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Abstract: This article argues for a (quasi-)Carnapian version of logicism about
mathematics: there is a logicist conceptual framework in which
(i) all standard mathematical terms are defined by logical terms, and (ii) all standard
mathematical theorems are (likely to be) analytic. Along the way, the article explains
the historical-philosophical background, how the definitions in (i) are to proceed,
what the framework and the semantic notion of analyticity-in-a-framework are like,
and why the probabilistic qualification ‘likely to be” is used in (ii). The upshot is
not some logicist epistemic foundationalism about mathematics but the insight that
mathematics can be rationally reconstructed as being conceptual, i.e., as coming
along with a conceptual framework.
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1. Introduction

In the famous Konigsberg conference from 1930, in which Arend Heyting
presented intuitionism and John von Neumann formalism, Rudolf
Carnap gave a lecture on logicism about mathematics which appeared
as Carnap (1931) later. In his lecture, Carnap stated the logicist thesis in
the following;, still fairly standard, two-part manner:!

1. The concepts of mathematics can be derived from logical
concepts through explicit definitions.

2. The theorems of mathematics can be derived from logical
axioms through purely logical deduction. (Carnap, 1931, pp.
91f)

In line with Carnap, I am going to understand by traditional logicism about
a mathematical language £ and a mathematical theory 7, (formulated in
L) the conjunction of the following two theses:

1Some more recent (neo-)logicists, such as Hale and Wright (2001), might expand ‘logical concepts” to ‘logical or
abstraction concepts’ in 1, and some logicists might replace 2 by ‘The truths of mathematics are logical truths (or analytic)’.
For a survey of logicism, see Tennant (2013).
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la. All mathematical terms in £ are explicitly definable from logical terms.
2a. All mathematical theorems in 7} are logically derivable from logical axioms and explicit
definitions (the definitions claimed to exist by 1a).

Both Frege’s (1884; 1893/18931903) logicism about arithmetic and Whitehead and Russell’s
(1910-1910 1913) logicism about general mathematics may be understood as aiming at
traditional logicism in that sense, with suitable choices of £ and 7.

Moreover, if one follows Frege (e.g. §3 of his Grundlagen der Arithmetik, 1884) in defining
a sentence to be analytic just in case it is logically derivable from logical axioms and explicit
definitions, one may reformulate 2a above in the equivalent manner:

2b. All mathematical theorems in 7 are (Frege-)analytic.?

Indeed, for any logicist whatsoever it is perfectly clear that definitions are just as indispensable
for their own project as they are for mathematical practice itself. Since, according to our present-
day understanding of logic, definitions are neither logical axioms nor logical rules, the logicist
goal is thus not to show that mathematics is purely logical but rather that mathematics is
analytic. When Carnap’s thesis 2 above speaks of mathematical theorems being derivable
from logical axioms through purely logical deduction, he simply understands ‘logical” broadly
enough to encompass also definitions.

Fast-forwarding more than thirty years to Carnap’s autobiography in his Schilpp volume,
Carnap describes his early encounter with Frege’s logicism again in very similar terms:

I had learned from Frege that all mathematical concepts can be defined on the basis
of the concepts of logic and that the theorems of mathematics can be deduced from
the principles of logic. Thus the truths of mathematics are analytic in the general
sense of truth based on logic alone. (Carnap, 1963, p.46)

As the ‘I had learned” suggests, Carnap retained his logicist convictions until that final stage
of his career. But of course it is important not to overlook the ‘can” here: for he had argued in
his Logical Syntax of Language (Carnap, 1934, 1937) that mathematics could also be understood
differently if reconstructed in an alternative framework (e.g. mathematical terms might instead
be regarded as primitive non-logical terms; see Carnap, 1934, 1937, §84 and also §78). Carnap
recommended to be tolerant about frameworks, as for him there was no fact of the matter which
of them would be the “right” one to reconstruct mathematics within: there was a plurality
of suitable formally precise frameworks available, and whether and how one preferred to
reconstruct mathematics in any one of them reduced to the practical question of what choices
would serve the specific aims of one’s reconstruction to greater extent. However, it should also
be clear that Carnap regarded the logicist reconstruction of mathematics in a logicist framework
to be one of the options available, and he took it to be his preferred option for many salient
purposes.’

2For a different understanding of Frege-analyticity, see Boghossian (1996).
3For more on Carnap’s logicism, see Bohnert (1975) and, more recently, Marschall (2021). See Schiemer (2022) for a survey of logicism in logical empiricism
more broadly.
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In what follows, I will take up some of Carnap’s ideas about theoretical terms, conceptual
frameworks®, and analyticity in order to develop a distinctively (quasi-) Carnapian version of
logicism about mathematics. The ambition is not historical, but rather the goal is the systematic
development and defense of a version of logicism on broadly Carnapian grounds.

The corresponding logicist thesis I want to argue for is:

There is a logicist conceptual framework, such that

lc. all standard mathematical terms are explicitly defined from logical terms in the
framework,

2c. all standard mathematical theorems are likely to be (Carnap-)analytic, that is,
semantically analytic, in the framework.

The term ‘standard” in 1c and 2c is meant to apply to (reconstructions of) almost all terms and
theorems of present-day pure mathematics. This will come about by rationally reconstructing,
on logicist grounds, the language of second-order ZF set theory, which is known to allow for
the definition of all standard mathematical terms used by pure mathematicians, and also the
axiomatic system of second-order ZF set theory, which is known to allow for the derivation of
all standard theorems proven by pure mathematicians so far. I will presuppose the deductive
system of second-order logic (with Choice) to be genuinely logical and the second-order
universal quantifier to range over all classes and class-relations of first-order individuals. The
outcome will be a rational reconstruction® of pure set theory and indeed pure mathematics in
the sense of clarifying, precisifying, systematizing, and interpreting set theory and mathematics
from a logicist point of view while remaining close to set-theoretic and mathematical practice
(though slight deviations from that practice are allowed for the sake of other virtues). The
discussion of the logicist understanding of applied mathematics and of the role of mathematics
in the empirical sciences and engineering will have to be left for a different occasion.®

Set theory is widely accepted by mathematicians to be one possible foundation for almost
all of today’s mathematics. That is: it is widely held that all standard mathematical terms are
explicitly definable using only logical terms and the membership predicate €, and that all
standard mathematical theorems are derivable from first-order or second-order ZF with Choice
and hence are true in all standard models of ZF with Choice or indeed true in the intended model
(if there is just one). Call this common view ‘ZFCism’.” What will Carnapian logicism add to
this? ZFCism is a purely mathematical view that is not by itself a philosophical interpretation
of mathematics and is compatible with different such interpretations. E.g., it might be given a
special kind of realist interpretation of the following sort: metaphysically, sets and membership
might be assumed to exist independently of reasoners and language, and set-theoretic truths
might be assumed to be metaphysically necessary. Epistemologically, sets and membership

4For much of his career, Carnap would have spoken of constitution systems, languages or linguistic frameworks, though sometimes he also used the term
‘conceptual framework’, as in “many problems concerning conceptual frameworks seem to me to belong to the most important problems in philosophy”
(Carnap, 1963, p.862). I prefer the term ‘conceptual framework’ in order to make clear that frameworks in that sense are not just syntactical but also involve
semantic rules and semantic interpretation mappings. Conceptual frameworks correspond to the semantical systems or intensionally interpreted languages
that became central to Carnap’s work once he had taken his semantic turn, as exemplified by Carnap (1942, 1947/1956). In their most general form,
conceptual frameworks encode syntactic, logical, semantic, pragmatic, epistemic, ontic, and other choices, and their construction, study, and application
is philosophically useful (contra Maddy, 2007, Chapter 5) whenever philosophical concepts, theses or arguments depend on such choices. The logicism of
this paper does depend on such choices.

55ee Leitgeb and Carus (2024, Supp. D) for more on Carnap on rational reconstruction.

OBut Carnap (1934, 1937, §84) rightly stresses that securing the applicability of mathematics to the empirical world is itself a vital part of the logicist project.

I owe this terminology to an anonymous reviewer.
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might be assumed to be epistemically accessible by quasi-perceptual means through which
set-theoretic statements can be justified. Semantically, the membership predicate might be
taken to be primitive,® to have its intended interpretation(s) in virtue of certain non-semantic
facts, and the set-theoretic axioms might be regarded as synthetic. And so forth. Carnapian
logicism will differ substantially from any such realist interpretation: it will stay closer to
ZFCism itself, adding only a definition of sethood and membership in logical terms, assuming
their interpretations to satisfy the set-theoretic axioms and to otherwise remain arbitrary, and
regarding the set-theoretic axioms to be (likely to be) analytic. The resulting interpretation of
set theory will be “thin” or “deflationary” in a sense similar to deflationary theories of truth in
which the truth predicate is regarded as a (quasi-)logical expression the interpretation of which
is only assumed to satisfy the Tarskian truth scheme for the object language in question. No
substantial metaphysical or epistemological assumptions are assumed by any such deflationary
conception of truth, and no such assumptions will be assumed by Carnapian logicism either.
And the purpose of developing such a logicist interpretation in precise terms by rationally
reconstructing mathematics in a logicist framework are strictly philosophical, not mathematical:
the goal is not to give mathematicians a mathematically better foundation to work with—just
as the realist view sketched before would not give mathematicians a mathematically better
foundation—but rather to show that mathematics can be understood to be purely conceptual.

More generally, (quasi-)Carnapian logicism about a mathematical language £ and a
mathematical theory 7 is given by:

There is a logicist conceptual framework, such that
1d(£). all mathematical terms in £ are explicitly defined from logical terms in the
framework,
2d(T;). all mathematical theorems in 7 are likely to be (Carnap-)analytic, that is,
semantically analytic, in the framework.

Hence, 1c and 2c from before will follow from instantiating the schemes 1d and 2d with
the names of the language L2 5., and the axiomatic system ZF2[e, Set] of second-order ZF.
Focusing on these particular instances 1d(L? ;) and 2d(Z F2[€, Set]) will prove useful for my
logicist purposes; in particular, it will be convenient in so far as second-order set theory—just as
its first-order variant—is regarded as at least one possible foundation for modern mathematics
anyway. But most of the logicist project of the present paper could be carried out just as well
for many other choices of £ and 7. Therefore, readers are very much invited to apply the
general logicist strategy of this article to other such choices, whether they concern alternative
foundations of mathematics or, in a more piecemeal fashion, languages and theories for specific
areas of mathematics (logicism about second-order Dedekind-Peano arithmetic, logicism about
second-order Dedekind real analysis,. . .).

