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Abstract: In her seminal article ‘Proper Classes’, Penelope Maddy introduced a
novel theory of classes validating the naïve comprehension rules. The theory is based
on a step-by-step construction of the extension and anti-extension of the membership
predicate, which mirrors Kripke’s construction of the extension and anti-extension
of the truth predicate. Maddy’s theory has been criticized by Øystein Linnebo
for its ‘rampant indeterminacy’ and for making identity among classes too fine-
grained. In this paper, I present a theory of classes which, while building on Maddy’s
theory, avoids its rampant indeterminacy and allows for identity among classes to be
suitably coarse-grained. I begin by presenting a bilateral natural deduction system
for Maddy’s theory, which improves on her axiomatization in several respects. I then
go on to show how to avoid the rampant indeterminacy by using supervaluational
schemes in the construction of the extension and anti-extension of the membership
predicate and how to augment the proof theory with corresponding, motivated
rules. It turns out that whilst a van Fraassen-style supervaluational scheme suffices
to avoid the basic problem of rampant indeterminacy, a supervaluational scheme
based on maximally consistent extensions is needed for a proper treatment of
identity.

Keywords: Classes, hierarchies, supervaluation, Maddy, identity, maximal consistency,
bilateral logic.

1. Introduction

Despite early doubts about their legitimacy—doubts that, in the
philosophical literature, continue to this day—sets have become the bread
and butter of mathematics. And despite doubts about its cogency and
limitations, the iterative conception of set—according to which sets are
the objects obtained by iterated applications of the set of operation—
has become the received view of sets in mathematics and philosophy.1
Even if one accepts this received view, one might well wonder: are there
collections other than sets?

1For an extended defence of the iterative conception against rival conceptions of set, see Incurvati, 2020.
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George Boolos forcefully advocated a negative answer—a ‘settist’ position, as he liked to call
it. In response to Charles Parsons’s (1974) proposal for a theory of sets and classes, he famously
complained:

Wait a minute! I thought that set theory was supposed to be a theory about all,
‘absolutely’ all, the collections that there were and that ‘set’ was synonymous with
‘collection’. (Boolos, 1974, 35)

Those that defend a positive answer—those who argue that we should countenance collections
other than sets—typically do so on the grounds that they are needed to perform tasks that sets
are unable or less suited to accomplish. Indeed, it is in part because of his settist convictions
that Boolos embarked upon his programme of providing a plural interpretation of second-order
logic: our apparent talk about what appear to be collections that cannot form a set, such as the
collection of all ordinals and the collection of all sets, should be seen as plural talk in disguise.

One of the philosophers to have most clearly presented some of the reasons for admitting
collections other than sets is Penelope Maddy. In her seminal article ‘Proper classes’ (Maddy,
1983), she marshalled a series of mathematical and philosophical considerations in support of
the existence of classes and indeed proper classes—collections that are too big to form a set. On
the basis of these considerations, Maddy went on to introduce a novel theory of classes, whose
mathematical properties she investigated further in later work (Maddy, 2000).2

Maddy’s theory is based on a step-by-step construction of the extension and anti-extension
of the membership predicate, which mirrors Kripke’s (1975) construction of the extension and
anti-extension of the truth predicate. The theory has been criticized by Øystein Linnebo for its
‘rampant indeterminacy’ and for making identity among classes too fine-grained. In this paper, I
present a theory of classes that builds on Maddy’s theory but avoids its rampant indeterminacy
and allows for identity among classes to be suitably coarse-grained.

I begin by providing an overview of the roles that classes have been invoked to play and
isolating some key desiderata on a theory of classes to which these roles give rise. I then present
Maddy’s theory of classes and provide a bilateral natural deduction system for the theory,
which improves on Maddy’s own axiomatization in several respects. I go on to describe the
problem of rampant indeterminacy for Maddy’s theory, and I show how it can be avoided by
using supervaluational schemes in the construction of the extension and anti-extension of the
membership predicate. It turns out, however, that whilst a van Fraassen-style supervaluational
scheme suffices to avoid the basic problem of rampant indeterminacy, a supervaluational
scheme based on maximally consistent extensions is needed for a proper treatment of identity.
For both supevaluational theories, I also provide bilateral natural deduction systems. Indeed,
the proof theory will play a central role in motivating the treatment of identity and in answering
a challenge of Greg Restall (2010) to any coarse-grained account of identity in naïve class theory.

2. Desiderata on classes

Classes have been invoked to play a variety of roles. A detailed examination and assessment
of these roles is beyond the scope of this paper. My goal is to provide an overview of the most
2As Maddy (2024) points out, the publication date of Maddy, 2000 is misleading: it was written in the mid-80s. It should also be noted that Maddy has since
then come closer to endorsing a settist position herself, on the grounds that classes do not appear to provide any real mathematical contribution to the theory
of sets. Nonetheless, she is open to the possibility of classes being needed for different endeavours, such as formal semantics. See Maddy, 2024, 82–83.
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prominent roles, with the aim of lending support to the desiderata on a theory of classes we
will rely on.3

In general, classes have been called upon to play roles that sets have been deemed unsuited
to serve. First, it has been argued that classes are genuinely used in set-theoretic practice (Barton
and Williams, 2024; Linnebo, 2006; Parsons, 1974). Upon opening a set theory textbook, one
immediately comes across terms such as V , L and Ω, which intuitively stand for collections
(namely, the collection of all sets, the collection of all constructible sets and the collection of
all ordinals) that are too big to form a set and should therefore be considered classes. It is
however common place to regard this apparent talk of classes as a a way of stating facts that
only involve sets. For instance, when a set theorist writes ‘x∈Ω’, this ought to be taken as a
shorthand for ‘x is a transitive set linearly ordered by ∈’. To use Quinean terminology (Quine,
1948), classes are convenient myths, to be paraphrased away. However, it is not clear how far
the paraphrase strategy can be taken. A case that is especially difficult to handle concerns
the formulation and treatment of certain large cardinal axioms and reflection principles. For
instance, the paraphrase strategy applied to non-trivial elementary embeddings would seem to
trivialize Kunen’s celebrate theorem that there is no non-trivial elementary embedding of the
universe onto itself (Fujimoto, 2019; Hamkins et al., 2012).4

Second, it has been argued that classes are needed to make sense of set-theoretic practice. A
case is point is the debate on unrestricted quantification (Florio, 2014). In standard model theory,
an interpretation is an ordered pair consisting of the domain and an interpretation function,
where both of these are sets. But according to the iterative conception, there is no set of all sets.
Hence, there can be no interpretation whose domain contains all sets. But this is problematic.
For one thing, if the intended interpretation of set theory is the one in which the domain contains
all sets, and if truth is truth on the intended interpretation, then it would seem impossible
to account for the apparent truth of ‘Every set has a power set’ or ‘No set contains all sets’.
For another, if we define logical truth as truth on all interpretations, then a sentence whose
quantifiers range over all sets could be logically true and yet false in the universe of sets (Kreisel,
1967).

The conclusion that some (e.g., Lear, 1977; Parsons, 1974) have been willing to draw is that
the set-theoretic quantifiers never range over absolutely all sets, and so there is not a single,
intended interpretation of set theory. Others have tried to resist this conclusion by jettisoning
the assumption that the domain of quantification is a set. But if not a set, what is it? One option
is that the domain is not a single entity at all: it is a plurality of things—the sets (Boolos, 1985;
Rayo and Uzquiano, 1999). Another option is that it is not an object but a higher-order entity of
some kind—perhaps a Fregean concept (Rayo and Williamson, 2003). Yet another option is that
the domain is a collection-like object other than a set—a class. Classes might therefore allow
us to preserve both the idea that the set-theoretic quantifiers range over all sets and that the
domain of quantification is an object, as standard model-theoretic semantics would have it.

Third, it has been argued that classes are needed for a treatment of cardinality in line with our
basic intuitions about numbers (Maddy, 1983). Cardinal numbers are numbers that represent
the size of collections. According to Cantor, a theory of size should be based on the concept
of one-to-one correspondence: the cardinality of two sets should be the same just in case they
can be put into one-to-one correspondence—a version of Hume’s Principle (Frege, 1884). It is
3See also Schindler, 2019 for discussion of the roles that classes have been invoked to play.
4Another difficult case concerns work on class forcing. See Gitman et al., 2020; Holy et al., 2016.



48 L. Incurvati

then natural to take the cardinality of a set a to just be the collection of sets that can be put into
one-to-one correspondence with a. This definition immediately delivers Hume’s Principle, and
it is known as the Frege–Russell definition of cardinal number (Frege, 1884; Russell, 1903; see
Incurvati, 2020, 33 for discussion). However, the collection of sets that can be put into one-to-one
correspondence with a given set is not, in general, a set. It could be a class, however. Classes,
therefore, provide a way of rehabilitating a Frege–Russell treatment of cardinality.5 Similar
considerations apply, mutatis mutandis, to the development of ordinal numbers by replacing
the notion of one-to-one correspondence with the notion of an isomorphism.

Fourth, it has been argued that classes are needed for the development of natural language
semantics. In standard model-theoretic semantics, the predicate ‘is wise’ in ‘Andrea is wise’ is
standardly taken to pick out a function representing a property. However, in English we also
have nominalizations of predicates (such as ‘wisdom’ in ‘Wisdom is a virtue’), which would
seem to purport to refer to properties in nominal position. It is widely acknowledged that
nominalizations are very useful, and there are strong reasons for thinking they are not always
eliminable (see Button and Trueman, 2024). One may be tempted to take this to show that
properties are objects, and theories that treat properties as objects have been devised (Aczel,
1980; Bealer, 1982). However, there is a longstanding philosophical tradition, going back to
Frege (1892) and recently revived by Jones (2016) and Trueman (2021), for regarding the idea of
treating properties as objects as incoherent. But even if properties are not objects, there seems
still to be the need for objects which serve as first-order proxies for properties and be the
referents of nominalizations (Chierchia and Turner, 1988, Incurvati, 2020: Ch. 7). These objects
cannot be sets since, among the predicates of our language, there are predicates such as ‘is a set’
or ‘is an ordinal’, whose nominalizations cannot refer to sets. Thus, the argument concludes, the
referents of nominalizations must be classes.

Having described some key roles that classes have been invoked to play, we can now list
a numbers of basic desiderata sanctioned by these roles. First, our discussion should make it
clear that there should be ‘big’ classes such as the class of all ordinals or the class of all sets.
Ideally, we would want to validate the naïve comprehension principle that to every condition
there corresponds a class of all and only the things satisfying that condition.

