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Abstract: The purpose of this paper is to present a genuinely potentialist account of Frege arithmetic.
The (cardinal) numbers are not generated from Hume’s Principle, but rather from more or less standard
principles of potentialism. The relevant version of Hume’s Principle is a principle stating a condition
for numbers to be identical with each other. Essentially, (HP) tells us what we are generating—
cardinal numbers—but the generation does not go through (HP) itself. We also develop an Aristotelian,
potentialist set theory—in effect, a theory of hereditarily finite sets—a theory that is definitionally
equivalent to Dedekind-Peano arithmetic.
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1. Introduction

The abstractionist, neo-logicist program in the philosophy of mathematics began with Crispin Wright’s seminal
(Wright, 1983). Bob Hale (1983) joined the cause, and it continues through many extensions, objections,
and replies to objections (see Hale and Wright, 2001). The program’s overall plan is to develop branches of
established mathematics using abstraction principles in the form:

→a→b(!(a) = !(b)↑ E(a,b)), (ABS)

where a and b are variables of a given type (typically first-order or monadic second-order), ! is an operator,
denoting a function from items of the given type to objects in the range of the first-order variables, and E is an
equivalence relation over items of the given type.

Gottlob Frege (1884, 1893), employed at least three equations in the form (ABS). One of them, used for
illustration, comes from geometry:

The direction of l1 is identical to the direction of l2 if and only if l1 is parallel to l2.

The second was dubbed N= in (Wright, 1983) and is now called Hume’s Principle:

→F→G(#F = #G ↑ F ↓ G), (HP)

where F ↓ G is an abbreviation of the second-order statement that there is a one-to-one relation mapping the
F’s onto the G’s. In words, (HP) states that the number of F is identical to the number of G if and only if F is
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equinumerous with G. Georg Cantor deployed this principle to obtain extensive and profound results, especially
concerning the transfinite.1

Unlike the direction-principle, the relevant variables, F,G here are second-order. We will follow the
literature and refer to items in the range of these variables as “Fregean concepts”, or sometimes just “concepts”,
essentially properties construed extensionally (and not necessarily identified with mental phenomena).

Frege’s (1893) third exemplar of an abstraction principle is the infamous Basic Law V:

→F→G(!F = !G ↑→x(Fx ↑ Gx)). (BLV)

Like Hume’s Principle, Basic Law V is second-order, but unlike Hume’s Principle, it is inconsistent (at least
with classical or intuitionistic logic).

As is now well-known, Frege’s Grundlagen (1884) and Grundgesetze (1893) contain the essentials of a
derivation of the Dedekind-Peano postulates from Hume’s Principle, plus some more or less straightforward
definitions.2 This result, now called Frege’s Theorem, reveals that Hume’s Principle, together with suitable
definitions, entails that there are infinitely many natural numbers. The development of arithmetic from (HP)
is sometimes called Frege arithmetic. This theory is taken to be the first success story of abstractionist neo-
logicism. The underlying theme is that one can introduce (HP) as a sort of stipulative, implicit definition of the
“number-of” operator, and develop arithmetic from that. There is an ongoing program of attempting to found
other, richer mathematical theories on abstraction principles. Here, we will only be concerned with arithmetic
and (HP).

In their informal discussion of the abstractionist program, Wright and Hale occasionally speak of mathe-
matical objects as “generated” by the abstraction principle (e.g., Hale and Wright, 2001, pp. 19, 224, 237n, 278,
289, 412, 414), but for them, this term is only a metaphor. Their version of abstractionism is not a potentialist
enterprise, as the quantifiers in the description of the equivalence relation on the right hand side are explicitly
intended to include the “generated” abstracts, cardinal numbers in this case. Frege’s Theorem depends on this.
Sometimes, the word “generated” appears in scare-quotes, as in:

One obvious danger here arises from the fact an equivalence relation defined on the concepts on a
specified underlying domain of objects may partition those concepts into more equivalence classes
than there are objects in the underlying domain, so that a second-order abstraction may ‘generate’
a domain of abstracts strictly larger than the initial domain of objects. This, in itself, need be no
bad thing—indeed, it is essential, if there is to be a neo-Fregean abstractionist route to (classical)
analysis. (Hale and Wright, 2001, p.19)

The plan here is to present a genuinely potentialist account of Frege arithmetic. The (cardinal) numbers are
not generated from (HP), but rather from more or less standard principles of potentialism. The relevant version
of (HP) is a principle stating a condition for numbers to be identical with each other. So the account is not an
abstractionist one. Essentially, (HP) tells us what we are generating—cardinal numbers—but the generation
does not go through (HP) itself.

The perspective here is that of an Aristotelian potentialist who rejects even the possibility of an actual
infinity (as presented in Linnebo and Shapiro, 2019). We also develop an Aristotelian, potentialist set theory—in
effect, a theory of hereditarily finite sets—a theory that is definitionally equivalent to Dedekind-Peano arithmetic.
The orientation is deductive: we articulate an axiomatic (higher-order and plural) language in which to express
the main principles, and explore what can be deduced in order to express and sustain the potentialist insights (if
that is what they are).

This is in contrast with the lovely study Stafford (2023), which draws on Hodes (1990). Like the present
project, Stafford treats potentialist arithmetic, drawing on (HP), but its orientation is “semantic”, i.e., model-
theoretic. Using a background set theory, presumably full ZFC (or perhaps Zermelo set theory), he develops

1 More details to follow. By rights, this abstraction principle should be called “Cantor’s Principle”, but the name “Hume’s Principle” has
caught on.

2 Frege (1893) used Basic Law V to derive the two conditionals in (HP). The rest of the Dedekind-Peano postulates follow from those.
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Kripke structures for a modal language, structures in which each world is finite. He shows how to interpret a
standard first-order (but not second-order or plural) version of Dedekind-Peano arithmetic in the model-theoretic
structures. This particular model-theoretic perspective is, of course, not available to an Aristotelian, since the
meta-theory makes heavy use of actual infinity. In the developed framework, each world is finite, but the Kripke
structure itself has infinitely many worlds.

Stafford notes that he leaves the “development of a deductive theory for future work” (p. 557). Although
the present project is deductive, it does not recapitulate Stafford’s theory. The target here is full second-order
Dedekind-Peano arithmetic, but as noted, Stafford’s theory does not satisfy that.3

The present paper is self-contained. The next Section 2 provides a brief overview of the potentialist
perspective—for more details, see (Linnebo and Shapiro, 2019). We present an axiom, called “(Aristotle)”,
that entails that infinite concepts and pluralities are impossible—all worlds are (Dedekind) finite. Section 3
provides a sketch of Frege’s own development of arithmetic (based on Hume’s Principle (HP)), giving the
usual definitions. Section 4 shows how to formulate (HP) in the modal, potentialist setting, along with axioms
entailing the possible existence of various numbers. Then, in Section 5, we formulate definitions and show how
to derive the relevant analogues of the Dedekind-Peano axioms. Section 6 drops the (Aristotle) axiom. At that
point, we do not assert the possibility of an actual infinity; rather, the theory is officially neutral on whether
there is or there could be an actual infinity. The development there is a bit closer to Frege’s own treatment,
along with that of the abstractionist neo-logicists. The final Section 7 presents an Aristotelian set theory (of
hereditarily finite sets), and shows that arithmetic can be interpreted in that theory in the usual way.

2. Potential infinity — a crash course

Aristotle famously rejected the actual infinite—the existence of any complete collection with infinitely many
members. He argued that the only sensible notion is that of potential infinity. In Physics 3.6 (206a27-29), he
wrote:

For generally the infinite is as follows: there is always another and another to be taken. And the
thing taken will always be finite, but always different (2o6a27-29).

As Richard Sorabji (2006, pp. 322-3) once put it, for Aristotle, “infinity is an extended finitude”(see also Lear,
1980). This attitude toward the infinite was expressed by the vast majority of mathematicians and philosophers
at least until late in the nineteenth century. In 1831, for example, Gauss (1831) wrote:

I protest against the use of infinite magnitude as something completed, which is never permissible
in mathematics. Infinity is merely a way of speaking.

In line with the mathematicians of his day, Aristotle did accept what is sometimes called potential infinity,
against the ancient atomists (see Miller, 2014). Mathematicians in antiquity followed this, and, indeed, made
brilliant use of potential infinity. But what is potential infinity?

Either directly or indirectly, the idea seems to be that potential infinity is tied to certain procedures that
can be repeated indefinitely. A nice example is provided by Aristotle’s claim, against the atomists, that matter
is infinitely divisible. Consider a body of mud. However many times one has divided the mud, it is always
possible to divide it again—or so it is assumed.

As indicated by the term “it is possible”, the thesis here can be explicated in a modal way.4 This yields the
following analysis of the infinite divisibility of the body of mud s:

!→x(Pxs ↔"↗yPyx), (6)

3 Thanks to a referee for pressing this comparison, and to Tim Button for an insightful exchange on the issues.
4 I make use of contemporary modal notions here. There is no attempt to recapitulate what Aristotle himself says about modality.
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where the variables range over parts of the given body of mud, and Pxy means that x is a proper part5 of y. If
the parts of the mud formed an actual infinity, the following would hold:

→x(Pxs ↔↗yPyx). (7)

According to Aristotle, it is impossible for there to be infinitely many divisions of the mud, existing all at once:

¬"→x(Pxs ↔↗yPyx). (8)

By endorsing both (6) and (8), one is is asserting that the divisions of the mud are merely potentially infinite.

As noted, present concern is with mathematics, and the natural numbers in particular. According an
Aristotelian, the sequence of natural numbers is merely potentially infinite. This can be represented as the
conjunction of the following theses:

!→m"↗n SUCC(n,m) (9)

¬"→m↗n SUCC(n,m), (10)

where SUCC(n,m) states that n comes right after m. The modal language thus provides a nice way to distinguish
the merely potential infinite from the actual infinite.

Linnebo and Shapiro (2019) develop an account that can accept some actually infinite collections, and
still leaves room to insist that some other “totalities” are merely potentially infinite. The analysis provides a
framework in which actual and potential infinity can live side by side, sometimes in the very same system.
Here the focus is on a more Aristotelian perspective that allows no actually infinite collections. Our goal is to
vindicate, for arithmetic,6 Aristotle’s claim about geometry:

Our account does not rob the mathematicians of their study, by disproving the actual existence of
the infinite in the direction of increase, in the sense of the untraversable. In point of fact they do
not need the <actually> infinite and do not use it. They postulate only that the finite straight line
may be produced as far as they wish. (207b27-30)

2.1. Three orientations towards the infinite

It is useful to distinguish different orientations towards a given infinite totality, such as the natural numbers
or the parts of a given body of mud (according to Aristotle). Actualism accepts actual infinities, of the given
kind, and thus finds no use for modal notions—or at least no use that is specific to the analysis of the infinity in
question. Actualists maintain that the non-modal language of ordinary mathematics is already fully explicit and
thus deny that we need a translation into some modal language. Furthermore, actualists accept classical logic
when reasoning about the infinite (or the infinite in question).

