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Editorial

Leon Horsten, Editor in chief

This is the first volume of the Journal for the Philosophy of Mathematics (JPM). The JPM is published by
Florence University Press, and is freely accessible online. Even though it is published under the auspices of the
European Society for the Philosophy of Mathematics, founded in 2023, the JPM intends to be a truly global
scholarly journal.

The JPM is an analytic philosophy journal devoted to a sub-field of philosophy of science, to wit: the
philosophy of mathematics. Here mathematics is conceived of in a broad sense as including not only "founda-
tional" subfields of mathematics such as set theory and category theory, but rather all theoretical and applied
mathematical disciplines.

The aim of the JPM is to be an inclusive journal that supports the community of philosophers of mathematics.
It will publish articles on all themes in the philosophy of mathematics, such as but not limited to mathematical
proof, mathematical truth, mathematical concepts, mathematical practice, mathematical objects, mathematical
explanation and the applicability of mathematics. Moreover, the JPM welcomes articles that use diverse
approaches, techniques, and methodologies, such as methods from traditional analytical philosophy (e.g.,
conceptual analysis, and conceptual engineering), methods from the philosophy of mathematical practice,
formal methods (logical methods, set theoretic methods, and methods from other mathematical fields), case
studies from the history of mathematics and empirical methods. In this way, our objective is to strengthen the
community of philosophers of mathematics worldwide, rather than to divide it.

The authors of Volume 1 of the JPM were invited to contribute to this volume. We are grateful to the authors
for accepting our invitations and for delivering such outstanding articles in response. All the contributions to
this volume were rigorously reviewed. Indeed, many of these articles went through several rounds of revision.
We expect this not to be uncommon for articles that will be published in the JPM in the future. The reason for
this is twofold. First, the JPM intends to become a leading journal in the field, publishing only articles that
meet the highest scholarly standards. Second, through the refereeing process we want to work closely with
authors to achieve this goal.

We believe that the first volume of the JPM showcases the quality and diversity that we are looking for in
our future articles and volumes. Now that the standards have been set, we proudly open the JPM for submissions
from philosophers of mathematics everywhere. Every submission will be handled by an Editor responsible
for the relevant sub-field of the philosophy of mathematics. We promise to deal with every submission in a
professional, fair, and (to the best of our ability) timely manner. We are looking forward to receiving a rich
variety of excellent contributions in the years and decades to come!

Leon Horsten. Department of Philosophy, University of Konstanz, Germany. ORCID: 0000-0003-3610-9318.
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Enumerative Induction in Mathematics

Alan Baker

Abstract: In my 2007 paper, “Is There a Problem of Induction for Mathematics?” I rejected the idea
that enumerative induction has force for mathematical claims. My core argument was based on the
fact that we are restricted to examining relatively small numbers, so our samples are always biased,
and hence they carry no inductive weight. In recent years, I have come to believe that this argument
is flawed. In particular, while arithmetical samples are indeed biased, my new view is that this bias
actually strengthens the inductive support that accrues from them. The reason is that small numbers
typically provide a more severe test of general arithmetical claims due to the greater frequency of
significant properties and boundary cases among such numbers. In this paper, I describe and defend
this new view, which a call Positive Bias Pro-Inductivism.

Keywords: Enumerative induction, Arithmetic, Non-deductive reasoning

1. Introduction

In 1919, Hungarian mathematician George Polya was pursuing questions concerning prime factorization and
began noting down, for each of the first few natural numbers, whether a given number had an even number of
prime factors or an odd number of prime factors. What Polya was counting was not distinct prime factors, but
just the raw number of prime factors. So, for example, 10 = 2.5 has an even number of prime factors, 11 has an
odd number, and 12 = 2.2.3 has an odd number. Next, Polya recorded, for each given number, n, how many
numbers in the set {1,2,3, . . .n} have an odd total number of prime factors and how many have an even total
number. Looking at all the numbers up to 100, Polya noticed that at every point at least half of members of the
set {1,2,3, . . .n} had an odd total number of prime factors. Intrigued, Polya extended his calculations up to n
= 1,500 and found that the pattern continued to hold. At this point, Polya conjectured in print that this holds
universally. In other words, for all n, at least half of the numbers less than n have an odd total number of prime
factors. This came to be known as Polya’s Conjecture (PC).

Polya presumably made the conjecture because he believed that it was likely to be true. What grounds did
he have for this belief? According to the narrative outlined above, Polya’s belief in the truth of PC was based
exclusively on enumerative induction. 1,500 instances from a larger domain were examined and found to fit
the hypothesis, and on this basis the hypothesis was conjectured to hold universally. As such, this seems like
a particularly pure case of enumerative induction, with few extraneous complicating factors. But was Polya
rational in taking the results of the first 1,500 cases to lend support to the universal hypothesis in this way?
More generally, can enumerative induction lend genuine support to mathematical claims? It is these questions
that I shall be taking up in what follows.

Alan Baker, Swarthmore College, USA, abaker1@swarthmore.edu, ORCID:0000-0003-2896-7961
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Alan Baker

2. Scene Setting
Before proceeding it may be helpful in clarifying the scope of our inquiry to distinguish the questions I am asking
from some other, related (and also interesting) questions, and also to make explicit several presuppositions that
I will be taking for granted.

Firstly, I am not asking whether enumerative induction in mathematics can yield knowledge of general
mathematical claims. My focus here is on justified belief, not knowledge, and I will be taking no stand on the
potential link between enumerative induction and knowledge. Secondly, I am not asking whether enumerative
induction in mathematics can (or should) ever be on a par with deductive proof. As it pertains to mathematical
methodology, everything I say is compatible with deductive proof continuing to be the gold standard for
demonstrative mathematical reasoning.1 Thirdly, I am not asking whether enumerative induction can provide
compelling grounds for belief in a general mathematical claim. Rather, I am interested in whether enumerative
induction can achieve the more modest goal of providing some positive support.

As for presuppositions, the work being done in this paper will be carried out against the background of
a general anti-scepticism about induction. In other words, I will be presuming that enumerative induction in
the empirical sciences is generally (other things being equal, ceteris paribus) a rationally acceptable tool for
acquiring justified belief. Also, although I will continue to talk sometimes about “enumerative induction in
mathematics” my focus will almost exclusively be on enumerative induction in number theory. The examples I
will be discussing will all involve claims about the totality of the natural numbers. Putting together these two
points, the question I asked at the end of Section 1 can be precisified as follows: is there something distinctively
problematic about using enumerative induction to bolster beliefs in arithmetical claims?

3. An Argument Against Enumerative Induction in Mathematics
In my 2007 paper, “Is There a Problem of Induction for Mathematics?,” I rejected the idea that enumerative
induction has force for mathematical claims. More specifically, I argued for the following two theses, one
normative and one descriptive:2

[EIM Norm] Enumerative induction ought not to increase confidence in a universal mathematical generalization
(over an infinite domain).

[EIM Desc] Enumerative induction does not (in general) increase confidence in a universal mathematical
generalization (over an infinite domain).

I am not an inductive sceptic in a more general sense, so my argument for EIM Norm rest on features that I take
to be peculiar to the mathematical case. These distinctive features can also be framed as disanalogies between
pure mathematics and the empirical sciences.

In increasing order of importance, the three main disanalogies that I pointed to are the following:

(i) The domain of number theory is infinite.

The challenge here for enumerative induction is clear enough. When dealing with an infinite domain, such as
the natural numbers, however big our finite sample of instances of a given universal claim, it will still only
represent an infinitesimally small portion of the whole domain. What is less clear is how much difference
this makes for enumerative induction in mathematics as compared to the empirical sciences. Firstly, it may
be that the universe is in fact infinitely large, in which case fully general scientific claims would also have an
infinite domain. Secondly, even if the universe is not infinitely large, most general empirical claims seem to
presuppose some sort of indefinitely open-ended domain, and this may be not much different in its implications
for enumerative induction than an absolutely infinite domain.3 In summary, while the presence of an infinite
domain certainly poses a problem, it is not enough on its own to justify abandoning enumerative induction in
mathematics while retaining it in the empirical sciences.

1 Relatedly, I am not advocating for any relaxation of the notion of theoremhood, whereby a mathematical conjecture could be elevated to the
status of “theorem” given sufficient enumerative inductive support.

2 Baker (2007, p.73).
3 Note that even scientific claims that have an implicit spatial limitation – for example, many biological claims that are about how genetic

code, metabolism, etc. work among organisms found on Earth – are likely to be temporally open-ended.
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Enumerative Induction in Mathematics

(ii) The domain of number theory is non-uniform.

Here I drew explicitly from Frege’s discussion of induction in the Grundlagen. The following three quotes
from that work give the flavor of Frege’s position:

[In mathematics] the ground [is] unfavorable for induction; for here there is none of that uniformity
which in other fields can give the method a high degree of reliability.

An even number can be divided into two equal parts; an odd number cannot; three and six are
triangular numbers, four and nine are squares, eight is a cube, and so on.

In ordinary inductions we often make good use of the proposition that every position in space and
every moment in time is as good in itself as every other. . . . Position in the number series is not a
matter of indifference like position in space.4

Following Frege, I argued that the domain of the natural numbers is non-uniform. In fact, the above quotes
suggest two different scales on which this non-uniformity might manifest. At the scale of individual numbers,
if we arbitrarily pick two separate numbers, m and n, just because m has property P gives us no prima facie
reason to think that n also has property P. (For example, just because m is a triangular number gives us no
reason to think that n will also be a triangular number.) But there is also, potentially, non-uniformity at the scale
of different segments of the number line. For example, consider the sequence of numbers between 200 and 300
(call this S1), and the sequence of numbers between 1010 and 1010 +100 (call this S2). Next consider some
property, P→, that holds for every member of S1, or which holds collectively for the set. Each of the two sets S1
and S2 consists of 100 consecutive numbers. So should we expect P→ also to hold for S2? Not necessarily, and
in fact there are many properties that we know to vary according to where in the number line we are sampling.
For example, every number in S1 has eight or fewer prime factors, but this is not true of every number in S2.
And at the level of collective properties, the density of primes, of square numbers, of Fibonacci numbers, and
so on are all significantly lower in S2 than in S1.

The fact that the properties of one number are not a reliable guide to the properties of other numbers,
and similarly for groups of numbers, is undeniably a challenge for the effectiveness of enumerative induction
in supporting general claims about all numbers. What is less clear is whether it is enough on its own to
justify Frege’s wholesale rejection of enumerative induction in an arithmetical context. After all, there is
plenty of variability in many of the empirical domains in which enumerative induction is employed, yet this
is not considered a fatal flaw. If the issue is simply non-uniformity, then it can be counteracted by selecting
a diverse array of instances to examine. If the conjectured hypothesis holds across this diverse array, which
will presumably exemplify the same kind of non-uniformity as the domain as a whole, then this enumerative
inductive evidence may still provide genuine support for the hypothesis.

(iii) We can only sample from among the very small numbers.

The infinite size and the non-uniformity of the domain of the natural numbers are not enough on their own
to undermine the effectiveness of enumerative induction in mathematics. However, they do become enough
when combined with a third feature, which concerns how and where we are sampling the domain.

The basic point is straightforward enough. Whether we are talking about the instances initially collected
by Polya in connection with his conjecture, PC (i.e. all the numbers up to 1,500), or the current range of
instances checked in connection with the Goldbach Conjecture (i.e. currently, all the even numbers up to about
4↑1018), all the instances that we can ever feasibly collect for any general arithmetical conjecture are in an
important sense small. In my (2007), I introduced the term “minute” to make this latter notion more precise,
defining a natural number to be minute if it can be written down (by us) in ordinary decimal notation, including
exponentiation (but not iterated exponentiation). We are practically limited to searching among the minute
numbers for instances of general arithmetical claims.

