extracted with the commercial kit (Figure 1). Despite the degree of degradation observed and the low amount of DNA obtained (Figure 1), these factors did not prevent efficient PCR amplification. The expected amplicon of around 559

bp was detected with good resolution in all the samples analyzed (Figure 2).

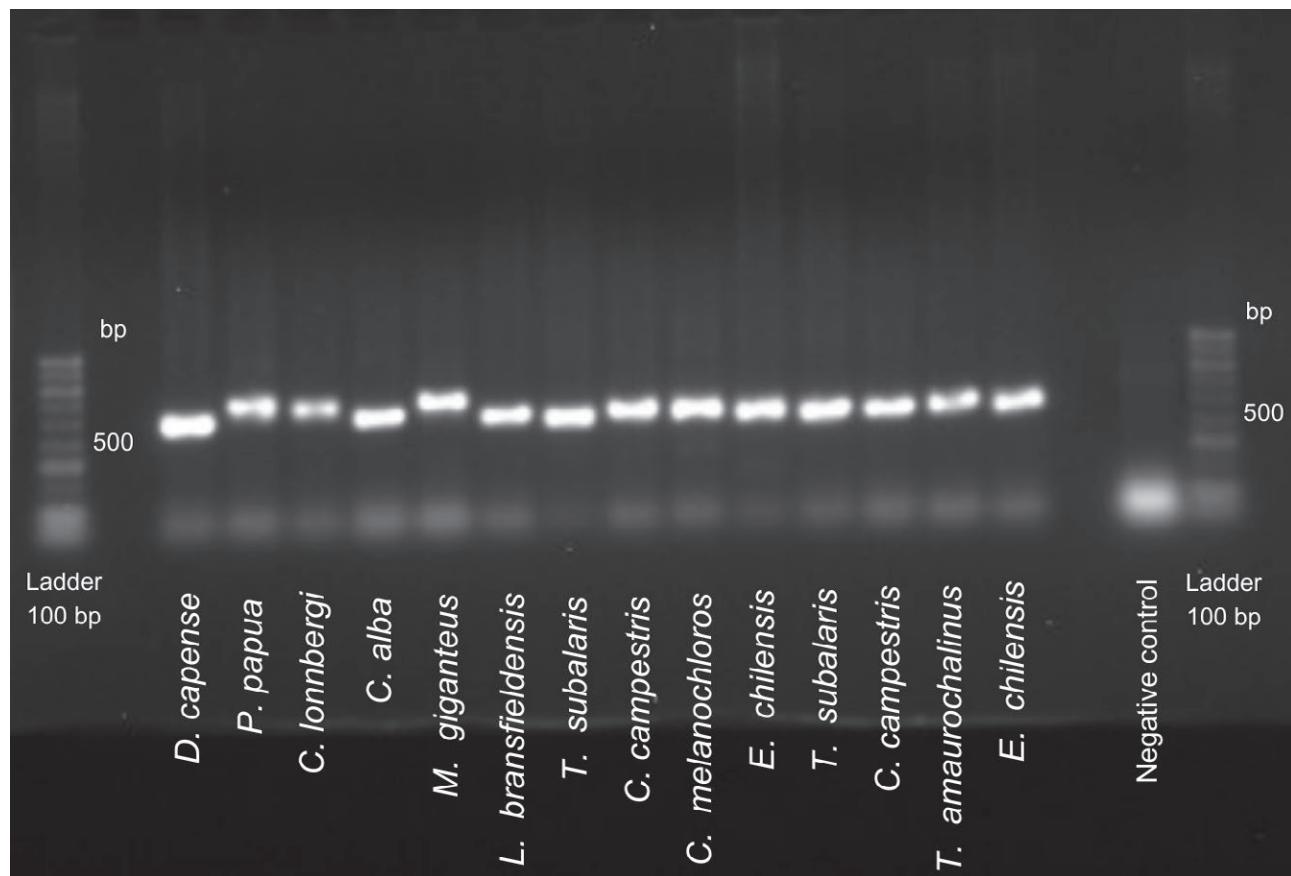
DISCUSSION

DNA obtained from cell suspensions represents a practical and viable alternative for genomic studies, particularly when derived from samples originally prepared for cytogenetic analyses, as demonstrated by Amorim et al. (2007). Contrary to the findings of Nogueira and Freitas (2013), this study shows that the cell lysis technique is an effective method for extracting avian DNA from fixed materials, offering significant advantages over commercial kits due to its affordability. This methodology is especially beneficial for challenging scenarios, such as accessing samples from remote regions like Antarctica or rare specimens, including endangered species.