Potentialism is the orientation that stands opposed to actualism. Accordingly, the objects with which
mathematics is concerned—or some of the objects with which mathematics is concerned—are generated
successively, and at least some of these generative processes cannot be completed. Present concern is with the
natural numbers. Our potentialist thinks of numbers as generated, presumably one at a time.

There are (at least) two different forms of potentialism. As characterized above, potentialism is the view
that some or, in the present case, all of the objects with which mathematics is concerned are successively
generated. What about the truths of mathematics? Of course, on any form of potentialism, these are modal
truths concerned with certain generative processes. But how should these modal truths be understood?

Liberal potentialists regard the modal truths as unproblematic, adopting bivalence for the modal language,
and excluded middle for the underlying modal logic. Consider Goldbach’s conjecture. As potentialists interpret

5 A referee notes that this presupposes that the “parts” of the mud all have non-zero measure. In particular, the mud that occupies an
extensionless point would have no proper parts, thus violating (1). However, Aristotle explicitly insisted that points are not parts of
anything—see, for example, (Hellman and Shapiro, 2018, Chapter 1).

6 There is some anachronism here. As far as we know, there was nothing like full Dedekind-Peano arithmetic in Aristotle’s day.
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it, the conjecture says that necessarily any even natural number, greater than two, that is ever generated can be
written as a sum of two primes. Liberal potentialists maintain that this modal statement has a truth-value—it is
either true or false. Their approach to modal theorizing in mathematics is thus much like a realist approach
to modal theorizing in general: there are objective truths about the relevant modal aspects of reality, and this
objectivity warrants the use of some classical form of modal logic.

Strict potentialists differ from liberal potentialists by requiring, not only that every object generated at
some stage of a process, but also that every truth be “made true” at some stage. Consider, again, the Goldbach
conjecture. If there are counterexamples to the conjecture, then its negation will presumably be “made true” at
the stage where the first counterexample is generated. But suppose there are no counterexamples. Since the
conjecture is concerned with all the natural numbers, it is hard to see how it could be “made true” without
completing the generation of natural numbers. This completion would, however, violate the strict potentialists’
requirement that any truth be made true at some stage of the process.

Linnebo and Shapiro (2019) argue that strict potentialists should adopt a modal logic whose underlying
logic is intuitionistic (or intermediate between classical and intuitionistic logic). This allows them to adopt a
conception of universal generality which does not presuppose that all the instances are ever “available” at a
stage. In particular, strict potentialists should not accept every instance of the law of excluded middle in the
background modal language. For the most part, we adopt the liberal perspective here, at least partly because we
wish to recapitulate a version of classical arithmetic.

2.2. The modality and the modal logic

It is useful here to invoke the contemporary heuristic of possible worlds when discussing the modality in
question. But it is insisted that this is only heuristic, as a manner-of-speaking (unlike the treatment in Stafford,
2023). The theory is formulated in the modal language, with (one or both of) the modal operators as primitive.
The modal language is not explained or defined in terms of anything else.

The potentialist does, of course, reject the now common thesis that mathematical objects exist of necessity—
if they exist at all. To invoke the heuristic, the now common thesis is that all mathematical objects exist in all
worlds. The potentialist gives that up. There is no world with all of the objects in question—all natural numbers
in the present case. Nor, of course, is there an actual infinity of possible worlds (again, unlike Stafford, 2023).

What about the philosophical nature of the modality invoked in the analysis of potentiality? For the Aris-
totelian, it can perhaps be an ordinary metaphysical modality invoked in contemporary philosophy (or perhaps
defined from that notion)—waiving the now widely held thesis that mathematical objects exist necessarily if
they exist at all. For that matter, the modality can also be a very ordinary circumstantial modality, as studied in
linguistic semantics (suitably idealized, of course).

The idea is that natural numbers are generated in time. At any stage—in any world—there are finitely many
natural numbers, but each such world has access to another where some more numbers have been generated.
Given enough time, any natural number can be generated, even though there is no time when they are all
generated.

Following the heuristic, we assume that every possible world is finite, in the sense that it contains only
finitely many objects. For convenience, we wish to avoid invoking a free logic, at least here. So we do not
wish to countenance objects—mathematical or otherwise—going out of existence. To paraphrase Aristotle, we
study generation, but not corruption. This entails that the domains of the possible worlds grow (or, better, are
non-decreasing) along the accessibility relation. So we assume:

w1 ↘ w2 ↔ D(w1)≃ D(w2) (11)

where ‘w1 ↘ w2’ says that w2 is accessible from w1, and for each world w, D(w) is the domain of w.

Again, for convenience, in this initial foray, one can think of a possible world as determined completely by
the objects it contains. So we assume the converse of (11). This motivates the following principle:
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Partial ordering: The accessibility relation ↘ is a partial order. That is, it is reflexive, transitive,
and anti-symmetric.

So the underlying modal logic is at least S4. As is well-known, the conditional (11) entails that the converse
Barcan formula is valid. That is,

↗x"∀(x)↔"↗x#(x). (CBF)

So far, then, we have S4 plus (CBF).7

We also assume, for simplicity (and convenience) that the only things generated are mathematical. If we
think of the natural numbers as generated one at a time, in order, it is perhaps natural to assume that the possible
worlds have a linear ordering. But it is useful to tie the present framework in with other, more general ones,
in order to invoke, or eat least discuss, some existing results. At any stage in a process of construction, we
generally have a choice of which objects to generate. For some types of construction, but not all, it makes
sense to require that a license to generate objects is not revoked at accessible worlds. Intuitively, geometric
construction is like this. For example, we might have, at some stage, two intervals that don’t yet have bisections.
We can choose to bisect one or the other of them, or perhaps to bisect both simultaneously. Assume we are at a
world w0 where we can choose to generate objects, in different ways, so as to arrive at either w1 or w2. Say at
w1 we bisect an interval i and at w2 we bisect another interval j. It seems plausible to require that the license to
bisect i can be executed at w2 or any later world. In other words, nothing we do can prevent us from being able
to bisect the other interval.

This corresponds to a requirement that any two worlds w1 and w2 accessible from a common world have a
common extension w3. This is a directedness property known as convergence and formalized as follows:

→w0→w1→w2(w0 ↘ w1 ⇐w0 ↘ w2 ↔↗w3(w1 ↘ w3 ⇐ w2 ↘ w3))

For constructions that have this property, then, we adopt the following principle:

Convergence: The accessibility relation ↘ is convergent.

This principle ensures that, whenever we have a choice of mathematical objects to generate, the order in
which we choose to proceed is irrelevant. Whichever object(s) we choose to generate first, the other(s) can
always be generated later. Unless ↘ is convergent, our choice whether to extend the ontology of w0 to that of
w1 or that of w2 might have an enduring effect.8

It is well known that the convergence of ↘ ensures the soundness of the following principle:

"↭p ↔↭"p. (G)

The modal propositional logic that results from adding this principle to a complete axiomatization of S4 is
known as S4.2.

2.3. The logic of potential infinity

What is the correct logic when reasoning about potentially infinite collections? Informal glosses aside, the
language of mathematics is usually non-modal. We thus need a translation to serve as a bridge connecting
the non-modal language in which mathematics is ordinarily formulated with the modal language in which our
analysis of potentiality is developed. Suppose we adopt a translation ⇒ from a non-modal language L to a

7 Recall that S4 and (non-free) first-order logic entails (CBF). We can also require the accessibility relation to be well-founded, on the
grounds that all mathematical construction has to start somewhere. However, nothing of substance turns on this here.

8 Other types of “generation” are not like this. Suppose for example, that I can bake bread or I can bake a cake, since I have enough time
and ingredients to do either. But it may be that if I bake bread, then I can no longer bake a cake, since I may have used up the needed
ingredients or I won’t have enough time. Or suppose that a country has a law that a couple can have only two children. If a given couple
already has one, then it is possible for them to have a boy and it is possible for them to have a girl. But if they do one, they will not be
allowed to go on and do the other.
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corresponding modal language L !. The question of the right logic of potential infinity is the question of which
entailment relations obtain in L .

To determine whether #1, . . . ,#n entail ∃ , we need to (i) apply the translation and (ii) ask whether #⇒
1 , . . . ,#⇒

n
entail ∃⇒ in the modal system. This means that the right logic of potential infinity depends on several factors.
First, the logic depends on the bridge that we choose to connect the non-modal language of ordinary mathematics
with the modal language in which our analysis of potential infinity is given. Second, the logic obviously depends
on our modal analysis of potential infinity; in particular, on the modal logic that is used in this analysis—in
particular, on whether the underlying logic of the modal language is classical or intuitionistic. Let us now turn
to the first factor.

The heart of potentialism, or at least the present explication of potentialism, is the idea that the existential
quantifier of ordinary non-modal mathematics has an implicit modal aspect. In the developed interpretive
program, a statement that a given number has a successor is interpreted as a statement that this number
potentially has a successor—that it is possible to generate a successor. This suggests that the right translation of
↗ is "↗.

Similarly, a potentialist statement that a given property holds of all objects (of a certain sort) is interpreted
as a statement that the property holds of all objects (of that sort) whenever they are generated. This suggests
that → be translated as !→.

Thus understood, the quantifiers of ordinary non-modal mathematics are devices for generalizing over
absolutely all objects, not only the ones available at some stage, but also any that we may go on to generate.
In our modal language, these generalizations are effected by the strings ↭→ and "↗. Although these strings
are strictly speaking composites of a modal operator and a quantifier proper, they behave logically just like
quantifiers ranging over all entities at all (future) worlds.

The proposal is thus that each quantifier of the non-modal language is translated as the corresponding
modalized quantifier. Each connective is translated as itself. Let us call this the potentialist translation, and let
#! represent the translation of # . We say that a formula is fully modalized just in case all of its quantifiers are
modalized. Clearly, the potentialist translation of any non-modal formula is fully modalized.

Say that a formula # is stable if the necessitations of the universal closures of the following two conditionals
hold:

# ↔↭# ¬# ↔↭¬#

This sets the stage for two key results, which answer the question about the correct logic for those kinds of
potentiality that enjoy the above convergence property.

For the first, let ⇑ be the relation of classical deducibility in a non-modal first-order language L . Let L !

be the corresponding modal language, and let ⇑! be deducibility in the modal system consisting of classical ⇑,
S4.2, and axioms asserting the stability of all atomic predicates of L .