4 Frege (1884, Section 10).
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So what? Even if we are in practice restricted in this way, what relevance does this have to the effectiveness
of enumerative induction? This is a fair question, and – as with the first two distinctive features of mathematics
discussed earlier – it could justifiably be claimed that on its own it is not a serious problem. However it becomes
a problem, or so I argued, when combined with the two earlier features. The core argument of my 2007 paper
can be summarized as follows:

(1) All instances of general arithmetical conjectures that we can feasibly check are drawn from among the
minute numbers.

(2) Hence, there are an infinite number of non-minute numbers, none of which we can ever sample.

(3) Size is known to make a difference to the properties of individual numbers and of sets of numbers.

(4) Hence, any sample used as a basis for enumerative induction in arithmetic is unavoidably biased.

(5) Hence, enumerative induction in arithmetic carries (and ought to carry) no weight.

Returning to the example that we began with, the above argument suggests that Polya’s examination of the first
1,500 natural numbers provides no substantive support for his conjecture, PC, because there is no reason to
think that this initial sample is representative of the number line as a whole.

My 2007 view on induction in mathematics can be seen as a targeted form of inductive scepticism. Paseau
(2021) uses the term “size scepticism” to refer to this position, and helpfully distinguishes three different types
of size scepticism. According to Paseau’s classification scheme, Baker (2007) is a defense of u-scepticism (the
“u” here stands for “unrepresentative”).5 Sampling only from the minute numbers amounts to not varying the
sampling space along an axis (in this case size) that is known to make a difference. So, in this sense, any basis
for enumerative induction in mathematics is (unavoidably) unrepresentative.

It is worth noting that the conclusion of my 2007 paper is quite radical (though not historically unprece-
dented, as seen from the remarks of Frege quoted above), for my anti-inductive thesis is not merely that
enumerative induction fails to provide compelling evidence for general arithmetical claims, but that it provides
no supporting evidence whatsoever. This ‘no-support’ thesis can best be made sense of as arising not just
from the unrepresentativeness of our sample set but also from the infinite number of objects in the domain (as
alluded to in step (2) of my core argument). In drawing exclusively from the minute numbers, we end up with
a sample set that is unrepresentative of the domain as a whole and is also an infinitesimally small portion of
that whole. If either of these two obstacles was removed then there would be the possibility of enumerative
inductive evidence yielding substantive support for general conjectures. A representative sample would give
grounds for projecting the partial result across the whole domain. And a non-infinitesimal sample would raise
our subjective probability for the general conjecture by verifying a substantive proportion of cases.

4. Bolstering the Biased-Sample Claim

In recent years, I have come to believe that the core argument from my 2007 paper is flawed, and that inductive
scepticism with respect to mathematics is unwarranted. Most of the criticism of my core argument has focused
on undermining the intermediate conclusion, (4), that our sampling from the domain of the natural numbers
is unavoidably biased.6 Implicit in such attacks is the presumption that the final step in the argument, from

5 This is to be distinguished from s-scepticism (size scepticism), according to which small numbers are distinctively problematic. i.e.
sampling 1,000 non-small numbers would provide better evidence than sampling 1,000 small numbers. And it is also to be distinguished
from c-scepticism (comparative scepticism), according to which a set of larger numbers provides better evidence than a set of smaller
numbers.

6 See e.g. Walsh (2014), Waxman (2017). One common line of objection is that in gathering confirming instances for a general scientific
conjecture we are also stuck with potentially biased samples, since all instances that we observe must be “close” to us (in space and in
time). But induction in empirical contexts is (by presumption) acceptable. Hence it cannot be this “bias” that leads to problems in the
mathematical context. However, this objection ignores the fact that the “close to us” bias is very different from the “close to the beginning of
the number line” bias. Firstly, being “small” is an objective property of numbers, while being “close to us” is (manifestly) observer-relative.
Secondly, we have antecedent reason to believe that smallness can make a systematic difference to the behavior of numbers, whereas we
have no antecedent reason to believe that being close to us in space and/or time makes a systematic difference to the behavior of physical
objects.
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sample bias (step (4)) to lack of inductive support (step (5), is unproblematic. My own approach will be rather
different. I continue to believe that my 2007 argument for sample bias is convincing. However, I want to resist
the inference that sample bias automatically undermines the force of enumerative induction. To this end, my
strategy will be as follows. Firstly, I will sharpen and defend the biased-sample thesis by focusing on an initial
subset of the natural numbers that is radically smaller than the set of minute numbers. Secondly, I will argue
that the particular kind of bias that afflicts this initial subset actually serves to strengthen inductive inferences
that are based on it. The counterintuitive-sounding takeaway is that bias in our sampling of the natural numbers
provides a rational boost to enumerative induction applied to general arithmetical claims in a way that helps to
overcome the challenges of generalizing over a demonstrably infinite domain.

The first task is to formulate and defend a more circumscribed version of the biased-sample claim. I shall
begin by zeroing in (no pun intended) on a much smaller initial subset of the natural numbers that features in
my core argument. In my 2007 paper, I focused on the “minute numbers,” where a natural number is defined as
minute if it can be written down by us in ordinary decimal notation, including exponentiation (but not iterated
exponentiation). It is worth noting that, despite the label, the minute numbers include a lot of numbers that
are very far from being small in any ordinary sense. For example, current estimates put the number of atoms
in the universe at something on the order of 1080. Included among the minute numbers are numbers vastly
larger than this, such as 10800, 108000, and so on. My reason for placing such a relaxed bound on the minute
numbers was to make absolutely sure that all putative inductive evidence for unproven general conjectures
consists exclusively of instances that count as minute. However, for current purposes this is overkill, and in fact
the liberal characterization of minute number has a negative impact on the core argument. I consider these two
points separately below.

How is this overkill? The fact is that in the vast majority of actual cases where mathematicians gather
instances of a general arithmetical conjecture, these instances are not especially large. Historically, when
instances were calculated by hand, these rarely exceeded a few thousand (in number, and in magnitude), and
this persisted until the advent of the digital computer.7 Once computers could be used to speed up this checking
process, the sampling size massively increased. But even now, the limitations of computing speed and memory
place fairly tight bounds on how many cases can feasibly be calculated. Consider the oft-cited example of the
Goldbach Conjecture, which has been checked by computer for all even numbers up to around 4↑1018. This is
among the larger sample sets for any currently open arithmetical conjecture, yet it is nowhere close to pushing
the bounds of the minute numbers (which, recall, include anything we can feasibly write down using decimal
notation and non-iterated exponentiation, so 10180 , 101800, and 1018000 are all minute numbers). The upshot is
that we could focus on a much, much smaller set of numbers than the minute numbers and still capture nearly
all actual cases of putative enumerative induction in mathematics.

Even if the above point is true, it might seem that there is still no harm in using the minute numbers as a
basis for the core argument. However, it turns out that there is a clear downside, namely that referencing an
excessively large set of numbers risks undermining the biased-sample claim itself. There are a couple of ways
in which this happens.

Recall that the basis of my claim that our sampling of the natural numbers is (unavoidably) biased is that
the sample space is unrepresentative of the numbers as a whole. So if the focus is on the minute numbers,
then this amounts to the claim that the minute numbers behave differently than the non-minute numbers. The
(Frege-inspired) intuition that position along the number line matters to what properties a number is likely to
have was motivated, back in Section 3, by comparing the sequence of one hundred numbers between 200 and
300 (call this S1) with the sequence of one hundred numbers between 1010 and 1010 +100 (call this S2), and
noting the sharp difference in the relative occurrence of properties such as being prime, square, Fibonacci, and
so on. Notice, however, that both of these sequences fall squarely within the set of minute numbers, so this
observation does nothing to support the claim that the minute numbers are themselves systematically different
from the non-minute numbers. If instead we take a set of one hundred numbers from further along the sequence
of minute numbers and compare it with a set of one hundred non-minute numbers, it is much less clear that the

7 The Polya Conjecture example discussed in Section 1, in which cases were checked up to 1,500, is very typical in this respect.
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‘systematic difference’ claim holds up.8 The basic problem is that the set of minute numbers includes numbers
of such magnitude that maintaining that all minute numbers are unrepresentative becomes much less plausible.

A second problem with the excessive magnitude of the minute numbers is that it becomes harder to find
examples where a general conjecture has held for all minute numbers but ended up failing for some non-minute
number. In my (2007) paper, I came up with just one putative example where this may happen, and even this is
conditional on the unlikely eventuality that the Riemann Hypothesis is false. Under this assumption, the upper
bound of the point at which the logarithmic density function is eventually exceeded is given by the second
Skewes number, which is a non-minute number. However, as D’Alessandro points out, this lone example no
longer holds up.9 A result of Saouter and Demichel, proved in 2010, shows that the upper bound is at most a
little over 10316, which is well within the realm of the minute numbers. The difficulty of finding actual examples
of conjectures for which the minute numbers behave differently from the non-minute numbers puts further
pressure on my thesis that the minute numbers are “unrepresentative” of the numbers as a whole.

I propose to cut through the difficulties associated with the minute numbers by restricting attention to a
drastically smaller initial segment of the natural numbers, and focusing on the biased-sample thesis as applied
to this smaller subset. Consider the natural numbers from 1 to 1,000. At risk of multiplying terminology beyond
necessity, I shall refer to the numbers in this set as tiny numbers. And I hope to make plausible the following
two theses associated with this set:

(A) A sample of positive instances selected only from among the tiny numbers is biased, and is unrepresentative
of the domain of natural numbers as a whole.

(B) A sample of positive instances of a general conjecture, C, that includes all of the tiny numbers provides
substantive support for C, other things being equal, in virtue of the fact that the sample is biased.

The broad arguments for the more general thesis (A) have already effectively been made back in Section
3. Now that we are restricting attention to just the first 1,000 numbers, it is very plausible to maintain that
sequences of numbers from this set look very different in their individual properties, and distribution of
properties, than sequences of much larger numbers. In the next section, I will turn to defending thesis (B),
firstly by highlighting three specific ways in which the tiny numbers are unrepresentative, and then by showing
how each of these biases actually increases the level of inductive support that tiny numbers provide.

5. From Bias to Inductive Support (I): Unrepresentative Representativeness

Bias in a sample is not usually considered to be a positive feature for inductive inference. However, certain
specific types of bias can boost inductive support, or so I shall argue. Counterintuitive though this sounds, it is
easy enough to think up examples where this happens even in a non-mathematical context. Consider some claim
about the upper physiological limits on human strength or endurance, and imagine that we test this claim by
measuring the capacities of 1,000 professional athletes and finding that they all fall within the conjectured limit.
Clearly this is a biased sample, since professional athletes are not representative of human beings as a whole.
However, it is equally clear that in this case the bias ought to strengthen our belief in the physiological limit
conjecture more than if we had picked 1,000 people at random from the general population. This is because it
is prima facie more likely for a professional athlete to exceed a postulated performance limit. So here the bias
of the sample serves to boost the inductive support that it provides.

Returning to the mathematical case, I will highlight three features that manifest differently among the tiny
numbers in comparison to arbitrary larger numbers. For each feature, I will begin with a characterization of
what the feature is, then show how the feature plays out differently for the tiny numbers, and finally argue that
this difference boosts the inductive force of samples involving the tiny numbers.

8 For example, consider the (minute) number M = 101,000,000 , and compare an arbitrary set of minute numbers, {M+1,M+2, . . . ,M+100},
with an arbitrary set of non-minute numbers, {10M +1,10M +2, . . . ,10M +100}.