The use of fixed material samples provides both scientific and ethical benefits, allowing genetic studies to proceed without the need for new sample collections. This aligns with research ethics guidelines that emphasize reducing the number of animals used in scientific studies. Leveraging biological material stored for

Figure 1. 1% agarose gel showing DNA integrity. Lanes 1–3: Lambda DNA standards (25 ng, 50 ng, and 75 ng; 10 μ L each). Remaining lanes: DNA extracted using the protocol developed in this study, all loaded with equal volumes (10 μ L). Differences in band intensity reflect variation in extraction efficiency among species. Samples correspond to *Turdus subalaris*, *Colaptes campestris*, *Colaptes melanochloros*, *Elaenia chilensis*, *Cathartacta lönbergi*, *Chionis alba*, *Macronectes giganteus*, *Pygoscelis papua*, *Leucocarbo bransfieldensis*, and *Daption capense*. DNA extracted with a commercial kit corresponds to *T. subalaris*, *C. campestris*, *Turdus amaurochalinus*, and *E. chilensis*.

extended periods reduces the impact on populations of endangered species and adheres to the 3Rs principles (replacement, reduction, and refinement) (Hubrecht and Carter, 2019; Díaz et al., 2020). These principles play a crucial role in minimizing animal suffering and decreasing the reliance on new animal collections for research purposes.


However, extracting DNA from Farmer-fixed samples presents inherent challenges. Cells treated with hypotonic solutions and fixatives such as methanol and acetic acid become structurally fragile and susceptible to contamination, potentially compromising DNA quality and hindering analyses like PCR. Residues from heparin and the culture medium can persist despite thorough washing, interfering with PCR efficiency depending on their concentration (Schrader et al., 2012). Nevertheless, in this study, no significant interference from heparin or residual culture medium was observed, as corroborated by Beránek et al. (2022). These authors reported that heparin, when present in appropriate concentrations, interferes less with PCR reactions compared to other anticoagulants like EDTA and citrate. Floridia et al. (2023) further emphasized that variations in anticoagulants, including heparin, minimally affect gene expression in

quantitative PCR, highlighting their applicability in diverse experimental contexts.

The low protein content observed in the extracted samples is attributed to the denaturing effects of the fixative and the action of Proteinase K, which degrades proteins during the extraction process. Prolonged storage can exacerbate genetic material degradation; however, no significant differences were noted between recently collected samples and those stored since 1998. Proper maintenance of the fixative is essential, as inadequate replacement can compromise cell preservation and further degrade DNA. These findings highlight the importance of strict storage and handling conditions to maintain the integrity of genetic material and minimize degradation impacts on subsequent analyses.

CONCLUSION

This study validates the viability of extracting DNA from Farmer-fixed avian cells for molecular research, demonstrating significant cost and ethical advantages. The proposed method effectively extracts DNA from Farmer-fixed avian cells, offering a cost-effective alternative to commercial kits. Its application aligns with

Figure 2. A 1.2% agarose gel with PCR products obtained from amplified DNA using specific primers for the avian 18S rDNA gene. The first and last wells contain a 100 bp ladder. The first 10 samples correspond to extracted DNA using the protocol developed in this study, while the next 4 samples refer to extracted DNA using a commercial kit. The penultimate well corresponds to the negative control of the reaction.

ethical research principles, reducing the need for new sample collections and minimizing ecological impact. Despite degradation challenges, the protocol consistently yielded DNA suitable for PCR, emphasizing its potential for cytogenomic studies. Additionally, adherence to strict storage conditions can further enhance DNA integrity in future studies. By utilizing existing biological collections, this approach provides a sustainable framework for advancing genetic and evolutionary studies in avian species.