Second, classes should be logical collections: they are characterized by reference to some
predicate, concept or property, which determines its members. This is in contrast with sets,
which are combinatorial collections: they are characterized not by reference to some predicate,
concept, or property, but by reference to their members in a more direct fashion.6 For one thing,
as our discussion has made clear (especially the discussion of the fourth role that classes have
been invoked to play), there seems to be a tight connection between classes and predicates or
properties, which ought to be vindicated by what we take classes to be. For another, as Maddy
(1983, 122) emphasizes, it should be clear why classes are not just ‘another stage of sets we forgot
to include’. Providing a theory of classes as logical collections allows us to clearly distinguish
them from iterative sets, which are combinatorial collections.

Third, as Maddy (1983, 120–123) also demands, classes should be real, well-defined entities.
Our discussion of the first role of classes makes it clear why, metaphysical considerations aside,
5This is not to say that other strategies are not available. In particular, it is still possible to approximate the Frege–Russell definition within iterative set theory
by considering the collection of sets that can be put into one-to-one correspondence with a that occur as low as possible in the cumulative hierarchy. This is
known as the Scott-Tarski definition of a cardinal. See Incurvati, 2020, 80.
6On the distinction between logical and combinatorial collections, see Maddy, 1990, 121 and Incurvati, 2020, 31.
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this is a sensible desideratum on a theory of classes. For if classes are not real entities to be
eliminated via paraphrase, it becomes hard to make sense of some aspects of set-theoretic
practice such as Kunen’s theorem about elementary embeddings.

Finally, if classes are real objects, it should be possible to provide a satisfactory criterion of
identity for classes. No entity without identity, after all. Now, qua logical collections, it may be
unreasonable or even wrong to demand that classes ought to be extensional: identity among
classes ought not to be too coarse-grained. But identity among classes ought not be too fine-
grained either. I will not belabour this point further, because we will return to it in greater detail
below.

3. Maddy’s theory of classes

We can now describe Maddy’s (1983; 2000) theory of classes. Her key idea is to address the
logical paradoxes by allowing certain membership claims involving classes to be indeterminate.
Kripke’s (1975) theory of truth famously allows certain truth claims to be indeterminate. He
outlines his theory by presenting a construction in which the extension and the anti-extension
of the truth predicate (that is, the collection of things to which the predicate definitely applies
and the collection of things to which the predicate definitely does not apply) are built in stages.
Maddy presents her theory of classes by specifying a construction in which the extension
and the anti-extension of the membership relation are similarly built in stages. To emphasize
the analogies with Kripke’s construction, which will be relevant below, I will follow the
presentation of Maddy’s theory recently provided by Linnebo (2024).

We begin by specifying the object language of the theory. Ultimately, we are going to
want to use membership relations involving only sets, which we take as given, to determine
membership relations involving classes as well as sets. One option would be to think of these
as two different relations; another option is to treat them as the same relation holding between
different kinds of entities. Maddy opts for the second option.7 Thus, we start with the language
of first-order logic with identity extended with a membership symbol η (reserving the symbol
∈ for membership in the meta-language).

Next, we want to have terms for the objects of our theory. We have a hat operator which
produces a class term when applied to an open formula. So we have class terms such as x̂(x= x)
and x̂(x ̸ ηx). To increase the expressive power of the language, Maddy adds a class constant V̄ ,
standing for the universe of sets V . On Maddy’s account, V is simply the real universe of sets,
so it will be a class in the meta-theory. For reasons that will become clear below, it is in fact
preferable to let V̄ denote a set from the point of view of the meta-theory, which serves as
the universe of sets and hence a class from the point of view of the object theory. A natural
choice, and the one which we shall stick to, is to let V̄ denote Vκ, where κ is the first inaccessible
cardinal. Accordingly, our meta-theory will consist of ZFC plus the assertion that there exists an
inaccessible cardinal. Finally, Maddy assumes that for each a∈ V there is a constant ā.

Formally, the terms and formulae of the language Lη are defined as follows:

(i) All constants and variables are terms.
(ii) If t and t′ are terms, then t= t′ and tηt′ are formulae.

(iii) If F and G are formulae and x is a variable, then (F ∧G), ¬F and ∀xF are formulae.
7As Linnebo (2024, 72) notes, not much hinges on the choice from a technical point of view, and it would be possible to reformulate (with some adjustments)
the discussion to follow using the first option.
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(iv) If F is a formula and x is among the free variables of F , then x̂F is a term.

Sentences are closed formulae. In general, F andG stand for (possibly open) formulae, whereas
A and B always stand for sentences. We let T be the set of all terms of Lη, T ∗ be the set of all
closed terms (a subset of T ), C be the set of all class terms and C∗ be the set of all closed
class terms (a subset of C). Disjunction, the conditional, the biconditional, and the existential
quantifier are defined as usual. That is, F ∨G is defined as ¬(¬F ∧ ¬G), F →G is defined as
¬(F ∧ ¬G), F ↔G is defined as (F →G) ∧ (G→ F ), and ∃xF is defined as ¬∀x¬F .

Our next step is to provide a model theory for the language. We represent an extension σ+

and anti-extension σ− of η as sets of ordered pairs of closed terms, that is subsets of T ∗ × T ∗.
Any pair σ of such an extension and anti-extension can be regarded as a model of the Strong
Kleene Logic K3 provided that σ+∩ σ−= ∅. In particular, we can recursively define a satisfaction
relation |= indicating what the model thinks is true of sets and classes, and an anti-satisfaction
relation |=indicating what the model thinks is false of them:

• σ |= t= t′ iff t= t′ for all t, t′ ∈ T ∗;
• σ |=t= t′ iff t ̸= t′ for all t, t′ ∈ T ∗;
• σ |= tηt′ iff ⟨t, t′⟩ ∈ σ+ for all t, t′ ∈ T ∗;
• σ |=tηt′ iff ⟨t, t′⟩ ∈ σ− for all t, t′ ∈ T ∗;
• σ |=¬A iff σ |=A;
• σ |=¬A iff σ |=A;
• σ |=A ∧B iff σ |=A and σ |=B;
• σ |=A ∧B iff σ |=A or σ |=B;
• σ |= ∀xF iff σ |= F [t/x] for all t∈ T ∗.
• σ |=∀xF iff σ |=F [t/x] for some t∈ T ∗.

It is straightforward to show that, similarly to the case of Kripke’s theory of truth, satisfaction
and anti-satisfaction are monotonic in the following sense: if σ2 is an expansion of σ1 (in symbols:
σ1 ⊑ σ2, where σ1 ⊑ σ2 iff σ+

1 ⊆ σ+
2 and σ−

1 ⊆ σ−
2 ), then, for any A, σ1 |=A only if σ2 |=A, and

σ1 |=A only if σ2 |=A.
The last step is that of building a sufficiently encompassing extension/anti-extension pair

(EA-pair for short). At stage zero, we have all positive and negative membership facts given
from set theory and the intuitive meaning of V̄ . At limit stages, we take unions as customary.
At successor stages, just as in the case of Kripke’s construction, we apply a jump operation J
taking us from an EA-pair σ to another in a monotonic fashion, i.e. so that J(σ) is an expansion
of σ. Maddy opts for a jump operation which is the exact analogue of Kripke’s jump operation
for truth: if a term t satisfies a formula F , we add ⟨t, x̂F ⟩ to the extension of η; if t anti-satisfies
F , we add it to the anti-extension.

Definition 3.1 (Maddy jump). Given an EA-pair σ = ⟨σ+, σ−⟩, the Maddy jump JM is the
operation such that, for all t∈ T ∗, JM(σ+) = {⟨t, x̂F ⟩ | σ |= Ft} and JM(σ−) = {⟨t, x̂F ⟩ | σ |=Ft}.

We are now ready to recursively define the Maddy hierarchy.
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Definition 3.2 (The Maddy hierarchy).

σ+,M
0 = {⟨ā, b̄⟩ | Vκ |= a∈ b} ∪ {⟨ā, V̄ ⟩ | a∈ Vκ};

σ−,M
0 = {⟨ā, b̄⟩ | Vκ |= a /∈ b} ∪ {⟨t, ā⟩ | a∈ Vκ} ∪ {⟨t, V̄ ⟩} for all t∈C∗;

σ+,M
α+1 = J+

M(σα);

σ−,M
α+1 = J−

M(σα);

σ+,M
λ =

⋃
α<λ

σ+,M
α if λ is a limit ordinal;

σ−,M
λ =

⋃
α<λ

σ−,M
α if λ is a limit ordinal.

By a theorem of Flagg (who established a conjecture of Tait’s, see Maddy, 2000, 315, fn. 22), the
construction of the Maddy hierarchy where V is a set in the meta-theory reaches a fixed point
σM at the first admissible ordinal greater than all the ordinals in V .8 We can therefore consider
σM as giving the extension and anti-extension of η according to Maddy’s theory of classes.

4. A bilateral system for Maddy’s theory

At the end of her 1983 paper, Maddy posed the following question:

Question 4.1 (Maddy). How and to what extent can the theory of V ∗ [the universe of sets and
classes in Maddy’s theory] be axiomatized?

I am going to provide a sound and complete axiomatization of the fixed point σM of the Maddy
hierarchy. The axiomatization builds on the axiomatization provided by Maddy (2000) (with
suggestions from Myhill), but also differs from it in important respects. First, its background
logic is bilateral, in that it uses signs for the speech acts of assertion and rejection. This will
allow me to formulate the logic in a natural deduction system with rules that are harmonious
and separable. Second, the axiomatization allows one to reason using Maddy’s theory of classes,
whereas Maddy’s axiomatization only allows one to compute what is in σM. Concretely, this
will put us in a position to provide a general model theory for which the natural deduction
system is sound and complete. Finally, the natural deduction system will pave the way towards
the theories of classes that I will develop below to address the problems with Maddy’s theory.

We begin by characterizing the language of the system. As announced, we are working
towards a bilateral system. So we extend the language Lη to the signed language LS

η by
including the signs +and −, standing, respectively, for the speech acts of assertion and rejection.
The notions of term, formula and sentence are defined as in Lη, but, in addition, we also have
the notion of a signed sentence, which will be anything obtained by prefixing a sentence with a
+or a −.