9 D’Alessandro (2021, p.33).
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The first feature involves significant properties. Every natural number has an infinite number of mathe-
matical properties, but some of these properties are more significant than others.10 What do I mean here by
“significant”? I am not going to try to give a precise definition of this term, partly because I do not know how to
do so and partly because the larger argument I shall be giving does not require it. For present purposes, I shall
proceed with two complementary approaches to characterizing the notion of significance: a loose definition of
significance, and then some contrasting cases of insignificant properties.

Starting with the loose definition, we shall count a mathematical property as significant to the extent that it
features in the statements and proofs of important mathematical results, and to the extent that it is systematically
linked to other significant properties.11 The boundary between significant and insignificant properties is vague,
and significance is itself plausibly a matter of degree.12 Nonetheless, it seems clear that some mathematical
properties are significant simpliciter and others are not. Any list of canonical significant mathematical properties
would presumably include properties such as being prime, being even, being square, and being a Fibonacci
number.13

As a second aid to drawing the above distinction, it may be helpful to enumerate a few ways in which
number properties can fail to be significant. The following list of kinds of insignificant property is obviously
not meant to be exhaustive, but it provides a few examples:

(i) properties that relate to non-mathematical facts
e.g. the property of being the number of weeks in a year

(ii) properties that are representation-dependent
e.g. the property of having the decimal digits sum to a prime number

(iii) properties that are highly gerrymandered (or disjunctive)
e.g. the property of being either a square number or a Fibonacci

(iv) properties that are arbitrarily specific
e.g. the property of having exactly 23 distinct prime factors

Most of the canonical significant properties decrease in frequency as numbers get larger. Sometimes this
decrease is fairly gradual (as with prime numbers) and other times it is more drastic (as with perfect numbers).
This general pattern suggests that the tiny numbers are biased in manifesting a greater frequency of significant
properties, but we need to be careful in how this claim is formulated. It is not the case, for instance, that there
is a greater density of numbers with significant properties among the tiny numbers. The reason why not is
that every number has (some) significant properties. How so? Because in addition to the kinds of properties
mentioned above, there are also significant properties that do not decrease in frequency among larger numbers.
Typically, these are significant properties whose complements are also significant.14 An example of a significant
property whose frequency does not decrease with number size is the property of being an odd number. This
property is significant because many other properties are linked to it, and its complementary property, being an
even number, is also a significant property, and also does not decrease in frequency as number size increases.
Another example is the property of being composite. This is a significant property whose frequency actually
increases with number size (since its complementary – and also significant – property, primality, decreases in
frequency). Every number is either even or odd, and every number (apart from 1) is either prime or composite,
so every number has significant properties.

10 For example, each natural number, n, has the (infinitely large) set of properties of being < n+1,< n+2,< n+3, etc.
11 In his Mathematician’s Apology, G.H. Hardy spends some time exploring the notion of “seriousness” as a property of certain mathematical

theorems and results. Hardy writes: “A ‘serious’ theorem is a theorem which contains ‘significant’ ideas and I suppose that I ought to try to
analyse a little more the qualities that make a mathematical idea significant.” (Hardy, 1940, p.21) Hardy ends up linking significance (of
mathematical ideas) both to generality and to depth. For an interesting recent discussion of Hardy’s notion of seriousness, and how initial
judgements of non-seriousness may be overturned by subsequent developments in mathematics, see Weisgerber (2024).

12 I will return to discuss the issue of degree of significance in Section 6 below.
13 For discussion of the – potentially related – notion of “mathematical natural kind,” see Corfield (2004) and Lange (2015).
14 This is not the case for the majority of significant properties. For example properties such as ‘_ is not a square number’ and ‘_ is not a

Fibonacci number’ are not significant.
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The upshot of the above discussion is that the tiny numbers are not different from sequences of larger
numbers in having fewer elements with significant properties. However, it is nonetheless true that most
significant properties decrease in frequency with number size. As a consequence, if we compare the tiny
numbers with a sequence of 1,000 consecutive much larger numbers, we should expect a greater range of
significant properties to be instaConsider, for example, the properties of being a square number and of being a
prime number. The difference between consecutive squares is (n+1)2 ↓n2 = 2n+1, so once we get above
5002, there will be sequences of 1,000 consecutive numbers none of which has the property of being square.
For prime numbers, the density of primes less than n is well approximated by 1/log n, and among numbers as
‘small’ as 1015, sequences of 1,000 consecutive composite numbers are known to occur.15 For both of these
properties, being square and being prime, we don’t have to go very much further along the number line beyond
the tiny numbers before the chances of either being instantiated in a given 1,000-number sequence is extremely
low. The vast majority of numbers will have the bare minimum of significant properties, being either odd and
composite or even and composite, and only very occasionally will significant properties such as being prime,
being perfect, being square, or being Fibonacci be instantiated.

This, then, is the sense in which the tiny numbers are biased with respect to significant properties. The
range of significant properties that is encompassed by the tiny numbers radically exceeds that encompassed by
similar-sized samples from among much larger numbers. The tiny numbers are diverse in a way that collections
of larger numbers are not. What impact does this ‘diversity bias’ have on the role of tiny numbers in enumerative
induction? The tiny numbers are atypical in this respect and so in one sense they are not “representative” of the
numbers at large. However, in another sense, the tiny numbers are representative: the variability and density
of properties instantiated by tiny numbers allows them to effectively stand in (or “represent”) a much broader
range of numbers.16

I shall use the term unrepresentatively representative to refer to this – initially paradoxical seeming – aspect
of the tiny numbers. Normally, unrepresentativeness correlates with lack of variation. This is what underpinned
my (2007) u-scepticism, and what decreases the value of unrepresentative samples, other things being equal.
However, in this context the unrepresentativeness in question pertains to a precisely contrary feature, namely
increased variation. My claim is that this makes the tiny numbers more effective as a basis for enumerative
induction, not less. Why, exactly? If some large number has a significant property, p→, then it is likely that there
is some tiny number that is p→. So if the large number is a counterexample to a given conjecture, C, in virtue of
the number having property p→, a corresponding counterexample to C will occur among the tiny numbers.

By way of illustration, consider the following non-mathematical analogy, which is based loosely on an
actual historical example. In the 1930’s, the U.S. medical establishment drew up infant growth charts in order
to give guidance to doctors about when a baby’s rate of growth might be a cause for concern. These growth
charts gave upper and lower bounds of what counted as ‘normal’ weight, height, and weight to height ratio, for
each age. In devising the charts, the medical authorities measured thousands of healthy infants of different ages.
The surveys were carried out in the rural Midwest, where most of the infants were bottle-fed and of northern
European and Scandinavian origin. How representative was this sample? In one sense it was very representative:
the ‘typical’ or ‘average’ American baby in 1930 may well have been similar to the sampled population. But in
another sense, the sample was not representative: there were many other sub-populations present in the U.S.
at the time that were not included in the sample. Imagine a second sample of infants, of similar size to the
first sample, taken from New York City. As a sub-region of the U.S. in 1930, New York City was far from
typical; most other regions would have looked very different. So in our first sense above, the NYC sample is
not representative. However, an important way in which New York City was different was in the diversity of its
population. This diversity holds across multiple axes: ethnicity; country of origin; socio-economic class; and so
on. If we focus for the moment on the geographic origin of the parents of NYC infants in 1930, it may well be
the case that there was significant representation from across all 48 states of the U.S. So in this second sense,
the NYC sample is representative. This “unrepresentative representativeness” of the NYC sample would have
made it a better basis for drawing up widely applicable infant growth charts than the sample from the Midwest.

15 Caldwell (2021).
16 Are there any good examples of a significant property that is not instantiated by a tiny number, but only by some large number? If we

restrict attention here to individual properties, rather than combinations of two or more properties, it is surprisingly difficult to come up
with a good example of a significant property whose first instance is greater than 1,000.
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6. From Bias to Inductive Support (II): Severe Tests

The second feature that makes the tiny numbers different from larger numbers is the occurrence of boundary
cases. For any instantiated mathematical property, there is a smallest natural number with that property.17

Without any restriction on what properties we are considering, a given number being a boundary case is of no
particular import. Indeed, it is trivially the case that every number, n, is a boundary case for the corresponding
property of being greater than or equal to n. But if we restrict attention to significant properties (in the sense
characterized in the previous section), then boundary cases carry more weight.

As a starting-point, let us consider where the boundary cases for various significant mathematical properties
lie. The boundary case for being prime is 2, for being even is 2, for being square is 1, for being perfect is 6,
and for being a Fibonacci number is 1. These examples are all tiny numbers, indeed they are toward the very
beginning of the tiny numbers. We can also consider boundary cases for combinations of significant properties.
For example, the boundary case for being both odd and prime is 3, for being both even and square is 4, and for
being both a square and the sum of two squares is 25. Not all boundary cases for significant properties (and
for combinations of significant properties) are tiny numbers, but the vast majority are. In this respect, the tiny
numbers are very unlike subsets of larger numbers.

What are the implications of this fact, that there are disproportionately more boundary cases among the tiny
numbers, for the value for enumerative induction based on samples involving the tiny numbers? The key point
here is that general claims, if they fail, often fail to hold for extreme cases. For general mathematical claims,
this may not be readily apparent, because failure to hold for the smallest case often means that the claim is never
seriously entertained. However, the fact that we sometimes have to modify general conjectures in order to avoid
the pitfalls of boundary cases shows that this phenomenon is fairly widespread. For example, the Goldbach
Conjecture (GC) is formulated as the claim that every even number greater than 2 is expressible as the sum
of two primes. 2 is a boundary case, since it is the smallest even number. And GC fails for 2, so it needs to
be explicitly excluded in order for the conjecture to (potentially) be true. Or consider the theorem that every
number has a unique prime factorization, which is true as long as we exclude the boundary cases of 0 and 1.18

Alan Hajek has suggested that it is not just in mathematics where boundary cases are more likely to yield
counterexamples to general hypotheses. In a paper on “philosophical heuristics,” one of the techniques that
Hajek recommends wielding against philosophical claims is to check extreme cases:

[L]ook for trouble among the extreme cases – the first, or the last, or the biggest, or the smallest,
. . . . It is a snappy way to reduce the search space. Even if there are no counterexamples lurking at
the extreme cases, still they may be informative or suggestive.19

The upshot of the above observations is that the prevalence of boundary cases among the tiny numbers tends
to make any sample containing these numbers an unusually severe test of a general mathematical conjecture. It
is a familiar point that samples that severely test a conjecture but then end up being positive instances of that
conjecture provide stronger inductive support for the conjecture than positive instances that never really put the
hypothesis at much risk.20

There is also a third feature of the tiny numbers that contributes to the severe testing of general hypotheses,
and that arises from the feature discussed in the previous section concerning the wider range of significant

17 There may also be a largest number with that property, if there are only a finite number of occurrences of the property, but for many
mathematical properties the only boundary is at the lower end.

18 A less well-known example, that fails at both its lower and upper boundaries, is the following: For a given number, n, assume that we
have n boxes and n objects. Let Q be the property that holds of n if and only if it is possible to assign all the objects to boxes in such a
way that fewer than n boxes are used and fewer than n objects are in each box. If we pick an arbitrary number, say 17, then it is easy to
see that property Q holds for it. In this case, for example, we could put 13 objects in box 1, 4 objects in box 2, and leave the other 15
boxes empty. So we have used only 2 boxes (2 < 17), and each box contains less than 17 objects. Does Q hold for every number? No. It is
straightforward to verify that Q fails to hold for the two lower boundary cases of 0 and 1. And it also fails to hold for the upper boundary
case of !.

19 Hajek (2014, p.292). As one example, Hajek considers testing the claim “every event has a cause” by looking at the first event as a boundary
case.