Classical potentialist mirroring. For any formulas #1, . . . ,#n,∃ of L , we have:

#1, . . . ,#n ⇑ ∃ if and only if #!
1 , . . . ,#!

n ⇑! ∃!.

(See Linnebo, 2013, for a proof.)

The theorem has a simple moral. Suppose we are interested in logical relations between formulas in the
range of the potentialist translation, in a classical, first-order modal theory that includes S4.2 and the stability
axioms. Then we may delete all the modal operators and proceed by the ordinary non-modal logic underlying
⇑. In particular, under the stated assumptions, the modalized quantifiers ↭→ and "↗ behave logically just as
ordinary quantifiers, except that they generalize across all (accessible) possible worlds rather than a single
world.9

9 Note the restriction to first-order languages. The result will apply to higher-order languages if the modal translations of the instances of the
comprehension scheme are deducible in the modal language.
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As noted above, however, Linnebo and Shapiro (2019) argue that a stricter form of potentialism pushes in
the direction of intuitionistic logic. There is a second mirroring theorem. In a system governed by intuitionistic
logic, a formula # is said to be decidable if the universal closure of # ⇓¬# is deducible in that theory. Let
⇑int be the relation of intuitionistic deducibility in a first-order language L , together with axioms stating the
decidability of all atomic formulas, and let ⇑!

int be deducibility in the modal language corresponding to L , by
⇑int, S4.2 and the stability axioms for all atomic predicates of L .10 The conclusion is then the same as above:

Intuitionistic potentialist mirroring For any formulas #1, . . . ,#n,∃ of L , we have:

#1, . . . ,#n ⇑int ∃ if and only if #!
1 , . . . ,#!

n ⇑!
int ∃!.

(See Linnebo and Shapiro, 2019, for a proof.)

Our interest won’t always be limited to formulas in the range of the potentialist translation. One can often
use the extra expressive resources afforded by the modal language to engage in reasoning that takes us outside
of this range. The modal language allows us to look at the subject matter under a finer resolution, which can be
turned on and off, according to our needs.

The final order of business for this section is a case in point. We state an axiom that enforces the Aristotelian
thesis that—to invoke the heuristic—all worlds are finite. Our choice is that it is necessary that for any Fregean
concept X and for any relation R on X that is a one-to-one function on X , R is a surjection on X (i.e., if Xx then
x has an R predecessor):

!→R→X [→x(((Xx ↔↗y→z(Xz⇐Rxz)↑ y = z))⇐→x1→x2→y((Rx1y⇐Rx2y)↔ x1 = x2))

↔→y(Xy ↔↗x(Xx⇐Rxy)))] (Aristotle)

This entails that all worlds are at least Dedekind finite.

Intuitively, a Fregean concept, or a possible world, is finite if its cardinality is a natural number. To be
sure, it would be premature to invoke that here, since we have not yet defined the natural numbers. But we
can express a statement that a concept or world is actually finite (and not just Dedekind finite). Let R be any
binary relation, Frege (1879) defined the (weak) ancestral R⇒ of R.11 Using a more contemporary framework
the definition is as follows:

R⇒xy ↑def [→X(Xx⇐ (→z→w((Xz⇐Rzw)↔ Xw)))↔ Xy] (Ancestral)

In words, R⇒xy holds if y has every Fregean concept that holds of x and is closed under R. In effect, R⇒xy holds
just in case either x = y or there is a finite sequence a1 . . .an+1 such that a1 = x,an+1 = y and for each m such
that 1 ↘ m < n, Ramam+1 .

We can state a principle that asserts, in effect, that all worlds are finite as follows:

!↗R(→x→y1→y2((Rxy1 ⇐Rxy2)↔ y1 = y2)⇐↗x→zR⇒(x,z)⇐↗y→z(¬R(y,z))) (finite)

In words, (finite) says that necessarily (i.e., in every world) there is one-to-one relation R such that (i) there
something x such that everything (in that world) is an R-ancestor of x, and (ii) there is something z that does not
bear R to anything (in that world). Intuitively, it follows that in every world, every concept is actually finite
in that world. This principle is probably closer to Fregean concerns, and it allows many of the proofs to be
constructive.

Nevertheless, we shall stick with the weaker (Aristotle) here. After some other axioms are added, we
can derive (finite), showing that all worlds and thus all Fregean concepts are actually finite. It follows that,
necessarily (i.e., in every world w), there could be a natural number (possibly in an accessible world w⇔) that is
the number of objects (in w).

10 A referee points out that identity is not decidable in intuitionistic analysis (or in smooth infinitesimal analysis) and membership is not
decidable in some intuitionistic set theories. The relevant moral is that this mirroring theorem does not hold for those theories.

11 From here on, when we speak of the ancestral or an ancestor, we mean the weak ancestral and a weak ancestor.
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3. A sketch of Frege’s Theorem

Recall the ill-named Hume’s Principle:

→F→G(#F = #G ↑ F ↓ G), (HP)

where F ↓ G is an abbreviation of the second-order statement that there is a one-to-one relation mapping the
F’s onto the G’s. That is:

F ↓ G ↑def ↗R[→x(Fx ↔↗!y(Gy⇐Rxy))⇐→y(Gy ↔↗!x(Xx⇐Rxy))]

A central component of (this phase of) the abstractionist program is to establish Frege’s Theorem: a
derivation of the Dedekind-Peano axioms from (HP) and reasonable definitions of the primitive arithmetical
vocabulary. This, it is argued, provides a logical and epistemological foundation for arithmetic. The purpose of
this section is to provide a sketch of Frege’s Theorem, or at least of some key steps along the way. Then we
turn to a potentialist version of the result.

The abstractionist does not presuppose, at the outset, just as a matter of syntax and semantics, that every
Fregean concept F has a (unique) number #F . So the proper background would be a free logic. Their practice
is to start with a concept F , note the trivial consequence that F ↓ F , and then conclude that F has a number.
So perhaps the proper background is a negative free logic in which identity statements, or perhaps atomic
statements, entail existence, so that a = b entails that a and b denote something.

Frege defines zero to be the number of the Fregean concept of being not self-identical, the concept
characterized by the open formula x ↖= x. The next item is the successor relation. Frege (1893, §76) writes:12

I now propose to define the relation in which every two adjacent members of the series of [cardinal]
numbers stand to each other. The proposition:

“there exists a concept G, and an object falling under it x, such that the Number which
belongs to the concept G is n and the Number which belongs to the concept ‘falling
under G but not identical with x’ is m”

is to mean the same as

“n follows in the series of . . . numbers directly after m”.

Frege’s definition, then, is that n follows directly after m just in case

↗F↗G((m = #F ⇐n = #G)⇐↗x(Gx⇐→y(Fy ↑ (y ↖= x⇐Gy)))) (Frege-successor)

The same definition is employed in Frege (1893) as well as in Wright (1983, p. 37).

The following is equivalent (via classical logic): the number n follows directly after the number m just in
case:

↗F↗G
(
m = #F ⇐n = #G⇐↗x(¬Fx⇐→y(Gy ↑ (y = x⇓Fy)))) (Successor)

To put it in Fregean words, n follows directly after m if and only if:

There exists a concept F , and an object x not falling under F , such that the Number which belongs
to the concept F is m and the Number which belongs to the concept ‘either falling under F or
identical with x’ is n.

12 The notation is tweaked slightly.
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Let us write S(x,y) for “y bears (Successor) to x”, or, in Fregean terms, “y follows directly after x”.

In (Frege, 1893, §76), Frege immediately notes that he does not use the expression “the Number following
next after m”, since he had not yet shown that each number has exactly one successor. Of course, one can, and
Frege does, prove uniqueness—using classical logic. Finally, Frege defines a natural number to be an ancestor
of zero under (Frege-successor):

Nx ↑def S
⇒(0,x)

With these definitions, the usual Dedekind-Peano axioms follow. Every natural number has a unique
successor, and so the successor relation is a function; this function is one-to-one; zero has no successor, and
full, second-order induction holds:

→X [(X0⇐→x→y((Xx⇐S(x,y))↔ Xy))↔→x(Nx ↔ Xx)]

Induction is a straightforward consequence of the use of the ancestral in the definition of N.

Where in the above, more or less standard development of this instance of abstractionism, do we run
afoul of the Aristotelian dictum to reject any and all actual infinities, any completed infinite totalities? From
the background actualism, we have that there are infinitely many natural numbers. That follows from the
Dedekind-Peano principles established by Frege’s Theorem(s). So the Fregean concept expressed by the
formula S

⇒(0,x) holds of infinitely many things, all of the natural numbers. Moreover, an application of the
‘#’ operator to N would give us the existence of an infinite number, one that Frege called “endlos”. In modern
terms, that is the cardinal number ∀0.

The ancestral relation is an essential part of the development and, in particular, the proof that the natural
numbers satisfy the induction principle. Recall that for any binary relation R, R⇒xy holds if every concept that
holds of x and is closed under R also holds of y. But every concept that holds of 0 and is closed under S holds
of infinitely many things. So, for our Aristotelian, there are no such concepts and so N vacuously holds of
everything! This motivates the development of a potentialist, account of arithmetic, along Aristotelian and
Fregean lines.13

4. Potentialist arithmetic

Linnebo (2013) and Chapter 3 of (Linnebo, 2018) presents a (consistent) account of set theory based on a
potentialist version of Frege’s Basic Law V. Instead of saying that every Fregean concept has an extension
(which is inconsistent, given the usual comprehension principles of higher-order logic), we say that at least
some Fregean concepts X could have an extension.

"↗x(x = !(X))

To invoke the heuristic of possible worlds, if all of the objects that X holds of are in a single world w, then there
is an accessible world that contains an extension whose members are all and only the objects that X holds of in
w.

To formulate this, Linnebo uses the language of plural logic. It is stipulated that, like sets, pluralities are
rigid: the same objects are among a given plurality xx in all worlds in which xx exists.14 As Linnebo (2013,
2018) shows, this rigidity can be expressed in the underlying modal and plural language.

The set-existence principle is
!→xx"↗y→z(z ↙ y ↑ z ∝ xx). (set exists)

13 As is well-known, there are issues concerning how the underlying higher-order logic is to be developed in the framework. One issue is the
analogue of impredicative comprehension. Sean Walsh (2012) (Corollary 92) shows that full first-order Dedekind-Peano arithmetic PA
cannot be interpreted in predicative Frege arithmetic—regardless of our definitions of the arithmetical primitives. It follows from (Walsh,
2012), Corollary 92 and Proposition 6, that the interpretability strength of the system of second-order arithmetic known as ACA0 is strictly
above that of (HP) with #1

1-comprehension, and hence also strictly above that of (HP) with predicative comprehension. These issues are not
broached here.