We can now lay down the rules of the natural deduction system. The model-theoretic clauses
for conjunction tell us that a conjunction is satisfied just in case both of its conjuncts are, and
anti-satisfied just in case at least one of its conjunct is. The proof-theoretic side of this coin,
8By contrast, as Maddy (2000, 308) notices and was proved by Tait, the construction has no fixed point if V is the universe of sets from the point of view of
the meta-theory.
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in terms of assertion and rejection, is captured by the following rules (where φ is a signed
sentence):

+A +B(+∧I.)
+A ∧B

+A ∧B(+∧E.1)
+A

+A ∧B(+∧E.2)
+B

−A(−∧I.1) −A ∧B
−B(−∧I.2) −A ∧B −A ∧B

[−A]
...
φ

[−B]
...
φ

(−∧E.) φ

The model-theoretic clauses for satisfaction and anti-satisfaction of negated and universally
quantified sentences can be similarly mirrored by the following natural deduction rules for the
assertion and rejection of those sentences:

−A(+¬I.)
+¬A

+¬A(+¬E.) −A
+A(−¬I.) −¬A

−¬A(−¬E.)
+A

+F [t/x]
(+∀I.) for all t∈ T∗

+∀xF
+∀xF(+∀E.) for any t∈ T∗

+F [t/x]

−F [t/x]
(−∀I.) for some t∈ T∗

−∀xF −∀xF

[−F [t/x]]
...
φ

(−∀E.) for any t∈ T∗

φ

Note that the quantifiers rules are simply infinitary counterparts of the conjunction rules.
The infinitary character of these rules should not be entirely surprising, given that we are
attempting to characterize the fixed point of a hierarchy whose first stage includes all positive
and negative membership facts settled by Vκ. Indeed, the situation is analogous to the situation
for truth. In that case, the first stage of the relevant hierarchies (such as the Kripke hierarchy
and supervaluational versions thereof) includes all facts settled by arithmetic. For this reason,
axiomatizations of the fixed point of this hierarchies typically include some version of the ω-rule
(see Incurvati and Schlöder, 2023; Meadows, 2015).

We now turn to the treatment of identity. Identity is a thorny issue in the context of naïve
theories of classes, and we shall return to it below. For now, recall that Maddy’s model-theoretic
clauses for identity tell us that t= t is always satisfied and t= t′ is always anti-satisfied. These
clauses can be mirrored in the proof theory by the following introduction rules.

(+=I.)
+t= t

(−=I.) for any distinct t, t′ ∈ T∗

−t= t′

How could we formulate suitable elimination rules for identity? The introduction rules tell
us that nothing is required to infer +t= t and −t= t′. Accordingly, nothing can be inferred
from those statements either. Nonetheless, given that these are all the rules for identity we also
know that we can never infer −t= t and +t= t′. So assuming that the logic of the meta-theory
encompasses minimal logic, it follows that anything can be inferred from them.
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−t= t(−=E.) φ
+t= t′(+=E.) for any distinct t, t′ ∈ T∗
φ

Kripke’s construction was designed to validate the naïve truth rules allowing us to move
between the assertion ofA and that of ‘A is true’. Similarly, Maddy’s construction was designed
to validate the naïve class rules allowing us to move between the assertion of Ft and the
assertion of ‘t is in x̂F ’. Similar considerations apply for the case in which Ft and ‘t is in x̂F ’
are rejected. We therefore add the following rules:

+Ft(+ηI.)
+tηx̂F

+tηx̂F
(+ηE.)

+Ft
−Ft(−ηI.) −tηx̂F

−tηx̂F
(−ηE.) −Ft

The rules laid down so far (indeed, the introduction rules alone) would suffice to characterize
the fixed point of the Maddy hierarchy. Recall, however, that we want to provide a deductive
system that allows us to reason using Maddy’s theory. Recall, moreover, that any EA-pair
can be considered a K3 model. But K3 is an explosive logic, in which anything follows from
a contradiction. In a bilateral context, this suggests adding the following rule of bilateral
explosion, as Ryan Simonelli (forthcoming) has suggested:

+A −A(Bilateral Explosion) φ

Note that the identity elimination rules are an immediate consequence of the identity
introduction rules and Bilateral Explosion. Bilateral Explosion does not serve to specify the
meaning of a particular logical constant, but rather to characterize the interaction between the
speech acts of assertion and rejection in the proof theory. Principles governing the interaction
between speech acts are known as coordination principles in the bilateral and multilateral
literature (Incurvati and Schlöder, 2023; Rumfitt, 2000; Smiley, 1996).

Let Maddian Bilateral Logic (MBL for short) be the system consisting of the above
introduction and elimination rules for negation, conjunction, the universal quantifier, identity
and membership together with the Bilateral Explosion rule. To be able to characterize the
fixed point of the Maddy hierarchy, one last ingredient is needed: we need to give a theory
providing all the facts about membership among sets and about membership in V̄ from which
the construction of the Maddy hierarchy begins. So let Vκ |=A be defined as usual for As in the
language L∈ of set theory. True Set Theory (TST for short) is then the union of the following
sets of signed sentences:

(i) {+āηb̄ | Vκ |= a∈ b}
(ii) {−āηb̄ | Vκ |= a /∈ b}

(iii) {+āηV̄ | a∈ Vκ}
(iv) {−tηā | a∈ Vκ} for all t∈C∗

(v) {−tηV̄ } for all t∈C∗

We are now in a position to prove that, over TST, MBL axiomatizes the fixed point of the Maddy
hierarchy. We begin by showing the soundness of MBL with respect to the model-theoretic
consequence relation induced by σM.
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Theorem 4.2. Let Γ be a set of signed sentences and φ a signed sentence. Suppose that Γ ⊢MBL φ and
that for all ψ in Γ, σM |=A if ψ =+A, and σM |=A if ψ =−A. Then, σM |=B if φ=+B and σM |=B
if φ=−B.

Proof. The identity introduction rule are sound because for any distinct t, t′ ∈ T ∗, σM |= t= t and
σM |=t ̸= t′. Moreover, it is easy to verify that if the premises of the rules for the connectives,
the universal quantifier and η are (anti-)satisfied by σM, then so is the conclusion. (For the η-
introduction rules, we use the definition of the Maddy jump and the fact that σM is a fixed
point.) Finally, the Rejection rule is sound because by construction of the Maddy hierarchy, for
no A it is ever the case that σM |=A and σM |=A.

Since by construction σM |=A for all +A∈TST and σM |=A for all −A∈TST, Theorem 4.2
immediately yields that, over TST, MBL is sound with respect to σM.

Theorem 4.3. For every sentence A, if TST ⊢MBL +A, then σM |=A, and if TST ⊢MBL −A, then
σM |=A.

I now prove that, over TST, MBL is also complete with respect to σM.

Theorem 4.4. For every sentence A, if σM |=A, then TST ⊢MBL +A, and if σM |=A, then TST ⊢MBL

−A.

Proof. I prove that if σM
α |=A, then TST ⊢MBL +A, and if σM

α |=A, then TST ⊢MBL −A. The
theorem will then follow by ordinal induction.
Base case. Immediate from the definition of TST.
Inductive step. Our induction hypothesis is that, for everyA, if σM

α |=A, then TST ⊢MBL +A, and
if σM

α |=A, then TST ⊢MBL −A. We need to prove that, for every A, if σM
α+1 |=A, then TST ⊢MBL

+A, and if σM
α+1 |=A, then TST ⊢MBL −A. We proceed by induction on the complexity of A. We

only cover the positive cases, since the negative cases proceed similarly, using the negative
introduction rule for the relevant logical constant, rather than the positive one.
A is of the form tηt′. Suppose σM

α+1 |= tηt′. If t′ is a set term or V̄ , we have that TST ⊢MBL +tηt
′ by

the fact that σα+1 ⊒ σ0. So suppose that t′ is of the form x̂F for some F . Then, by construction of
the Maddy hierarchy, σM

α |= Ft. By the induction hypothesis of the ordinal induction, it follows
that TST ⊢MBL +Ft. But then, TST ⊢MBL +tηx̂F since MBL includes the (+ηI.) rule.
A is of the form t= t′. If σM

α+1 |= t= t′, then, by the model-theoretic clauses for identity, t is the
same term as t′. But then, TST ⊢MBL +t= t′ since MBL includes the (+=I.) rule.
A is of the form B ∧ C. If σM

α+1 |=B ∧ C, then, by the model-theoretic clauses for conjunction,
σM
α+1 |=B and σM

α+1 |=C. But then, by the induction hypothesis of the induction on complexity,
TST ⊢MBL +B and TST ⊢MBL +C. Since MBL includes the (+∧I.) rule, it follows that TST ⊢MBL

+B ∧ C.
A is of the form ¬B. If σM

α+1 |=¬B, then, by the model-theoretic clauses for negation, σM
α+1 |=B.

But then, by the induction hypothesis of the induction on complexity, TST ⊢MBL −B. Since MBL
includes the (+¬I.) rule, it follows that TST ⊢MBL +¬B.
A is of the form ∀xF . If σM

α+1 |= ∀xF , then, by the model-theoretic clauses for the universal
quantifier, for all t, σM |= F [t/x]. By the induction hypothesis of the induction on complexity,
TST ⊢MBL +F [t/x]. By the (+∀I.) rule, it follows that TST ⊢MBL +∀xF .
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Limit case. Suppose that σM
λ |=A with λ a limit ordinal. Since σM

λ =
⋃

α<λ σ
M
α , there is some

β < λ such that σM
λ |=A. By the induction hypothesis of the ordinal induction, TST ⊢MBL +A.

The negative case is analogous.

Having established that we can axiomatize the fixed point of the Maddy hierarchy, we now
provide a general model theory for MBL. An interpretation I consists of a set of objects D and
an interpretation function F . The function F assigns elements of D to closed terms and an EA-
pair σ to η where σ+ and σ− consist of ordered pairs of elements of D. The satisfaction and
anti-satisfaction clauses for identity, the connectives and the universal quantifier are as above.
An interpretation I assigning an EA-pair σ is then said to be η-admissible if, for all A, I |= Ft
just in case ⟨F(t),F(x̂F )⟩ ∈ σ+, and I |=Ft just in case ⟨F(t),F(x̂F )⟩ ∈ σ−.

We can now show that MBL is sound and complete with respect to the class of η-admissible
models. For soundness, the argument used in Theorem 4.2 above suffices, except that we
now use the restriction to η-admissible models to establish the soundness of the η-rules. For
completeness, we first need a few additional definitions. We say that a set of formulae Γ is
bilaterally prime (b-prime for short) just in case if −A ∧B ∈ Γ then either −A∈ Γ or −B ∈ Γ.
Moreover, for a given deductive system S, we say that a set Γ is bilaterally consistentS (b-
consistentS for short) if for no A is it the case that both Γ ⊢S +A and Γ ⊢S −A. We can then prove
the following model existence result:

Lemma 4.5. Let Γ be a b-consistentMBL set of signed sentences and let Γ∗ be the extension of its closure
under derivability in MBL to a b-prime set. Then there is an interpretation I such that +A∈ Γ∗ iff
I |=A, and −A∈ Γ∗ iff I |=A.