20 For example, following Hempel, both a white shoe and a black raven can be seen as positive instances of the general hypothesis that all
ravens are black. However, observing a raven and determining that it is black puts the hypothesis at risk, while observing a shoe and
determining that it is white does not.
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properties among the tiny numbers. This wider range increases the chances of two or more significant properties
being co-instantiated by a single number, and for more different combinations of significant properties to be
co-instantiated. Because most significant properties become less common as the size of numbers increases,
the frequency of coinstantiation (especially for properties that are not directly related) dramatically decreases
beyond the tiny numbers. To give just one example, consider the question of which numbers are both square and
Fibonacci. It turns out that there are only three numbers that co-instantiate these two (significant) properties: 0,
1, 144, and these are all tiny numbers.

Call a number interesting if it co-instantiates two significant properties such that the proportion of numbers
that co-instantiate in this way is much smaller than the proportion of numbers with either property alone.
So while significance is a feature of individual properties of numbers, interestingness is a feature of pairs of
properties.21

Interestingness (like significance) is not a precisely defined notion, but it is clear nonetheless that 0, 1, and
144 are all interesting numbers, in the above sense, in virtue of exhibiting the – very rare – co-instantiation of
the properties of being square and being Fibonacci. Or consider the following pair of cases:

2 is interesting in virtue of co-instantiating the significant properties of being even and being prime,
because this co-instantiation is unique and is therefore much rarer than either being prime or being even.

3 is not interesting in virtue of co-instantiating the significant properties of being odd and being prime,
because this co-instantiation is almost as common as the property of being prime simpliciter.22

As was the situation with boundary cases, interesting numbers are a potentially rich source of counterexam-
ples to general conjectures about numbers. Interesting numbers combine significant properties in unusual ways,
and as such they are more likely to be anomalous and thus to provide severe tests for universal claims.23 The
excess of interesting numbers among the tiny numbers is therefore another way in which samples drawn from
tiny numbers provide disproportionately severe tests of general mathematical conjectures.

Not only is the frequency of interesting numbers much greater among the tiny numbers, in comparison
to the non-tiny numbers, so is the typical degree of interestingness, or so I shall argue. What makes one
interesting number more interesting than another? A couple of features come to mind. Consider a number, n,
that has significant properties P and Q. Intuitively, the degree of interestingness of n is determined partly by
the significance of P and Q, and partly by how rare the combination of P and Q is relative to these properties
considered individually.24

In the previous section, we discussed how the range of significant properties is greater among the tiny
numbers than among comparable-sized sequences of larger numbers, and how this makes the tiny numbers
“unrepresentatively representative.” Thinking now of significance as a matter of degree, perhaps a better way to
put the above point is that the range of properties of higher significance is greater among the tiny numbers.25

This latter claim seems very plausible, and although I do not have any knockdown argument to establish it,
some circumstantial evidence in its favor may be gathered.

The Penguin Dictionary of Curious and Interesting Numbers is, as the title suggests, a (non-exhaustive!)
catalog of numbers whose properties are deemed to be interesting for one reason or another.26 In our termi-
nology, the numbers listed include both those with very significant properties and those with very interesting
combinations of properties.27 We can get some sense of the relative degree of interestingness of numbers of

21 Note that in a situation in which there are two significant properties and one is a special case of the other, this will not result in the number
in question being interesting. Why not? Because if all numbers with property P also have property Q then the proportion of numbers that
have the twin properties (P, Q) is the same as the proportion of numbers that have property P.

22 Which is not to say that 3 is not interesting, it is just that it is not interesting in virtue of this combination of significant properties.
23 Consider the number 2 in relation to the Goldbach Conjecture, as was previously discussed. Arguably the reason that 2 is a counterexample

(and thus needs to be excluded from the domain of application of GC) is because it (uniquely) instantiates both the property of being even
and of being prime.

24 In some sense, then, degree of interestingness involves a trade-off. A pair of highly significant properties whose combination is not rare
relative to the occurrence of the properties individually may result in the same level of interestingness as a pair of less significant properties
that very rarely occur together.

25 One way to formulate this more precisely is as follows: for any cut-off that is made between “higher significance” and “lower significance”
for mathematical properties, the range of properties above this cut-off is greater among the tiny numbers than among almost all sequences
of 1,000 consecutive non-tiny numbers.

26 Wells (1986).
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different sizes by looking at snapshots from different places along the number line and seeing what is listed
for each sequence of numbers. For reasons of space, I will restrict this survey to looking at three different
sequences of three consecutive numbers, picking the most intuitively interesting pairs of properties in each
case:28

2 The only even prime number

3 The smallest odd prime number

4 The smallest composite number

102 The smallest 7th power to be the sum of eight 7th powers

103 One of a pair of twin primes (with 101)

104 A semi-perfect number (i.e. equal to the sum of all or some of its proper divisors)

For the third sequence, {1002,1003,1004}, we enter the realm of the non-tiny numbers. It is perhaps no
coincidence that, even by this relatively early point on the number line, the proportion of numbers that get a
mention in The Penguin Dictionary is very low, and that none of the numbers in this third sequence appear.
Looking elsewhere for information related to interestingness, the following properties may be noted:29

1002 A sphenic number (i.e. the product of 3 distinct primes)

1003 The product of a prime, n, and the nth prime

1004 A heptanacci number30

The difference, even just intuitively, between the degree of significance of the properties involved in these
three sequences is striking. In addition, the numbers in the first sequence either exhibit combinations of core
significant properties that are unique, or are boundary cases of a core significant property, and thus are also
unique. This gives all three numbers in this sequence close to a maximal degree of interestingness. In the second
sequence, the first number, 102, is a boundary case, but the property involved (being a 7th power that is the sum
of eight 7th powers) involves the combination of two properties that are of low significance. The remaining two
numbers in the sequence, 103 and 104, exhibit individual properties that are of moderate significance. However,
in the absence of a second identified property, the only option is to combine with one of the ‘default’ significant
properties (even, odd, composite) and this will not result in the number being interesting. By the time we get to
the third sequence, which is also the first to feature non-tiny numbers, the properties involved have become
even more obscure and even less significant, while also not combining with a second, non-trivial significant
property to boost any prospects of interestingness. I conclude that this survey, brief and partial though it is,
lends further support to the claim that the tiny numbers typically exhibit a higher degree of interestingness and
thus function especially well as severe tests of general mathematical conjectures.

7. Induction and Mathematical Practice

To summarize where we have got to thus far, the main thesis that I have been defending – in contrast to Baker
(2007)’s inductive scepticism about mathematics – is that substantive enumerative inductive support can be
accrued for a general mathematical conjecture from successfully testing the conjecture on the tiny numbers (i.e.

27 The catalog also includes many examples of properties that are not significant in our sense, either because they are not internally
mathematical (e.g. being related to some physical world phenomenon) or because they are notation dependent (e.g. concerning some
feature of the decimal digits of the number in question).

28 Why confine attention just to combinations of two properties in the diagnosis of interestingness? This is a fair question, and I do not mean
to rule out analyses of interestingness that go beyond pairwise concatenations of significant properties. However, my worry is that if we
allow interestingness to be determined by combinations of greater numbers of significant properties, it will become too easy to find very
rare such combinations and as a result the bar for interestingness will become too low.

29 Wikipedia has entries for individual numbers and their notable properties, which is one useful source of information for non-tiny numbers.
30 The heptanacci sequence is formed analogously to the Fibonacci sequence, except starting with seven consecutive 1’s and then forming the

next entry in the sequence by summing the previous seven entries.
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the natural numbers up to 1,000). In this section, I will argue that this modest pro-inductive stance fits better
with mathematical practice than the sceptical view.

Some aspects of mathematical practice connected to enumerative induction are equivocal between the pro-
and anti-inductive positions. I have in mind relatively well-known conjectures such as the Riemann Hypothesis,
the Goldbach Conjecture, and P ↔= NP, for which numerous instances have been surveyed, and about which
mathematicians tend to have a very high confidence in their truth.31 The complicating factor is that there are
many considerations other than pure enumerative induction that feed into this confidence. Baker highlights
one such consideration in the case of the Goldbach Conjecture, namely that the number of ways that an even
number, n, can be expressed as the sum of two primes increases steadily with the size of n. In the current
context, we are trying to adjudicate between the thesis that induction over the tiny numbers provides substantive
inductive support and the contrary thesis that it provides no support. Given the prevalence of factors other
than enumerative induction in examples such as the Goldbach Conjecture (GC), each of the above theses is
seemingly consistent with mathematical practice.32 According to the pro-inductivist, mathematicians’ high
level of confidence in the truth of GC is rooted in partial support from enumerative induction which is then
boosted by other (also non-deductive) considerations. According to the inductive sceptic, mathematicians’ high
level of confidence comes entirely from these other considerations.

Are there other patterns of mathematical practice that give clearer guidance one way or the other? I think
that there are, and I will present and discuss one important kind of case. A good illustration of what I have in
mind is the Polya Conjecture (PC) example that I introduced right at the start of the paper. Recall that Polya
initially verified the claim – about the total number of prime factors of a number being even versus being
odd – for the first 1,500 natural numbers, before postulating that it might hold for all numbers. Polya (and,
subsequently, other mathematicians) then set about trying to prove PC. A standard way to frame this kind of
story is in terms of the distinction between “context of discovery” and “context of justification.” The checking
of the first 1,500 cases belongs to the discovery phase, while the search for a proof belongs to the justification
phase. And this allows Polya’s actions to be explained without attributing any justificatory force to enumerative
induction over the 1,500 positive instances.

But is this explanation actually adequate? How rational is it to devote time and energy to trying to prove
a conjecture if the enumerative induction carried out during the discovery phase provides no substantive
evidentiary support for it? Imagine that a mathematician is faced with two prima facie equally plausible
conjectures, C1 and C2. She has verified C1 for the first 1,000 natural numbers, but she has only verified C2 for
the first handful of numbers. If C1 and C2 are potentially on a par in all other respects (significance, relevance
to her other work, etc.), surely it makes rational sense for the mathematician to devote her energy to trying to
prove C1. James Franklin makes essentially this point in the context of defending non-deductive methods in
mathematics more generally:

Anyone can generate conjectures, but which ones are worth investigating? . . . Which might be
capable of proof by a method in the mathematician’s repertoire? . . . [T]o say that some answers
are better than others is to admit that some are . . . rationally better supported by the evidence.33

Interestingly, Polya himself has written about the role of induction in mathematics, and while he does not
mention the example of his own conjecture, PC, he does defend the view that enumerative induction can provide
substantive evidence for a general mathematical claim:

[H]aving verified the theorem in several particular cases, we gathered strong inductive evidence
for it. The inductive phase overcame our initial suspicion and gave us strong confidence in the
theorem. Without such confidence we would have scarcely found the courage to undertake the
proof which did not look at all like a routine job. “When you have satisfied yourself that the
theorem is true, you start proving it” – the traditional mathematics professor is quite right.34

31 These three examples are mentioned by D’Alessandro in his (2021).
32 Baker (2007, pp.69-70).
33 Franklin (1987, p.1).
34 Polya (1954, pp.83-4). See also Zeng (2022) for an interesting discussion of the contrast between Polya’s positive views about enumerative

induction in mathematics and the anti-inductivist views of Lakatos.
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In summary, a view that attributes positive (though not compelling) evidentiary value to enumerative induction
over tiny numbers seems to fit much more naturally with the above aspect of mathematical practice than does a
blanket inductive scepticism.

The philosophical debate here, however, is not just between inductivism and anti-inductivism. Part of the
thesis that I am defending is that the claim of positive bias for tiny numbers is a key factor in what allows
enumerative induction in mathematics to carry evidentiary weight. In other words, the pro-inductivist position
that I have been arguing for above is to be distinguished from more mainstream versions of inductivism that are
based on downplaying or dismissing size bias as a potential factor.