14 Clearly, if something is rigid then it is stable, but the converse typically fails.
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In words, for any objects, there could be a set whose members are just those objects. On pain of Russell’s
paradox, there is no plurality of all possible sets, no plurality of all possible von Neumann ordinals, and the like.

We do not adopt (set exists) here since we are not (yet) interested in a potentialist set theory (but see §7
below). The present framework has both higher-order variables (ranging over Fregean concepts) and plural
variables (ranging over rigid pluralities). Concerning Fregean concepts, the framework has full, unrestricted
comprehension: each instance of the universal closure of the following holds:

!↗R!→x1 . . .→xn(Rx1 . . .xn ↑ ∃),

where ∃ is any formula that does not have R free. That is, every formula in the language defines a Fregean
concept.15

Note that a Fregean concept can have different extensions in different worlds. For example, the concept of
being self-identical (defined by “x = x”) holds of different things in different worlds. The concept of being the
largest number also holds of different numbers in different worlds. The same goes for a concept like being a
living dog—dogs come and, alas, go. In short, unlike pluralities, concepts are not rigid.

There also is a comprehension principle for pluralities. Each instance of the universal closure of the
following holds:

!(↗x∃ ↔↗xx→x(x ∝ xx ↑ ∃)),

where ∃ is a formula that does not contain xx free. That is, every formula in the language that holds of
something defines a (rigid) plurality in each world. So if ↗x∃ holds in a world w, then the instance of plural
comprehension defines a plurality of all objects that satisfy ∃ in w. Of course, those objects need not satisfy ∃
in a different world.

To avoid a free logic, we replace the abstractionist number-of operator with a relation. So for a Fregean
concept F , ‘#(F,n)’ can be read as “n is a number of F”. And similarly ‘#(mm,n)’ can be read as “n is a
number of mm”.16

As noted, for simplicity (and to keep the logic unfree), we also assume that objects are never destroyed—if
an object exists in a given world, it exists in all accessible worlds. So the accessibility relation will be at least
that of S4, and we adopt the above policy and take the accessibility relation to be convergent (if not linear).

4.1. Numbers of pluralities

In §2 we formulated and adopted a principle (Aristotle) that entails that, in effect, all worlds are Dedekind finite.
It follows that all pluralities are Dedekind finite. We thus adapt (set exists) to numbers and adopt:

!→xx"↗y#(xx,y). (Num Exists)

In words, every plurality could have a number.

Define equinumerosity on pluralities as follows:

xx ↓ yy ↑def ↗R(→x(x ∝ xx ↔↗!y(Rxy⇐ y ∝ yy))⇐→y(y ∝ yy ↔↗!x(Rxy⇐ x ∝ xx))).

We do not have that every plurality has a number (see below for more details on this). The relevant version of
Hume’s Principle is that if two pluralities each have a number, then these numbers are identical just in case the
pluralities are equinumerous:

→xx→yy→x→y((#(xx,x)⇐#(yy,y))↔ (x = y ↑ xx ↓ yy)). (HP)

15 Since there are no restrictions on the formula ∃, the system allows impredicative definitions. The same goes for plural comprehension. This
is taken to be of-a-piece with a liberal view of potentialism. In any case the goal here is to sanction full induction on the natural numbers,
and thus an analogue of full second-order arithmetic. Full impredicative comprehension facilitates that.

16 Some readers (and one referee) find it awkward or annoying or infelicitous to use the same symbol (‘#’) for both numbers of pluralities and
numbers of Fregean concepts, even though context always settles which is meant. It is, of course, simple and straightforward to use two
different symbols instead.
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It follows that each plurality has at most one number:

!→xx→y→z((#(xx,y)⇐#(xx,z))↔ y = z).

We add an axiom that if two pluralities are equinumerous and one of them has a number, then so does the other:

→xx→yy→x((xx ↓ yy⇐#(xx,x))↔↗y#(yy,y)). (HP⇔)

Of course, it follows from this and (HP) that these two numbers are identical: if two pluralities are equinumerous
and one has a number, then the other has the same number.17

It seems reasonable to add a principle that if a certain number exists (in a given world) then so do all smaller
numbers:

!→xx→yy→x((#(xx,x)⇐→z(z ∝ yy ↔ z ∝ xx))↔↗w#(yy,w)). (Closure Down)

The idea is that the numbers are generated one at a time, in their natural order.

One does not have to think of the numbers as generated this way. One might instead allow a given plurality
to get a number before some of the its sub-pluralities have numbers. In that case, the relevant principle would
be that if a plurality has a number, then it could be that all of its sub-pluralities have numbers:

!→xx→x(#(xx,x)↔"→yy(→z(z ∝ yy ↔ z ∝ xx)↔↗w#(yy,w))). (potential closure down)

The principle (potential closure down) is a kind of generalization on the (G) axiom. From (G) and (Num Exists)
we have that for any given finite list of pluralities in a given world, there is an accessible world that contains
numbers for all of them. But, it seems, one cannot prove this generalization, at least as it is stated. Moreover,
our (Aristotle) principle only entails that all worlds are Dedekind finite. And we certainly have no guarantee
(yet) that the reasoning extends to Dedekind finite collections of pluralities.18

So far, we have the possibility of a world that contains only numbers, and which has a number for every
plurality in that world. Consider, for example, a world whose domain is the first five numbers, starting with one.
But we have such a world (or such a possibility) only because we have not yet introduced zero as a number.
Following standard practice, there is no “empty” plurality, and so there is no plurality whose number is zero.

4.2. Numbers of Fregean concepts

One reason that we treat numbers of Fregean concepts here is to explicate Frege’s account of how arithmetic
is applied. Frege (1893, §§45-46) asks what is it that (cardinal) numbers are numbers of? What is it that we
count? What do we apply number words to? His answer is that we apply numbers to concepts:

While looking at one and the same external phenomenon, I can say with equal truth both “It is a
copse” and “It is five trees”, or both “Here are four companies” and “Here are 500 men”. Now
what changes here from one judgment to the other is neither any individual object, nor the whole,
the agglomeration of them, but rather my terminology. But that is itself only a sign that one
concept has been substituted for another. This suggests as the answer [to the question is] that the
content of a statement of number is an assertion about a concept. This is perhaps clearest with the
number 0. (§46)

This account is also adopted by the abstractionists.

We introduce zero as the number of a Fregean concept. One option is to add a constant “0” to the language,
along with the axiom:

!→F(#(F,0)↑ ¬↗xFx).

17 There is no need for an analogous axiom Linnebo’s (2013, 2018) treatment of set theory. If two pluralities are coextensive, then they are the
same plurality.

18 Thanks to Øystein Linnebo for these observations.
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This entails that zero exists in every world or, in other words, zero necessarily exists. Since we are not
presupposing a free logic, we have that every constant denotes something—the same thing—in every world.

To be sure, having numbers—any numbers—that exist of necessity is contrary to the spirit of potentialism.
But perhaps the necessary existence of zero is at least relatively harmless: zero is the only number that exists
necessarily.

We opt to avoid even this. Instead, we define a concept Z that, necessarily, holds of nothing. Following
Frege, say that Z is defined by the formula x ↖= x:

!(→x(Zx ↑ x ↖= x)).

Since we have comprehension, this concept constant is eliminable, but it is convenient to have it in the formal
language. We add an axiom that it is necessary that zero could exist:

!"↗x#(Z,x). (Zero)

Following an informal Hume’s Principle, we add an axiom stating that, necessarily, any number of Z is not the
number of a plurality:

!→x→xx¬(#(Z,x)⇐#(xx,x). (Zero Not Plural)

And we extend (Closure Down) to a statement that if any number exists, then zero does:19

!(↗xx↗y#(xx,y)↔↗x#(Z,x)). (Closure Down+)

Let E be a concept constant defined by the formula “x = x”. It is the concept of being self-identical. Like Z,
this concept constant is eliminable. It is straightforward to see that E cannot have a number in any world that
is actually finite. Suppose that a given world w has exactly n elements in its domain. If n exists in w then by
(Closure Down) and (Closure Down+), every number smaller than n is also in w. There are thus n+1 numbers
in W , which is a contradiction. Moreover, the plurality of all objects in this world w also has no number.

Consider an interpretation in which every world is actually finite. Then E cannot have a number in any
world in that interpretation. So this interpretation satisfies:

!¬↗x#(E,x),

or, in other words:
!→xx(→x(x ∝ xx)↔ ¬↗x#(xx,x)).

Recall our principle (Num Exists) stating that every plurality could have a number:

!→xx"↗y#(xx,y).

The concept-analogue of this would be:
!→X"↗y#(X ,y).

As we have just seen, this is false at least in interpretations in which every world is actually finite. Our identity
concept E is a counterexample to this principle in any such interpretation.

It might prove instructive to dwell on this. The problem that, unlike pluralities (as conceived here), at least
some Fregean concepts are not rigid—and some are not stable. Let X be a concept, and focus on a particular
world w. The above formula says that there is a world w⇔, accessible from w that contains a number a number
of X . What we would get, if the principle were correct, is the existence of a number of X in w⇔, and that number
may be different from the number of X in w. Let’s apply this to our concept E. Suppose that a given world w

19 It is straightforward to modify (potential closure down) in an analogous way.
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has n members. The above principle would tell us that there is a world w⇔ in which E has a number. But this
would be the number of elements in w⇔, not the number of elements of w. Again, there is no such number in w⇔.

We add the following, connecting the numbers of non-empty Fregean concepts (in a given world) to
pluralities in that world, the number of the objects that the concept holds of in that world:

!→X→xx→y(#(xx,y)⇐ (→z(Xz ↑ z ∝ xx))↔ #(X ,y))

In words, and invoking the heuristic, if xx consists of the objects that X holds of in a given world, and if the
number of xx is y, then the number of X is y in that world. Of course, the concept X may not have that same
number (or any number) in a different world.

We add a converse:

→X→y(#(X ,y)↔→xx(→z(Xz ↑ z ∝ xx)↔ #(xx,y)))

This says that if a given Fregean concept has a number (in a world) and a given plurality is co-extensive with
the concept (in that world) then the plurality has the same number as the concept.

Define equinumerosity on Fregean concepts as follows:

F ↓ G ↑def ↗R(→x(Fx ↔↗!y(Rxy⇐Gy))⇐→y(Gy ↔↗!x(Rxy⇐Fx))).

then (HP), plus the usual properties of identity, entails:

→X→Y→x→y((#(X ,x)⇐#(Y,y))↔ (x = y ↑ X ↓ Y )).

In words, if two Fregean concepts have the same number (in a given world) then they are equinumerous (in
that world). This, of course, is a concept version of (HP). This and (HP⇔) entails that if two concepts are
equinumerous and one of them has a number, then the other one has the same number:

→X→Y→z(((X ↓ Y ⇐#(X ,z))↔→w((#(Y,w)))↑ z = w)).