The definitions backing up 1d(L% ) will rely on an understanding of set-theoretic
membership and sethood as theoretical concepts—concepts given by the axiomatic theory
of second-order ZF—and on the corresponding explicit definitions of € and Set by purely
logical higher-order epsilon terms (Section 2). The logicist framework in question, which
is to be distinguished from proper scientific theories that can be formulated within the
framework, will involve an object-linguistic and a metalinguistic part, both of which will

81n the usual axiomatic systems for set theory, ‘€’ is of course indeed a primitive. But this might change in a philosophical interpretation of set theory.
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be based on higher-order logic and the logic of epsilon terms. The metalinguistic part
will include semantic rules for the object-linguistic part, and a framework-relative semantic
concept of analyticity will be introduced that is going to reflect these semantic rules (Section
3). Analyticity in that semantic sense will be entailed by Frege-analyticity, that is: logical
axioms and explicit definitions in the object language of the framework and what is
logically derivable from them in the framework will follow to be semantically analytic in
the framework. But Carnapian semantic analyticity in the framework extends beyond Frege-
analyticity in the framework. In other words: Frege-analyticity is sound but not complete
with respect to semantic analyticity.” As we are going to see, the analyticity of second-
order ZF in the semantic sense will depend on whether a certain second-order existence
statement in the metalinguistic part of the framework holds true, which we will find very
likely to be the case (Section 4). Accordingly, in contrast with traditional logicism, 2d(Z F'2[€
,Set]) does not claim the analyticity of standard mathematical theorems to be derivable
from uncontroversial principles but just that these theorems are likely to be semantically
analytic in the framework. Replacing the derivability of analyticity by its high probability
should not come as too much of a surprise, as the analyticity of second-order ZF would
entail its consistency, and we know from the Incompleteness Theorems that the consistency
of second-order ZF could not be derived on more elementary grounds (assuming second-
order ZF is consistent). Finally, I am going to draw some conclusions on what this (quasi-)
Carnapian version of logicism does or does not show philosophically (Section 5). In particular,
it would not serve any logicist version of epistemological foundationalism that would ask for
logic to deliver a more secure foundation for mathematics. Instead, the main conclusions will
be: mathematics can be rationally reconstructed as purely conceptual, that is, as coming along
with a conceptual framework. In one version of Carnapian logicism, this includes the existence
of abstract logical objects that are introduced by the logicist framework itself. And, at the
very least, this reconstruction does not fare worse than any other philosophical interpretation
of mathematics available, as it is formally clear, precise, and systematic, it remains close to
mathematical practice, and it is philosophically coherent."

Last but not least, I should stress that I have been qualifying my approach as quasi-Carnapian.
The reason for this is that Carnap himself did not develop or defend logicism in this manner.
Instead, for most of his logical and philosophical work, he relied on a version of the simple

9That is one reason why Carnapian logicism differs, e.g., from the conventionalism put forward by Warren (2020) who regards conventions as syntactic rules
of language use. Another reason is that Warren’s project is not one of rational reconstruction.

10pe contemporary literature that comes closest to the theory to be presented are, first, Woods’ (2014, Section 4.3) and Boccuni and Woods’ (2020) version of
abstractionist neo-logicism, second, Leitgeb, Nodelman, and Zalta’s (2025) object-theoretic logicism, and third, Soysal’s (2025) meta-semantic descriptivism.
Woods and Boccuni advocate a neo-logicism in which abstraction operators in neo-logicist abstraction principles are given by second-order epsilon terms or,
in any case, are semantically “arbitrary”. The main differences to the present theory are: their philosophical background and interests consist in a combination
of mathematical structuralism with Hale and Wright’s (2001) neo-logicism based on abstraction principles (such as Hume’s Principle); and they neither use
a Carnapian concept of semantic analyticity nor argue for their basic principles to be analytic. Leitgeb, Nodelman, and Zalta (2025) also regard mathematical
concepts as theoretical concepts given by mathematical theories. The differences are: they presuppose higher-order object theory as their background logic,
which involves two kinds of predication; they do not invoke epsilon terms; and they do not apply a Carnapian concept of semantic analyticity. Instead, they
combine Frege-analyticity with an extended notion of logical truth according to which a formula of a formal language is logically true just in case it is true in
all models that include everything required for the possibility of having logically complex thoughts expressible in that language. As I will argue in Section 3,
Carnapian frameworks are also meant to supply what is required for thought, and semantic analyticity in a framework tracks what the framework supplies.
Finally, Soysal (2025) develops a version of meta-semantic descriptivism about logical and mathematical expressions in which these expressions have their
meaning at least partially in virtue of descriptions; in the case of the membership predicate, the description is given by set-theoretic axioms. The differences
from the present approach are: Soysal’s theory is not a rational reconstruction but deals with the actual metasemantics of logical and mathematical language;
it does not involve epsilon terms; and it is not meant to be based solely on Carnapian grounds (though overlapping with Carnap on theoretical terms and
analyticity).
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theory of types as his preferred logical system, which he described in formal detail in his
Abrif$ der Logistik (Carnap, 1929), and from which parts of modern mathematics can be derived
at least conditionally (that is, given certain assumptions, such as an Axiom of Infinity—see
Carnap, 1929, Section 24e; I will return to this in Section 2). In fact, Marschall (2024, Section 3.2)
presents historical reasons to believe that Carnap regarded our pre-theoretic understanding
of set-theoretic membership to be sufficiently clear and determinate—much like Frege might
have thought about the concept of extension—so that there would be no need to regard it as
being determined by an axiomatic theory. But then again, as Bohnert (1975, p. 210) cites his
conversation with Carnap in 1968, “He [Carnap] still thought set theory could be given an
analytic interpretation”.

In any case: what Carnap himself would have thought about the project of this paper is
orthogonal to its strictly systematic ambitions. For me, the more interesting point is that Carnap
could have thought of mathematics in the logicist manner I am going to describe, since he
did have the philosophical resources to so so. And even more importantly: everyone else is
invited to think of mathematics in the same manner, and if one did, one would be able to do so
coherently.

2. Defining Membership and Sethood Logically

As mentioned in the introduction, the starting point of our considerations is the axiomatic
theory

ZF2]e, Set]

that is, classical second-order Zermelo-Fraenkel set theory (see Shapiro, 1991, p. 85)"', which is
formulated in the language £2 g, that is, with the logical and auxiliary symbols of classical
second-order logic, the primitive descriptive binary membership predicate €, and the primitive
descriptive unary predicate Set for sets. Without further argument and Quinean worries
notwithstanding, I will take the operators of pure second-order logic to be properly logical
symbols, the axioms of the deductive system of second-order logic to be properly logical truths,
and the rules of the deductive system of second-order logic to be properly logical valid.”> The
role of Set is just to restrict all first-order and second-order quantifiers in the axioms to sets, and
to restrict the relata of the membership relation to sets.” In addition, I am also going to assume
the Axiom of Extensionality for second-order entities to belong to the system of second-order
logic; consequently, e.g., second-order property variables may be thought of as ranging over
extensional properties or classes. And I will regard a second-order version of the Axiom of
Choice to be included in the deductive system of second-order logic (following Shapiro, 1991,
p. 67), without defending its logicality here.

.z F2[e, Set]’ can be used to denote the set of axioms of second-order set theory or the deductively closed set of formulas that are derivable from these
axioms in the deductive system of second-order logic. The context should always make clear which of the two is meant in each case. In any case, I do not
mean the set of formulas that are second-order consequences of these axioms in the model-theoretic sense. Similarly, I will leave it to the context to determine
whether ‘€” and “Set’ denote predicates, that is, linguistic items, or the concepts expressed by these predicates, or the extensions of these concepts.

12The deductive system of second-order logic may be viewed as a many-sorted variant of first-order logic and should thus be compatible even with a
Quinean conception of logic.

1350 all first-order quantifier occurrences in Z F'2[€, Set] are of the form Vz(Set(xz) — ...) or Jz(Set(x) A .. .), the second-order Axiom of Replacement
begins with V f (Vz(Set(x) — Set(f(x))) — .. .), and the statement Vx, y(x € y — Set(x) A Set(y)) is accepted as yet another axiom. Note that overall
Va(Set(x) <+ Jy « € y) becomes derivable. Given our aim of reconstructing pure mathematics, there will be no need to consider sets of urelements, that

is, sets of non-sets. In a context in which no other entities were relevant than sets, the Set predicate could of course be eliminated, as is the case in Shapiro
(1991, p. 85).
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One of the advantages of going second-order is that second-order quantification makes
the usual axiom schemes of first-order set theory obsolete, so that the axioms of Z[F2[e
, Set] may be regarded to form one longish but finite conjunction. But ZF2[€, Set| exhibits
also other attractive features: almost all proven theorems of pure mathematics are known
to be derivable from the axioms of ZF2[€, Set] and auxiliary definitions in the deductive
system of second-order logic with Comprehension and Choice. Indeed, ZF2|e, Set] is a non-
conservative extension of first-order ZF'C, which, in turn, is often regarded as a foundation
of modern pure mathematics. However, historically, Zermelo (1930) had formulated set theory
(with urelements) in second-order terms, and second-order set theory seems to be closer to
mathematical practice than its first-order version (see Shapiro, 1991, Sections 5.3-5.4). Like
ZFC, ZF2]e, Set] captures the cumulative hierarchy of sets by proving that every set occurs
in a hierarchy that is indexed by ordinals and given by Vi = &, V1.1 = p(V,,), and V) = U,<\ VL.
In addition, unlike ZF'C, ZF2[€, Set] is “almost” categorical, that is, it pins down the structure
of the cumulative hierarchy uniquely up to its strongly inaccessible ordinal height (see Shapiro,
1991, p.86, and, for internal categoricity, Vadnanen and Wang, 2015). This holds even though
ZF2[e, Set] is of course deductively incomplete, as follows from the Incompleteness Theorems
(assuming that Z F'2[e, Set] is consistent). Moreover, for a logicist endeavor, it is reassuring that
the basic individual entities described by ZF2[€, Set] are governed by the clear and precise
identity criterion of first-order extensionality, they are similar in that way to Frege’s extensions
(which Frege regarded as logical objects), and they might even be viewed as intensionally
rigid logical properties, so that e.g. a set {@, ...} could be identified with the logical property
Ax(z =@V ...), the set & with the logical property Az(z # z), and the like."*

Independently of whatever else the predicates € and Set might have meant antecedently,
let us from now on think of ZF2[€, Set] as “implicitly defining” € and Set jointly with their
underlying iterative conception of sets, where the iterative conception is preferably understood
in a minimalist or deflationary manner (see Incurvati, 2020, Chapter 2 and especially Section
2.6). The fact that ZF'2[€, Set] captures the cumulative hierarchy and is quasi-categorical goes
some way towards making this plausible. Then what the theory ZF2[e, Set| does, next to its
explicit or implicit existential claims about sets, is to determine the meanings of € and Set from
their conceptual roles vis-a-vis the remaining meaningful symbols in ZF2[e, Set], that is, the
logical symbols. And for these logical symbols I will take for granted that their meanings are
fixed and determined uniquely. In particular, ¥V indeed means for all, whether on the first-order
level of all individuals or on the second-order level of all classes, relations, and functions."
On that basis, the first step of our logicist reconstruction will consist in making the “implicit
definition” of € and Set by ZF2[€, Set| fully explicit. In the remainder of this section, I am
going to explain the idea of how this can be done, while the concrete implementation of that
idea in a logicist framework will be carried out in the next section.

Now, what does it mean to understand € and Set so that all there is to them is given by
ZF2[e, Set]? Consider the open formula

ZF2[R, S|

14Carnap (1956, §23) discusses this option of reducing extensions to what he calls “ L-determinate intensions”. The option would not assume that all of these
intensionally determinate logical properties could be expressed linguistically, of course.