ACKNOWLEDGMENTS

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - grant 407285/2021-0), (A.D.V.G.), and FAPERGS for funding support.

STATEMENT OF ETHICS

The study protocol was reviewed and approved by the Ethics Committee on the Use of Animals, under approval numbers CEUA 019/2020 and CEUA 024/2023. Additional approvals were obtained from the Biodiversity Authorization and Information System (SISBIO), with authorization numbers 61047-3, 33860-2, and 81564-1. Some samples were collected with authorization from the Argentine Antarctic Institute.

FUNDING SOURCES

This research was supported by FAPERGS through the Program for Supporting the Retention of Young PhDs in Brazil (EDITAL FAPERGS/CNPq 07/2022, awarded to L.O.M.) and by the National Council for Scientific and Technological Development (CNPq), Grant Number 407285/2021-0 (A.D.V.G.).

AUTHOR CONTRIBUTIONS

L.O.M., A.V.G., and R.J.G. contributed to the conception and design of the study. Methodology was carried out by L.O.M. and L.R.P. Formal analysis, data curation, and investigation were conducted by L.O.M. and F.P.T. Visualization was prepared by L.O.M. and A.S.K. The original draft was written by L.O.M. and H.S.S. Review and editing were performed by H.S.S., L.R.P., F.P.T., A.S.K., A.V.G., and R.J.G. Funding acquisition was handled by R.J.G. and A.V.G.

REFERENCES

1. Tan SC, Yiap BC (2009). DNA, RNA, and protein extraction: The past and the present. *J Biomed Biotechnol* 2009:1–10.
2. Lott JA, Coleman WB, Tsongalis GJ, eds. (1997). *Clinical Pathology of Pancreatic Disease and Molecular Diagnostics: For the Clinical Laboratorian*. 1st ed. [s.l.]: [s.n.].
3. Amorim MR, Vargas FR, Llerena Junior JC, Pombio-de-Oliveira MS (2007). DNA extraction from fixed cytogenetics cell suspensions. *Genet Mol Res* 6(3):500–503.
4. Schrader C, Schielke A, Ellerbroek L, Johne R (2012). PCR inhibitors – occurrence, properties and removal. *J Appl Microbiol* 113(5):1014–1026.
5. Floridia M, Pafundi S, Cecchi C, et al. (2023). Comparative effects of fixatives on RNA and DNA integrity: Implications for molecular diagnostics. *Diagn Mol Pathol*.
6. Pereira MA, Dias AR, Faraj SF, Cirqueira CS, Tomitao MT, Nahas SC, Ribeiro U Jr, de Mello ES (2015). *Histopathology* 66:388–397. <https://doi.org/10.1111/his.12532>.
7. Díaz C, Carmona E, Nuñez R, et al. (2020). Ethics in biological sample preservation: Applications and challenges in wildlife research. *Biol Conserv* 250:108–120.
8. Díaz L, Zambrano E, Flores ME, et al. (2020). Ethical considerations in animal research: The principle of 3R's. *Rev Invest Clin* 73(4):199–209. <https://doi.org/10.24875/RIC.20000380>.
9. Hubrecht R, Carter E (2019). The 3Rs and the ethics of animal research. *Anim Res Ethics* 12(3):45–58.
10. Kulkarni MD, Shringarpure R, Bhatt P, Prakash N, Prakash V (2015). A simple and inexpensive protocol for DNA isolation from avian blood. *J Bombay Nat Hist Soc* 112:3–7. <https://doi.org/10.17087/jbnhs/2015/v112i1/92186>.
11. Srinivasan M, Sedmak D, Jewell S (2002). Effect of fixatives and tissue processing on the content and integrity of nucleic acids. *Am J Pathol* 161(6):1961–1971. [https://doi.org/10.1016/S0002-9440\(10\)64472-0](https://doi.org/10.1016/S0002-9440(10)64472-0).
12. Miyaki CY (2001). Genética e evolução aplicada à conservação. In: *Ornitologia e Conservação. Da Ciência às Estratégias*. Editora Unisul, pp. 239–246.
13. Moorhead PS, Nowell PC, Mellman WJ, Battips DM, Hungerford DA (1960). Chromosome preparations of leukocytes cultured from human peripheral blood. *Exp Cell Res* 20:613–616. [https://doi.org/10.1016/0014-4827\(60\)90138-5](https://doi.org/10.1016/0014-4827(60)90138-5).
14. Garnero AV, Gunski RJ (2000). Comparative analysis of the karyotype of *Nothura maculosa* and *Rynchotus rufescens* (Aves: Tinamidae): A case of chromosomal polymorphism. *Nucleus* 43:64–70.
15. Nogueira DM, Freitas AAR (2013). Fixed cytogenetic cells suspension: An alternative for obtaining DNA of birds. *Rev Bras Ornitol* 21:120–123.
16. Grimm H, Biller-Andorno N, Buch T, et al. (2023). Advancing the 3Rs: innovation, implementation, ethics and society. *Front Vet Sci* 10:1185706. <https://doi.org/10.3389/fvets.2023.1185706>.
17. Kalkan K, Kekecoglu M (2024). Ethical principles and rules in experimental animal studies: A comprehensive review. *Düzce Tip Fakültesi Dergisi* 26. <https://doi.org/10.18678/dtd.1497730>.
18. Beránek M, Hegerová J, Michajlíková M, Dulíček P, Palicka V (2022). No inhibitory effect of heparinized blood on real-time PCR analysis of thrombophilic mutations. *Folia Biol (Praha)* 68:201–205. <https://doi.org/10.14712/fb2022068050201>.
19. Floridia V, Sfulcini M, D'Alessandro E, et al. (2023). Effect of different anticoagulant agents on immune-related genes in leukocytes isolated from the whole-blood of Holstein cows. *Genes (Basel)* 14(2):406. <https://doi.org/10.3390/genes14020406>.