5. Frege’s Theorem potentialized
5.1. The Dedekind-Peano axioms

A typical articulation of the (second-order) Dedekind-Peano axioms uses a language with a predicate N for
being a natural number, a constant 0 for zero, and a successor function s. The axioms are that zero is a number,
that the successor of a number is a number, that there is no number whose successor is zero, that the successor
function is one to one on the numbers, and an axiom of induction—for any Fregean concept X , if X holds of
zero and if X is closed under the successor function, then X holds of every number:

1. N(0)

2. →x(N(x)↔ N(sx))

3. ¬↗x(N(x)⇐ sx = 0)

4. →x→y((N(x)⇐N(y)⇐ sx = sy)↔ x = y)

5. →X((X0⇐ (→x((N(x)⇐Xx)↔ Xsx)))↔ (→x(N(x)↔ Xx)))

Recall that, in the present modal potentialist setting, we avoid a free logic. Since we do not want any
individual constants or any closed terms in the formal language, we follow Frege and employ a successor
relation: S(x,y) says that y is a successor of x. We use the following as our basic (non-modal) Dedekind-Peano
axioms:

1. ↗y(N(y)⇐→x¬(N(x)⇐S(x,y)))

2. →x(N(x)↔↗y→z((N(z)⇐S(x,z))↑ y = z))

3. →x→y→z((N(x)⇐N(y)⇐N(z)⇐S(x,z)⇐S(y,z))↔ x = y)

4. →X(→x((N(x)⇐→y¬(N(y)⇐S(y,x))↔ Xx)⇐ (→x((N(x)⇐Xx⇐S(x,y))↔ Xy)))↔ (→x(N(x)↔ Xx)))

The first axiom says that there is a number that is not a successor of anything; the second says that the successor
relation is a function on numbers; the third says that this function is one to one; and the fourth is induction.
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5.2. Definitions

Our next chore is to say what it is to be a natural number, in the potentialist setting, and to define the successor
relation and some related items. Then we give potentialist versions of the Dedekind-Peano axioms, and establish
those, along the lines of Frege’s Theorem.

As noted, Frege defines a natural number to be an ancestor of zero under the successor relation. So, for
Frege, a natural number is a finite cardinal number. Recall our axiom (Aristotle) designed to entail that, to
invoke the heuristic, all worlds are Dedekind finite. There are no Dedekind infinite pluralities nor are there any
Fregean concepts that apply to Dedekind infinitely many things (in any world). So here we take all (cardinal)
numbers to be natural numbers. So define an object to be a natural number if it is the number of a Fregean
concept:

NN(x)↑def ↗F#(F,x)

It is straightforward to show that x is a natural number just in case either it is the number of the concept Z of
being not self-identical or it is the number of a plurality:

NN(x)↑ (#(Z,x)⇓↗xx#(xx,x)).

Let O be the concept of being the number of a plurality of just one thing:

O(x)↑def ↗xx((#(xx,x)⇐→y→z((y ∝ xx⇐ z ∝ xx)↔ y = z)))

By (HP), if O(x) and O(y), then x = y. In effect, O is the concept of being the number one.

Frege and the abstractionist neo-logicists define the number one to be the number of the concept of being
identical to zero. This can be captured here. Recall our concept Z of being not self identical. The following
follows:

→x→y→xx((#(Z,x)⇐→z(z ∝ xx ↑ z = x)⇐#(xx,y))↔ O(y)).

In words, if y is the number of a plurality of only a number of Z, then O(y).

The next thing to be defined is the successor relation on numbers. Above, we gave a Fregean version of a
successor relation, plus another one that is classically equivalent but perhaps more natural. Number n follows
directly after number m just in case:

↗F↗G((m = #F ⇐n = #G)⇐↗x(Gx⇐→y(Fy ↑ (y ↖= x⇐Gy)))) (Frege-successor)

↗F↗G
(
m = #F ⇐n = #G⇐↗x(¬Fx⇐→y(Gy ↑ (y = x⇓Fy)))) (Successor)

Those can be captured here. We use a version of the latter:

S(m,n)↑def ↗F↗G(#(F,m)⇐#(G,n)⇐↗x(¬Fx⇐→y(Gy ↑ (y = x⇓Fy))))

It can be shown that S is stable, since the concepts F and G can themselves be chosen to be stable, say as either
the concept Z of being not self identical or the concept of being one of a given plurality. The following can be
shown:

S(m,n)↑ (#(Z,m)⇐O(n))⇓
↗xx↗yy(#(xx,m)⇐#(yy,n)⇐↗x(x ↖∝ xx⇐→y(y ∝ yy ↑ (y = x⇓ y ∝ xx)))).

In words, n is a successor of m just in case either m is a number of the concept of being not self identical and n
is a number of a plurality of just one thing, or m is a number of a plurality xx and n is a number of a plurality of
the xx and one more thing.

It will prove convenient to define the inequality relations on natural numbers:

x ↘ y ↑def ↗F↗G(#(F,x)⇐#(G,x)⇐→z(Fx ↔ Gx))

x < y ↑def (x ↘ y⇐ x ↖= y)

Again, we can see that these relations are stable since one can choose stable Fregean concepts F and G, either
our empty concept Z or the concept of being one of a given plurality.
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5.3. Targets

Recall that the potentialist translation of a non-modal formula is the result of replacing each universal quantifier
→ with !→ and each existential quantifier ↗ with "↗, and translating the connectives homophonically.

Our first three targets are the necessitations of the potentialist translations of the first three Dedekind-Peano
axioms:

1. !"↗y(NN(y)⇐!→x¬(NN(x)⇐S(x,y)))

2. !→x(NN(x)↔"↗y!→z((NN(z)⇐S(x,z))↑ y = z))

3. !→x!→y!→z((NN(x)⇐NN(y)⇐NN(z)⇐S(x,z)⇐S(y,z))↔ x = y)

We establish those here, and turn to induction in the next subsection. The first axiom is straightforward:

Theorem 1: !"↗y(NN(y)⇐!→x¬(NN(x)⇐S(x,y)))

Proof: Recall our axiom (Zero):
!"↗x#(Z,x),

and our definition of the “empty” concept Z:

!(→x(Zx ↑ x ↖= x)).

It follows immediately from the definition of S that no number of Z can be a successor of another
number.

We turn next to the second axiom. We break it up into two parts, first showing that successors are unique:

Theorem 2 (Frege): !→x→y1→y2((S(x,y1)⇐S(x,y2))↔ y1 = y2)

Proof: Suppose that S(x,y1) and S(x,y2) both hold (in a given world). Then

↗G1↗F1(#(G1,x)⇐#(F1,y1)⇐↗w1(¬G1w1 ⇐→w⇔(F1w⇔ ↑ (w⇔ = w1 ⇓G1w⇔))))

and
↗G2↗F2(#(G2,x)⇐#(F2,y2)⇐↗w2(¬G2w2 ⇐→w⇔(F2w⇔ ↑ (w⇔ = w2 ⇓G2w⇔))))

We have to show that y1 = y2. Suppose that F1,G1,w1,F2,G2, and w2 have the relevant features.
Then we have #(G1,x) and #(G2,x). By (HP), G1 ↓ G2. So there is a relation R such that
→u(G1u ↔↗!v(Ruv⇐G2v)) and →v(G2v ↔↗!u(Ruv⇐G1u)). Using comprehension, let R⇔uv hold
if and only either Ruv or else u = w1 and v = w2. It follows that F1 ↓ F2. By (HP), y1 = y2.

We turn next to the third axiom, that if two numbers have a common successor, then they are identical:

Theorem 3 (Frege): !→x!→y!→z((NN(x)⇐NN(y)⇐NN(z)⇐S(x,z)⇐S(y,z))↔ x = y)

Proof (sketch): Suppose that S(x,z) and S(y,z) both hold (in a given world). Then

↗F1↗G1(#(F1,x)⇐#(G1,z)⇐↗w1(¬F1w1 ⇐→w⇔(G1w⇔ ↑ (w⇔ = w1 ⇓F1w⇔))))

and
↗F2↗G2(#(F2,y)⇐#(G2,z)⇐↗w2(¬F2w2 ⇐→w⇔(G2w⇔ ↑ (w⇔ = w2 ⇓F2w⇔))))

We have to show that x = y. Suppose that F1,G1,w1,F2,G2, and w2 have the relevant features.
Then we have #(G1,z) and #(G2,z). By (HP), G1 ↓ G2. Our theorem follows from what may be
called the Equinumerosity Lemma:

Lemma: Suppose that X ↓ Y , Xx, and Y y. Let X ⇔ be the Fregean concept defined by →z(X ⇔z ↑
(Xz⇐ z ↖= x)), and let Y ⇔ be the Fregean concept defined by →z(Y ⇔z ↑ (Y z⇐ z ↖= y)). Then X ⇔ ↓ Y ⇔.

For a proof, see https://plato.stanford.edu/entries/frege-theorem/proof5.htm.
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Notice that in the proofs of Theorems 1-3, we have not invoked the axiom (Aristotle) that all worlds are
Dedekind finite (so to speak). We do so now.

Theorem 4: No plurality is equinumerous with a proper sub-plurality:

!→xx→yy((→x(x ∝ xx ↔ x ∝ yy)⇐↗y(y ∝ yy⇐ y ↖∝ xx))↔ xx ↖↓ yy).

Proof: Suppose that →xx→yy(→x(x ∝ xx ↔ x ∝ yy)⇐ y ∝ yy⇐ y ↖∝ xx). And suppose that xx ↓ yy.
Then there is a relation F that maps xx one-to-one onto yy, and a relation G that maps yy one-to-one
onto xx. By first applying G and then F , we obtain a relation that maps yy one-to-one onto a
proper subset of yy. This contradicts (Aristotle).

This result, together with (HP), sanctions (in this context) Euclid’s Common Notion: a whole is
greater than its (proper) parts.

Corollary: !→n(NN(n)↔ ¬S(n,n)); no number is its own successor.

Proof: Suppose that S(x,x). That is,

↗F↗G(#(F,n)⇐#(G,n)⇐↗x(¬Fx⇐→y(Gy ↑ (y = x⇓Fy))))

Let F , G, and x be given as in the formula:

#(F,n)⇐#(G,n)⇐¬Fx⇐→y(Gy ↑ (y = x⇓Fy)).

By (HP), F ↓ G:

↗R[→z(Fz ↔↗!y(Gw⇐Rzw))⇐→w(Gw ↔↗!z(Xz⇐Rzw))]

But since →x(Gx ↔ Fx), R is a one-to-one function on G which is not a surjection: x is not in its
range. This contradicts (Aristotle).20

Next is a common result in the abstractionist program. It does not depend on the (Aristotle) axiom.