15This is compatible with the deductive system of second-order logic being incomplete with respect to the “full” standard (model-theoretically defined)
semantics for second-order logic. The deductive incompleteness of the system does not entail the expressive incompleteness of its language.
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that results from replacing all occurrences of € in ZF2[e, Set| by the binary relation variable
R and all occurrences of Set in ZF2[e, Set] by the unary class variable S. ZF2[R, S| thereby
expresses a constraint on the values of R and S. The idea will be to use ZF2[R, S] to give a
rigorous answer to the previous question by defining € and Set to be an R and an S, respectively,
such that Z F2|R, S]. Other than satisfying the constraint expressed by Z F2[R, S|, the meanings
of € and Set will be left arbitrary.

In more formal terms: let us assume our logical vocabulary to include Hilbert’s indefinite
description operator € (see Hilbert and Bernays, 1934/19341939), both on the first-order and on
the second-order level. Just as the standard definite description operator ¢ can be used to denote
something by describing the entity that has such-and-such a property, € can be used to denote
something by describing an entity that has such-and-such a property. Thus, the epsilon operator
is just like the iota operator but with the uniqueness presupposition stripped away. When there
is more than one entity with the relevant property, the epsilon operator is instead understood
to “pick” any of these entities. Accordingly, for first-order epsilon terms ex ¢|x] (“an z, such
that ¢[z]|”) and second-order epsilon terms e R¢[R] (“an R, such that ¢)[R]”), the following two
schemes comprise the logic of the epsilon operator (the so-called epsilon calculus, see Avigad
and Zach, 2024):

Logical Axiom Scheme for First-Order Epsilon Terms:
E Jwela] = lex plz]].

Logical Axiom Scheme for Second-Order Epsilon Terms:
- 3RY[R] — Y[eRV[R]].

When the antecedent of an instance of either of the schemes is false, so that there is no
entity with the required property, no constraint is being imposed on what gets “picked” by
the respective epsilon term.'® With the exception of cases in which p[z] or ¢[R] describes
its respective x or R uniquely, I neither assume that there is a fact of matter of what is
being “picked” by the respective epsilon term nor that there is a metasemantic mechanism
that would determine what is being “picked”. The idea is rather to view, e.g., the choice
expressed by e R1)|R] as being describable in metalinguistic natural language terms by ‘e R¢)[R]
chooses some/any/whatever R, such that ¢[R]’, which does not ascribe any fixed or determinate
denotation to eRY[R]."”

While the Hilbert school used first-order epsilon terms in their efforts to carry out Hilbert’s
formalist program, Carnap (1959, [2000]) proposed to invoke second-order epsilon terms for
the rational reconstruction of theoretical terms in science (see also Carnap, 1961). But before
explaining Carnap’s proposal in more detail, let me first state how second-order epsilon terms
can be used to define € and Set explicitly.

I will present these definitions in two versions, the first of which is:

Definition 1. (Definition of € and Set, First Version)

(i) € =4 eR3ISZF2[R,S).
(i) Va: Set(x) <>q Jyz € 9.

160ne might also assume an extensionality axiom for € to belong to the logic of €, but it will not be relevant in what follows.

171t the metalanguage gets formalized itself, this amounts to interpreting object-linguistic epsilon terms by means of metalinguistic epsilon terms, which is
much like the common practice of, e.g., stating the truth conditions of object-linguistic negation sentences with the help of the metalinguistic negation sign;
see Section 3. See Leitgeb (2023) for a general semantic and metasemantic treatment of languages with semantically indeterminate expressions by means of
metalinguistic epsilon terms.
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Here, € is defined to be an(y) R, such that there is an S, such that ZF2[R, S]. And it is easy
to see that, if there is such an R, the class Set is effectively defined to be the field of the relation
€ that has been defined by 1." Thus, € and Set are defined by describing their conceptual roles
in ZF2[e, Set], as promised.

The second version invokes a predicate “Logical-in-¢’ that is regarded as a primitive logical
term by which logical individuals can be distinguished from non-logical ones in the conceptual
framework €, where ‘¢’ denotes the forthcoming logicist framework:

Definition 2. (Definition of € and Set, Second Version)

(i) € =4 eRIAS(Vx(S(z) — Logical-in-€(x)) N ZF2[R, S]).
(i) Va: Set(x) «>q Jyz €y

The basic idea is the same as before, it is just that € and Set are now stated explicitly to apply
to logical objects only.

Mostly, I am going to focus on Definition 1, but for some purposes it will be useful to consider
Definition 2 as an alternative, as will become clear in Section 4.

But why turn to epsilon terms at all and not use iota terms in these definitions? Indeed,
following up Carnap’s proposal, Lewis (1970) suggested to define theoretical terms in science by
iota terms. And in the case of theories from empirical science, one might perhaps hope for these
theories to describe the intended denotation of theoretical terms uniquely. However, in the case
of a purely mathematical theory, any hope for uniqueness would be vain: for in all interesting
cases, permutations of the underlying first-order domain would give rise to isomorphic but
numerically distinct interpretations of the mathematical terms involved, which is why the
uniqueness presupposition of iota terms would be violated. In contrast, non-uniqueness is
unproblematic when mathematical concepts are defined by epsilon terms. What is more, the
logicism I want to develop does not care about “the” intended interpretations of € and Set
other than they satisfy ZF2[R, S]. Since ZF2[R, S] is quasi-categorical (since ZF2[€, Set] is)
and only includes logical expressions, one might also say: it only cares about the joint logical
structure of € and Set (up to ordinal height). Structuralists about mathematics will concur,"
though some non-structuralist realists about mathematics may not. But then again the task is to
develop a logicist reconstruction of mathematics, not any such realist one.

There are further advantages to defining membership by a second-order epsilon term:
assume that future set theorists will propose some new (say, large cardinal) axiom to be added
coherently to ZF2[€, Set], and the mathematical community will go along with their proposal
and regard the resulting system Z F'2*[€*, Set*| as their new foundation of mathematics. Then
the “old” defining epsilon term eR3SZF2[R, S| from, say, Definition 1, could still be thought
to denote the very same relation that a correspondingly updated logicism about Z F'2*[€*, Set*|

181f one preferred, one could also define Set by yet another epsilon term, Set =g45 €X V(X (x) <+ Jyx € y), or, in this case (using second-order
extensionality), even by Set =g ¢ X V(X (z) <> Jyz € y).

See Boccuni and Woods (2020) for more on the affinity between (certain brands of) logicism and structuralism. See Leitgeb (2021) for the structuralist usage
of epsilon terms to denote objects in ante rem structures: e.g., in an unlabeled graph G with two nodes and no edges, one may introduce a name a for one
of these nodes by defining a = ev(Vertexz(v, G)) and a name b for the other node by defining b = ev(Vertex(v, G) A v # a) (see Leitgeb, 2021, p. 79). a
is then numerically distinct from b, but there is no non-semantic fact of the matter which of the two nodes is denoted by ‘a’ and which by ‘b". See Shapiro
(2008, 2012) and Pettigrew (2008) for the closely related idea of regarding names for objects in structures, or for the structures themselves, as parameters
introduced in the course of applying the logical rule of existential elimination. Schiemer and Gratzl (2016) also invoke epsilon terms in their reconstruction
of structuralism.
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would denote by its epsilon term eR 3SZ F2*[R, S|: although the equality
eR3ISZF2[R,S]=eR3S ZF2*[R, 5]

would not follow logically from Z F2[€, Set] and Z F2*[€*, Set*|, and even though there would
be no fact of the matter whether that equality was true, it would be consistent with the two
theories to accept it as true, and to speak as if membership as given by ZF2[e, Set| had always
meant what would now be defined by means of ZF2*[c*, Set*]. It is that open-endedness of
epsilon terms that Carnap aspired to exploit in his epsilon term reconstruction of theoretical
terms, since he thought it nicely matched the open-endedness by which scientists may continue
to specify the meanings of theoretical terms in the course of scientific development.’ In the
present context, it nicely matches the “inexhaustibility” of the concepts of set and membership
that was described, e.g., by Godel in his Gibbs lecture (Godel, 1951 [1995]).!

Carnap’s treatment of theoretical terms as epsilon terms may be viewed as a variant of his
better known Ramsification reconstruction of a theoretical term 7" being given by a scientific
theory T'h[T"|. He proposed to analyze T'h[T] in terms of what we now call the

Carnap sentence of Th[T|: ARTh[R] — Th[T)
and the
Ramsey sentence of Th[T']: 3RTh[R).

The two of them taken together logically entail 7'h[7"] in second-order logic, and Th[T] in
turn logically entails their conjunction. Carnap’s (1966) suggestion was to regard the Carnap
sentence of Th[T] as capturing the analytic content of T'h[T], since the only non-theoretical
sentences (sentences without 7') it entailed were logically true ones. In contradistinction, the
Ramsey sentence of a typical theory Th|T] from empirical science would capture the synthetic
content of T'h[T), as it entailed the same non-theoretical (e.g. observation) sentences as T'h[T]
itself.

The correspondence to the epsilon term reconstruction of theoretical terms is: if 7" is defined
by the epsilon term e RTh[R], as suggested by Carnap (1959), the Carnap sentence of T'h[T] is
indeed a logical consequence of that definition, which confirms its analytic status. Explained for
the present context: since

(A) - 3RISZF2[R, S] — 3SZF2[cR3ISZF2[R, S], S|

is an instance of the logical axiom scheme for second-order epsilon terms, 1 of Definition 1
combined with the Intersubstitutivity of Identicals yields the Frege-analyticity of

(B) 3R3SZF2[R, S| — 35 ZF2[€, S].

20”[. ..] this definition [by an epsilon term] gives just so much specification as we can give, and not more. We do not want to give more, because the

meaning should be left unspecified in some respect, because otherwise the physicist could not—as he wants to—add tomorrow more and more postulates,

and even more and more correspondence postulates, and thereby make the meaning of the same term more specific than it is today. So, it seems to me that

the e-operator is just exactly the tailor-made tool that we needed, in order to give an explicit definition, that, in spite of being explicit, does not determine the

meaning completely, but just to that extent that it is needed” (Carnap, 1959, pp.171f).

2lgee Leitgeb (2023, Section 6) for more on the synchronic and diachronic advantages of dealing with semantic indeterminacy by means of epsilon terms.
See Demopoulos (2007) and Suppl. E of Leitgeb and Carus (2024) for more on Carnap’s reconstruction of theoretical terms in science.
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And because Vz(S(z) <» Jy x € y) is logically derivable from (my formulation of) ZF2[€, S| in
the deductive system of second-order logic, one can derive from (B) and 2 of Definition 1 the
Carnap sentence

(C) ARISZF2R, S] — ZF2[€, Set],

which is thus Frege-analytic, too. Since Frege-analyticity will be seen to entail semantic
analyticity in the next section, the Carnap sentence (C) of ZF2|e, Set] is therefore semantically
analytic.