SUPPLEMENT MATERIAL

Table 1. Information on the quality of the extracted DNAs

Species	Extraction Protocol	A260/A280	A260/A230	Concentration (ng/ µl)
<i>Daption capense</i>	lysis	1.6	1.8	236.5
<i>Pygoscelis papua</i>	lysis	1.5	2.1	466
<i>Catharacta lönbergi</i>	lysis	1.6	1.8	2424
<i>Chionis alba</i>	lysis	1.6	1.9	713
<i>Macronectes giganteus</i>	lysis	1.7	2.0	1163
<i>Leucocarbo bransfieldensis</i>	lysis	1.7	2.0	1558
<i>Turdus subalaris</i>	lysis	1.7	1.6	1890
<i>Colaptes campestris</i>	lysis	1.5	1.5	2009
<i>Colaptes melanochloros</i>	lysis	1.6	1.5	368.5
<i>Elaenia chilensis</i>	lysis	1.7	1.8	1126
<i>Turdus subalaris</i>	Commercial Kit	1.6	1.7	417
<i>Colaptes campestris</i>	Commercial Kit	1.8	1.8	1138
<i>Turdus amaurochalinus</i>	Commercial Kit	2.1	3.0	42
<i>Elaenia chilensis</i>	Commercial Kit	1.8	1.9	161.5

OPEN ACCESS POLICY

Caryologia provides immediate open access to its content. Our publisher, Firenze University Press at the University of Florence, complies with the Budapest Open Access Initiative definition of Open Access: By "open access", we mean the free availability on the public internet, the permission for all users to read, download, copy, distribute, print, search, or link to the full text of the articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain is to guarantee the original authors with control over the integrity of their work and the right to be properly acknowledged and cited. We support a greater global exchange of knowledge by making the research published in our journal open to the public and reusable under the terms of a Creative Commons Attribution 4.0 International Public License (CC-BY-4.0). Furthermore, we encourage authors to post their pre-publication manuscript in institutional repositories or on their websites prior to and during the submission process and to post the Publisher's final formatted PDF version after publication without embargo. These practices benefit authors with productive exchanges as well as earlier and greater citation of published work.