Proof. Let I = ⟨D,F⟩ be the canonical term model for Γ∗ and set F(η) = ⟨τ+, τ−⟩ where τ+ is
{⟨ā, b̄⟩ |+aηb∈ Γ∗} and τ− is {⟨ā, b̄⟩ | −aηb∈ Γ∗}. Then, for allA, we have that +A∈ Γ∗ iff I |=A,
and −A∈ Γ∗ iff I |=A. The proof is by induction on the complexity of A.
A is of the form aηb. +aηb∈ Γ∗ iff ⟨ā, b̄⟩ ∈ τ+ iff I |= aηb. The case of −aηb is analogous.
A is of the form a= b. +a= b∈ Γ∗ iff ā= b̄ iff I |= a= b. The case of −a= b is analogous.
A is of the formB ∧ C. +B ∧ C ∈ Γ∗ iff +B ∈ Γ∗ and +C ∈ Γ∗ (since Γ∗ is MBL-closed) iff I |=B

and I |=C (by the induction hypothesis) iff I |=B ∧ C. Similarly, −B ∧ C ∈ Γ∗ iff −B ∈ Γ∗ or
−C ∈ Γ∗ (since Γ∗ is b-prime) iff I |=B or I |=C (by the induction hypothesis) iff I |=B ∧ C.
A is of the form ¬B. +¬B ∈ Γ∗ iff −B ∈ Γ∗ (since Γ∗ is MBL-closed) iff I |=B (by the induction

hypothesis) iff I |=¬B (by the model-theoretic clauses for negation). Similarly, −¬B ∈ Γ∗ iff
+B ∈ Γ∗ iff I |=B iff I |=¬B.
A is of the form ∀xF . +∀xF ∈ Γ∗ iff for every t∈ T ∗, F [t/x]∈ Γ∗ (since Γ∗ is MBL-closed) iff

I |= Ft (by the induction hypothesis) iff I |= ∀xF (by the fact that there is a term for every set
and class). Similarly, −∀xF ∈ Γ iff F [t/x]∈MBL for every t∈ T ∗ (since Γ∗ is MBL-closed and
MBL includes the (−∀E.) rule) iff I |=Ft for every t∈ T ∗ iff I |=∀xF .

We are now in a position to prove completeness. To make the statement of the theorem simpler,
it will be useful to extend our model-theoretic notion to cover the signed language. If A is a
sentence, we write I |=B +A wherever I |=A, and I |=B −A wherever I |=A. If φ is a signed
sentence, we then write Γ |=B φ just in case if, for all η-admissible I , if I |=B ψ for all ψ ∈ Γ,
then I |=B φ.

Theorem 4.6. Let Γ be a set of signed sentences and φ a signed sentence. If Γ |=B φ, then Γ ⊢MBL φ.
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Proof. Suppose that Γ ̸⊢MBL φ. It follows that Γ is b-consistentMBL and so, by Lemma 4.5, there is
an interpretation I and a set of signed sentences Γ∗ such that I |=A iff +A∈ Γ∗, and such that
I |=A iff −A∈ Γ∗. Since Γ⊆ Γ∗, clearly, I |=B ψ for all ψ ∈ Γ. Moreover, I ̸|=B φ since φ /∈ Γ∗. So
Γ ̸|=B φ.

In her original paper, Maddy introduces a notation intended to allow us to talk about the
situation in which an EA-pair σ does not decide a certain membership fact. Using our notation,
we can similarly define:

• σ |= A iff neither σ |=A nor σ |=A.

With this notation, we can now write that σM |= x̂(x ̸ ηx)ηx̂(x ̸ ηx), which expresses model-
theoretically the fact that Maddy theory’s of sets and classes is agnostic over whether the
Russell class belongs to itself. We cannot yet express this fact proof-theoretically. We can do
so by moving from a bilateral to a trilateral setting and augmenting the expressive power of
MBL with an additional force marker ?, denoting the speech act expressing agnosticism about a
certain matter. This speech act is governed by the following coordination principles:

+A ?A(Trilateral Explosion1) φ
−A ?A(Trilateral Explosion2) φ

[+A]
...
φ

[?A]
...
φ

[−A]
...
φ

(Trilateral Excluded Fourth) φ

The Trilateral Explosioni principles state that it is incoherent to express agnosticism towards
a subject matter while at the same time expressing belief or disbelief towards that very same
subject matter. Trilateral Excluded Fourth captures the idea that there are three attitudes that can
be taken towards a certain content: belief, disbelief or agnosticism. An alternative, and formally
equivalent route, would be to take the agnostic attitude to be expressible by weakly asserting
(Incurvati and Schlöder, 2019) and weakly rejecting (Incurvati and Schlöder, 2017) the same
content (Ferrari and Incurvati, 2022) and lay down corresponding coordination principles.

Now consider the system obtained by extending MBL with the Trilateral Explosioni

principles and Trilateral Excluded Fourth. It is straightforward to prove in this system that
?x̂(x ̸ ηx)ηx̂(x ̸ ηx).9 Indeed, one can show that the system is sound and complete with respect
to the general model theory from the previous section augmented with |= defined as above.

5. Rampant indeterminacy

Maddy’s theory of classes satisfies several of the desiderata we discussed above. It validates
the unrestricted comprehension rules and hence implies the existence of big classes such as
the universal class (i.e. the class containing everything there is) and the Russell class (i.e. the
class of all collections that do not belong to themselves). It takes classes to be real, well-defined
entities. And it takes classes to be logical collections, since they are characterized in terms of
their defining condition, thereby distinguishing them from sets.
9In the alternative route using weak assertion and weak rejection, it would be straightforward to prove that x̂(x ̸ ηx)ηx̂(x ̸ ηx) is both weakly asserted and
weakly rejected.
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However, there are some serious problems with Maddy’s theory, which have been stressed
in recent work by Linnebo (2024). As Linnebo puts it, Maddy’s ‘account is very “gappy”: there
is a lot of indeterminacy’ (p. 74, emphasis in the original). But in K3, a universal generalization
is indeterminate just in case at least one of its instances is. As a result, it very difficult for a
universal generalization to be determinately true in Maddy’s theory of classes. This leads to
two specific problems, which Linnebo focuses on.

The first concerns Maddy’s attempt to develop a theory of Frege–Russell numbers within her
theory of classes. Within such a theory, two collections (sets or classes) are equinumerous if and
only if there exists a one-to-one correspondence between their members. It follows that two
collections are not equinumerous if and only every relation fails to be such a correspondence.
This is a generalization, which is then subject to the problem of indeterminacy. As a result, it
is very hard to prove that two collections are not equinumerous in Maddy’s theory. Indeed,
as Maddy (2000, 312) herself proves, if the statement that two non-empty collections are
equinumerous is not satisfied in her original theory of classes, then it is neither satisfied nor
anti-satisfied. It follows that we cannot even prove that {∅} is not equinumerous with {∅, {∅}}.
Linnebo takes this ‘rampant indeterminacy’ to be difficult to accept, and Maddy herself takes
the result to be troublesome.

The second problem concerns identity in Maddy’s theory. Recall that, for any two terms,
the model-theoretic clauses for identity declare their referents to be determinately identical just
in case the terms themselves are identical, and determinately different just in case the terms
themselves are different. This means, in particular, that if F and G are different formulae, then
the classes x̂F and x̂G will also be different: Maddy’s theory identifies classes in far too fine-
grained a manner and hence fails to satisfy our fourth desideratum on a theory of classes.

To repair the situation, one might try to single out a coarser equivalence relation among
collections, in terms of which identity among classes could then be defined. Maddy (2000, 305)
considers the option of defining identity among collections in terms of the relation ≃, defined
as follows.

Definition 5.1. For t, t′ ∈ T , t≃ t′ ≡def ∀z(zηt↔ zηt′)

As Maddy observes, this proposal might appear at first sight to give us what we want, since it
identifies coextensive sets and classes, such as ā and x̂(xηā), and certain classes which would
have been declared to be different by the original syntactic definition of identity, such as x̂(xηā)
and x̂(xηā ∧ xηā).

However, says Linnebo, the proposal fails because of the problem of rampant indeterminacy
to which universal generalizations are subject. As Maddy (2000, 305) points out, σM can satisfy
uηt↔ uηt′ only if it is decided about uηt or uηt′. It follows that the definition of identity as ≃
entails that two classes can only be identical if every membership claim concerning them must
be either satisfied or anti-satisfied. Indeed, t≃ t becomes a way of expressing that t is total:
σM |= t≃ t just in case σM |= ∀z(zηt ∨ z ̸ ηt). It follows that Maddy’s theory is undecided about
whether x̂(x ̸ ηx) is identical to x̂(x ̸ ηx ∧ x ̸ ηx). Indeed, the theory is undecided about whether
x̂(x ̸ ηx) is identical to itself: under the proposed definition, identity is not even reflexive.

Linnebo considers two possible ways of improving on Maddy’s account along broadly
Maddian lines. The first, which he has developed in joint work with Leon Horsten (Horsten
and Linnebo, 2016), consists in building up not an EA-pair for the membership relation, but
rather for the identity predicate, so that we have that x̂F = x̂G if and only if ∀x(Fx↔Gx). The
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construction proceeds by adding ⟨x̂F, x̂G⟩ to the extension of the identity predicate whenever
∀x(Fx↔Gx) is satisfied, and by adding ⟨x̂F, x̂G⟩ to the anti-extension of the identity predicate
whenever ∀x(Fx↔Gx) is anti-satisfied. However, as Linnebo points out, the construction is
severely limited, in that it only works for classes whose defining formula does not contain
occurrences of the membership predicate.

The second attempt Linnebo considers is due to Jönne Kriener (2014). Kriener combines
ideas from Maddy and from Horsten and Linnebo, in that he builds up EA-pairs for both the
membership relation and the identity predicate. The resulting theory, however, has important
limitations with regards to the classes whose existence it admits. For instance, the natural way
of defining the singleton class of a given class (that is, as x̂x= ŷF ) fails. Kriener himself takes
his results to cast doubt on the viability of a theory of classes based on a hierarchical approach
along Kripkean lines.

Linnebo concludes that the prospects for a Maddian account of classes are dim:

The picture that emerges is thus one of a failed research program. At the outset,
Maddy’s idea of building on Kripke’s highly successful account of truth seemed
very promising. And as we have seen, there are natural ways to transpose the
account to the case of classes. Unfortunately, the resulting theories are not very
attractive; and the situation does not improve materially on any of the more natural
ways to modify Maddy’s account. (Linnebo, 2024, 75)

In the remainder of this paper, I will argue that, contrary to appearances, the prospects for a
hierarchical approach to classes along broadly Kripkean-Maddian lines are in fact bright. There
is a very natural way of modifying Maddy’s account so as to solve the problem highlighted by
Linnebo.

6. Supervaluations

The rampant indeterminacy observed by Linnebo is indeed a problematic feature of Maddy’s
theory. The problem is a familiar one: it already affects Kripke’s theory of truth and is due to
the fact that the underlying logic of Maddy’s theory, just like Kripke’s, is K3.

A natural strategy to deal with the problem is to adopt a different scheme for handling
membership gaps. In his original paper, Kripke (1975, 711–712) already suggested the
possibility of handling truth-value gaps using a scheme based on Bas van Fraassen’s (1966)
notion of supervaluation. van Fraassen originally introduced the idea of supervaluation to
handle truth-value gaps generated by the use of empty singular terms. In the subsequent
literature, much attention has been devoted to the application of the supervaluational strategy
to the case of vagueness (Fine, 1975; Incurvati and Schlöder, 2022; Keefe, 2000).