There is no standard terminology here, but prima facie there are six basic positions that one could adopt
concerning size bias and enumerative induction in arithmetic. One could take size bias to weaken enumerative
induction, to be neutral, or to strengthen enumerative induction. And one could combine this viewpoint with an
overall stance that either sees enumerative induction in arithmetic to be rationally justified or does not. Using
the terms “positive bias,” “neutral,” and “negative bias” for the first component, and “pro-inductivist” and
“anti-inductivist” for the second component, we can generate labels for all six positions. I don’t think that every
position has actually been defended in the philosophical literature, but three of them certainly have.

Negative Bias Pro-Inductivism is the closest to the mainstream position. This is the view that size bias
negatively affects the force of enumerative induction, but not to a degree that undermines induction carrying
significant evidentiary weight. Among defenders of this position, I include Walsh (2014), Waxman (2017),
D’Alessandro (2021). Negative Bias Anti-Inductivism is the view articulated and defended in Baker (2007),
according to which the inevitability of size bias undermines the legitimacy of enumerative induction for
arithmetic. And Positive Bias Pro-Inductivism is the position that I am defending in the current paper, according
to which size bias can positively affect the force of enumerative induction such that samples including the tiny
numbers can carry significant evidentiary weight.

Is there anything in mathematical practice that might help differentiate between the plausibility of the
two alternative versions of Pro-Inductivism mentioned above? One very widespread feature of the way that
mathematicians gather information about instances of a general conjecture is that they tend to try the smallest
numbers first. In itself this has no particular implications for the issue of size bias, because there are obvious
non-bias-related reasons for this pattern of practice. Typically, smaller numbers are easier to do calculations
on, so it makes sense to try these numbers first. Also, for many conjectures, the calculation of the n+1 case
requires that the n case be calculated first.35

Nonetheless, if Negative Bias Pro-Inductivism is true then any sample of smaller numbers is biased in a
way that negatively impacts the evidentiary force of that sample, because in sampling from just one very small
corner of the domain of natural numbers it is less representative than it could be. So if there were a relatively
easy way to diversify the size range of the sample, we would expect to see mathematicians doing this. For
example, it would be much better to randomly select one thousand numbers between 0 and 1,000,000 to sample,
in support of a general conjecture, rather than simply sampling the first one thousand numbers (i.e. the tiny
numbers). Yet we almost never see this happening, even when the relevant properties of the larger numbers are
easy enough to calculate.

Another way of putting the above point is that mathematicians do not try to counteract the size bias in
their sampling, even when doing so would be relatively straightforward. Indeed mathematicians actually seem
to act in ways that increase the size-bias effect, by always starting at the very beginning of the number line,
and by plodding through successive small numbers rather than randomly sampling larger numbers. As Baker
(2007) argues, the fact that a sample has some size bias is not something that can ever be overcome: any finite
sample will inevitably include only numbers that are “small” relative to the set of natural numbers as a whole.
Nonetheless, there are degrees of size bias, and if the size bias in question were in fact a weakening factor for
enumerative induction, we would expect straightforward measures that could be taken in order to overcome
it to be manifested in actual mathematical practice. The fact that we rarely see this is further evidence that
Positive Bias Pro-Inductivism is the more plausible of the two versions of pro-inductivist argument that we
have canvassed.

35 This is true of the Polya Conjecture, for example.
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8. Objections

In this section I briefly survey, and respond to, several objections that might be raised against the position
that I am arguing for. This position, which I have been calling Positive Bias Pro-Inductivism, maintains that
substantive inductive support can be provided for a general arithmetical conjecture through sampling the tiny
numbers (the natural numbers up to 1,000), and that this support stems crucially from the fact the tiny numbers
are a biased sample.

Objection 1: 1,000 positive instances is not very many. How plausible is it that such a small number of
instances yields substantive inductive support for a general mathematical conjecture?

It is important to re-emphasize that what I have been arguing for is that induction over the tiny numbers provides
some substantive positive evidence for a general conjecture, and not that it ever (on its own) provides compelling
evidence.36 How high should the bar be set for evidence to count as “substantive”? I don’t have a ready answer
to this question, but a couple of approaches come to mind. One could define the evidence to be substantive if it
leads mathematicians to the belief that the conjecture is more likely than not to be true. Or one could take a
more operational approach, and deem evidence to be substantive if it makes it rational for mathematicians to
pursue a proof of the given conjecture.

Objection 2: Cutting off the tiny numbers at 1,000 seems arbitrary. Why think that there is some significant
difference between numbers slightly smaller than 1,000 and numbers slightly larger than 1,000?

No privileged status is being claimed for the cut-off of 1,000 between tiny numbers and non-tiny numbers. The
thesis being defended is simply that enumerative induction over the tiny numbers is sufficient (other things
being equal) to provide substantive evidentiary support. Obviously if this basis is sufficient then so is a larger
basis that goes beyond 1,000 (for example, the basis of the first 1,500 numbers that Polya established in support
of his Conjecture). It also may well be the case that for many conjectures a smaller initial basis is also sufficient.
The cut-off point of 1,000 was chosen not because it has any specific, special features. The motivation was to
pick a cut-off that is large enough so that the tiny numbers clearly provide a sufficient basis for substantive
inductive support, and small enough that the bias claim (for tiny numbers being different from numbers at large)
still has intuitive force.37

Objection 3: The ‘positive bias’ thesis is based largely on the claim that the range of significant properties is
much greater among the tiny numbers than it is within comparably-sized stretches of non-tiny numbers. But
how can we rule out there being lots of more complex significant properties that we have failed to recognize
and which are well represented among the non-tiny numbers? In other words, perhaps the larger numbers just
look to us to be relatively impoverished with respect to significant properties.

This is an important objection, since the basic possibility that it raises seems hard to rule out. However, even if
we grant the assumption that we may be failing to recognize an array of significant mathematical properties
that are too complex for our limited minds to grasp, I think that it is still possible to defend Positive Bias
Pro-Inductivism. The reason is that the general conjectures that we – as human mathematicians – put forward
will of practical necessity feature significant mathematical properties that are graspable by us. Mathematicians
seek to prove theorems that are important, and the clearest way for a theorem to be important is through relating
significant mathematical properties. A property that is too complex for us to grasp will be unlikely to feature
in the theorems that we prove, and similarly for those properties that we can grasp but whose significance
escapes us. Thus, for the purposes of defending the core thesis of Positive Bias Pro-Inductivism, we can simply

36 Let alone that it provides knowledge, which we have already set aside as not being an issue that we are addressing here.
37 As mentioned in Section 4, one problem with my (2007) delineation of the “minute numbers” is that many minute numbers are so large that

it is difficult to discern systematic differences between minute numbers and non-minute numbers.
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relativize to the significant mathematical properties that are graspable by us. The general conjectures that we
formulate feature significant and graspable mathematical properties, and significant and graspable mathematical
properties occur across a much wider range among the tiny numbers than among the non-tiny numbers. In
other words, even if we do show a bias towards significant-to-us mathematical properties, this does not prevent
induction involving these properties from supporting important-to-us general conjectures.

One might worry that this line of response to Objection 3 introduces a problematic circularity into the defense
of enumerative induction. Are we not now making the relatively unsurprising claim that induction over the
tiny numbers supports important-to-us conjectures, where “important-to-us” is defined as involving properties
that are densest among the tiny numbers? I think that there are a couple of things that the defender of Positive
Bias Pro-Inductivism can say here. Firstly, “important-to-us” is not being defined in reference to the tiny
numbers. Rather an empirical claim is being made that the mathematical conjectures that we make tend to
involve significant properties that are densest among the tiny numbers. Secondly, as was mentioned in Section
6, we are thinking of significance for mathematical properties as a matter of degree. While it seems plausible
that there may be hitherto unrecognized significant properties that are well represented among the non-tiny
numbers, it seems much less plausible that many (or any) of these will be as highly significant as properties
such as being prime, being square, and being even, which feature in the conjectures that we have tested up to
this point.

Objection 4: There is never any such thing as “pure” enumerative induction in mathematics: when induction
is utilized, there are always other, conjecture-specific considerations that affect the degree of belief in the
general conjecture. Hence there are no compelling grounds, based on mathematical practice, for attributing
substantive evidentiary weight to enumerative induction.

Even if the factual claim is conceded, it is not clear why the ubiquitous presence of non-inductive considerations
should undermine the Positive Bias Pro-Inductivism position. On a Kuhn-style theory choice model, enumerative
induction is just one element among many that feeds into the overall non-deductive evidence for a given
conjecture. But if enumerative induction never provides any significant positive weight, it remains puzzling
why mathematicians devote time and energy to checking small instances of general conjectures. In other words,
the ‘no pure enumerative induction’ claim does not weaken the argument from mathematical practice that was
presented in Section 7 above.

Objection 5: The motivating example for the value of tiny numbers in lending inductive support for a
general conjecture was Polya’s Conjecture, and George Polya’s survey of the first 1,500 numbers. But Polya’s
Conjecture turns out to be false! Doesn’t this undermine the claim of inductive support in this case?

Before responding to the above objection, I will start with a brief overview of what transpired following Polya’s
original conjecture in 1919. In addition to the putative inductive evidence, there was also a heuristic argument
in favor of Polya’s Conjecture (PC). Recall that the claim is that, for every natural number, n, at least as many
numbers less than n have an odd number of prime factors as have an even number of prime factors. The heuristic
argument in favor of PC is as follows. All prime numbers have an odd number of prime factors, while composite
numbers seem prima facie equally likely to have either an even number of prime factors or an odd number of
prime factors. Hence we should expect numbers with an odd number of prime factors to predominate. On the
other hand, there were also theoretical considerations that spoke against the truth of PC. It was discovered fairly
early on that PC implies the Riemann Hypothesis. This fact was considered evidentially neutral,38 however PC
also implies linear dependence relations among the positive imaginary parts of the non-trivial zeroes of the
Riemann zeta function. This latter claim is considered unlikely to be true, and this cast doubt in turn on the
truth of PC.

38 Since the Riemann Hypothesis is generally considered to be true.
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This is how things stood until 1958, when Haselgrove not only proved that PC is false, but also that it fails
for some n < e832. Two years later the first specific counterexample to PC was found, by Lehman: PC fails for
n = 906,180,359. In 1980, Tanaka proved that 906,150,257 is the smallest number for which PC fails.

According to my main thesis, Polya was justified in looking for a proof of PC because he had surveyed the
first 1,500 numbers, thus including all of the tiny numbers as part of his sample. In this case, as we have seen,
PC was eventually proven to be false, but this in itself does nothing to undermine my claim. For it is perfectly
possible to accrue substantive inductive support for a general conjecture that turns out to be false.

9. Conclusions

I concede that the main thesis I am defending may seem counterintuitive. It certainly sounds odd to cite the bias
of our sampling methods as a crucial source of strength for enumerative induction in mathematics. However,
in other respects the thesis is fairly conservative. Firstly, only a comparatively modest level of support is
claimed for induction over the tiny numbers: they provide evidence that is significant rather than conclusive or
compelling. Secondly, even the modest level of support holds only ceteris paribus. When might other things
not be equal? Here are a couple of ways:

(i) Very few testable instances of the given general conjecture occur among the tiny numbers.

e.g. Consider perfect numbers, and the conjecture that all perfect numbers are even. There are only three
instances of perfect numbers among the tiny numbers (6, 28, and 496). So testing this conjecture just
on the tiny numbers does not accrue substantive inductive support.