So far as the Ramsey sentence of Z F2[€, Set] is concerned, that is,

(R) IRISZF2[R, S],

Sections 3 and 4 taken together will argue it to be likely to be semantically analytic, too, unlike
the synthetic Ramsey sentences of typical empirical theories. And since semantic analyticity
will be closed under logical derivability—and hence ZF2[e, Set] will be semantically analytic
if (C) and (R) are—it will follow that ZF2[e, Set] is likely to be semantically analytic,
just as promised. The same considerations apply mutatis mutandis to Definition 2 and its
correspondingly expanded Carnap and Ramsey sentence.

But before I turn to the semantic analyticity of the Ramsey sentence (R), I will argue for
the following: (i) Both Definition 1 and 2 indeed yield thesis 1d(£é get) from Section 1 for the
language LZ g, of ZF2[e, Set]. (i) Even independently of the forthcoming argument for the
analyticity of (R), Definition 1 (and analogously Definition 2) just by itself already amounts to a
decent form of logicism, even when it does not quite deliver thesis 2d(Z F'2]€, Set]) from Section
1.

About (i): given Definition 1, there are strong arguments in favor of 1d(L? g,,). For the only
potentially non-logical terms in L2 g, are € and Set, and both of them are defined explicitly
by purely logical terms: € is defined by the epsilon term eR 35 ZF2[R, S|, which consists of
only logical symbols, and since € is defined logically, the same holds for Set which is defined
explicitly from €. If there were a possible point of contention at all, it would concern whether
the epsilon operator € should count as logical. But see Woods (2014) for an argument to the effect
that € is logical in the Tarskian sense of permutation-invariance. Indeed, € is very closely related
to the existential and the universal quantifier: one can contextually define 3 and V from e.”
And, at the same time, the Second Epsilon Theorem (see Avigad and Zach, 2024) shows that the
epsilon calculus is conservative over first-order logic: an epsilon-term-free first-order formula
A is derivable in the epsilon calculus from a set I” of epsilon-term-free first-order formulas just
in case A is derivable from I in first-order logic. In that sense, the principles governing € do
not seem logically stronger than the logical axioms governing ¥V and 3. Note that if it had been
assumed that there was always a fact of the matter of what gets denoted by an epsilon term—
and hence certain interpretations of € would have been excluded as unintended on non-logical
grounds—e would have to be viewed as descriptive rather than logical; but, as explained before,
this is not the case here.*

23E.g., in the first-order case: 3z p[x] <> 45 @lex [z]] and Vap[z] <> 45 @[ex —~¢[z]]. See Avigad and Zach (2024) for further details.
4Similarly, and for related reasons, the second-order Axiom of Choice had been regarded as logical, too.
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Whether one is willing to come to the same verdict concerning 1d(£é se) on the basis of
Definition 2, too, depends of course on whether one is willing to grant logicality to Logical-in-C.
But if there are logical objects, then a concept by which they can be qualified as such should at
least count as logical in a slightly extended sense of (meta-)logicality. Compare: just as the truth
values true and false are logical objects, the concept truth value that applies to them should
count as a logical concept. In the case of logically true sentences or propositions, the concept
of logical truth that characterizes them would generally be regarded as a logical concept in a
similarly extended sense. And in provability logic, the provability of a logical truth (Prov(T))
is expressed by the same logical operator by which the provability of that provability claim
is expressed (Prov(Prov(T))). In the same vein, the concept Logical-in-€ should qualify as a
logical concept as well, and hence both Definitions 1 and 2 define € and Set in properly logical
terms.

About (ii): As shown before, the Carnap sentence

(C) 3RISZF2[R, 5] — ZF2[€, Set],

follows logically from Definition 1 in the deductive system of second-order logic extended
by the epsilon calculus. Now consider any standard theorem of pure mathematics, such as,
say, the Fundamental Theorem of the Calculus (FTC): FTC is known to be logically derivable
from ZF2[e, Set] and suitable explicit set-theoretic definitions (such as of ‘real number’, ‘real
function’, “‘continuous’, ‘integral’, and the like). By the Deduction Theorem, one can therefore
logically derive

(D) ZF2[€, Set] — FTC

from these definitions. Consequently, if these definitions are combined with Definition 1, one
can logically derive from that combination of definitions the sentence

(E) 3R3ISZF2[R, S] — FTC,

as (E) is logically derivable from (C) and (D). This means: even though the standard theorems
of pure mathematics, such as FCT, are not quite logically derivable from explicit definitions
themselves, one might still say that they are derivable from explicit definitions “in conditional
form”, that is, as consequents of conditionals in which the Ramsey sentence (R) serves as the
antecedent.

In that sense, (quasi-)Carnapian logicism based on Definition 1 (or Definition 2) alone already
amounts to a logicist variant of “if-thenism” or deductivism about mathematics,” as advocated
e.g. in Russell’s Principles of Mathematics (Russell, 1903). Moreover, even though it is sometimes
claimed that Whitehead and Russell’s Principia Mathematica (Whitehead and Russell, 1910-1910
1913) relied on the Axioms of Choice (or the Multiplicative Axiom) and the Axiom of Infinity—
which were of questionable logicist status—what Whitehead and Russell actually suggested
was to use these axioms as antecedents of conditionals, such that these conditionals would
then be logically derivable in their ramified theory of types (see Whitehead and Russell, 1910—
1910 1913, vol. 2, p. 183). The same strategy is employed by Carnap in his Abrif der Logistik,

255ee Paseau and Pregel (2023) for a survey of deductivism.
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in which he uses the Axiom of Choice and the Axiom of Infinity as antecedents of logically
derivable theorems of simply type theory (see Carnap, 1929, Sections 24b and 24e). In the same
manner, one might view the Ramsey sentence (R) as an “Extended Axiom of Infinity”* on the
condition of which the standard theorems of pure mathematics become logically derivable in
the deductive system of second-order logic extended by explicit definitions.

In fact, one can even do a bit better. One might rationally reconstruct mathematical practice
as if it were engaged in an all-encompassing conditional proof: let us assume mathematicians
suppose the Ramsey sentence (R) with the aim of deriving (given logic and definitions)
theorems of pure mathematics, such as F'7'C' from before. Once that has been achieved, one
would normally finish such a conditional proof by discharging the assumption and concluding
the corresponding conditional, such as (E) above. But now assume that mathematicians never
actually get around to discharge their Ramsey sentence assumption but rather continue to work
on the (implicit) presupposition that it holds true.” If viewed in this way, the proof patterns
of actual mathematicians can be rationally reconstructed based solely on the extremely thin
logicist grounds of Definition 1 or 2.

I hope this makes transparent why Definitions 1 and 2 are highly attractive for logicist
purposes. However, one can still do better: for the Ramsey sentence (R) is not just any old
presumption that mathematicians might want to make but may itself be seen to be (likely
to be) semantically analytic in a suitable logicist framework. The required notion of semantic
analyticity and the relevant logicist framework will be the topic of the next section.

3. Frameworks, Semantic Analyticity, and the Logicist Framework

It is time to shift our attention to the Ramsey sentence of Z F'2[€, Set], that is,
(R) IRISZF2[R, S].

Clearly, (R) only consists of logical symbols. If (R) is true, this means it is both a logical sentence
and true, which, however, would not mean that (R) is logically true. In fact, given our standard
Tarskian model-theoretic understanding of logical truth, (R) is of course not logically true, as
there are second-order countermodels (e.g. all models with a finite domain). What I want to
argue for in the following is that it is nevertheless analytic(ally true) in a suitably defined
logicist framework. In contrast with more traditional conceptions of analyticity, such as Kant’s,
the required Carnapian concept of semantic analyticty-in-a-framework will allow for existence
statements to be analytic, about which Carnap is perfectly explicit:*® e.g., in Carnap (1950),
he states that in a suitable arithmetical framework the existence of natural numbers and of
prime numbers greater than a million are analytic, of which the former existence claim is trivial
while the second one is less so. He also points out that classical logic comes with existence
assumptions concerning individual constants such as ‘5’, which may belong to the vocabulary
of such a framework; if so, 3z =5 is analytic because logically true.”

261ndeed, it is easy to see that if (R) is satisfied by a full second-order model with a first-order domain of a certain cardinality, it is satisfied by every full
second-order model with a first-order domain of a greater cardinality. In that sense, if (R) is satisfiable at all, it merely amounts to the claim that there are
sufficiently many individuals.

27This will match how I am going to describe the attitude of ordinary mathematicians towards (R) in Section 4.

28360 Ebbs (2017, Chapter 2) for further discussion.

29Accordingly, there are possibility formulas in Carnap’s (1946) modal predicate logic that are logically true, such as formulas of the form ¢ A, in which A is
a contingent non-modal sentence (see Carnap, 1946, p.64). Possibility formulas are the modal counterparts of existence formulas.
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But of course it is one thing to acknowledge that Carnap accepted the analyticity of existence
statements in certain frameworks and yet another to understand why this might make good
philosophical sense. The philosophical point behind this is that conceptual frameworks are
meant to organize information by structuring it in a particular manner—information that will
then become expressible linguistically by sentences of the thereby interpreted object language
of the framework. In that respect, Carnapian frameworks take over some of the structuring
roles that space and time had for Kant, though subject to some crucial differences: Kantian
intuition of space and time is replaced by the linguistic expression of concepts and propositions;
frameworks can be constructed and revised in a great plurality of ways, whilst Kantian space
and time are simply given and unrevisable; and a Carnapian conceptual framework does not
pre-determine what the empirical world is like, while for Kant e.g. the space of empirical
intuition just is physical space. As a logical empiricist, Carnap regarded it to be the task of
empirical science to find out, by observation and experiment, whether a contingent empirical
sentence A or its negation —A is true of the empirical world. But as a logical empiricist, he
also thought that A and —A are meaningful, and hence they—and with them the rest of
their underlying language — come with some abstract conceptual and propositional structure
that is constitutive of having thoughts about the world, independently of whether A or —A
is true of it. This structure needs to be in place prior to empirical investigation, and, once
rationally reconstructed, it is that structure that a formal conceptual framework provides
and assigns as interpretation to the sentences of its object language. Thereby, a conceptual
framework comes itself with an ontological commitment to abstract structured thought.
Carnapian logicism suggests to semantically interpret mathematics as dealing precisely with
these abstract structured thoughts provided by the conceptual framework itself. The resulting
interpretation may even extend to all of standard mathematics as we know it, if only the
framework is complex enough, that is, if it provides sufficiently complex relational concepts.
In the case of the logicist framework to be introduced below, the Ramsey sentence (R), that is,
JR3ISZF2[R, 5], is going to express the ontological commitment to such a concept. And the
analyticity of (R) in the framework will express that the ontological commitment is provided
by the framework itself. Consequently, so long as information about the empirical world is
structured according to the rules of the logicist framework to be introduced, each of the trivial
classical logical law AV —A, the less trivial definition of membership in Definition 1, and the
highly non-trivial Ramsey sentence 3R3S ZF2[R, S| will turn out to be (likely to be) true on
purely conceptual grounds, independently of what the empirical world is like. In other words:
they will be (likely to be) semantically analytic in the framework.”"