PUBLICATION FREQUENCY

Papers will be published online as soon as they are accepted, and tagged with a DOI code. The final full bibliographic record for each article (initial-final page) will be released with the hard copies of *Caryologia*. Manuscripts are accepted at any time through the online submission system.

COPYRIGHT NOTICE

Authors who publish with *Caryologia* agree to the following terms:

- Authors retain the copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International Public License (CC-BY-4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in *Caryologia*.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

PUBLICATION FEES

Open access publishing is not without costs. *Caryologia* therefore levies an article-processing charge of € 150.00 for each article accepted for publication, plus VAT or local taxes where applicable.

We routinely waive charges for authors from low-income countries. For other countries, article-processing charge waivers or discounts are granted on a case-by-case basis to authors with insufficient funds. Authors can request a waiver or discount during the submission process.

PUBLICATION ETHICS

Responsibilities of *Caryologia*'s editors, reviewers, and authors concerning publication ethics and publication malpractice are described in *Caryologia*'s Guidelines on Publication Ethics.

CORRECTIONS AND RETRACTIONS

In accordance with the generally accepted standards of scholarly publishing, *Caryologia* does not alter articles after publication: "Articles that have been published should remain extant, exact and unaltered to the maximum extent possible".

In cases of serious errors or (suspected) misconduct *Caryologia* publishes corrections and retractions (expressions of concern).

Corrections

In cases of serious errors that affect or significantly impair the reader's understanding or evaluation of the article, *Caryologia* publishes a correction note that is linked to the published article. The published article will be left unchanged.

Retractions

In accordance with the "Retraction Guidelines" by the Committee on Publication Ethics (COPE) *Caryologia* will retract a published article if:

- there is clear evidence that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation)
- the findings have previously been published elsewhere without proper crossreferencing, permission or justification (i.e. cases of redundant publication)
- it turns out to be an act of plagiarism
- it reports unethical research.

An article is retracted by publishing a retraction notice that is linked to or replaces the retracted article. *Caryologia* will make any effort to clearly identify a retracted article as such.

If an investigation is underway that might result in the retraction of an article *Caryologia* may choose to alert readers by publishing an expression of concern.

COMPLYING WITH ETHICS OF EXPERIMENTATION

Please ensure that all research reported in submitted papers has been conducted in an ethical and responsible manner, and is in full compliance with all relevant codes of experimentation and legislation. All papers which report *in vivo* experiments or clinical trials on humans or animals must include a written statement in the Methods section. This should explain that all work was conducted with the formal approval of the local human subject or animal care committees (institutional and national), and that clinical trials have been registered as legislation requires. Authors who do not have formal ethics review committees should include a statement that their study follows the principles of the Declaration of Helsinki

ARCHIVING

Caryologia and Firenze University Press are experimenting a National legal deposition and long-term digital preservation service.

ARTICLE PROCESSING CHARGES

All articles published in *Caryologia* are open access and freely available online, immediately upon publication. This is made possible by an article-processing charge (APC) that covers the range of publishing services we provide. This includes provision of online tools for editors and authors, article production and hosting, liaison with abstracting and indexing services, and customer services. The APC, payable when your manuscript is editorially accepted and before publication, is charged to either you, or your funder, institution or employer.

Open access publishing is not without costs. *Caryologia* therefore levies an article-processing charge of € 150.00 for each article accepted for publication, plus VAT or local taxes where applicable.

FREQUENTLY-ASKED QUESTIONS (FAQ)

Who is responsible for making or arranging the payment?

As the corresponding author of the manuscript you are responsible for making or arranging the payment (for instance, via your institution) upon editorial acceptance of the manuscript.

At which stage is the amount I will need to pay fixed?
The APC payable for an article is agreed as part of the manuscript submission process. The agreed charge will not change, regardless of any change to the journal's APC.