In the case of truth, the idea is to handle truth-value gaps by assigning a sentence A to
the extension (anti-extension) of the truth predicate at the next stage of the construction just
in case all admissible expansions of the EA-pair of the truth predicate at the current stage
classically satisfy (anti-satisfy) A. Transposing this to the class-theoretic setting, the idea is to
handle membership gaps by assigning an ordered pair ⟨t, x̂F ⟩ consisting of an object and a
class to the extension (anti-extension) of the membership predicate at the next stage of the
construction just in case all admissible expansions the EA-pair of the membership predicate
at the current stage classically satisfy (anti-satisfy) Ft. This gives rise to the following template
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for class supervaluational schemes, where the satisfaction relation |= and the antisatisfaction
relation |=are recursively defined as before, except that we now require that, for everyEA-pair
σ and for every sentence A, either σ |=A or σ |=A:

Definition 6.1 (Supervaluational-jump template). Given an EA-pair σ = ⟨σ+, σ−⟩, the
supervaluational jump Js is the operation such that, for all t∈ T ∗,

Js(σ
+) = {⟨t, x̂F ⟩ | for all τ that are s-admissible expansions of σ, τ |= Ft}, and

Js(σ
−) = {⟨t, x̂F ⟩ | for all τ that are s-admissible expansions of σ, τ |=Ft}.

Different supervaluational schemes are then obtained by specifying when an EA-pair is an
admissible expansion of another EA-pair. The first supervaluational scheme considered by
Kripke is a straightforward adaptation of van Fraassen’s original notion of supervaluation to
the case of truth. In particular, the idea is to take an admissible expansion of an EA-pair σ to
be one that does not satisfy (anti-satisfy) any sentence that is anti-satisfied (satisfied) by σ. We
can proceed in an analogous manner in the case of classes: an admissible expansion is one that
respects the already established membership facts.

Definition 6.2 (MvF-admissible expansion). An EA-pair τ = ⟨τ+, τ−⟩ is a MvF-admissible
expansion of an EA-pair σ = ⟨σ+, σ−⟩ iff (i) τ ⊒ σ, (ii) τ+ ∩ σ− = ∅, and (iii) τ− ∩ σ+ = ∅.

By replacing the Maddy jump JM with the Maddy–van Fraassen jump JMvF in the definition
of the Maddy hierarchy, we obtain the basic supervaluational class hierarchy. It is easy to check
that (still taking V̄ to denote Vκ where k is the first inaccessible) the construction of the basic
supervaluational class hierarchy reaches a fixed point σMvF. We can therefore consider σMvF as
giving the extension of η according to the Maddy–van Fraassen theory of classes—the theory of
classes obtained by adopting the van Fraassen supervaluational scheme within the context of a
theory of classes along broadly Maddian lines.

I now want to present a natural deduction system for the Maddy–van Fraassen theory of
classes. It is well known that the addition of the following rule of Bilateral Excluded Middle
to the asserted and rejected rules for negation and conjunction of MBL and Bilateral Explosion
delivers a bilateral version of classical propositional logic:

[+A]
...
φ

[−A]
...
φ

(Bilateral Excluded Third) φ

For the principles of Bilateral Explosion and Bilateral Excluded Third are interderivable with
the following coordination principles (see, e.g., del Valle-Inclan, 2023, 382), which are sufficient
to provide a sound and complete axiomatization of the classical propositional calculus in
the presence of the rules for negation and conjunction of MBL (Incurvati and Schlöder, 2023;
Rumfitt, 2000; Smiley, 1996), where ‘(SRi)’ abbreviates ‘Smileian reductioi’.

+A −A(Rejection) ⊥

[+A]
...
⊥(SR1) −A

[−A]
...
⊥(SR2)
+A
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Now, a central supervaluational intuition is that classical reasoning is in order when no rules
are used that can gender indeterminacy. And in our current context, this indeterminacy can
only arise because of the application of the η-rules. This suggests restricting the application of
these rules within the coordination principle of Bilateral Excluded Third, in order to obtain a
supervaluationistically acceptable version thereof. We thereby obtain the following:

[+A]
...
φ

[−A]
...
φ

(BET*) if the subderivations of φ use no η-
rulesφ

Let MvFBL be the system obtained by adding (BET*) to MBL and restricting the subderivations
in the (−∧E.) and (−∀E.) rules in the same manner (that is, to subderivations that make no use
η-rules). I am now going to prove that analogous results hold between MvFBL and the Maddy–
van Fraassen theory of classes as those that obtained between MBL and Maddy’s theory of
classes.

I begin by proving that, over TST, MvFBL axiomatizes the fixed point of the basic
supervaluational hierarchy. I first prove that MvFBL is sound with respect to the consequence
relation induced by σMvF.

Theorem 6.3. Let Γ be a set of signed sentences and φ a signed sentence. Suppose that for all ψ in
Γ, σMvF |=A if ψ =+A, and σMvF |=A if ψ =−A. Then, if Γ ⊢MvFBL φ, σMvF |=B if φ=+B and
σMvF |=B if φ=−B.

Proof. The arguments in the proof of Theorem 4.2 carry over to the present case except for the
(−∧E.) and (−∀E.) rules, the (BET*) principle and the η-rules. For the (−∧E.) and (−∀E.) rules
and the (BET*) principle, it suffices to note that all of their instances are instances of classically
valid arguments (see Incurvati and Schlöder, 2017). It remains to check the η-rules. We only
cover the positive cases because the negative ones proceed in a completely analogous fashion
by replacing the satisfaction relation with the anti-satisfaction one.

For the (+ηI.) rule, suppose that σMvF |= Ft. By monotonicity, this means that for every τ ⊒
σMvF, τ |= Ft. So, in particular, for every τ which is an MvF-admissible expansion of σMvF,
τ |= Ft. By the definition of the Maddy–van Fraassen supervaluational jump, it follows that
⟨t, x̂F ⟩ ∈ JMvF(σ

MvF). Since σMvF is a fixed point, it follows that σMvF |= tηx̂F .
For the (+ηE.) rule, suppose that σMvF |= tηx̂F . By the definition of JMvF, this means that for

every τ which is an MvF-admissible expansion of σMvF, τ |= Ft. Since σMvF is an admissible
expansion of itself, we have, in particular, that σMvF |= Ft.

As in the case of Maddy’s theory of classes, by construction we have that σMvF |=A for all
+A∈TST and σMvF |=A for all −A∈TST. Hence, Theorem 6.3 immediately yields that, over
TST, MvFBL is sound with respect to σMvF.

Theorem 6.4. For every sentence A, if TST ⊢MvFBL +A, then σMvF |=A, and if TST ⊢MvFBL −A, then
σMvF |=A.

I now turn to the proof that, over TST, MvFBL is complete with respect to σMvF. For a given
deductive system S, we say that Γ is maximally b-consistentS if it is b-consistentS and either
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+A∈ Γ or −A∈ Γ. Moreover, for every system S, we let S∗ be S without the η-rules. Using
Zorn’s Lemma, we can prove the following:10

Lemma 6.5. Every b-consistentMvFBL∗ set of signed sentences can be extended to a maximally
b-consistentMvFBL∗ set.

We can now prove that every maximally b-consistentMvFBL∗ extension of TST closed under
derivability in MvFBL has a model:

Theorem 6.6. Suppose that Γ⊇TST is a maximally b-consistentMvFBL∗ set of signed sentences closed
under derivability in MvFBL, and let τ be the EA-pair ⟨τ+, τ−⟩, where τ+ is {⟨ā, b̄⟩ |+aηb∈ Γ} and τ−

is {⟨ā, b̄⟩ | −aηb∈ Γ}. Then, for all sentences A, we have that +A∈ Γ iff τ |=A, and −A∈ Γ iff τ |=A.

Proof. By induction on the complexity of A.
A is of the form tηt′. By definition of τ .
A is of the form t= t′. Suppose +t= t′ ∈ Γ but τ ̸|= t= t′. Then t is not the same term as t′ and

hence, since Γ is closed under MvFBL-derivability and MvFBL includes the (−=I.) rule, −t ̸=
t′ ∈ Γ. But this contradicts the assumption that Γ is b-consistentMvFBL∗ . For the other direction,
if τ |= t= t′, then, by the model-theoretic clauses for identity, t is the same term as t′. But then,
+t= t′ ∈ Γ, since MvFBL includes the (+=I.) rule. The negative case is analogous.
A is of the form B ∧ C. Suppose +B ∧ C ∈ Γ. Then +B ∈ Γ and +C ∈ Γ, since Γ is closed

under MvFBL-derivability and MvFBL includes the (+∧I.) rule. By the induction hypothesis,
τ |=B and τ |=C. By the model-theoretic clauses for conjunction, τ |=B ∧ C. The reverse
direction is analogous. For the negative case, suppose −B ∧ C ∈ Γ. Then −B ∈ Γ or −C ∈ Γ,
since Γ is maximally b-consistentMvFBL∗ . By the induction hypothesis, τ |=B or τ |=C. By the
model-theoretic clauses for conjunction, τ |=B ∧ C. For the other direction, suppose τ |=B ∧ C.
Then τ |=B or τ |=C. By the induction hypothesis, −B ∈ Γ or −C ∈ Γ. Since Γ is closed under
MvFBL-derivability and MvFBL includes the (−∧I.) rule, it follows that −B ∧ C ∈ Γ.
A is of the form ¬B. If +¬B ∈ Γ, then −B ∈ Γ, since MvFBL includes the (+¬I.) rule. By the

induction hypothesis, it follows that τ |=B and hence that τ |=¬B. The reverse direction is
analogous, and so are the negative cases.
A is of the form ∀xF . If +∀xF ∈ Γ, then, for all t∈ T ∗, +F [t/x]∈ Γ, since MvFBL includes

the (+∀I.) rule. By the induction hypothesis, it follows that, for all t∈ T ∗, τ |= F [t/x], and, by
the model-theoretic clauses for the universal quantifier, that τ |= ∀xF . The reverse direction is
analogous, and so are the negative cases.

We are now in a position to prove completeness.

Theorem 6.7. For every sentence A, if σMvF |=A, then TST ⊢MvFBL +A, and if σMvF |=A, then
TST ⊢MvFBL −A.