(ii) There is some clear size-relative component to the given general conjecture that makes it more likely for
larger numbers to provide counterexamples.

e.g. Consider the claim that no number is expressible as the sum of two cubes in three different ways.
Plausibly, the larger the number the more different ways it is likely to be possible to express it (and
the more cubic numbers there are that are smaller than it). And, indeed, the first example of such a
number is 87,539,319, which is well beyond the range of the tiny numbers.39

In addition to cashing out the ceteris paribus condition, another way that the main thesis can be sharpened
is by getting clearer on what it is saying about necessary and sufficient conditions for enumerative induction in
the mathematical context to be effective. Thus far, all that I have claimed is that an inductive basis that includes
all of the tiny numbers is sufficient (absent any conjecture-specific contra-indications) to provide substantive
inductive support for a general conjecture. Is the inclusion of all of the tiny numbers also necessary for this
support to accrue?

In considering this question, it may be helpful to distinguish between two different features of the set of
tiny numbers. Firstly, the set includes an initial segment of the natural numbers. Secondly, the set includes one
thousand different potential instances. Once we separate out these two features, we can consider alternative
evidential bases that lack one but not the other. Compare, for example, the following two samples:

(A) A sample consisting of the natural numbers from 0 to 10.

(B) A sample consisting of the natural numbers from 11 to 1,000.

How much evidence for a generic general conjecture is provided by each of these samples? Intuitively, neither
the A-sample nor the B-sample provides sufficient evidence for reasonable confidence in the truth of a general
conjecture about the natural numbers. For the A-sample, there are simply too few positive instances to make a
reasonable inductive inference. All sorts of trivially false conjectures happen to hold for the first handful of

39 In a way, this case illustrates the converse of what I argued in (2007) for the Goldbach Conjecture case. For GC, according to my
2007 argument, there is zero support from ‘pure’ enumerative induction, but there are other considerations that strongly suggest that
counterexamples are more likely to occur among smaller cases rather than larger cases.
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numbers.40 What about the B-sample? This sample has almost as many instances as the entirety of the set
of tiny numbers, so it does fine with respect to the second feature mentioned above. However, the B-sample
excludes the first eleven numbers, and so it does not comprise an initial segment of the natural numbers. This
is a problem because of one of the key aspects of the tiny numbers, mentioned back in Section 6, namely the
high frequency of boundary cases.41 Excising the first eleven numbers from the tiny numbers yields a sample
that has drastically fewer boundary cases, because the first handful of numbers include boundary cases for a
multiplicity of significant properties.42

What does consideration of the A-sample and the B-sample tell us about necessary conditions for substantive
inductive support? There are unlikely to be sharp boundaries around what counts as a necessary, minimal
evidential basis, but what we can say is that any such basis needs to include a reasonable sequence of cases from
the very beginning of the natural number line (say at least the first ten numbers) and a reasonable proportion of
the tiny numbers (say at least a few hundred numbers).43 At the end of the day, I think that establishing the
sufficiency claim is more important, dialectically, than honing the necessity claim. The key question concerning
enumerative induction in mathematics is whether it ever provides substantive evidentiary support. The thesis
that the tiny numbers are sufficient to provide such support answers this question in the affirmative.
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Construction Theorems and Constructive Proofs in Geometry

John B. Burgess

Abstract: Given Tarski’s version of Euclidean straightedge and compass geometry, it is shown
how to express construction theorems, and shown that for any purely existential theorem there is a
construction theorem implying it. Some related results and open questions are then briefly described.

Keywords: Euclidean Geometry, Straightedge and compass, Construction problems, Existence
theorems

1. Introduction
I will be concerned with comparing and contrasting three types of mathematical assertions, illustrated by these:

(1) Existence claim:
There exists a regular heptadecagon.

(2) Constructibility claim:
It is possible to construct a regular heptadecagon.

(3) Construction claim: It is possible to construct a regular heptadecagon in the following way . . .

where the ellipsis in the last item would be completed with the specification of Gauss’s construction or some
other (as in Weisstein, 2021).

The kind of constructions meant here are those familiar from the early books of Euclid’s Elements,
traditionally called straightedge and compass constructions. What would have to be meant are an unmarked
straightedge, not usable as a ruler, and a collapsing compass, not usable as dividers, since a ruler or dividers
would make it a trivial matter to transfer a length, while Euclid takes doing so to require the sort of substantive
material one finds in his Proposition 2. Actually, what Euclid assumes is that a line can be drawn through two
points A and B in the plane (in two steps, first joining the points to form the segment AB as provided for by
Postulate 1, then extending the segment indefinitely in a straight line at either end, as provided for by Postulate
2), and also that a circle can be drawn of given center and given radius (as per Postulate 3). And he does not
specify any method or tools for doing such things; in particular, he does not mention the use of straightedge
and compass. Let us nonetheless for convenience retain the traditional label for the class of constructions in
question.1

John Burgess, Princeton University, USA

Journal for the Philosophy of Mathematics, Vol. 1, 23-41, 2024 | ISSN 3035-1863 | DOI: 10.36253/jpm-2932

©2024 The Author(s). This is an open access, peer-reviewed article published by Firenze University Press (www.fupress.com) and distributed
under the terms of the CC BY 4.0 License for content and CC0 1.0 Universal for metadata.
Data Availability Statement: All relevant data are within the paper and its Supporting Information files.
Competing Interests: The Author(s) declare(s) no conflict of interest.

Firenze University Press | https://riviste.fupress.net/index.php/jpm

1 But it may be not inappropriate to recall parenthetically that there are other ways to draw lines and circles, some antedating the oldest
surviving examples of compasses, which come from Roman times. Proclus describes geometry as arising out of the practice of Egyptian
surveyors, with which Euclid as a resident of Alexandria might be expected to have been familiar. These surveyors were called “rope
stretchers” and are depicted in wall paintings as carrying a long rope, which stretched taut can be used to trace a straight line on the ground.
It is no coincidence that our word “straight” is etymologically linked to “stretched’ and that “line,” which is still the nautical term for
“rope,” is etymologically linked to “linen,” flax being one of the materials out of which ropes were produced. A method something like
this, involving a taut cord tied at both ends to stakes, which I learned as a child from my grandfather, a landscaper, is still used today in
gardening, and a web search on the key words “garden” and “straight line” will turn up several videos giving a demonstration. A taut string
could be used to draw a straight line on paper or papyrus or parchment in an analogous way. A string can also be used to draw a circle. It
can even be used to draw an ellipse, though Euclid makes no provision in the Elements for ellipses and other conic sections.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode


John B. Burgess

Many propositions of Book I, beginning with the very first, are “problems,” whose solutions end with
words amounting to “which was to be done” or QEF, in contrast to “theorems,” whose demonstrations end with
“which was to be shown” or QED. Both kinds of propositions have in Euclid a very stylized form of exposition,
according an analysis of Proclus (see Netz 1999) consisting of the same sequence of a half-dozen parts: protasis,
ekthesis, diorismos, kataskeve, apodeixis, symperasma. In a problem, the kataskeve does what is to be done,
and the apodeixis shows that it has successfully done it. In a theorem, the kataskeve introduces auxiliary points,
lines, circles, or whatever, and the apodeixis uses them to show what was to be shown. The term “construction”
gets used in two ways in discussing these matters, first as a term for problems as opposed to theorems, second
as a translation of kataskeve.

Philosophers of mathematics have often contrasted the ancient style of axiomatic geometry represented
by Euclid with the modern style represented by David Hilbert (1902). Paul Bernays (1964, p. 275) explicitly
draws the contrast as one between statements of type (2) and statements of type (1):

Euclid postulates: One can join two points by a straight line; Hilbert states the axiom: Given any
two points, there exists a straight line on which both are situated.

Thomas Heath, however, in his classic translation (1968), renders Euclid’s formulations as infinitival
phrases (“to join two points. . . ”) rather than complete sentences (“one can join two points. . . ”) of type (2).
But probably it would not matter much to Bernays if his formulation of Euclid had to be confessed to be not
quite accurate, since a closer look at the context shows that Bernays is much less concerned with differences
between Hilbert and Euclid (who indeed is mentioned only briefly very near the beginning of the paper) than
with differences between Hilbert and twentieth-century “constructivists.”

Chief among these was L.E.J. Brouwer, the founder of mathematical intuitionism and Hilbert’s main
adversary in the Grundlagenstreit or foundational dispute of the years between the world wars, which was just
beginning to wind down in 1934 when Bernays produced the original French version of the paper just quoted.
And Euclid and Brouwer differ from Hilbert in different ways.

2. Two Kinds of Constructivity in Geometry

Where Hilbert would have existence theorems, Euclid would have construction problems, while Brouwer would
still want existence theorems, but would impose a requirement rejected by Hilbert, that a proof of a theorem
to the effect that there exists a mathematical object satisfying a given condition not be accepted unless it is
“constructive” in the sense that there is implicit in it a method of specifying a particular example of such an
object (as for instance Euclid’s proof in the Elements, Book IX, Proposition 20 that for any given number n
of primes there is a further prime, has implicit in it the method for finding such an additional prime, namely,
taking the product of the given primes, adding one to obtain a number m, and checking all numbers up through
m until a prime dividing m is found.)

Brouwer identified mathematical existence with the possibility of being constructed (or in his more extreme
formulations, with the actuality of having been constructed). But in this Brouwer avows influence not from
Euclid but from Kant’s view that mathematical proof involves “constructions in intuition” (or as Brouwerians
sometimes put it, “mental mathematical construction”), though the Kantian view itself was clearly influenced
by the role of construction in ancient mathematics, so there would be a Euclidean influence on Brouwer after
all, at least at one remove.

Their requirement of constructivity in proofs makes it impossible for intuitionists to accept the classical
logical laws of the excluded middle, p↗¬p, or equivalently the law of double negation ¬¬p ↘ p, as used in
proofs by contradiction or reductio ad absurdum. Brouwer’s disciple Arend Heyting presented a formal version
of the principles intuitionists do accept, and these two are conspicuously absent, and have to be, because using
them one can easily produce existence proofs where no specific example of the sort of thing claimed to exist is
provided even implicitly.

What is perhaps the simplest case of this phenomenon is shown in the classical proof, intuitionistically
unacceptable, of the following:
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(4) ≃x⇐y(∀(y)↘ ∀(x))

“There is something that ∀s if anything does.” For excluded middle tells us that either there exists something
that ∀s or there doesn’t. If there does, any such thing may be taken for x in (4), and the conditional will be true
because its consequent is true. If there does not, then any x at all may be used in (4), and the conditional will be
true because its antecedent is false. This clearly does not give us a specific example of an x of the kind asserted
to exist by (4), unless we already either know an example of something that ∀s or know that there isn’t any.

It would be anachronistic to say that Euclid reasons by “classical” logic in the sense of the logic expounded
in orthodox present-day textbooks, but he certainly does not conform to the constructivist restrictions of
intuitionistic logic. Notoriously he uses passim the method of proof by reductio (see for instance Book I,
Proposition 29). And according to the early modern commentator Christoph Schlüssel, he uses the equally
intuitionistically unnacceptable law (¬p ↘ p)↘ p, sometimes called the consequentia mirabilis, but dubbed
by Jan !ukasiewicz the law of Clavius (“Clavius” being Schlüssel’s Latinization of his Germanic family name,
which like the Latin clavis means key) and perhaps better known under that label. So we must distinguish
Euclid’s emphasis on construction problems from Brouwer’s insistence on constructive proofs, though the full
significance of the difference between the two will only gradually become clearer in what follows.

It appears to have been Bernays’ paper that first introduced something like the (historically dubious) use of
“platonism” current in philosophy of mathematics during the last half-century or more, during which period
there has been a vigorous debate between so-called platonists and so-called nominalists over the existence
of abstract entities, and specifically mathematical objects such as numbers or sets. Allusions to Euclidean
constructions have played an occasional role in this debate.