Theorem 5: (Frege) Suppose that 0 is a (or the) number of our “empty” concept Z (in a given
world w). Consider the concept NF of being an ancestor of 0 (in w) under the successor relation:

→x(NF(x)↑ S
⇒(0,x))

Suppose N
F(n). Then n is either 0 or is the number of the plurality of all numbers (in w) that are

less then n.

Proof: Let A(x) be the Fregean concept of being either 0 or the number of numbers less than x.
Of course A(0). Suppose that A(n) and that S(n,n⇔), i.e., that n⇔ is a successor of h and thus, from
Theorem 2, n⇔ is the successor of n. From the definition of the ancestral, we have to show that
A(n⇔). We have that n is the number of numbers less than n, that n ↘ n⇔, and, by the Corollary to
Theorem 4, n ↖= n⇔. By the definition of successor, n⇔ is the number of numbers less than n⇔.

We now return to the other half of the second Dedekind-Peano axiom. We show that, necessarily, for every
number n, it is possible that n has a successor:

20 Suppose we are working in a system like ours but without the (Aristotle) axiom. Let aa be Dedekind infinite, and assume #(aa,n). Then it
is straightforward to show that S(n,n); n is its own successor.
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Theorem 6: (Frege) !→x(NN(x)↔"↗yS(x,y))

Proof: We have that for every number x, either x is a number of Z (the Fregean concept of being
not self identical), or there is a plurality xx such that x is a number of xx.

Suppose that 0 is a (or by (HP), the) number of Z. Consider the plurality aa of just 0. Recall our
axiom (Num Exists):

!→xx"↗y#(xx,y).

This entails that aa could have a number. It is straightforward that this number is a successor of 0
(namely the number one).

So now let n be the number of a plurality aa (so that #(aa,n)). To invoke the heuristic, suppose
that aa exists in a world w. We have to show that n could have a successor.

Case 1: There is an object c in w such that c ↖∝ aa. Consider the plurality aa⇔ consisting of the aa
and c. By (Num Exists), aa⇔ could have a number. So there is a world w⇔ accessible from w and a
number n⇔ of aa. It is straightforward that n⇔ is a successor of n.

Case 2: There is no object c in w such that c ↖∝ aa. In other words, aa is the plurality of all objects
in w. We show that this is impossible. Recall our axioms (Closure Down) and (Closure Down+),
that if a number exists in a world then so do all smaller numbers. So w contains the number n
of our “universal” plurality aa and all smaller numbers. By (Closure Down+), it contains 0, the
number of our “empty” concept Z. Let aa be any plurality of objects in w. Then any number of
aa is less than our equal to n, So that number is also in w. So w contains the number of every
plurality of objects in w.

Let nn be the plurality of all ancestors of 0 in w. That is

→x(x ∝ nn ↑ S
⇒(0,x)).

Now if every nn had a successor in nn, then the successor relation S would be a one-to-one
function on nn that is not a surjection (since 0 has no predecessor). This contradicts (Aristotle).

So there is a number m in nn that has no successor in nn. By Theorem 5, m is the number of all
numbers less than m. But nn is a plurality of objects in w and so the number m⇔ of nn is in the
world w. But m⇔ is the successor of m, and so m has a successor in w after all. This, of course, is a
contradiction.

Theorem 7: !→x((NN(x)⇐¬↗yS(y,x)) ↔ #(Z,x)). The only number that does not have a
predecessor is zero.

Proof: Suppose not, that

"↗x(NN(x)⇐¬↗yS(y,x)⇐¬#(Z,x)).

Invoking the heuristic, there is a world w which contains a number a which is not a number
of Z and which as no predecessor (in w). It follows that a is the number of a plurality (in w):
↗xx#(xx,a). Let aa be one such plurality (in w). So #(aa,a).

Recall our axioms (Closure Down) and (Closure Down+) that if a number exists (in a world) then
so do all smaller numbers. Let A be the Fregean concept of being a number (in w) that is strictly
smaller than a:

→z(Az ↑ (#(Z,z)⇓↗zz(#(zz,z)⇐→y((y ∝ zz ↔ y ∝ aa)⇐ zz ↖↓ aa))))

Lemma: A is closed under successor (in w): →u(A(u)↔↗v(S(u,v)⇐A(v))).
Proof: Suppose A(e). So either e is a number of Z or e is the number of a plurality ee
that maps one to one, but not onto aa.

Case 1: #(Z,e), or, in words, e is a number of Z. Since pluralities are not “empty”,
let c ∝ aa. Then consider the plurality cc of just c: →x(x ∝ cc ↑ x = c). Clearly, this
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plurality maps one to one into aa. Moreover, there is another element d ↖= c such that
d ∝ aa. Otherwise a would have a predecessor, namely e). So cc has a number (in w).
That number is a successor of e.

Case 2: e is not a number of Z. Then there is a plurality ee such that #(ee,e) and ee is
a sub-plurality of aa, but is not all of aa:

→(x ∝ ee ↔ x ∝ aa),

↗x(x ∝ aa⇐ x ↖∝ ee).

So let d ∝ aa and d ↖∝ ee. Then consider the plurality gg where →x(x ∝ gg ↑ (x ∝
ee⇓ x = d)). Then, by (Closure Down) we have gg has a number g (in w) and so
S(e,g). Moreover, gg is not all of aa. If it were, then we would have S(g,a), and so a
would have a predecessor. So A(g).

So we have that A holds only of numbers, and each such number has a successor that A holds of.
And successors are unique. So, by (Aristotle), it follows that every member of A has a predecessor.
But we also have that A holds of a number of Z, and we know that no such number can have a
predecessor.

5.4. Induction

We turn to induction. Recall that Frege defines a natural number to be an ancestor of zero under the successor
relation. There is what we may call a local version of induction:21

Theorem 8: !→x(NN(x)↑↗z(#(Z,z)⇐S
⇒(z,x))

In words, x is a number (in a world w) just in case x is an ancestor of a number of Z under S.

Proof: Suppose that our theorem is false. To invoke our heuristic, suppose that the theorem fails
in world w. Let a be an object in w. Suppose ↗z(#((Z,z)⇐S

⇒(z,a))). Then NN(x), since the relata
of S are all numbers. So the right-to-left direction of the biconditional holds in w (trivially). So in
w, there is a number 0 of Z and a number n which is not an ancestor of 0 under S. By our axioms
(Closure Down) and (Closure Down+), every number less than or equal to n exists in w.

Let A be the Fregean concept of being a number less than our equal to n which is not an ancestor
of 0 under S:

→x(A(x)↑ (x ↘ n⇐¬S⇒(0,n))).

Notice that ¬A(0) since, of course, S⇒(0,0). So if A(m) then m ↖= 0. So, by Theorem 8, m has
a predecessor m⇔. And we have A(m⇔), since m⇔ < m ↘ n and m⇔ is not an ancestor of 0 under S
(since otherwise m would be).

Let nn be the plurality of all objects of which A holds. We have that the predecessor relation is
a one-to-one function on nn. So, by (Aristotle) the predecessor relation is onto nn. So n has a
successor n⇔ such that A(n⇔). But this is absurd, since n⇔ is not less than or equal to n.

Recall our principle (finite) that states that, in effect, all worlds are finite:

!↗R(→x→y1→y2((Rxy1 ⇐Rxy2)↔ y1 = y2)⇐↗x→zR⇒(x,z)⇐↗y→z(¬R(y,z))) (finite)

We did not adopt (finite) as an axiom, opting for the ostensibly weaker (Aristotle), which only states that, in
effect, all worlds are Dedekind finite.

We can now prove that all worlds are actually finite.

21 Thanks to Øystein Linnebo for suggesting this.
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Corollary: (finite)

Proof: Suppose w is any world that is Dedekind finite but not finite, and let aa be the plurality
of being a object in w. Let n be a number of aa, presumably in a different, accessible world. By
Theorem 8, n is an ancestor of zero under s.

So we see that (Closure Down) is a powerful axiom, as is (potential closure down). If we have a number
n of a Dedekind finite, but not finite Fregean concept A (or plurality aa), in a given world, then by (Closure
Down) (or (potential closure down)), there is (or could be) a Dedekind infinite sequence of numbers below n,
contradicting (Aristotle). In short, all worlds are actually finite.22

Recall the formulation of induction in a non-modal language that has no constants and successor is
chararized as a relation:

→X(→x((N(x)⇐→y¬(N(y)⇐S(x,y))↔ Xx)⇐ (→x→y((N(x)⇐Xx⇐S(y,x))↔ Xy)))↔
(→x(N(x)↔ Xx))).

We can simplify this a little, using present notation:

→X(((→x#(Z,x)↔ Xx)⇐ (→x→y((NN(x)⇐Xx⇐S(y,x))↔ Xy)))↔ (→x(NN(x)↔ Xx))).

The potentialist translation of this is:

!→X(((!→x(#(Z,x)↔ Xx)⇐ (!→x→y((NN(x)⇐Xx⇐S(y,x))↔ Xy)))

↔ (!→x(NN(x)↔ Xx))). (Ind!)

In words, and using the heuristic of possible worlds, (Ind!) says that IF in any world w1, if w1 contains a
number of Z, then X holds of that number (in w1), and IF for any world w2, if X holds of a number n in w2 and
a successor of n exists in w2, then X holds of that successor (in w2), THEN for any world w3, X holds of all of
the numbers in w3. The consequent says that whenever a number is generated, X necessarily holds of it.

Theorem 9: (Ind!)

Proof: Suppose not. So there is world w and a Fregean concept A such that necessarily, if there is
number of Z then A holds of that number and, necessarily, if A holds of a number n in w and that
number has a successor in w, then A holds of that successor in w, and there is a number m in w
and A does not hold of m in w.

By (Closure Down) and (Closure Down+), w contains all numbers smaller than m. Define a
Fregean concept B as follows:

→x(Bx ↑ (x ↘ m⇐¬Ax))

Of course, we have Bm and if n is a number of Z (i.e., #(Z,n)), then ¬Bn, since A necessarily
holds of any number of Z. Suppose that Bq and that q is predecessor of r, so that S(q,r). Then Br,
since otherwise we would have Aq. So every number that B applies to has a predecessor that B
applies to. By (Aristotle), m must have a successor that B applies to. But, by definition, everything
that has B is less than or equal to m. This is a contradiction.

22 The usual proof, in set theory, that if a set is Dedekind finite then it is finite uses the axiom of choice. Various choice principles can be
formulated in pure higher-order logic (see Siskind, Mancosu and Shapiro, 2023). Our (Aristotle) and (finite) can be shown equivalent in a
third-order language that has a sort for relations between pluralities and objects, and a sort for functions from pluralities to objects, plus the
following choice principle:

→R(→xx↗yR(xx,y)↔↗F→xxRxx,F(xx)).
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5.5. Mirroring?