Proof. I prove that if σMvF
α |=A, then TST ⊢MvFBL +A, and if σMvF

α |=A, then TST ⊢MvFBL −A. The
proof proceeds exactly like the proof of Theorem 4.4, except for the case in which A is of the
form tηt′ in the induction on the complexity of A in the inductive step of the ordinal induction.
10In the context of a countable language, it would be possible to construct the maximally b-consistent set using a step-by-step procedure. See Incurvati and
Schlöder, 2023, 568–569 for an application of the method in the theory of truth.
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So suppose that σMvF
α+1 |= tηt′. If t′ is a set term or V̄ , we have that TST ⊢MvFBL +tηt

′ by
the fact that σMvF

α+1 ⊒ σMvF
0 . So let t′ be of the form x̂F for some F . Now suppose that

TST ̸⊢MvFBL +tηx̂F . This means that the deductive closure of TST ∪ −tηx̂F under MvFBL-
derivability is b-consistentMvFBL∗ and so it has a maximally b-consistentMvFBL∗ extension Γ. Let
τ = ⟨τ+, τ−⟩, where τ+ is {⟨ā, b̄⟩ |+aηb∈ Γ} and τ− is {⟨ā, b̄⟩ | −aηb∈ Γ}. I now show that τ is
an MvF-admissible expansion of σMvF

α .
First, suppose that there was a formula tηx̂G such that σMvF

α |= tηx̂G but τ ̸|= tηx̂G. By
the induction hypothesis, it follows that TST ⊢MvFBL +tηx̂G. But then, by construction of τ ,
τ |= tηx̂G, which contradicts the original supposition. Hence, (i) τ ⊒ σMvF

α . Next, suppose that
there is a ⟨t, x̂G⟩ such that ⟨t, x̂G⟩ ∈ τ+ and ⟨t, x̂G⟩ ∈ σMvF,−

α . By definition of τ , it follows that
+tηx̂G∈ Γ. And by the induction hypothesis, it follows that TST ⊢MvFBL −tηx̂G and so that
−tηx̂G∈ Γ. But since Γ is b-consistentMvFBL∗ , we have that +tηx̂G ̸∈ Γ, which by construction of
τ means that ⟨t, x̂G⟩ ̸∈ τ+. This contradicts our original supposition. Hence, (ii) τ+ ∩ σMvF,−

α = ∅.
A similar reasoning shows that (iii) τ− ∩ σMvF,+

α = ∅.
By supposition, we have that −tηx̂F ∈ Γ. Since Γ is closed under MvFBL-derivability, this

means that −Ft∈ Γ too. By Theorem 6.6 it then follows that τ |=Ft. So there is an MvF-
admissible expansion of σMvF

α which does not satisfy Ft. This contradicts the supposition that
σMvF
α+1 |= tηx̂F . So if σMvF

α+1 |= tηx̂F , then TST ⊢MvFBL +tηx̂F .

I now provide a general model theory for MvFBL. An interpretation I consists of a set of objects
D and an interpretation function F . The function F assigns elements of D to closed terms and
an EA-pair σ to η where σ+ and σ− consists of ordered pairs of elements of D. The satisfaction
and anti-satisfaction clauses for identity, the connectives and the universal quantifier are as
above. We then need to extend the definition of model-theoretic consequence to cover the signed
language. If A is a sentence, we write Iσ |=S +A wherever, for all τ that are MvF-admissible
expansions of σ, Iτ |=A, and Iσ |=S −A wherever, for all for all τ that are MvF-admissible
expansions of σ, Iτ |=A. If Γ is a set of signed sentences and φ a signed sentence, we then
write Γ |=S φ just in case if, for all I , if I |=S ψ for all ψ ∈ Γ, then I |=S φ.

We can now show that MvFBL is sound and complete with respect to the class of η-admissible
models. For soundness, the argument used in Theorem 6.3 above suffices, except that we
now use the restriction to η-admissible models to establish the soundness of the η-rules. For
completeness, we prove the following model existence result:

Lemma 6.8. Let Γ be a b-consistentMvFBL∗ set of signed sentences and let Γ∗ be a maximally b-
consistentMvFBL∗ extension of its closure. Then there is an interpretation I such that +A∈ Γ∗ iff I |=A,
and −A∈ Γ∗ iff I |=A.

Proof. Let I = ⟨D,F⟩ be the canonical term model for Γ∗ and set F(η) = ⟨τ+, τ−⟩ where τ+ is
{⟨ā, b̄⟩ |+aηb∈ Γ∗} and τ− is {⟨ā, b̄⟩ | −aηb∈ Γ∗}. Then, for allA, we have that +A∈ Γ∗ iff I |=A,
and −A∈ Γ∗ iff I |=A. The proof is by induction on the complexity of A.
A is of the form aηb. +aηb∈ Γ∗ iff ⟨ā, b̄⟩ ∈ τ+ iff I |= aηb. The case of −aηb is analogous.
A is of the form a= b. +a= b∈ Γ∗ iff ā= b̄ iff I |= a= b. The case of −a= b is analogous.
A is of the formB ∧ C. +B ∧ C ∈ Γ∗ iff +B ∈ Γ∗ and +C ∈ Γ∗ (since Γ∗ is MBL-closed) iff I |=B

and I |=C (by the induction hypothesis) iff I |=B ∧ C. Similarly, −B ∧ C ∈ Γ∗ iff −B ∈ Γ∗

or −C ∈ Γ∗ (since Γ∗ is maximally b-consistentMvFBL∗) iff I |=B or I |=C (by the induction
hypothesis) iff I |=B ∧ C.
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A is of the form ¬B. +¬B ∈ Γ∗ iff −B ∈ Γ∗ (since Γ∗ is MvFBL-closed) iff I |=B (by the
induction hypothesis) iff I |=¬B (by the model-theoretic clauses for negation). Similarly,
−¬B ∈ Γ∗ iff +B ∈ Γ∗ iff I |=B iff I |=¬B.
A is of the form ∀xF . +∀xF ∈ Γ∗ iff for every t∈ T ∗, F [t/x]∈ Γ∗ (since Γ∗ is MvFBL-closed) iff

I |= Ft (by the induction hypothesis) iff I |= ∀xF (by the fact that there is a term for every set
and class). Similarly, −∀xF ∈ Γ iff F [t/x]∈MvFBL for every t∈ T ∗ (since Γ∗ is MvFBL-closed
and MvFBL includes the (−∀E.) rule) iff I |=Ft for every t∈ T ∗ iff I |=∀xF .

We can now establish completeness.

Theorem 6.9. Let Γ be a set of signed sentences and φ a signed sentence. If Γ |=S φ, then Γ ⊢MvFBL φ.

Proof. Suppose that Γ ̸⊢MvFBL φ. It follows that Γ is b-consistentMvFBL∗ and so, by Lemma 6.8,
there is an interpretation Iσ and a set of signed sentences Γ∗ such that Iσ |=A iff +A∈ Γ∗, and
such that Iσ |=A iff −A∈ Γ∗. Let I ′

τ be the interpretation obtained by taking the set of all these
Iσ and defining τ as in Theorem (just above). It is easy to check that τ is maximal superset of
the set of all admissible expansions of σ. Hence, using Lemma 6.8, Iτ |=S ψ for all ψ ∈ Γ∗ and
hence for all ψ ∈ Γ (since Γ⊆ Γ′). Moreover, Iτ ̸|=S φ since φ /∈ Γ∗. So Γ ⊢MvFBL φ.

7. Identity

The Maddy–van Fraassen approach goes a long way towards addressing the problem of
rampant indeterminacy. For the supervaluational character of the theory means that more
generalizations will be declared true than in Maddy’s original theory, due to the fact that
instances of those generalizations are satisfied or antisatisfied that were not in MBL.

For example, it is indeterminate whether the Russell class belongs to itself: MvFBL proves
neither +x̂(x ̸ ηx)ηx̂(x ̸ ηx) nor +x̂(x ̸ ηx) ̸ ηx̂(x ̸ ηx). Indeed, when augmented with a force
marker for the speech act expressing agnosticism and corresponding coordination principles
(as we did in the case of MBL), MvFBL proves ?x̂(x ̸ ηx)ηx̂(x ̸ ηx). Nonetheless, MvFBL
proves that every thing either belongs or does not belong to the Russell class, that is
+∀y(yηx̂(x ̸ ηx) ∨ y ̸ ηx̂(x ̸ ηx)).

The supervaluational character of the Maddy–van Fraassen approach also opens up the way
to a Frege–Russell treatment of cardinality. As we saw above, Maddy had proved that if the
statement that two non-empty collections are equinumerous is not satisfied in her original
theory of classes, then it is neither satisfied nor anti-satisfied. To understand the proof, it will be
helpful to state in full the Frege–Russell definition of equinumerosity adopted by Maddy.

Definition 7.1. For t, t′ ∈ T , t≈ t′ abbreviates

∃z(∀u∀v∀w((⟨u, v⟩ηz ∧ ⟨u,w⟩ηz ⊃ v =w) ∧ (⟨u, v⟩ηz ∧ ⟨w, v⟩ηz ⊃ u=w))∧
∀u((uηt⊃∃v(vηt′ ∧ ⟨u, v⟩ηz)) ∧ (uηt′ ⊃∃v(vηt ∧ ⟨v, u⟩ηz))))

Maddy’s proof then goes as follows. To establish that t ̸≈ t′, we need to show that every member
of T ∗ falsifies one of the conjuncts of the definition of equinumerosity. Maddy then shows that
if t and t′ are non-empty, this cannot be. A crucial step in the proof is that the two conjuncts of
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the first clause, namely

((⟨u, v⟩ηz ∧ ⟨u,w⟩ηz ⊃ v =w) ∧ (⟨u, v⟩ηz ∧ ⟨w, v⟩ηz ⊃ u=w))

can never be falsified because there are classes such that, for any collection, the theory
does not decide whether the collection belongs to them. (For instance, for every t, σM |=
tηx̂(x ̸ ηy).) However, this step fails in the Maddy–van Fraassen theory of classes, since a
material conditional A→B can be false even though both A and B are indeterminate. Similar
considerations apply to the reasoning Maddy employs to establish that the two conjuncts of the
second clause can never be falsified.

The Maddy–van Fraassen approach does not go all the way towards addressing the problem
of rampant indeterminacy, however. Recall that Linnebo’s second problem concerned identity
and in particular the fact that identity among classes is too fine-grained on Maddy’s theory,
so that whenever F and G are different formulae, then x̂F and x̂G are different classes.
As we saw, a natural option to deal with the problem, one already considered by Maddy,
is to define identity in terms of the equivalence relation ≃, where t≃ t′ ≡def ∀z(zηt↔ zηt′).
While promising, this definition failed to even be reflexive because of the problem of rampant
indeterminacy. In the Maddy–van Fraassen theory, by contrast, the relation behaves structurally
as we want. In particular, σMvF |= ∀z(zηt↔ zηt) and so σMvF |= t≃ t. Indeed, it is easy to check
that ≃ is an equivalence relation in the Maddy–van Fraassen theory of classes, as desired.