Notably, Charles Chihara (1973), one of the earliest of a group of writers who have attempted to reconstruct
or reconstrue mathematics nominalistically, pursues the following sort of strategy. First, statements about
mathematical objects such as numbers are replaced by statements about linguistic expressions, mathematical
notations such as numerals. Second, assertions of the actual existence of linguistic expressions as abstract types
are replaced by assertions of the possible existence of linguistic expressions as concrete tokens. Third, the
modal notion of “possible existence” in this context, which some have criticized as unacceptably “metaphysical,”
is explained as potential physical “constructibility,” which Chihara claims is a notion that should be familiar
from ancient mathematics and considered philosophically respectable.

And in this last connection he quotes with approval an expression of a similar sentiment from his colleague
Ernest Adams (1973, p. 406), who alludes to Euclid thus:

Euclidean geometry cannot be criticized for lack of rigor simply on the grounds of its modal
formulation, whatever other faults it may have in this respect, since the logical laws to which the
constructibility quantifier conforms are quite clear.

It is clear enough, though, from the writings of the contemporary and recent philosophical thinkers
mentioned so far—Adams, Bernays, Brouwer, Chihara, Heyting, and the list could be extended—that even
if all are inspired in some way and to some degree by Euclid’s Elements, none is primarily concerned with
arguing over the correct interpretation of that ancient text. But apart from appropriations for other philosophical
purposes, the correct interpretation of Euclid on construction has been a topic of interest for its own sake, and a
subject of discussion among scholars of ancient Greek philosophy and historians of ancient Greek mathematics.

Recently Silvia De Toffoli and I conducted a joint graduate seminar on mathematical rigor in theory and
practice, and among our guest speakers we were fortunate enough to have Benjamin Morison, who gave an
account of his work with Jonathan Beere (unpublished manuscript) in precisely this area. The present note is a
kind of scholium to the Beere-Morison paper, describing some relevant logical facts about formalized systems
of geometry, in a way that I hope will be readable by and informative to students of classical philosophy and
ancient mathematics who have a modicum of knowledge of modern logic but are not specialists.

The main thesis of the joint authors concerns the purpose of construction problems. (They also offer the
opinion that the infinitival phrases “to do this or that” should be taken to have a kind of imperatival or jussive
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force; but philological issues are beyond me.) Their view is that, just as theorems and their proofs aim to
impart an especially solid kind of knowledge-that something is the case, episteme or scientia, so construction
problems and their solutions aim to impart an especially solid kind of knowledge-how to do something. It is
when one tries to express this knowledge-how as a kind of knowledge-that that one may arrive at something
like a construction theorem of type (3), as contrasted with a constructibility claim of type (2).

Constructibility claims may still play a role, though a limited one, for those whose primary interest is in
construction claims. How is perhaps best brought out by comparison with the views of finitists on arithmetic.
For finitists, existence statements in number theory of the type “condition ∀(n) holds for some natural number
n” are not really meaningful or inhaltich. Nonetheless, finitists allow that such a form of words may be used
as a partial communication of meaningful results of the type “condition ∀(n) holds for the following natural
number n. . . ” where would follow the specification of a relevant n. In the same way, something like (2) may be
admitted as a partial communication of something like (3).

As Beere and Morison make clear, though existence and constructibility assumptions or assertions are
not entirely absent from the Elements, they are rare. By contrast, construction problems are ubiquitous in the
geometrical books, which famously culminate in Book XIII with the construction of the regular polyhedra
or Platonic solids. The situation is different in present-day mainstream mathematics. There questions of
existence are prior, and it is only when one is answered in the affirmative that a question of constructibility
then arises, or rather a variety of them for various kinds of constructibility (of which straightedge and compass
constructibility in plane geometry is only the best known). Similarly with numerical functions: Existence
comes first, computability in this or that sense (say recursive or primitive recursive or polynomial-time) being a
distinct and subsequent issue or series of issues.

Moreover, though modal idioms such as “it is possible to. . . ” or “one can. . . ” or -ible and -able suffixes
do occur all over present-day mathematics, including the present note, in formal contexts such locutions get
explained away in terms of existence statements, rather than the other way around. Thus constructibility
and computability are defined in terms of the existence of programs for constructing or computing. This
circumstance would affect the understanding of (2) and (3), turning them into “There is a program for doing
such-and-such,” and “The following is a program for doing such-and-such. . . ,” or something of the sort.

3. Tarskian Rigor

But the most important difference of present-day from ancient mathematics is that mathematicians now hold
themselves to a higher standard of rigor. They have done so since the later nineteenth century when Frege
opened the body of his epochal Grundlagen der Arithmetik with the following much-cited remark, which I
quote in the English translation of J. L. Austin (see Frege, 1953, p.1):

After deserting for a time the old Euclidean standards of rigor, mathematics is now returnng to
them, and even making efforts to go beyond them.

For Euclid is indeed not the ultimate or last word on rigor, and there are notoriously what from our modern
standpoint must be regarded as lapses rigor in the Elements (as seems to be conceded, somewhat grudgingly
perhaps, by Adams in the passage quoted by Chihara), many of which were being repaired by contemporaries
of Frege.

Hilbert’s standard is that each theorem must follow logically from postulates stated in advance, where this
means that logical form alone, regardless of subject matter or content, guarantees that if the postulates are true,
then so is the theorem. Such is the meaning of the much-quoted statement attributed to Hilbert by his oldest
graduate student in a biographical sketch at the end of the third and last volume of Hilbert’s collected papers:
One must at all times in place of “points, lines, planes” be able to say “tables, chairs, beermugs” (man muß
jederzeit an Stelle „Punkte, Gerade, Ebene“ „Tische, Stühle, Bierseidel“ sagen können, Blumenthal 1935,
p.403). Despite the great heuristic and pedagogical value of inspection of geometrical diagrams and deployment
of visual intuition, Hilbert’s standards rule out any appeal to such things in proofs, and not just because pictures

26



Construction Theorems and Constructive Proofs in Geometry

can sometimes be misleading (as in the “proofs” that every triangle is isosceles and some obtuse angles are
right in Collingwood, 1899, pp. 900-902).

Euclid’s practice does not always conform to these restrictions of Hilbert’s. Most notoriously, Euclid lists
the primitive constructions and assertions he is supposing to be allowed in Postulates 1-5, but then it seems
immediately assumes another without explicit statement or acknowledgment in Proposition 1. This, it will
be recalled, is the problem, given a segment AB, to construct an equilateral triangle ABC having it as a side.
Euclid considers two circles with radius AB, the one with center at A and the one with center at B, whose
construction is provided for by Postulate 3. But in subsequent reference to these circles he speaks of each
not as the circle with such-and-such center and radius, but rather by mentioning three points on it. Now for
any three non-collinear points there is indeed a unique circle passing through them, but Euclid does not deal
with such matters until Book IV, so he may seem to be getting ahead of himself in Book I. Beere and Morison
allude to this sort of thing as an illustration of the gap between existence and construction: by definition, every
circle has a center, but to find the center when the circle is presented by naming three points is another matter.
Crucially, by labeling his two circles “the circle BCD” and “the circle ACE” Euclid insinuates, without any
logical justification on the basis of his announced postulates, that the two circles have a point C in common. In
modern treatments this can be proved using a circle axiom to be stated shortly, but Euclid acknowledges no
need for any such thing among his postulates.2

Besides the difficulty under discussion, which occurs not only in Proposition 1 but well beyond it, there are
similar lapses involving the intersection of a line and a triangle, which by modern standards necessitate another
missing axiom, introduced by Moritz Pasch in 1882. As the remark of Bernays hints, it was in the process
of rigorization, filling in such gaps in Euclid’s arguments as was done by Pasch and other nineteenth century
figures culminating in Hilbert, that the explaining away of modal locutions in terms of existence statements
occurred.

Euclidean straightedge and compass plane geometry was given its final rigorous form only in the twentieth
century, by Alfred Tarski and coworkers, in a formal theory here to be called G0. (It is called CG(2) in the
authoritative survey of Tarski and Givant, 1999, p. 191.) The austere formalism of G0 is to begin with a
first-order theory, one whose logical notions comprise those of standard classical logic as in present-day
textbooks and those only, without any “higher-order” apparatus as in Hilbert, let alone intuitionist logical
operators as in Brouwer and Heyting, or modalized quantifiers as in Chihara or Adams.

Moreover, the variables of the language are to be thought of as ranging only over points of the plane: there
are no variables for lines or circles, for instance. And there are only two primitive predicates or relations
symbols for two geometric relations:

(5a) Bxyz or betweenness: x, y, z lie in a line, with y between x and z

(5b) Cwxyz or congruence: w lies as far from x as y lies from z

(Here betweenness is to be understood inclusively, so Bxxz and Bxzz always hold, and identity of points x = y is
definable as Bxyx.)

Nonetheless, because any pair of distinct points may be regarded as coding a line (the one passing through
both points) and a circle (the one having as center the first point and passing through the second point), one
can express indirectly through coding the basic geometry of lines, circles, as well as many kinds of composite

2 Is Euclid’s practice in Proposition 1 a lapse not merely from the standards of Hilbert, but also a lapse from the standards of Euclid himself
(of which we unfortunately have no quotable capsule formulation comparable to Hilbert on beermugs)? The existence of the needed point
of intersection seems evident from the diagram if not from the text of Proposition 1, but leaving something that cannot be deduced from the
text of a proof to be inferred from an accompanying diagram is not permitted by Hilbertian standards. What about Euclidean standards? For
present purposes we may set aside this question, and more generally the whole contentious issue of the role of diagrams in ancient Greek
mathematics, where they certainly play a much larger role than in Hilbert’s work (with as an extreme case Euclid seemingly feeling obliged
to attach a diagram to each proposition even in his arithmetical books, where they appear hardly more than doodles in the margin). A great
deal discussion of considerable interest (see in particular Netz, 1998) has been written about Euclidean diagrams, but this discussion is not
of direct relevance to the concerns of the present note. What we must acknowledge here is that if “Euclidean standards of rigor” do permit
the sort of steps Euclid takes in Proposition 1, then Hilbert’s standards do not only, as Frege’s remark on Euclidean standards suggests, “go
beyond them,” but go a very substantial distance indeed beyond them.
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figures. (Propositions about areas, including the Pythagorean theorem, admittedly present further challenges.)
In particular, G0 has a circle axiom to the effect that if a line has both a point inside a given circle (of distance
from the center less than the radius) and a point outside that circle (of distance from the center greater than the
radius), it will have a point on the circle.

(Ellipses, too, can be coded, not by pairs but by triples of points, the two foci plus any point on the
circumference. But in G0 there is no ellipse axiom comparable to the circle axiom, and arguments assuming
the existence of intersections of conic sections could not have been carried out on the basis of Euclid’s
postulates—not that Euclid wished to go into such matters.)

Returning to (1)-(3), because there is no modal apparatus in the language of G0, (2) cannot be expressed if
the modal locutions are understood literally or primitively, in terms of a possibility operator ↭. And if (2) is
explained in terms of the existence of a program, it still cannot be expressed—not directly, since the variables
do not range over programs; nor yet indirectly, since programs cannot be coded by pairs of points, as can lines
and circles, or by configurations of any other fixed finite number of points.

But two more positive remarks can be made. There is a slight modification or small adjustment G of G0 of
which the following may be said:

(A) By adding to the language of G symbols for certain functions definable in G, corresponding to the familiar
operations of finding the intersections of lines and circles, one can obtain a notation for straightedge and
compass construction programs permitting the systematic expression of assertions of type (3).