Recall the potentialist translation of our non-modal language: replace all quantifiers of the form →x and →X with
!→x and !→X respectively, and replace all quantifiers of the form ↗x and ↗X with "→x and "→X respectively.
If # is a formula in the non-modal language, let #! be its translation.

Recall also the classical potentialist mirroring theorem (from Linnebo, 2013 and 2018): Let ⇑ be the
relation of classical deducibility in a non-modal first-order language L . Let L ! be the corresponding modal
language, and let ⇑! be deducibility in this language corresponding by ⇑, S4.2, and axioms asserting the
stability of all atomic predicates of L . Then for any formulas #1, . . . ,#n,∃ of L , we have:

#1, . . . ,#n ⇑ ∃ if and only if #!
1 , . . . ,#!

n ⇑! ∃!.

The present non-modal language is, of course, second-order. For present purposes, we consider it to be a
multi-sorted first-order language (with one sort for each kind of relation variable). There are two options for the
target modal theory. One is to take the potentialist translations of the comprehension axioms as part of modal
system ⇑!, and the other is to include any use of comprehension as among the (non-logical) premises (the #i’s)
on the left hand side of the biconditional. Each of these follows in our modal theory (noting Lemma 5.3 of
Linnebo, 2013).

Unfortunately, we cannot make direct use of the classical potentialist mirroring theorem here, for at least
two reasons. First, the mirroring theorem requires all atomic formulas (in the modal language) to be stable, but
our predication relation (between, say, monadic Fregean concepts and individual objects) is not stable. Consider
the Fregean concept of being the largest number (in a given world):

Lx ↑ (NN(x)⇐→y(NN(y)↔ y ↘ x))

Consider a world w that has a number n for Z, and no other numbers. Then Ln holds at w but not at any
accessible world that contains more numbers. A second example is the concept of being the number of numbers
(in a given world): #(NN,x). A world with, say, exactly four numbers has access to a world with exactly five. A
second reason why the mirroring theorem does not (directly) apply is that the present modal theory has axioms
(such as (Aristotle)) that are not in the range of the potentialist translation.23

We can, however, make some use of the mirroring theorem. Let PA! be the modal theory consisting of
S4.2, axioms stating the stability of all atomic predicates of the above Dedekind-Peano theory, including the
stability of predication, as well as the potentialist translations of the instances of the comprehension scheme of
the non-modal theory. Note that we do not have full comprehension in PA!. Let ⇑! be deducibility in PA!.

The mirroring theorem thus applies to PA!, with respect to our non-modal Dedekind-Peano arithmetic: For
any formulas #1, . . . ,#n,∃ of the non-modal Dedekind-Peano arithmetic, we have:

#1, . . . ,#n ⇑ ∃ in the non-modal theory if and only if #!
1 , . . . ,#!

n ⇑! ∃!.

It is possible to interpret PA! in our present modal (and plural) theory (which does have full modal and
plural comprehension, along with axioms that are not in the range of the potentialist translation). First, if X is a
concept variable, then let SX be an abbreviation of the statement that X is stable:

SX ↑def (→x(Xx ↔ !Xx)⇐→x(¬Xx ↔ !¬Xx))

and similarly for relation variables. Let ∀ be any formula of our modal and plural theory, and let ∀ S be the result
of restricting all higher-order variables in ∀ to S. That is, replace each →X∃ with →X(SX ↔ ∃) and replace
each ↗X∃ with ↗X(SX ⇐∃). It is straightforward (but tedious) to verify that if

#!
1 , . . . ,#!

n ⇑! ∃!,

then ∃!S can be derived from #!S
1 , . . . ,#!S

n in the present modal system.

We can do a lot better, however, since we only need one direction of the mirroring theorem.

23 There also may be an issue with the fact that the modal language has plural terminology, but that does not seem to be problematic.
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Theorem 10: let ⇑ be deducibility in our original non-modal second-order theory of arithmetic,
and let ⇑P be deducibility in our modal theory above. Then for any formulas #1, . . . ,#n,∃ of the
non-modal language:

if #1, . . . ,#n ⇑ ∃ then #!
1 , . . . ,#!

n ⇑P ∃!.

Proof: This is a straightforward (if tedious) induction on the length of a derivation in the non-
modal theory of arithmetic (as in the proof of the mirroring theorem in Linnebo, 2013 and
2018).

Recall that in our modal theory, we have the potentialist translations of the instances of comprehension as
well as the potentialist translations of all of the Dedekind-Peano axioms. So we also have potentialist translations
of every theorem of second-order Dedekind-Peano arithmetic. Putting aside the obvious anachronism, we thus
have a verification of an arithmetic counterpart to one of Aristotle’s claim’s about actual infinity. To repeat:

Our account does not rob the mathematicians of their study, by disproving the actual existence of
the infinite in the direction of increase, in the sense of the untraversable. In point of fact they do
not need the <actual> infinite . . . (207b27-30)

Of course, this applies to the mathematics of Aristotle’s day, not the contemporary scene. Present focus is only
on contemporary Dedekind-Peano arithmetic.

For the record, note that the following is a model for our modal theory: for each natural number n, there
is a world whose domain is {m|m ↘ n}, and accessibility is inclusion. So our modal theory is consistent if
arithmetic is.

6. Doing without (Aristotle) and doing without (finite)

Recall our axiom (Aristotle) stating (in effect) that all worlds are Dedekind finite:

!→R→X [→x(((Xx ↔↗y→z(Xz⇐Rxz)↑ y = z))⇐→x1→x2→y((Rx1y⇐Rx2y)↔ x1 = x2))

↔→y(Xy ↔↗x(Xx⇐Rxy)))].

The plan here is to drop this. We do not want to assert, in the theory itself, the possible existence of, say, a
plurality of all natural numbers, but we also don’t want to rule out the possible existence of such a plurality. So
we do not assert (here) the negation of (Aristotle), which would entail the existence of a world with a Dedekind
infinite domain. Of course, we also do not wish to assert, here, the stronger principle (finite), that all worlds are
actually finite, nor do we assert its negation.

Recall that, assuming (Aristotle) we defined a natural number to be the number of a Fregean concept or,
equivalently, either a number of Z or the number of a plurality:

NN(x)↑def ↗F#(F,x),

NN(x)↑ (#(Z,x)⇓↗xx#(xx,x))

We do not want to say that here, of course. Instead, we take the formula(s) just above to be a definition of
number:

N(x)↑def ↗F#(F,x),

or, equivalently:
N(x)↑ (#(Z,x)⇓↗xx#(xx,x)).

Now we need a definition of natural number, noting that there may be numbers that are not natural numbers.
Recall that Frege’s definition of the ancestral can be invoked in the potentialist context, provided it is formulated
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in terms of relations instead of functions, and does not invoke any singular terms. To deploy the heuristic, the
definition works as advertised within each world. To remind the gentle reader, let R be a two place relation:

R⇒xy ↑def →X [(Xx⇐ (→z→w((Xz⇐Rzw)↔ Xw)))↔ Xy]

Recall also that Theorem 8 is what might be called a local version of induction:

!→x(NN(x)↑↗z(#((Z,z)⇐S
⇒(z,x))))

This assumed our prior definition of a natural number as the number of any plurality or Fregean concept, and
the proof invoked our (Aristotle) axiom. Here we follow Frege and just take this formula to be a definition of
natural number:

NN(x)↑def ↗z(#((Z,z)⇐S
⇒(z,x))) (Frege)

It is straightforward to verify that NN is stable, and that all natural numbers are numbers:

!→n(NN(n)↔ N(x))

Recall our result that each ancestor of zero under successor is the number of all smaller numbers:

Theorem 5: Suppose that 0 is a (or the) number of our “empty” concept Z (in a given world w).
Consider the concept NF of being an ancestor of 0 (in w) under the successor relation:

→x(NF(x)↑ S
⇒(0,x))

Suppose N
F(n). Then n is either 0 or is the number of the plurality of all numbers (in w) that are

less then n.

Since this is (or could have been) established without invoking (Aristotle), it holds here: every natural number
is the number of all smaller numbers.

In the above treatment (assuming (Aristotle)), our first three targets were the necessitations of the potentialist
translations of the first three Dedekind-Peano axioms:

1. !"↗x(NN(x)⇐→y¬(NN(y)⇐S(x,y)))

2. !→x(NN(x)↔"↗y!→z((NN(z)⇐S(x,z))↑ y = z))

3. !→x!→y!→z((NN(x)⇐NN(y)⇐NN(z)⇐S(z,x)⇐S(z,y))↔ x = y)

In words, (1) there is a number that is not a successor of anything, (2) every number has a unique successor
(i.e., the successor relation is a function), (3) successor is one to one.

In the previous section, Theorem 1 established the first of these, Theorem 2 established “half” of the second,
that successors are one to one, and Theorem 3 established the third. The proofs of these did not invoke the
(Aristotle) axiom, and they relied on the definition of a natural number as the number of a Fregean concept. So
they hold here for numbers, and not just natural numbers. We have:

1. !"↗x(N(x)⇐→y¬(N(y)⇐S(x,y)))

2. !→x→y1→y2((S(x,y1)⇐S(x,y2))↔ y1 = y2)

3. !→x!→y!→z((N(x)⇐N(y)⇐N(z)⇐S(z,x)⇐S(z,y))↔ x = y)

A fortiori, since all natural numbers are numbers, these hold for natural numbers as well.

Without (Aristotle) and (finite), we would not expect Theorem 4 above, that no plurality is equinumerous
with a proper sub-plurality to hold. Consider the Corollary to Theorem 4:
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!→n(NN(n)↔ ¬S(n,n)); no number is its own successor.

This, too, relied on (Aristotle).

As indicated by the gloss, there are two statements to be pondered here. The first, taking the gloss literally
(and out of its original context), is that no number is its own successor. Of course, we should not expect that
to hold here, since we are not ruling out worlds with infinitely many members. As pointed out in note 20, if
an interpretation has a Dedekind-infinite plurality aa in a given world, then the number of aa will be its own
successor.

The other reading of Theorem 5 is that no natural number is its own successor. That follows from (Frege)
and the definition of the ancestral:

Theorem 11: !→x(NN(x)↔ ¬S(x,x)).
Proof: Let B be the Fregean concept which holds of something just in case it is a natural number
that is not its own successor:

B(x)↑ (NN(n)⇐¬S(n,n))

Let 0 be a (or, better, the) number of Z (the Fregean concept of being not self-identical). Since 0
has no predecessor, it is not a predecessor of itself, and so it is not a successor of itself. So B(0).
Now suppose that B(x) and S(x,y). Then NN(y) and y has a predecessor, namely x. So B(y). So
we have S

⇒(a,y) So by (Frege) NN(y). Thus, B holds of all natural numbers.