The corresponding Carnapian concept of analyticity-in-a-framework is neither metaphysical
nor epistemic in the sense of Boghossian (1996)* but rather semantic® in exactly the same
sense in which Tarski’s concept of truth is semantic. In fact, Carnap’s definition of analyticity
for Language II in his Logical Syntax amounts to an early version of a Tarskian definition of

30For more on this concerning Kant and time, see Sattig (2025), and for more on the general idea in the context of Carnap’s Aufbau, see Richardson (1998).
310ther than its explicitly semantic formulation, this conception of mathematics is already present in Carnap’s Logical Syntax. As Friedman (1999, p. 87)
formulates it in his “Logical Truth and Analyticity in Carnap’s ‘Logical Syntax of Language’”: “Mathematics is built in to the very structure of thought and
language and is thereby forever distinguished from merely empirical truth.”
32Me’caphysical analyticity is explained in terms of grounding or truthmaking, epistemic analyticity in terms of justification and cognitive grasp of meaning.
I am in agreement with Lavers (2024, p.39) on this point. Otherwise, Lavers’ (2024) understanding of, and argument for, the analyticity of large parts of
mathematics differ very much from mine. (Lavers’ idea is to determine the set of analytic sentences from statements and rules that emerge from the first
stage of a Quinean explication.)
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truth (see Suppl. G of Leitgeb and Carus, 2024), and once Carnap had fully embraced Tarskian
semantics, he presented analyticity by reference to Tarskian semantic rules from the start:

A sentence S; is L-true in a semantical system S if and only if
S; is true in S in such a way that its truth can be established on the basis of the
semantical rules of the system S alone, without any reference to (extra-linguistic)
facts (Carnap, 1956, p.10),

where L-truth explicates analyticity, and where a semantical system is nothing but a conceptual
framework in our terminology. And just as metaphysical necessity may be described as truth
in all metaphysically possible worlds, that is, in all worlds in which the metaphysical laws
are held fixed, analyticity-in-a-framework may also be described as truth in all worlds that are
semantically possible in the relevant framework, that is, in all worlds in which the semantic
rules of the framework are held fixed.

In Carnap’s words:

A sentence S; is L-true (in S;) =py S; holds in every state-description (in Sy)
(Carnap, 1956, p.10)

and

A sentence S is A-true in L =4 S holds in all admissible models (Carnap, 1963, p.
901)

where A-truth explicates analyticity again.

It is important to note that this notion of analyticity is framework-relative (hence the “L-
true (in S;)” and “A-true in L”): much as the definition of a mathematical term may differ
from one textbook to the next, since different textbooks may organize even the same body of
mathematical knowledge differently, a sentence that is analytic in one conceptual framework
may well fail to be analytic in another one. That is because the semantic rules of the frameworks
may differ, and accordingly the class of semantically possible worlds in one framework may
differ from the class of semantically possible worlds of another. Since analyticity in the present
Carnapian sense is explicitly defined for, and relative to, constructed artificial frameworks,
it is to be distinguished from the notion of analyticity in natural language that was mostly
in the forefront of Quine’s criticism in “Two Dogmas of Empiricism” (Quine, 1951). But I
will not be able to enter the classical Carnap-Quine debate on analyticity here in any more
detail.** Furthermore, the semantic notion of analyticity in a conceptual framework should be
distinguished from metaphysical necessity, too. E.g., if metaphysical necessity got explicated in
a conceptual framework with the help of a suitably constructed accessibility relation between
worlds, every sentence that is analytically true in the framework would be metaphysically
necessary but not necessarily the other way around.®

34For more on the debate, see Suppl. B of Leitgeb and Carus (2024).

35E.g., following Kripkean considerations, the accessibility relation might be constructed in a framework such that there is a semantically possible world
at which Son(a, b) A “OSon(a, b) is true but where there is no metaphysically possible world at which that sentence is true. The reason for constructing
a framework like that might be to rationally reconstruct the thought that the sentence does not invalidate any semantic rule but does invalidate the
metaphysical necessity of hereditary relationships. (L is meant to express metaphysical necessity, and Son(a, b) is meant to express that a is son of b.)
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Although Carnap did not use my term ‘semantically possible world’, he did evaluate
formulas relative to entities that represented possible ways the world might be like (possible
worlds, possibilities, possible cases, possible states of affairs), such that no semantic rule of the
conceptual framework in question would be invalidated by that evaluation.®

In particular, Carnap (1942) states general postulates for the notion of the so-called L-
range of a formula, by which Carnap’s explicates the intensional meaning of a formula, that
is, its truth conditions. In §18, he shows how these postulates can be realized by means of
different procedures (A, B, C) that define, in a non-extensional metalanguage, L-ranges as
classes of propositional entities (so-called L-states). In §19, he does the same for procedures
that define L-ranges as classes in an extensional metalanguage: classes of (maximal) state
descriptions (procedure E), classes of sentences (procedures F and G), and classes of so-called
state-relations (procedures K and L). The state-relations of procedures K and L are similar to
models (structures, interpretations) in contemporary model-theory in the sense that they are
structured entities of objects and extensional properties/relations of these objects that can then
be used to interpret and evaluate sentences.” Procedure E is applied later in his Meaning and
Necessity (Carnap, 1947/1956) in which he presents formulas as holding at state descriptions,
such that the (L-)range of a formula is the class of state-descriptions at which the formula
holds (Carnap 1947/1956, p. 9). Furthermore, a formula is said to be true simpliciter just in
case it holds at the actual state description (Carnap, 1947/1956, p.10); the same idea had been
put forward in Carnap (1942, D18-B9) in terms of “rs”, that is, “the real L-state”. Clearly,
this amounts to a precursor of present-day possible worlds semantics in which formulas are
evaluated at worlds, one of which is regarded as actual. And in his later work (such as in
Carnap, 1963 cited above or in Carnap, 1971), Carnap ends up evaluating formulas relative
to models in the contemporary model-theoretic sense.™

My notion of semantically possible world in a conceptual framework is but a further
development and application of these Carnapian ideas about semantics. So far as the
metalanguage is concerned in which I will describe semantically possible worlds and the
evaluation of formulas relative to them, I will follow Carnap’s semantic work from the 1940s
and use a language of higher-order logic instead of first-order set theory. It will be sufficient
for my purposes to only sketch that higher-order language and the semantic rules that are
formulated within it. The situation will resemble that of a typical logic textbook in which an
object language—say, some second-order language—is specified in full formal detail, whereas
the metalanguage in which the semantic rules for that object language are formulated remains
partially unspecified (although a full formal specification could be given in principle).

Now let me turn to the logicist conceptual framework €, which involves the following
components:

365ee Suppl. F of Leitgeb and Carus (2024) for more on Carnap’s intensional semantics.

7 There are also differences: unlike models of modern model theory, which assigns e.g. a class of objects to each unary predicate of the object language, a state-
relation in Carnap’s procedure L assigns a class of objects to each extensional property that is to be expressed in the object language. Moreover, where modern
model theory describes models in the language of standard first-order set theory, Carnap (1942) describe state-relations in the language of higher-order logic
(tgpe theory).
55The fact that Meaning and Necessity (Carnap, 1947/1956) presented (L-)ranges as classes of state descriptions, and thus of syntactic entities, is sometimes
interpreted as if Carnap had not left behind the syntactic emphasis of his Logical Syntax and hence had not fully embraced possible worlds semantics as yet.
But that would be a misinterpretation: as he explains in Footnote 9 on p. 9 of Carnap (1947/1956), he only opted for applying procedure E from Introduction
to Semantics because it seemed “the most convenient” one for the purposes of Meaning and Necessity. But other than that he might just as well have opted for
a non-syntactic reconstruction of possible worlds, as witnessed by procedures K and L in Carnap (1942). I am grateful to Pierre Wagner for a discussion of
these points.
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(i) a second-order object language £ with the usual primitive logical symbols of second-
order logic, the additional primitive logical symbols € and Logical-in-€, the defined
predicates € and Set, and (for merely illustrative purposes) the primitive descriptive
unary predicates ‘Man” and “Married’, and the defined unary predicate ‘Bachelor’ (the
last three predicates are tacitly relativized to a fixed point of time);

(ii) semantic rules for £, formulated in a metalanguage of (cumulative) higher-order logic
with ¢, the logical predicate Logical-in-€, syntactic terms concerning the syntax of £, the
primitive descriptive unary predicates ‘Man’ and ‘M arried’, and some optional further
expressions to be described in Section 4; the axioms and rules of a suitable deductive
system of higher-order logic with extensionality and the epsilon calculus governing that
metalanguage; and some further postulates, such as the definitions to be presented below
and some optional additional postulates to be described in Section 4;

(iii) a class QB of models 9.7( such that (iii.i) every way of assigning extensions to the prirnitive

each of these models 9t respects the semantic rules for £ in (ii).

(ii) means that € involves some metalinguistic deductive components, whilst (iii) means that it
also includes semantic components.

20 is of course the class of all semantically possible worlds of the framework ¢, which results
from running through all combinatorial possibilities of assigning extensions to the primitive
descriptive expressions in L. Since all combinatorial possibilities are realized in 20, it will be
guaranteed that one of the worlds in 20 corresponds to the actual world: it is the world at
which, e.g., the extension of Married is indeed the class of married humans at the fixed point
of time; etc. (See the definition below.)

In contrast, a (proper) theory in € would be given semantically by a proper subclass of 20.
Thus, unlike 20, theories in € rule out at least one semantically possible world in ¢, which is
also why they are not guaranteed to include the actual world.

Finally, note that the semantically possible worlds of ¢ do not have any world-relative first-
order or second-order domains assigned to them.

I will not state all of the semantic rules of € for £, but they include:
For all 9t in 27, for all variable assignments s:*

Valog s(Married(z)) = 1 iff M(Married)(s(x)).

Valop s(Man(x)) = 1iff M(Man)(s(x)).

Valgn s(Bachelor(x)) = 1 iff not M(Married)(s(x)) and M(Man)(s(z)).

Valon s(Logical-in-€(z)) = 1 iff Logical-in-€(s(x)).

Valogm s(x € y) = 1iff Valogn s(e RIS ZF2[R, S])(s(z), s(y)).

[Valom s(x € y) = 1iff Valon s(e R3S (V2(S(2) — Logical-in-&(x)) N ZF2[R, S])(s(z), s(y)).]
Valgg s(Set(x)) =1 iff Valg s(Fyz € y) = 1.

Valom s(S(x)) = 1iff s(S)(s(x)).

Valoy s(R(, y)) = Liff s(R)(s(x), 5(y))-

Valgn s(—p) = 1L iff not Valyg s(¢) = 1.

391n the present context, any talk of quantification over variable assignments s is short for: talk of second-order quantification over functions that map
first-order variables to individuals, and talk of third-order quantification over functions that map second-order variables to second-order entities.
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Valom s(@ A ) = 1iff Valgn s(¢p) =1 and Valng(z/z)—l

Valgy s(Vx @) = 1 iff for all z-alternatives s of s it holds: Valy ¢ () =
Valgy s(VR @) = 1 iff for all R-alternatives s of s it holds: Valsy ¢ (¢ )
Valom s(eR @) =€s'(s' is an R-alternative of s and Valyy ¢ () = 1)(R).