Nonetheless, the problem of identity is far from being solved. For we still have that
σMvF |= ∀z(zηx̂(x ̸ ηx)↔ zηx̂(x ̸ ηx ∧ x ̸ ηx)). It follows that, like Maddy’s theory, the Maddy–
van Fraassen theory is undecided about whether x̂(x ̸ ηx) is identical to x̂(x ̸ ηx ∧ x ̸ ηx).
The reason, essentially, is that, in the definition of the Maddy–van Fraassen jump, we are
supervaluating over all expansions consistent with what has already been established about
the extension and anti-extension of the membership relation. These expansions include ones
in which x̂(x ̸ ηx) and x̂(x ̸ ηx ∧ x ̸ ηx) have different membership constituencies. Should the
identity problem persist, Linnebo’s negative assessment of the prospects for a hierarchical
approach to classes based on a Kripke-style construction would after all be justified.

From the way I have introduced it, one might form the impression that the identity problem
only besets Maddy’s original theory and its supervaluational cousin. This impression would be
mistaken. For the problem is really a problem about how to treat identity within the context of
a naïve theory of classes—that is, a theory of classes that validates the unrestricted η-rules.

The issue is brought into sharp relief by Restall (2010), who presents a result that spells
trouble for Hartry Field’s (2008) theory of properties and indeed any naïve theory of properties
or classes. Restall’s result, which generalizes a theorem of Roland Hinnion (Hinnion and
Libert, 2003), shows that there are limits to how finely classes can be identified. In particular,
suppose that we take identity among classes to be governed by the following introduction and
elimination rules:

[+tηx̂F ]
...

+tηx̂G

[+tηx̂G]
...

+tηx̂F
(+= I.) if the subderivations of +tηx̂G and +tηx̂F

use no side premisses+x̂F = x̂G

+tηx̂F +x̂F = x̂G
(+= E.)

+tηx̂G
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Then, we can derive a contradiction using only the asserted η-rules and assuming the existence
of a sentence from whose assertion anything follows (which we do have in MBL and hence
MvFBL, since both system includes the principle of Bilateral Explosion).11 Essentially, what is
happening is that the resources of class theory allow us to derive a Curry-style result without
using a conditional, whose logical complexity is simulated by using the class-term operator .̂

The difficulties surrounding extensionality in the context of a naïve theory of classes have
long been known (Gilmore, 1974; Grišin, 1982; White, 1979). One might however have been
tempted to set those difficulties aside on the grounds that full-blown extensionality for classes,
understood as logical collections, might not be desirable anyway: while the set of chordates
and the set of renates, to use Quine’s (1951) famous example, are the same, the corresponding
classes or properties are different. Restall’s result makes it clear that this reaction would be
hasty. For the identity rules used in his derivation do not require classes to be extensional, since
the subderivation in the introduction rule is restricted so as to rule out side premisses. More
than mere extensional equivalence is needed for two classes to be declared identical. Indeed,
Restall takes (+= I.) to encode the idea that (rephrasing things in our framework) if asserting
tηx̂F commits one to asserting tηx̂G on purely logical grounds, and if asserting tηx̂G commits
one to asserting tηx̂F on purely logical grounds, then one is already committed to asserting
that x̂F and x̂G are identical. Restall goes on to argue that this intensional criterion of identity
of classes is hard to reject:

To reject [(+= I.)] is to reject a coarse account of properties. It is to not only accept
a finer individuation of properties where logically equivalent statements pick out
distinct properties, but to hold that any attempt at defining coarse properties
in terms of fine ones must fail. But at what point does that construction break
down? It seems like a straightforward construction of equivalence classes or their
representatives. To reject [(+= I.)] is also to leave open the vexed question of what
the identity conditions for properties can be, and should be. Just what is a property
that requires that they be more finely individuated than logic requires? Field’s
model construction doles out properties in exactly the measure of our language.
But it would be bizarre to think that this is an adequate picture of properties.
How convenient it would be if properties fit our language like hand to glove? But
which language? My language now? Or yours? How are we to get to an adequate
understanding of the properties picked out by this naïve theory of properties?
(Restall, 2010, pp. 442–443)

Restall is certainly correct that an identity criterion for classes which closely tracks their syntax
is unsatisfactory. This holds for the criterion of identity which can be extracted from the model-
theoretic construction of Field (2008), which is the focus of Restall’s paper, as much as it does
for Maddy’s original definition of identity.

It is less clear, however, that ‘[t]o reject [(+= I.)] is to reject a coarse account of properties’
(or classes). In his response (Field, 2010), Field interprets Restall’s (+= I.) as proof-theoretically
encoding the model-theoretic principle that if tηx̂F |=w tηx̂G and tηx̂G |=w tηx̂F , then |=w x̂F =
x̂G (where A |=w B is weak entailment: in every model in which A is satisfied, so is B). But, Field
11Restall presents his derivation in a sequent calculus setting, which makes explicit the structural assumptions. In that context, the derivation uses the rules
of Reflexivity and Cut.
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says, this is implausible. If we let L be a Liar sentence, and F be ‘L ∧ xis a kangaroo’ and G be
‘L ∧ xis a cockroach’, then tηx̂F |=w tηx̂G and tηx̂G |=w tηx̂F in Field’s theory of truth, but we
would not want to conclude that x̂F = x̂G.

In more recent work, Restall has returned to the issue in collaboration with Shawn Standefer
and Rohan French (Standefer et al., 2020). They point out that Restall’s result is, first and
foremost, a proof-theoretic result, based on the proof-theoretic principle that if I can derive
tηx̂G from tηx̂F (appealing to other assumptions) and vice versa, then I can derive x̂F = x̂G.
Field assumes that if I can derive B from A appealing to no other assumptions, all I learn is that
A weakly entails B. But perhaps I learn more. Perhaps I learn that A strongly entails B, where
A strongly entails B just in case |=w A→B. Given the failure of the Deduction Theorem for the
conditional Field uses and as suggested by the terminology, weak entailment does not imply
strong entailment.

Now, as Standefer et al. (2020) note, it is hard to tell what is needed proof-theoretically in
order to establish a strong entailment, since Field has not provided a proof theory for his theory
of truth, but only a model theory. We can do so, however, for the Maddy–van Fraassen theory
of classes. To this end, it will be helpful to return to the definition of identity as ≃. It is easy to
see that, in the context of the supervaluationist setting of the Maddy–van Fraassen theory, this
definition sanctions the following rules:

[+tηx̂F ]
...

+tηx̂G

[+tηx̂G]
...

+tηx̂F
(+≃ I.) if the subderivations of +tηx̂G and +tηx̂F

use no η-rules+x̂F ≃ x̂G

+tηx̂F +x̂F ≃ x̂G
(+≃ E.)

+tηx̂G

Thus, there is at least a sense, brought out by the proof theory, in which defining identity as ≃
in the context of the Maddy–van Fraassen theory is both more permissive and more restrictive
than the definition of identity for classes/properties proposed by Restall. It is more permissive
in that it does allow side premisses in the subderivations of the introduction rule for asserted
identity. It is more restrictive in that it does not allow the use of the η-rules in the subderivations.
In general, to derive +B from +A without using any other assumptions does not suffice in
MvFBL to establish that A strongly entails B where strong entailment is defined using the
material conditional (that is, σMvF |=A→B). What is rather needed is that the derivation from
+A to +B does not use the η-rules.12

Using our proof-theoretic resources, we can then clearly explain what more is needed in our
setting to establish a strong entailment. However, we still have not solved the problem that the
proposed criterion of identity among classes appears far too restrictive. For it is still the case
that we cannot conclude in MvFBL that x̂(x ̸ ηx) and x̂(x ̸ ηx ∧ x ̸ ηx) are identical. So one might
suspect that Restall was after all right that to reject (+= I.) is to reject a coarse account of classes.
And Linnebo would after all be vindicated in thinking that the problem of identity for Maddy’s
12Weak entailment and strong entailment in Field’s system correspond to global and local consequence in a supervaluationist setting. For more on the
relationship between global and local consequence, where the latter is characterized using the material conditional, see Incurvati and Schlöder, 2022.
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theory should lead us to conclude that a hierarchical approach to classes based on a Kripke-style
construction is a failed research programme.

8. Maximal consistency

Fortunately, we can give a coarse account of classes while remaining within the remit of a
hierarchical approach to classes based on a Kripke-style construction. To develop such an
account, a proof-theoretic point of view will again prove useful. The fact that (+≃ I.) disallows
the use of the η-rules in its subderivations sheds light on why we cannot conclude that x̂(x ̸ ηx)
and x̂(x ̸ ηx ∧ x ̸ ηx) are identical. For it is rather natural to try to establish that x̂(x ̸ ηx) and
x̂(x ̸ ηx ∧ x ̸ ηx) via the following derivation:

[+tηx̂(x ̸ ηx)]
(+η E.)

+t ̸ ηt
[+tηx̂(x ̸ ηx)]

(+η E.)
+t ̸ ηt

(+∧ I.)
+t ̸ ηt ∧ t ̸ ηt

(+η I.)
+tηx̂(x ̸ ηx ∧ x ̸ ηx)

[+tηx̂(x ̸ ηx ∧ x ̸ ηx)]
(+η E.)

+t ̸ ηt ∧ t ̸ ηt
(+∧ E.)

+t ̸ ηt
(+η I.)

+tηx̂(x ̸ ηx)
(+≃ I.)

+tηx̂(x ̸ ηx)≃ tηx̂(x ̸ ηx ∧ x ̸ ηx)

However, this derivation is not valid in MvFBL because it makes use of the η-rules in
the subderivations of the ≃ introduction rule. Now, the ban on applications of η-rules in
subderivations was motivated on the grounds that, from a supervaluationist standpoint,
classical reasoning is in order when no rules are used that can engender indeterminacy. But
from a supervaluationist standpoint, classical reasoning would also seem to be in order when,
even though the rules are used, they are used only to access and therefore exploit the logical
structure of the defining formula F of some class x̂F . For this structure and what follows from
it are unaffected by the way in which the indeterminacy might be resolved. We can formally
capture this idea by weakening the restriction on the ≃ introduction rule so that the use of the
η-rules is allowed when the subderivations proceed first by eliminating η and then introducing
it at the end.

[+tηx̂A]
...

+tηx̂B

[+tηx̂B]
...

+tηx̂A
(+≃ I.)

if either the subderivations use no η-rules or they
begin with an application of (+ηE.) and (−ηE.)
to every premiss and end with an application of
(+ηI.) or (−ηI.)

+x̂A≃ x̂B

With this weaker restriction in place, the above derivation of +tηx̂(x ̸ ηx)≃ tηx̂(x ̸ ηx ∧ x ̸ ηx)
goes through, as it perhaps should.

Clearly, however, if the motivation for weakening the restriction applies to the introduction
rule for asserted class identity, it ought to apply whenever in MvFBL we had restrictions on
the subderivations. Indeed, there is also a technical reason for this, namely that we are officially
treating the introduction rule for asserted class identity as a derived rule, and in order to be able
to derive the more permissive version of it, we must relax the restrictions on the subderivations
on the (BET*) rule accordingly. This yields the following rule.
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[+A]
...
φ

[−A]
...
φ

(BET**)
if either the subderivations use no η-rules or they
begin with an application of (+ηE.) and (−ηE.) to
every premiss and end with an application of (+ηI.)
or (−ηI.)