Now we can easily establish the other “half” of the second Dedekind-Peano axiom, that every natural
number could have a successor:

Theorem 12: (Frege) !→x(NN(x)↔"↗yS(x,y)).

Proof: Suppose NN(n). By closure down, all numbers smaller then n exist. By Theorem 5, n
is the number of the plurality of all numbers smaller than n. Let nn be the plurality of n and all
numbers smaller than n. By (Num Exists) nn could have a number. This number is a successor of
n.

The final axiom is induction. Recall that the potentialist translation of this is:

!→X(((!→x(#(Z,x)↔ Xx)⇐ (!→x→y((NN(x)⇐Xx⇐S(x,y))↔ Xy)))

↔ (!→x(NN(x)↔ Xx))). (Ind!)

Here the proof of this is straightforward.

Theorem 13: (Ind!)

Proof: Let X be a Fregean concept and suppose that, necessarily, X holds of every number of
Z, and that, necessarily, X is closed under successors. Let w be a world. Then if w contains a
number of Z, then X holds of that number, and we have that X is closed under successor in w. So,
by (Frege), X holds of all numbers in w.

So, as with the previous theory based on (Aristotle), the present theory has the potentialist translations of
all theorems of second-order Dedekind-Peano arithmetic.

Recall that most of the proofs in the previous section that relied on (Aristotle) used a reductio, sometimes
called classical reductio or negation introduction. Here all of the relevant proofs are constructive. So if the
background logic is intuitionistic, the theory proves all theorems of full second-order Heyting arithmetic.

Finally, here is a model of the present theory, one that does satisfy the negation of (Aristotle) and thus the
negation of (finite). There is one world that contains every natural number and also ∀0 (i.e., the number that
Frege calls endlos), and for each natural number n, there is a world which contains all numbers less than or
equal to n. Accessibility is inclusion.
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7. Aristotelian set theory

The final project here is an Aristotelian set theory. Its intended interpretation is the hereditarily finite sets.
As noted, Linnebo (2013, 2018) develop a potentialist set theory, based in a version of Frege’s Basic Law V.
The main idea is that, necessarily, for every plurality aa, there could be set whose members are the aa. There
are axioms that make the theory equi-consistent with ZFC. The analogue of the axiom of infinity is an axiom
stating that there is an transfinite stage or world, one that contains the set of all finite von Neumann ordinals, for
example.

A natural attempt here would be a theory like Linnebo’s, but with the aforementioned “infinity” axiom
replaced with its negation, perhaps a set-theoretic analogue of our (Aristotle) axiom. Unfortunately, this will
not do. It is “folklore” that ZFC′—ZFC with the axiom of infinity replaced by its negation—is equivalent, in
some sense, to Dedekind-Peano arithmetic. The fact is that the theories are mutually interpretable, but they are
not definitionally equivalent. Moreover, Kaye and Wong (2007) point out that ZFC′ does not prove induction
for membership, nor does it prove that every set has a transitive closure. Indeed, ZFC′ does not prove that
every set is a subset of a transitive set, a principle sometimes called “transitive containment”. ZFC′ is a rather
bizarre and unnatural theory.

Because of the Mirroring theorem, the same goes for a potentialist set theory like the envisioned one by
Linnebo, but with the “infinity” axiom replaced by its negation. The plan here is to start with the non-modal
“Small Set Theory” (SST) of McCarty, Shapiro, and Rathjen (2024). The only non-logical symbol is that for
membership. There are four axioms:

1. Extensionality: →x→y(→z(z ↙ x ↑ z ↙ y)↔ x = y).

2. Empty Set: ↗x→y.y ↖↙ x.

We use “0” as a symbol for the empty set.

3. Adjunction →x→y↗z→u(u ↙ z ↑ (u ↙ x⇓u = y)).

Our unofficial (and eliminable) notation the adjunction of x and y is

x∞{y}.

Note that, when writing x∞{y} here we do not presume thereby that an operation of binary union exists
over the class of all sets. This is a theorem.

4. Induction on Adjunction: For any formula ∀(x) in the language of set theory—featuring perhaps set
parameters—if ∀(0) and if

→x→y((y ↖↙ x⇐∀(x)⇐∀(y))↔ ∀(x∞{y})),

then →x∀(x).

The background logic for this theory is intuitionistic. All of the axioms of ZFC, except, of course, Infinity,
follow from these axioms, as well as induction for membership, a theorem that every set has a transitive closure,
and a theorem that every set is finite. SST is definitionally equivalent to Heyting arithmetic. If the background
logic is classical, then the theory is definitionally equivalent to first-order Dedekind-Peano arithmetic.

Note that SST is first-order, with no variables or symbols for either pluralities or Fregean concepts. The
plan is to develop a potentialist version SST! of SST. We start with axioms assuring that sets are rigid, that
they have the same members in all worlds. We add the potentialist translations of the four axioms of SST.
Extensionality is:

!→x→y(!→z(z ↙ x ↑ z ↙ y)↔ x = y).

Empty Set is
"↗x!→y.y ↖↙ x.
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As with the Aristotelian arithmetic(s), we do not introduce any individual constants, since we do not wish to
presuppose that any particular things exist. We introduce E(x) as an abbreviation of !→y.y ↖↙ x. So our axiom is
"↗xE(x). Adjunction is

!→x→y"↗z!→u(u ↙ z ↑ (u ↙ x⇓u = y)).

We introduce A(z,x,y) for z is an adjunction of x and y: !→u(u ↙ z ↑ (u ↙ x⇓u = y)).

Finally, induction on Adjunction: Necessarily, for any formula ∀(x) in the language of the modal set theory
featuring perhaps set parameters) if !→x(E(x)↔ ∀(x)) and if

!→x→y→z((y ↖↙ x⇐∀(x)⇐∀(y)⇐A(z,x,y))↔ ∀(z))),

then !→x∀(x).

That’s it. Since the language is first-order and membership is stable (indeed rigid), then the mirroring
theorem entails that the potentialist translations of all of the axioms of ZFC, except, of course, Infinity, follow
from these axioms, as well as induction for membership. We have that for every set x, there could be a transitive
closure of x, and, crucially, it is necessary that every set is finite, and thus that every set is hereditarily finite.
Our theory SST! is definitionally equivalent to modalized Dedekind-Peano arithmetic.24

Acknowledgements

Thanks to Øystein Linnebo for reading previous versions of this paper and providing many helpful comments
and suggestions. Thanks also to Neil Barton for insight into the philosophical and technical background.
And to Tim Button for a most interesting exchange on key aspects of this paper. Thanks also to audiences
in the C-FORS project at the University of Oslo for devoting several sessions to this project and providing
helpful comments and suggestions. And I am indebted to two anonymous referees for helpful comments and
suggestions.

References

Aristotle. (1941). The Basic Works of Aristotle (R. McKeon, Ed.). Random House.
Button, T. (2021a). Level theory, Part 1: Axiomatizing the bare idea of a cumulative hierarchy of sets. Bulletin of

Symbolic Logic, 27, 436–460.
Button, T. (2021b). Level theory, Part 2: Axiomatizing the bare idea of a potential hierarchy. Bulletin of Symbolic

Logic, 28, 1–29.
Button, T. (2021c). Level theory, Part 3: a Boolean algebra of sets arranged in well-ordered levels. Bulletin of

Symbolic Logic, 28, 1–29.
Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle:

Louis Nebert. Translated as Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure
thought, in J. Van Heijenoort (Ed.), From Frege to Gödel (pp. 1–82). Harvard University Press.

Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Koebner. Translated as The Foundations of Arithmetic
(J. Austin, Trans., 2nd ed.). New York: Harper, 1960.

Frege, G. (1893). Grundgesetze der Arithmetik 1. Olms: Hildesheim. Translated as Basic Laws of Arithmetic (Philip
A. Ebert & Marcus Rossberg, Trans.). Oxford University Press, 2013.

Gauss, K. F. (1831). Briefwechsel mit Schumacher. In Werke (Vol. 8, p. 216).
Hale, B. (1983). Abstract Objects. Oxford: Basil Blackwell.
Hale, B. & Wright, C. (2001). The Reason’s Proper Study. Oxford University Press.
Hellman, G. & Shapiro, S. (2018). Varieties of Continua: From Regions to Points and Back. Oxford University

Press.
Hodes, H. (1990). Where do the natural numbers come from? Synthese, 84, 347–407.
Kaye, R. & Wong, T. L. (2007). On interpretations of arithmetic and set theory. Notre Dame Journal of Formal

Logic, 48, 497–510.
Lear, J.. (1980). Aristotelian infinity. Proceedings of the Aristotelian Society, 80, 187–210.
Linnebo, Ø. (2013). The potential hierarchy of sets. Review of Symbolic Logic, 6, 205–228.
Linnebo, Ø. (2018). Thin Objects: An Abstractionist Account. Oxford University Press.

24 A different potentialist theory of the hereditarily finite sets can be obtained from Button (2021a, 2021b, 2021c) by adding axioms to the
effect that every set could have a singleton and that there cannot be an infinite set.

152



Aristotle meets Frege: from Potentialism to Frege Arithmetic

Linnebo, Ø. & Shapiro, S. (2019). Actual and potential infinity. Noûs, 53, 160–191.
McCarty, C., Shapiro, S., & Rathjen, M. Intuitionistic sets and numbers: Small set theory and Heyting Arithmetic.

Archive for Mathematical Logic, 2024. https://doi.org/10.1007/s00153-024-00935-4
Miller, F. D. (2014). Aristotle against the atomists. In N. Kretzmann (Ed.), Infinity and Continuity in Ancient and

Medieval Thought (pp. 87–111). Cornell University Press.
Shapiro, S. (1991). Foundations Without Foundationalism: A Case for Second-Order Logic. Oxford University

Press.
Siskind, B., Mancosu, P. & Shapiro, S. (2023). A note on choice principles in second-order logic. Review of

Symbolic Logic, 16, 339–350.
Sorabji, R. (2006). Time, Creation and the Continuum: Theories in Antiquity and the Early Middle Ages. University

of Chicago Press.
Stafford, W. (2023). The potential in Frege’s Theorem. Review of Symbolic Logic, 19, 553–577.
Van Heijenoort, J. (1967). From Frege to Gödel. Harvard University Press.
Walsh, S. (2012). Comparing Peano arithmetic, Basic Law V, and Hume’s Principle. Annals of Pure and Applied

Logic, 163, 1679–1709.
Wright, C. (1983). Frege’s Conception of Numbers as Objects. Aberdeen University Press.

153

https://doi.org/10.1007/s00153-024-00935-4