As usual, the semantic rules determine uniquely, for each 9t and s, an evaluation function
Valy s that maps formulas in £ to truth values. The evaluation of the formula Married(x)
at 9 depends on what worldly extension 9(M arried) the world 9 assigns to the primitive
descriptive predicate Married; analogously for Man(z). The semantic rule for Bachelor(x)
encodes the definition of the defined descriptive predicate Bachelor as applying precisely to
unmarried men; since Bachelor is defined from Married and Man in €, its world-relative
extension varies with those of Married and Man. The semantic rules for the object-linguistic
formula Logical-in-€(x) invokes the meta-linguistic formula Logical-in-€(z) (much as the
semantic rule for = involves ‘not’). The semantic rules for € and Set encode Definition 1 (or
Definition 2) from Section 2. The semantic rules for atomic formulas with a class variable .S or a
relation variable R are standard, as are those for the usual logical symbols. Finally, the semantic
rule for object-linguistic epsilon terms ¢ ¢ employs a metalinguistic epsilon term of the form
es'(...) in which s’ is a variable for functions.

On that basis, we can define various further semantic notions well-known from intensional
semantics: e.g., the proposition expressed by a sentence ¢ of £ in € is the class of semantically
possible worlds 91 in 20, such that for all s, Valy s(¢) = 1. The concept expressed by the unary
predicate Married of £ in € is the function that maps each world 9t in 20 to the extension
M(Married) at M. Etc.

Moreover, we can define actuality(-in-¢), the metalinguistic semantic predicate ‘true(-in-¢)’,
and the metalinguistic semantic predicate ‘analytic(-in-€)’. A world is actual just in case it
assigns the “right” or intended extensions to all primitive descriptive predicates of the object
language L, as can be captured by translating these predicates into the metalanguage. Truth
(simpliciter) of a sentence in L is its truth at the actual world (one can prove there is only one),
while a sentence in £ is analytic just in case it holds at all semantically possible worlds in ¢:

Metadefinition 3. (Actuality-in-¢)
For all 9t in 20:

M is actual(-in-€) iff for all d:
d € M(Married) iff d is married (at the given fixed point in time), and
d € M(Man) iff d is a man (at the given fixed point in time).

Metadefinition 4. (Truth-in-¢)
For all sentences ¢ in the object language L of ¢:
@ is true(-in-¢) iff
for all M1 in 20, for all s: if M is actual(-in-€), then Valoy s(p) = 1.
Metadefinition 5. (Analyticity-in-¢)
For all sentences ¢ in the object language L of ¢:
¢ is analytic(-in-€) iff for all Mt in 20, for all s: Valgy s(¢) = 1.
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Hence, if a sentence of L is analytic(-in-€), it neither rules out any assignment of extensions to
primitive descriptive terms in £ nor any theory in €. For the same reason, an analytic sentence
in the framework is guaranteed to be true at the actual world of the framework.

Here are some analytic example sentences in £, the analyticity of which can be logically
derived from the semantic rules of ¢:

Va(Married(z) V = Married(z)) is analytic(-in-€).
Vx(Bachelor(z) <» ~Married(z) AN Man(zx)) is analytic(-in-€).
Ve, y(x €y <> (eR3S ZF2[R, S])(z,y)) is analytic(-in-C).
Vaz(Set(x) » Jy x € y) is analytic(-in-C).

JR3IS ZF2[R, S| — 3SZF2[eR3S ZF2[R, S|, 5] is analytic(-in-€).

Thus, e.g., both parts of Definition 1 from Section 2 reappear as object-linguistic statements
in £ that are analytic(-in-€). The same applies to Definition 2 if the corresponding alternative
semantic rule for x € y from above is used.

More generally, all logical axioms of the deductive system of second-order logic formulated
in the object language are semantically analytic, and the same holds for all explicit definitions
formulated in the object language and for all axioms of the epsilon calculus in the object
language. Since Metadefinition 3 also clearly implies that semantic analyticity is closed under
logical derivability, all Frege-analytic sentences in ¢ are therefore semantically analytic in €, as
promised.

However, this does not mean that every sentence in £ is such that it is analytic or its negation
is analytic in €. E.g.:

Jz Bachelor(x) is not analytic(-in-€).
—3Jx Bachelor(zx) is not analytic(-in-€).

The reason for this is that there are semantically possible worlds in € at which the extension
of Man is a subclass of the extension of Married and hence there are no bachelors, and there
are semantically possible worlds in € at which this is not the case and so there are bachelors.
Similarly, a sentence expressing that there are exactly 1000 bachelors would not be analytic in
¢, and its negation would not be analytic in the framework either. This is just as intended: the
truth or falsity of these claims does not just depend on the framework but also on the empirical
facts; that is: it does not just depend on how information is structured in the framework but also
on what information the actual world provides. Accordingly, some theories in the framework
are going to claim that there are exactly 1000 bachelors, others that there are not, and yet others
are going to claim neither. It is a matter of empirical investigation to confirm or disconfirm such
theories, but all of these theories would be formulated against the backdrop of the framework
. If the relevant point of time is right now, we know in fact on empirical grounds that there
are not exactly 1000 bachelors, so any object language sentence saying so is true at the actual
world. Moreover, if Bachelor had not been defined as applying to all and only unmarried
men but had been regarded as primitive in €, the extension of Bachelor would have varied
independently of those of Married and Man in the corresponding alternative framework ¢’.
Hence, Vz(Bachelor(z) <» =Married(x) A Man(z)) would not have been analytic(-in-¢"), since
information would have been organized differently in ¢’ than in €.

Now let us return to our Ramsey sentence (R), which is a member of both the object language
L of ¢ and of the metalanguage of £ (that metalanguage also belongs to €).
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The semantic rules of € yield for all 9t in 20 and for all s:

Valy ,(3R3ISZF2[R, 8]) = 1 iff
there is an R/ S-alternative s’ of s, such that Valo ¢ (ZF2[R, S]) = 1 iff
there are an R and an S, such that ZF2[R, S].

Using this, it follows:

JR3S ZF2[R, S] is analytic(-in-€) iff
for all M in 2, for all s: Valyy s(3RIS ZF2[R, S]) =1 iff
there are an R and an S, such that ZF2[R, S].

The analytic truth of (R) in € therefore boils down to a satisfiability claim,” that is, to the
existence of higher-order R and S satisfying ZF2[R, S]. This result is a consequence of the
definition of analyticity(-in-€), the fact that (R) only includes logical symbols, and the semantic
rules of €. In particular, the semantic interpretation of the logical symbols is the same at all
worlds, and the semantic rules in € for existence claims do not invoke world-relative domains
that would restrict the range of existential quantifiers. That is why the reference to worlds 9t has
dropped out from the evaluation of (R) once the semantic clauses have been fully unpacked. The
analyticity of (R) in € therefore follows to consist in the metalinguistic translation of (R) being
the case.

More generally, if a sentence ¢ in £ only includes logical symbols, then for all 9t in 20 and
for all s it holds:

if Vialgn s(¢) = 1 then ¢ is analytic(-in-¢), and
if Vialon () = 0 then =y is analytic(-in-¢).

Consequently, every logical sentence ¢ is analytic(-in-€) or its negation —y is analytic(-in-
¢), which is just as what Carnap had proved for all closed logical formulas of his languages I
and II of his Logical Syntax (see Carnap 1934/1937, Theorems 14.3 and 34e.11).*' This does not
mean, of course, that for all logical ¢, either ¢ is derivable from the deductive components of
the framework € or its negation — is; after all, analyticity has been defined semantically, not
proof-theoretically. It only means that purely logical statements are such that, if true, they are
analytically true, and if false, they are analytically false.

The semantic rules for quantification in ¢ may be viewed as either tacitly assigning for
each type one and the same domain to the quantifiers in £ at all worlds, or as interpreting
the quantifiers in £ unrestrictedly, that is, as quantifying over everything of the right type—
everything there is of that type (as expressed by the corresponding metalinguistic universal
and existential quantifier).*

Indeed, for much of his work, Carnap himself used a “one-domain assumption” (cf. Hintikka,
1991, but see also Schiemer, 2013), and quantification over “absolutely everything” has been
shown to be coherent if the semantic rules are formulated using the resources of higher-order
logic (Williamson, 2003, see). Moreover, Linsky and Zalta (1994) and Williamson (1998) have
advocated the analogous usage of possible worlds semantics with a single universal first-order
domain for the interpretation of metaphysical modalities.

40This bears some similarity to Hilbert’s views on mathematical truth and consistency: “if the arbitrarily given axioms do not contradict one another. . . then
they are true and the things defined by the axioms exist” (Hilbert, 1899, p.39).
41Thus, if R is false in €, it is analytically false in €, i.e., its negation is analytic in €.

2But note that what there is does not necessarily exhaust what is metaphysically possible.
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Either way, since the worlds in 20 are meant to track variations in extensional interpretation
and not variations of what exists, it should be fair enough not to vary the ranges of quantifiers
with worlds. Even more importantly for present purposes, Carnapian tolerance should allow
us to set up our logicist framework as we please, so long as it may still count as logicist. And the
world-independent interpretation of quantifiers in € certainly does not undermine any logicist
tenets.

So where does this leave us with the analyticity of the object-linguistic Ramsey sentence (R)
in £? It leaves us with the follow-up question

(Q) Are there R and S, such that ZF2[R, S]?

which is formulated in the metalanguage of L that also belongs to our logicist
framework €. As shown before, if the answer to (Q) is ‘yes’, (R) will be analytic
(-in-€), hence ZF2[e, Set| will be analytic(-in-€), and thus also part 2d(Z F2[€, Set]) of our
logicist thesis from Section 1 will be vindicated.

In the next section I am going to argue that the answer to (Q) is indeed likely to be ‘yes’,
which is why ZF2[e, Set] is likely to be analytic in €.

4. The (Likely) Analyticity of the Ramsey Sentence

One way of settling question (Q) from the last section would be by brute force: one might
simply assume the metalinguistic translation of the Ramsey sentence (R) to be included in the
metalinguistic deductive components of our logicist framework €, by which the analyticity of
the object-linguistic Ramsey sentence (R) in € would become derivable in €.

While this might seem a bit like cheating, there would be nothing in principle wrong about
doing so. This said, there are three reasons for which I am nevertheless not going to pursue
that strategy: first, we are only searching for an answer to (Q), not a provable answer. Put
another way: the mere existence of an R and S satisfying ZF2[R, S| is sufficient for (R) being
analytic(-in-¢). Therefore, while proving that existence claim would conveniently deliver the
existence of such R and S, it would also go beyond what is required.* Second, consider anyone
who might still question (perhaps on Quinean holistic grounds) the viability of distinguishing
between the conceptual framework € and the proper theories in €, as presented in the last
section: any such person would surely feel only more concerned if € were to include deductively
strong components, such as the metalinguistic translation of (R). And third, the stronger the
deductive components of a conceptual framework, the greater the risk of the framework being
inconsistent, and inconsistency would be just as unattractive to the constructor of a Carnapian
framework based on classical logic as it would be to anyone putting forward a scientific theory
based on classical logic. So I refrain from building (R) into the framework deductively: I
will leave the deductive components of the framework € as deductively weak as they were
described in the last section, consisting just of semantic rules, a deductive system of logic, and
explicit definitions.*

Instead, I suggest conducting the following little thought experiment: what if one presented the
conceptual framework € from the last section to ordinary mathematicians and set theorists? One would

43Compare the related discussion in Awodey and Carus (2003, 2004), who point out against Godel that a Carnapian framework based on classical logic does
not have to be provably consistent, just consistent.
4l am grateful to an anoymous reviewer for urging me to comment on this point.