φ

A similar change must be made in the restrictions on the subderivations in the (−∧E.) and (−∀E.)
rules. Call (for reasons that will shortly become clear) the resulting theory MCBL. If we let a ♣i

denote one of the two force markers, MCBL can also be axiomatized by adding to MvFBL the
following meta-rule of Classical Compositionality, which perhaps more directly captures the
idea that classical reasoning is in order when the η-rules are only used to access the logical
structure of the defining condition of the relevant class.13

♣1F1t1, . . . ,♣nFntn ⊢MvFBL∗ ♣oGu(CC) ♣1t1ηx̂F1, . . . ,♣ntnηx̂Fn ⊢MvFBL∗ ♣ouηx̂G

We have arrived at MCBL via proof-theoretic considerations and by reflecting on the original
motivation for the restrictions on hypothetical reasoning within a supervaluationist setting.
What is remarkable is that MCBL is also a very natural theory from a model-theoretic point
of view.

To explain and make precise the sense in which this is the case, we need to introduce
some further model-theoretic terminology. I mentioned earlier that Kripke (1975) had already
suggested the possibility of using a supervaluational scheme for handling truth-value gaps, and
that the first scheme he considered was a straightforward adaption of van Fraassen’s original
notion of supervaluation to the case of truth. But in his paper, Kripke also considered another
supervaluational scheme. The idea of this scheme is to take an expansion of an EA-pair to be
admissible just in case it is maximally consistent. This gives rise to the following definition.

Definition 8.1 (mc-admissible expansion). An EA-pair τ = ⟨τ+, τ−⟩ is a mc-admissible expansion
of an EA-pair σ = ⟨σ+, σ−⟩ iff (i) τ ⊒ σ, (ii) for no A, both τ |=A and τ |=A, and (iiii) for every
A, either τ |=A or τ |=A.

Using this notion in the Supervaluational-jump template (Definition 6.1), we then obtain the
maximally consistent jump Jmc, and replacing the Maddy jump with Jmc in the definition of the
Maddy hierarchy, we obtain the maximally consistent class hierarchy. Once again, the construction
reaches a fixed point σmc, and so we can consider σmc as providing the extension and the anti-
extension of η according to the theory of classes obtained by adopting the maximally consistent
supervaluational scheme within the context of a hierarchical theory of classes.

We are now ready to prove that there is a deep connection between MCBL and the maximally
consistent class hierarchy. For, as I am now going to show, over TST, MCBL axiomatizes the
fixed point of this hierarchy.14 I first prove that MCBL is sound with respect to the consequence
relation induced by σmc.

13The name is intended to be reminiscent of compositionality in the truth context, where two special cases of this rule have been shown by Incurvati and
Schlöder (2023) to deliver material compositionality for the truth predicate. Indeed, the situation suggests to me that the problem of identity in the theory of
classes is closely linked to the problem of compositionality in the theory of truth. I hope to explore these connections in future work.
14The result mirrors Incurvati and Schlöder’s (2023) result that a suitable extension of their multilateral theory of truth axiomatizes the maximally consistent
truth hierarchy.
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Theorem 8.2. Let Γ be a set of signed sentences and φ a signed sentence. Suppose that for all ψ in
Γ, σmc |=A if ψ =+A, and σmc |=A if ψ =−A. Then, if Γ ⊢MCBL φ, σmc |=B if φ=+B and σmc |=B
if φ=−B.

Proof. Recall that MCBL can be axiomatized by adding the Classical Compositionality meta-
rule to MvFBL. Now the arguments from 6.3 carry over to the present case, except that for the
soundness of (+ηE.) we appeal to the fixed-point property. So it remains to check the soundness
of (CC).

Let ◦ denote nothing if a given ♣i is + and denote negation if a given ♣i is −. Then
since ⊢MvFBL∗ denotes derivability in MvFBL without use of the η-rules, to prove that (CC) is
sound, it suffices to show that if σmc |= ◦F1t1 ∧ . . . ∧ ◦Fntn ∧ ◦¬Gu, then σmc |= ◦t1ηx̂F1 ∧ . . . ∧
◦tnηx̂Fn ∧ ◦u ̸ ηx̂G. So suppose that |= ◦F1t1 ∧ . . . ∧ ◦Fntn ∧ ◦¬Gu and, for reductio, that σmc ̸|=
◦t1ηx̂F1 ∧ . . . ∧ ◦tnηx̂Fn ∧ ◦u ̸ ηx̂G. This means that there is an mc-admissible expansion τ of
σmc such that τ ̸|= ◦t1ηx̂F1 ∧ . . . ∧ ◦tnηx̂Fn ∧ ◦u ̸ ηx̂G. It follows that τ ̸|= ◦F1t1 ∧ . . . ∧ ◦Fntn ∧
◦¬Gu. But since τ is maximally consistent, this means that τ |=◦ F1t1 ∧ . . . ∧ ◦Fntn ∧ ◦¬Gu.
But since τ is an expansion of σmc, we also have that τ |= ◦F1t1 ∧ . . . ∧ ◦Fntn ∧ ◦¬Gu. Hence, τ
is not classically consistent and hence not an mc-admissible expansion.

Similarly to the cases of MBL and MvFBL, Theorem 8.2 yields that, over TST, MCBL is sound
with respect to σmc.

Theorem 8.3. For every sentence A, if TST ⊢MCBL +A, then σmc |=A, and if TST ⊢MCBL −A, then
σmc |=A.

Given our earlier results and proofs, it is then easy to see that, over TST, MCBL is also complete
with respect to σmc.

Theorem 8.4. For every sentence A, if σmc |=A, then TST ⊢MCBL +A, and if σmc |=A, then
TST ⊢MCBL −A.

Proof. The proofs of Lemma 6.5 and Theorem 6.6 go through as before. The same goes for the
proof of Theorem 6.7, except that we now need to show that the τ defined in the course of
the proof, besides satisfying condition (i) of the definition of an mc-admissible expansion of
σmc
α (that is, being an expansion of it), also satisfies conditions (ii) and and (iii) (that is, being

consistent and maximal).
For consistency, suppose that τ |=A and τ |=A for some A. Then, by Theorem 6.6 adapted to

the case of MCBL, it follows that Γ ⊢MCBL∗ +A and Γ ⊢MCBL∗ −A, contradicting the assumption
that Γ is b-consistent. The maximality of τ can be established in a similar manner.

It is then straightforward to provide a general model theory for MCBL by requiring the models
to be not only η-admissible but, in effect, to satisfy Classical Compositionality.

9. Conclusion

Far from being a failed research programme, the Maddian approach to classes is alive and well,
once we pursue it along the supervaluational lines already mentioned by Kripke in 1975. The
rampant indeterminacy of Maddy’s original approach is not inherent to a hierarchical approach
to classes based on a Kripke-style construction. Rather, it is due to the particular implementation
using the scheme for handling truth-value gaps Kripke focused on, which gives rise to a Strong
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Kleene Logic. By using a different, supervaluational scheme, we can address the basic problem
of rampant indeterminacy. And by focusing on the specific supervaluational scheme based on
maximally consistent expansions, we can give a natural solution to the longstanding problem
of identity for a naïve theory of classes, meeting a more general challenge for naïve theories
of classes issued by Restall. Looking at the problem from a proof-theoretic perspective, and
providing bilateral and multilateral deductive systems for the theories of classes examined,
played a key role in arriving at this solution, in that it made it clear exactly what shape a rule of
identity among classes ought to have.

Many questions remain open. In closing, let me highlight two sets of questions that I deem
especially pressing. The first is that of the conditional in MCML. Although the theory includes
the unrestricted η-rules, it does not validate the comprehension schema where the schema
is formulated using the material conditional of the theory. According to Field et al. (2017),
any naïve theory of classes worth its name ought to validate the unrestricted comprehension
schema. Field et al. (2017) go on to prove an impossibility result concerning extensionality in
the setting of a naïve theory of classes: in the presence of what they deem to be very modest
demands on extensionality and the conditional, it is not possible to consistently validate the
unrestricted comprehension schema.

Now, Incurvati and Schlöder (2023, Ch. 8) have developed a theory of conditionals on which
one of the principles Field et al. (2017) use in their proof (namely, Quasi-Substitutivity) appears
to fail. For this reason, it might be profitable to investigate whether it is possible to validate
a version of the comprehension schema formulated using the Incurvati-Schlöder indicative
conditional:

Question 9.1. Is the theory obtained by adding the comprehension schema formulated using
the Incurvati-Schlöder conditional to MCML consistent?

If the answer to this question is positive, a subsequent question would then be whether the
Incurvati-Schlöder conditional suffices to sustain a decent amount of conditional reasoning
within the theory.

This brings me to the second set of questions, which concern the mathematical strength of
the maximally consistent theory of classes. Much is not known here at the time of writing. For
instance, it is not known whether a fully satisfactory theory of Frege–Russell cardinal numbers
can be developed within MCML. We know that MCML improves on Maddy’s theory of classes
by establishing basic cardinality facts. For instance, while Maddy’s theory could not even prove
that {∅} is not equinumerous with {∅, {∅}}, this holds in the maximally consistent theory of
classes. The intuitive reason for this is that in any model over which we are supervaluating
there is no class witnessing the one-to-one correspondence between {∅} and {∅, {∅}}, and so
no such correspondence exists in the universe of the maximally consistent theory of classes.
However, it seems plausible to require that MCML should be able to prove Hume’s Principle,
formulated as x̂(x≈ t) = x̂(x≈ t′)↔ t≈ t′.

Question 9.2. Is Hume’s Principle provable in MCML?

Given the difficulties surrounding the development of a theory of Frege–Russell cardinal
numbers within her theory of classes, Maddy (2000, 313–314) explores the prospects of
developing a theory of cardinal numbers based on von Neumann ordinals. While the results are
more encouraging in this case, the theory still falls short of deriving arithmetic. In particular, the
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Induction Axiom is not provable because of the problem of rampant indeterminacy. One might
therefore ask:

Question 9.3. Are the Peano Axioms provable in MCML given a definition of cardinality à la
von Neumann?

In the theory of truth, much work has been devoted to establishing the proof-theoretic strength
of various axiomatizations of the truth predicate. For instance, and relevantly for our purposes,
it was established by Andrea Cantini (1990) that a theory of truth using a more demanding
supervaluational scheme than the van Fraassen one but less demanding than the maximally
consistent one has the same proof-theoretic strength as the theory of inductive definitions
known as ID1. For this reason, it is to be expected that the theory of classes developed here
will have considerable proof-theoretic strength. I therefore ask:

Question 9.4. What is the proof-theoretic strength of MCML?
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