When and how do I pay?

Upon editorial acceptance of an article, the corresponding author (you) will be notified that payment is due. We advise prompt payment as we are unable to publish accepted articles until payment has been received. Payment can be made by Invoice. Payment is due within 30 days of the manuscript receiving editorial acceptance. Receipts are available on request.

No taxes are included in this charge. If you are resident in any European Union country you have to add Value-Added Tax (VAT) at the rate applicable in the respective country. Institutions that are not based in the EU and are paying your fee on your behalf can have the VAT charge recorded under the EU reverse charge method, this means VAT does not need to be added to the invoice. Such institutions are required to supply us with their VAT registration number. If you are resident in Japan you have to add Japanese Consumption Tax (JCT) at the rate set by the Japanese government.

Can charges be waived if I lack funds?

We consider individual waiver requests for articles in *Caryologia* on a case-by-case basis and they may be granted in cases of lack of funds. To apply for a waiver please request one during the submission process. A decision on the waiver will normally be made within two working days. Requests made during the review process or after acceptance will not be considered.

I am from a low-income country, do I have to pay an APC?
We will provide a waiver or discount if you are based in a country which is classified by the World Bank as a low-income or a lower-middle-income economy with a gross domestic product (GDP) of less than \$200bn. Please request this waiver of discount during submission.

What funding sources are available?

Many funding agencies allow the use of grants to cover APCs. An increasing number of funders and agencies strongly encourage open access publication. For more detailed information and to learn about our support service for authors.

APC waivers for substantial critiques of articles published in OA journals

Where authors are submitting a manuscript that represents a substantial critique of an article previously published in the same fully open access journal, they may apply for a waiver of the article processing charge (APC).

In order to apply for an APC waiver on these grounds, please contact the journal editorial team at the point of submission. Requests will not be considered until a manuscript has been submitted, and will be awarded at the discretion of the editor. Contact details for the journal editorial offices may be found on the journal website.

What is your APC refund policy?

Firenze University Press will refund an article processing charge (APC) if an error on our part has resulted in a failure to publish an article under the open access terms selected by the authors. This may include the failure to make an article openly available on the journal platform, or publication of an article under a different Creative Commons licence from that selected by the author(s). A refund will only be offered if these errors have not been corrected within 30 days of publication.

2025
Vol. 78 – n. 2

Caryologia

International Journal of Cytology, Cytosystematics and Cytogenetics

Table of contents

PARVIZ RADMANESH, GHASEM KARIMZADEH Chromosome, ploidy analysis, and flow cytometric genome size of caper (<i>Capparis spinosa</i>) medicinal plant	3
HYE-RIN KIM, KWEON HEO Karyotype analysis and chromosome evolution in Menyanthaceae using FISH	21
ALIREZA DOLATYARI Karyological data of five autumn-flowering <i>Crocus</i> L. species from Iran	29
LUAN FELIPE DA SILVA FRADE, CARLOS EDUARDO VASCONCELOS DOS SANTOS, BRUNO RAFAEL RIBEIRO DE ALMEIDA, CLEUSA YOSHIKO NAGAMACHI, JULIO CESAR PIECZARKA, Luís ADRIANO SANTOS DO NASCIMENTO, CESAR MARTINS, ADAUTO LIMA CARDOSO, RENATA COELHO RODRIGUES NORONHA Divergence in the chromosomal distribution of repetitive sequences in Neotropical cichlid species of the genus <i>Lugubria</i>	45
YASIN EREN Cytotoxic effects of %70 Thiophanate methyl fungicide	53
LILIAN DE OLIVEIRA MACHADO, HYBRAIM SEVERO SALAU, LARISSA RODRIGUES PEREIRA, ADRIANA KOSLOVSKI SASSI, FABIANO PIMENTEL TORRES, ANALÍA DEL VALLE GARNERO, RICARDO JOSÉ GUNSKI Avian DNA extraction: An economical and efficient alternative for Farmer-fixed samples	59