96 H. Leitgeb

explain to them that the quantifiers in (R) are meant to range over everything of the right type,
or that there is a fixed intended universe of discourse that is tacitly meant to include all of the
usual mathematical entities of the right type. And then one would pose to them question (Q) as
a logical-mathematical question:

(Q) Are there R and S, such that ZF2[R, S]?

In their roles as experts for such logical-mathematical questions, what would they answer?

I take it that most ordinary mathematicians accept or presuppose Z F2[e, Set| as a coherent
interpreted background language that has never led to contradictions and which they find more
or less conducive to their own mathematical work—work that does not itself concern models of
set theory but rather number-theoretic properties of integers, probabilistic properties of random
walks in graphs, fixed-point properties of continuous functions on topological spaces, and the
like. For that reason, they should be willing to accept or presuppose (R), too, as (R) is logically
entailed by ZF2[e, Set] in the deductive system of second-order logic, and they have been
willing to accept or presuppose ZF2[€, Set] as a foundation. If they were forced to comment
more particularly on the existence of set-sized models of Z F2[€, Set] and hence to comment on
the existence of set values of R and S in ‘there are R and S, such that ZF2[R, S|’ (rather than
proper-class-sized entities), they might point out: no one knows conclusively whether such a set
model exists, as it seems that we can neither derive (R) nor its negation from uncontroversial
principles. After which they might defer to the experts on set models, that is, their set theorist
colleagues.

In turn, set theorists do study models of set theory. And they do have more to say about
the existence of models of ZF2[e, Set]: they might put forward the established result that if
there is a strongly inaccessible cardinal greater than w, then there is a set model of ZF2[€, Set].
And at least those set theorists (called “absolutist practitioners” in Kant, 2025,?) who believe
in the existence of a uniquely determined universe of sets that makes certain set-theoretic
axioms true would voice their belief in the existence of such strongly inaccessible cardinals.®
And they might give arguments for this, too, even when these arguments could not be
formally reconstructed as proofs in ZF2[€, Set| or first-order ZFC (assuming these theories
to be consistent, as set theorists very strongly believe them to be).* So at least “absolutist”
set theorists would not just answer (Q) with a ‘yes’, they would even think the witnesses to
‘there are R and S, such that ZF2[R, S|’ may be taken to be sets. Of course, they might still be
wrong about all of that—after all, no deductively valid argument with obviously true premises
has been put forward. But there still seem to be an inductively strong arguments (in the sense
of Skyrms, 2000, p.17) in favor of (R): arguments that make (R) likely or plausible. Just as all
other inductively strong arguments, they do not guarantee the truth of their conclusion given

455ee Kant (2025, 81-3) and Kant (2025, 114), who examined this empirically, and who reports that absolutist practitioners believe in the truth of large
cardinal axioms, at least up to Woodin cardinals (and thus including strongly inaccessible cardinals). Moreover, set theorists in general widely use large
cardinal axioms (Kant, 2025, p. 110), and they believe large cardinal axioms are consistent (Kant, 2025, p.113). (I am very grateful to Deborah Kant for her
help on this matter.) DZzamonja (2017, Section 3) comments on large cardinals in a similar manner: “Not only are the large cardinals needed for set theory
but they are also known to be needed for some seemingly innocent statements about number theory. For example, Harvey Friedman [. . .] developed the
Boolean relation theory, which demonstrates the necessity of large cardinals for deriving certain propositions considered “concrete”. Friedman and others
view this as an obvious reason for a working mathematician to accept large cardinals.”

465ee Hrbacek and Jech (1999, pp.279f) for such an argument. Kant (2025) also makes the point that even set theorists who are finally interested in first-order
ZFC proofs (such as in descriptive set theory) regularly use large cardinal axioms and then eliminate them in their proofs. This may be viewed as an argument
for the thesis that the assumption of the existence of a strongly inaccessible cardinal is at least instrumentally acceptable for these set theorists.
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their premises, but that does not mean that they do not supply any justification whatsoever, and
arguing inductively may well be the best we can do at that foundational level.

Summing up: I think it is fair to say that what the verdicts of the experts—ordinary
mathematicians and set-theorists—would reveal about their beliefs about (R) in our little
thought experiment can be rationally reconstructed as a high-probability assignment to (R). Given
that, it must be at least as likely that the Ramsey sentence (R) is analytic(-in-¢). I am going to
make this probabilistic reconstruction a bit more precise now. Afterwards, I will address two
potential worries about the thought experiment.

So far as ordinary mathematicians are concerned, their mathematical statements may best
be reconstructed as made from within our framework € and hence as belonging to the object
language £ of ¢. The mathematicians’ belief or acceptance of such statements may then be
reconstructed by means of subjective probability measures that assign probabilities to the
members of L. Accordingly, in Carnap’s work on inductive logic (see e.g. Carnap, 1950), a
conceptual framework such as our ¢ is expanded by a corresponding class of such subjective
probability measures—say, the class Probs—precisely for the purpose of capturing rational
inductive reasoning that takes place internally to the framework. And what was said above
about mathematicians generally accepting or presupposing Z F'2[€, Set] and hence (R) will then
correspond to: for all P in Probe it holds that P(R) = 1. That is: for mathematicians speaking
from within the framework it is not an epistemic possibility that (R) fails, since for them (R) is
epistemically presupposed in their mathematical work and hence must be counted as (group-
subjectively) probabilistically certain. If (R) is indeed analytic-in-¢, this intended probabilistic
reconstruction will automatically follow from (R) being true in every semantically possible
world in €, and from the probability of a sentence A of the object language of ¢ corresponding to
the probability of the class of semantically possible worlds of ¢ in which A is true (see Carnap,
1971).* However, for the same reason, we cannot extract much of an argument in favor of (R)
from the ordinary mathematicians” verdicts about (R) other than they are willing to accept or
presuppose (R) in their mathematical work.

Now for the rational reconstruction of what is conveyed by the set-theorists” verdicts: their
statements may be reconstructed as belonging to the metalanguage of the object language £ of
our framework €, as they are reflecting on models of mathematics and set theory. The beliefs or
acceptances that these statements express should thus be captured by subjective probability
measures that assign probabilities not to the sentences of the object language £ but of the
metalanguage of £ (the same language in which analyticity-for-£ had been defined). Since we
have seen set theorists would generally answer (Q) with a reasonably strong affirmation based
on inductively strong plausibility arguments, their answer may be rationally reconstructed as
expressing a high (group-subjective) probability claim of the form it is likely that there are R and
S, such that Z F2[R, S]. And since it seems rational to defer to the experts on that subject matter,
our own rational degrees of belief should concur.

On that basis, summarized in slightly compressed terms, we get the following informal and
partially probabilistic metalinguistic argument for (quasi-)Carnapian logicism, in which ‘P(A) =
... is arational-degree-of-belief operator applicable to the sentences A of the metalanguage of £

47Iru:1eed, a sentence A in the object language £ of framework ¢ might be defined to be apriori relative to € just in case for all probability measures P in
Probe it holds that P(A) = 1. I regard this as a suitable rational reconstruction of the epistemic notion of relative or constitutive aprioricity discussed by
Friedman (2001) (amongst others), but I will not defend this claim here. Note that every sentence that is analytic-in-€ is also apriori relative to € but not
necessarily the other way around.
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in our logicist conceptual framework ¢, such that the respective subject whose rational degrees
of belief are denoted by ‘P(-)" is us.*® “Analytic’ is short for ‘analytic(-in-€)’, ‘e’ denotes some
small but only vaguely determined number, I will suppress all matters to do with quotation,
and I will concentrate just on Definition 1 and (R) again:

( (€ =4 eRASZF2[R, S|) ANVx(Set(x) <34 Fyz € y).
b) P(Analytic((€ = eR3S ZF2[R, S]) AVz(Set(z) <4 Jyx €Y))) =
¢) P(Analytic(3R3S ZF2[R, S| — S ZF2[eR3S ZFQ[R S] S))) =
) P(3R3S ZF2[R, S| <» Analytic(3RASZF2[R, S])) =
e) P(3R3S ZF2[R,S]) =1 — <.
(f) P(Analytic(3R3S ZF2[R,S])) =1 —«.
(g) P(Analytic(3S ZF2[eR3S ZF2[R, S],5])) >1 — e.
(h) P(Analytic(ZF2[€, Set])) > 1 —e.
(i) (e =4 eRIASZF2[R, S]) NVx(Set(z) 3 Fyx € y) N P(Analytic(ZF2[e, Set])) >1—¢

Therefore, (quasi-)Carnapian logicism holds.

(a) is Definition 1 from Section 2, but now viewed as a metalinguistic statement that says
correctly how the object-linguistic terms € and Set in £ have been defined in €. Since Definition
1is provably analytic in €, as shown in Section 3, (b) rightly states that the subjective probability
that Definition 1 is analytic(-in-€) is 1 (since we are certain that (a) is the case). The same holds
for the subjective probability of the analyticity of the Carnap sentence (C) in (c). (d) reflects
it being provable in € that the analyticity of (R) boils down to the metalinguistic translation
of (R), as demonstrated in Section 3. (e) is the rational reconstruction of our deference to
our set theorists” informed verdicts about that metalinguistic translation of (R). (f) follows
from (d) and (e) by the axioms of probability. (g) follows from (c) and (f) together with the
logical closure of analyticity (shown in Section 3 and us being certain of it) and the axioms of
probability. Similarly, (h) follows from (g), (b), the logical closure of analyticity, and the axioms
of probability. (i) just joins (a) and (h) by conjunction.

But (i) yields the promised thesis of (quasi-)Carnapian logicism from Section 1, since € is
a framework in which all mathematical terms in L g, are logical in € (1d(LZ g,,), and all
mathematical theorems of ZF2[€, Set] are likely to be analytic in € (2d(Z F2|€, Set].

Let me conclude by addressing two potential worries about our previous little thought
experiment of asking mathematicians and set theorists about (R)—one epistemological, the
other one ontological. The epistemological one is: is it permissible for a logicist about
mathematics to justify a statement by asking mathematicians for their opinion about it?
Wouldn't that be viciously circular? And the ontological worry is: the reason set theorists believe
there to be R and S that satisfy ZF2[R, S] is that they strongly believe there to be a relation of
sets and a class of sets that jointly satisfy ZF2[R, S]. But what reason do we have to believe these
sets are logical objects, as one might perhaps require of a logicism about mathematics?

A brief inspection of the logicist thesis I promised to defend in Section 1 should swiftly clarify
that it is neither epistemological nor ontological in nature but rather semantic: 1c was about
terms and their meaning in a framework, whilst 2c was about theorems and their semantic

1

48Carr\ap (1950, 1971) would have rationally reconstructed such a probabilistic argument in yet another conceptual framework €*, so that the metalanguage
in € would have become the object language £* in €*. And then he would have considered logical probability measures that would assign probabilities to
the members of L. Subjective probability measures such as P would have resulted from conditionalizing such logical probability measures on the available
evidence. But I will not be able to go into any more detail on this. See Sznajder (2018) for more on Carnap on inductive probability.
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analyticity in a framework. And the existence of a logicist framework in which 1c and 2c
are the case was promised to follow from the existence of a logicist framework in which the
claims 1d(£? 5.,) and 2d(ZF2[€, Set]) are the case, which are equally semantic. Thus, neither
the epistemological nor the ontological worry expressed before actually concerns the logicist
project of this paper.

In particular, while e.g. Frege’s logicism was certainly at least partially motivated by
epistemological concerns, (quasi-)Carnapian logicism is not. Of course, the successful rational
reconstruction of a scientific theory may occasionally improve the epistemic standing of
that theory. But a logicism about mathematics that proceeds by logically reconstructing the
axiomatic theory ZF2[e, Set], which may itself be viewed as having resulted from the set-
theoretic rational reconstruction of mathematical practice, would be extremely unlikely to stand
on better justified grounds than ZF2[€, Set] itself. And indeed none of this is the point of
(quasi-)Carnapian logicism, and it has not been claimed to be so either. On the contrary, a
(quasi-) Carnapian logicist may happily admit that logic and set theory are epistemologically
on par, which is why asking our set theory experts for their advice on a higher-order existence
statement should hardly count as a no-go.*”

With respect to the ontological worry from above, (quasi-)Carnapian logicism is not affected
by it because its logicist thesis only concerns the logicality of mathematical terms and the
analyticity of mathematical theorems, not the logicality of mathematical objects. As mentioned
in Section 2, its application to quasi-categorical second-order set theory only cares about
logical structure, not what the entities are like that are structured as such. Accordingly, it does
not matter whether the witnesses to ‘there are R and S, such that ZF2[R, S| are physical
entities, mental entities, proper relations/classes of sets, or quite simply sets, so long as the
object-linguistic Ramsey sentence (R) comes out as analytic(-in-¢).

This said, one might also consider a variant of (quasi-)Carnapian logicism that would expand
its focus beyond mathematical terms and theorems to objects: the corresponding extended
logicist theses would still start with

There is a logicist conceptual framework, such that [. . ]
but then extend 1c and 2c by
3c. all standard mathematical objects are logical objects in the framework,
and extend 1d(LZ g,,) and 2d(Z F2[e, Set]) by
3d(Set). all members of Set are logical objects in the framework.

That is where Definition 2 from Section 2 comes in handy: assume the explicit epsilon
term definition of € (and indirectly of Set) in € to include the restriction to objects that
are Logical-in-€. And consider the members of the class Logical-in-€ to be abstract objects
introduced by the framework € itself. This would be in line with how Carnap’s (1950)
“Empiricism, Semantics, and Ontology” describes what it takes for a framework to introduce a
new class of abstract objects: the framework needs to provide a general term for these objects

49This deference to set theorists only pertains to the existence of R and S satisfying ZF2[R, S], not to any philosophical thesis of logicism about
mathematics. Set theorists are experts concerning the former but not concerning the latter.
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(Logical-in-€), expressions for properties or relations of these objects (€), variables for them
(z,...), quantifiers that bind these variables (Vx, Jz, .. .), and rules of formation and inference,
including logical rules for the quantifiers (such as, e.g., universal instantiation). Clearly, all
of these conditions are satisfied here.”” Indeed, Carnap’s “variables of the new type” for the
abstract objects introduced by a framework may be regarded as expressing in the formal mode
what contemporary abstractionists would express in the material mode by: “abstraction may
result in ‘new’ objects’...” (Linnebo, 2018, p.55). While Carnap did not make the abstraction
process underlying the introduction of a new class of abstract objects by a framework explicit,
the resulting abstract objects may certainly be qualified as thin “in the sense that their existence
does not make a substantial demand on the world” (Linnebo, 2018, p.xi). Formulated less
metaphysically, one might say that the concept of existence that is employed when the existence
of logical objects of the framework is postulated within the framework is just that expressed by
the purely logical 3x(Logical-in-€(z) A ...), which is logically independent of the existence or
non-existence of men, married people, bachelors, or other non-abstract objects.51
Analogously to the case of (R) before, the corresponding Ramsey sentence

(Rrog) IRIS(Va(S(x) = Logical-in-€(x)) N ZF2[R, S))

follows to be analytic(-in-€) if and only if there are R and S, such that Vz(S(z)—
Logical-in-€(z)) A ZF2[R, S]. Hence, if there are such R and S, then it will not just be the case
that standard pure mathematics is analytic(-in-¢) but additionally € and Set—as defined in
¢—will apply to objects that are Logical-in-C. If so, even 3d(Set) and consequently 3c will be
satisfied in €.*

The only downside would be that the corresponding question

(QrLog) Are there R and S, such that Va(S(x) — Logical-in-€(x)) N ZF2[R, S]?

could no longer be addressed just by asking ordinary mathematicians or set theorists. For
ordinary mathematicians are experts for ordinary mathematical objects and set theorists have
additional expertise on sets, but neither are experts for logical objects, let alone logical objects
in ¢. However, this remaining gap can be bridged: first add the set-theorists” terms Set
and € to the vocabularly of the metalanguage of £ in €; and then extend the deductive
metalinguistic components of € by the metalinguistic higher-order assumption that the logical
relation Valg(€) structures the logical objects in Valgy(Set) in the same manner in which the
set-theoretic membership relation € structures sets. That is:

(Assrog) (Valm(Set), Valgm(€)) = (Set, €).

With that in place, the previous high probability of there being R and S such that ZF2[R, S|,
which resulted from set-theoretic considerations about (Set, €), translates immediately into a
high probability for there being R and S, such that Vz(S(z) — Logical-in-€(z)) AN ZF2[R, S|,

5OCarr\ap (1950a, Section 3) actually speaks of the introduction of variables of a “new type”, which would presuppose a many-sorted logic. But instead of
introducing a new dedicated class of variables, one may just as well use one sort of variables and restrict them by the new general term Logical-in-€ instead.
Slgee Suppl. H of Leitgeb and Carus (2024) for more on Carnap on ontology.

2More should be said about what makes the members of the class Logical-in-€ properly logical (rather than just abstract). The key to this, in my view,
would to argue that the members of Logical-in-€ might be regarded as abstract meaning-entities (Fregean senses or Carnapian intensions). But I will leave
this to one side here.
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which is the metalinguistic translation of (Ry.,). Therefore, even R;,, ends up very likely
analytic(-in-¢). And the additional assumption (Assy,.,) hardly adds to the deductive strength
of ¢, as it merely states that logicist sets and ordinary sets are structured alike, without saying
which such sets exist and what their structure is like.

5. Conclusions

I have argued for (quasi-)Carnapian logicism: there is a logicist conceptual framework in which
€ and Set are defined in logical terms, and in which ZF2[e, Set] is (likely to be) semantically
analytic. It follows that all standard terms of pure mathematics are logical in the framework,
and all standard proven theorems of pure mathematics are (likely to be) semantically analytic
in the framework. The required definitions, the semantic notion of analyticity in a framework,
the logicist framework, and the occurrence and justification of the probabilistic qualification
“likely to be” have been explained in the previous sections.

The essential features of the resulting Carnapian brand of logicism are: it is clear, formally
precise, systematic, and reasonably simple. It still resembles mathematical practice in so far
as it preserves the usual set-theoretic definitions of mathematical terms, it preserves the
set-theoretic proofs of mathematical theorems, it acknowledges the open-endedness of the
concepts of sethood and membership, it makes the existential presupposition of the set-theoretic
treatment of mathematics explicit, and it incorporates (hypothetical) verdicts and arguments
by ordinary mathematicians and set-theorists into its argument for the likely analyticity of
that presupposition within the logicist framework. Its upshot is that pure mathematics can be
rationally reconstructed as purely conceptual in the sense of coming along with a conceptual
framework, while staying close to mathematical practice.”” As shown in Section 4, the ‘purely
conceptual” can be extended even to the ontology of mathematics, to the effect that all
mathematical objects are logical objects in the respective logicist framework. Finally, Carnapian
Logicism is embedded in, and coheres with, Carnap’s understanding of logic, theoretical terms,
conceptual frameworks, analyticity, and probability and matches his overall conception of
philosophy as rational reconstruction.

What Carnapian logicism does not achieve (and does not aim to achieve), as has
been explained in Section 4, too, is to give mathematics a secure logical foundation.
Epistemologically, it remains on the same level as Frege’s Grundlagen in which Frege points
out:

I do not claim to have made the analytic character of arithmetical propositions
more than probable. . . (Frege, 1884, Die Grundlagen der Arithmetik, §90)

In Frege’s case, that was because the Grundlagen had not quite delivered sound, formally
precise, and gap-free logical derivations of the mathematical laws of arithmetic from axioms
of logic. That is what he hoped to supply in his later Grundgesetze, though we now know that
he would fail to do so. In the meantime, Godel’s Incompleteness Theorems have made it seem
unlikely that any logicist could do better than arguing for the analyticity of mathematics on
probabilistic grounds.

531n contrast, empirical science could not be rationally reconstructed as purely conceptual while staying close to scientific practice. But it is not the place to
argue for this claim here.
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There might be one other potential downside to Carnapian Logicism: consider e.g. the
Continuum Hypothesis, which we know is neither provable nor refutable in ZF2[€, Set]. It
is well-known that the Continuum Hypothesis can be reformulated as a statement CH in the
language of pure second-order logic, and the same holds for its negation, which can also be
expressed as a statement NCH in the same language (see Shapiro, 1991, p.105). Moreover,
it is easy to see that either CH is logically true in full (model-theoretically defined) second-
order logic or NCH is logically true in full second-order logic. For the same reason, either CH
is analytic in the logicist framework from Section 3 or NCH is analytic in that framework,
even though we do not know which of the two is the case. This matches Bohnert’s (1975,
p-211) summary of what Carnap told him in 1967, that is, “one could only wait and watch
developments, with respect to what could be thought of as analytically true”, where in the
present case ‘analytically true” would not be relative to our pre-theoretic understanding of set
and membership but to the understanding afforded by the logicist framework from Section
3. At the same time, if it happened to be the case that mathematicians did not think CH is
“settled” in that manner, this would amount to an important discrepancy between our logicist
rational reconstruction of mathematics and what mathematicians would think themselves.
On the other hand, rational reconstructions are merely required to be similar to what they
reconstruct; certain discrepancies are to be expected. And of course the deductive system of the
logicist framework of this paper does not settle the question by means of proof, which might
be all these mathematicians might mean by the Continuum Hypothesis not being settled. I will
have to leave this question to future work.

In any case: as things stand, the resulting Carnapian logicist package does not seem to fare
worse than any other philosophical interpretation of mathematics available. It is a coherent
option that is on offer for anyone willing to choose it.
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