(B) It can then be shown that, for any purely existential assertion of type (1) provable in G, there is a
construction assertion of type (3) that implies the given existenstial assertion and is provable in G taken
together with the definitions of the new symbols

In the next two sections I will first sketch the construction justifying (A), then outline the proof justifying (B).

These results should not be surprising. On the contrary, they are just what one might expect (in both the
factive and the normative sense) of a formalism in modern language that aspires to embody so far as possible
the spirit of Euclid’s construction-oriented geometry. But the departures from the ipsissima verba of ancient
formulations needed to secure a level of rigor up to modern standards are numerous enough and large enough
that (A) and (B) are not obvious without proof, either. Their proof is, so to speak, a check on the fidelity of
Tarski and his school to something like the Euclidean point of view.

Before proceeding further let me indicate the “slight modification or small adjustment” needed in the formal
geometry under consideration. For G0 as thus far described conspicuously fails to satisfy the most basic kind of
“constructivist” requirement that every proof of the existence of a configuration of points with a certain feature
has to have at least implicit in it a specification of a particular example of such a configuration.

The most trivial existential theorem is simply that there exists a point that is self-identical, or more simply
still, that there exists a point. But it is not possible to specify any particular point using only the betweenness
and congruence relations. This can be seen by looking at the most familiar model of G0, the Cartesian plane
as studied in middle school. The points of the plane are pairs (a,a⇒) of real numbers, and betweenness and
congruence are defined by the usual formulas. Thus if x = (a,a⇒), y = (b,b⇒), z = (c,c⇒), u = (d,d⇒), v = (e,e⇒),
then

(6a) Bxyz holds if and only if

a ⇑ b ⇑ c or c ⇑ b ⇑ a and

(b↓a) · (c⇒ ↓a⇒) = (b⇒ ↓a⇒) · (c↓a)

(6b) Cxyuv holds if and only if

(b↓a)2 +(b⇒ ↓a⇒)2 = (e↓d)2 +(e⇒ ↓d⇒)2
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In this plane any condition ∀ satisfied by any one point x will equally be satisfied by any other point x⇒,
so that the condition cannot be used to pick out a distinguished point. This is because there is a translation
carrying x⇒ to x, and translation preserves relations of betweenness and congruence, in terms of which ∀ would
be stated.

If we add a constant a to denote some specific, privileged or destinguished point a, the “constructivist”
condition will still fail to hold. For it will be a trivial theorem that there exists some point y other than a, while
again it is not possible to specify any particular example. This is because, given any point y distinct from a and
any other such point y⇒ there will be a rotation around a, keeping a fixed, that will carry y⇒, if not yet to y itself,
then at least to some other point y⇒⇒ lying on the line ay on the same side of a as y. And then there will then be a
dilatation (uniform expansion or contraction) leaving a fixed and carrying y⇒⇒ to y. And rotation and dilatation,
just like translation, preserve betweenness and congruence relations.

If we add a constant b to denote some specific, privileged or distinguished point b other than a, then there
will be infinitely many points of the plane that can be uniquely specified in terms of the two distinguished
points a and b. One of these will be the midpoint of the segment ab, characterizable as being between a and b
and at the same distance from either. But all the specifiable points will, like this example, be on the line ab.
And it is, of course, a theorem of plane geometry that the plane is more than one-dimensional, and so contains
a point z not collinear with a and b. But for any such point z there is another such point z⇒, though only one,
satisfying all the same conditions involving betweenness, congruence, and the two distinguished point a and b,
namely, the mirror image of z on the opposite side of ab. For there will be a transformation, namely, reflection
in the line ab, leaving a and b fixed, that will carry z⇒ to z, and reflections as much as translations, rotations, and
dilatations preserve betweenness and congruence.

But if we add a constant c to denote some specific point c not on the line ab, then it is a theorem of plane
geometry that the plane is less than three-dimensional, and there will be no two points z and z⇒ satisfying all the
same conditions involving betweeness and congruence and the three distinguished points; in particular there
will be no two points simultaneously equidistant from a and from b and from c. From any pair of points z, z⇒

we may therefore always specify one as what may be called proximal and the other distal relative to the three
distinguished points a,b,c:

Namely, if the two points are at different distances from first point a, then the one nearer to a should be
designated the proximal one. If the two points are equidistant from a but of different distances from the second
point b, then the one nearer to b should be designated the proximal one. If the two points are equidistant both
from a and from b, then they cannot be equidistant also from the third point c, and the one nearer to c should be
designated the proximal one.

In what follows it will be convenient to pick as the point c one of the two points of intersection of the circle
with center a passing through b and the line through a perpendicular to the line ab, thus obtaining what in the
terminology of Burgess (1982) would be called a system of benchmarks a,b,c. In connection with such as
system the point a may suggestively be termed the origin, and the lines ab and ac the horizontal and vertical
axes, and b and c the unit points on those axes.

Now it is a completely general fact about first order theories that if we start with such a theory T in a
language L in which can be proved ≃x∀(x) for some condition expressed by a formula ∀ of L, and if we then
add a new constant d to L and the new axiom ∀(d) to T, the result T’ will be what is called a conservative
extension of T, meaning that anything statable in L (without the new constant) and provable in T’ (with the new
axiom) will be already provable in T (without the new axiom). (This is an immediate consequence of the rule
of existential elimination found in textbook natural-deduction formulations of first order logic.) Further, by
first-order logic, when any conclusion #(d) is provable in T’ the following will be a theorem of T:

(7) ⇐x(∀(x)↘ #(x))

Similar results hold when adding two, three, or more constants. In particular, if we let G be the extension
of G0 obtained by adding the constants a,b,c and the axiom that the points they denote form a system of
benchmarks, then the extension will be conservative, and to that extent harmless. (For it is a theorem of G0
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there do exist systems of benchmarks, and indeed that for any two distinct points there exists a system of
benchmarks of which the given points are the first two. Indeed, there exist exactly two such systems.) This
technical adjustment will remove the three rather trivial failures of “constructivism” mentioned above. (A) and
(B) should henceforth be understood as applying to this conservative extension G of G0, and the terms proximal
and distal henceforth understood relative to the benchmarks denoted by the three new constants.

4. To Express a Construction Theorem

Where we have only points, as in Tarskian formulations, a straightedge and compass construction must be
viewed as involving marking new points given previously marked points. (Constructing a line or circle will be a
matter of constructing a pair of points coding one.) There are three basic kinds of steps:

(8a) to mark the intersection of the lines coded by x, y and by u, v

(8b) to mark the intersections of the line and circle coded by x, y and u, v

(8c) to mark the intersections of the circles coded by x, y and by u, v

Let now L be a first-order language and T a theory in L and ∃ a formula of L for which it is a theorem of T
that for any xs there exists a unique y such that ∃ holds of the xs and y, or in symbols, the following:

(9) ⇐x1⇐x2 . . .⇐xn≃!y∃(x1,x2, . . . ,xn,y)

Then one can add an operator or function symbol ! representing the function that, given any xs as input,
gives their y as output. In this situation ∃ is called the defining formula of ! , the relation expressed by
∃(x1,x2, . . . ,xn,y) is called the graph relation of ! , while the defining axiom for ! , to be added to T when !
is added to L, is the following:

(10) ⇐x1⇐x2 . . .⇐xn∃(x1,x2, . . . ,xn,!(x1,x2, . . . ,xn))

Because the symbol ! is definable, every formula containing it will have a formula in the original language L
without the new function symbol that can be proved equivalent to it given T plus the defining axiom.

All this is true quite generally, for arithmetic, for geometry, for anything. In the specific context of geometry,
we will want to add in this way to the language L of G function symbols corresponding to the basic construction
steps (8abc). For this we must first indicate or recall how various auxiliary notions are expressible in the
language of G. Here are a few basic ones:

(11a) |xyz or collinearity:

“x,y,z lie on a line” or

“y lies on the line coded by x, z”:

Bzxy↗Bxzy↗Bxyz

(11b) ⇓ xyz or equidistance:

“y lie at the same distance that z does from x” or

“y lies on the circle coded by x,z”:

x ↔= y & Cxyxz

(11c) ↫ xyz or equilaterality:

“x, y, z are the vertices of an equilateral triangle”:
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¬|xyz & Cxyyz & Cxzyz

(11d) ⇔xyz or perpendicularity:

“the angle yxz is right”:

¬|xyz & ≃w(Bwxy & Cxwxy & Czwzy) or equivalently

¬|xyz & ⇐w(Bwxy & Cxwxy ↘ Czwzy)

(11e) ↖xyz or benchmarking:

“x, y, z form a system of benchmarks”

Cxyxz & ⇔xyz

(11f) < xyz or nearness:

“y lies less far than z does from x”:

≃w(w ↔= z & Bzwx & Cxyxw) or equivalently

⇐w(Bwzx ↘ ¬Cxyxw)

(11g) ↙tuvxy or proximality:

“t, u, v constitute a system of benchmarks and

of the two points x and y, the former is proximal

and the latter distal relative to them”:

↖tuv & [< xyt or (Cxtyt & < xyu) or (Cxtyt & Cxuyx & < xyv)]

In G, where have distinguished a system of benchmarks denoted a, b, c, we may write simply ↙xy for ↙abcxy.
The list (11) could be indefinitely extended.

We next define five seven-place functions, one of them, ∀ , related to constructions steps of kind (8a), two
of them, # and # ’, related to construction steps of kind (8b), and two of them, ∃ and ∃’, related to construction
steps of kind (8c). The benchmarks will play three roles in what follows.

First, constructions must begin with some data, as Euclid’s Proposition 1 starts with there being given a line
segment, or equivalently the two distinct points, its endpoints. The benchmarks will serve the starting points for
all the constructions with which we will be concerned.

Second, before we can introduce a symbol ! for a function in the manner discussed in connection with (9)
and (10), the function must be total, or defined for all inputs, even in waste cases where we do not care what
the output is; and we may conventionally take the first benchmark as the waste-case output. For geometric
constructions the definition of waste case for a function

% (t,u,v,w,x,y,z)

where % is any of ∀ , # , ∃ , # ’, ∃’ will be a disjunction four clauses, the first three the same for all of (8abc):

(12a) t,u,v are not a system of benchmarks

(12b) w = x, meaning that the pair w,x fails to code a line or circle

(12c) y = z, meaning that the pair y,z fails to code a line or circle

The last clause will be different for each of the three basic construction steps, thus:
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(13a) the lines coded by x,y and u,v do not intersect in a point

(they coincide or are parallel)

(13b) the line coded by x, y does not intersect the circle coded by u, v in two points

(the former is disjoint from or tangent to the latter)

(13c) the circles coded by x, y and u, v do not intersect in two points

(they coincide or are disjoint or are tangent)

In any waste case we will set the value of function % to be t.

Third, when we need to mark a point of intersection of a line or another circle with a given circle, we have
two equally good options that are mirror images of each other, so to speak. Euclid’s instructions for producing
an equilateral triangle on a given base, as we find them implicit in his Proposition 1, do not tell us how to
choose, and this may be said for many others of his construction problems as well: Buridan’s ass would be
unable to complete the construction given only Euclid’s instructions. With benchmarks in the background we
can agree that when we are faced with a choice between two points, we should always take the proximal one of
that pair.

We can now write down the definitions of symbols for the functions connected with constructions (writing
as usual in mathematics “iff” for “if and only if”).

(14a) ∀(t,u,v,w,x,y,z) = s iff we are in a waste case and s = t or s is the point of intersection of the lines
coded by w,x and by y,z

(14b) # (t,u,v,w,x,y,z) = s iff we are in a waste case and s = t or s is the proximal point of intersection of
the line and circle coded by w,x and by y,z

(14c) ∃(t,u,v,w,x,y,z) = s iff we are in a waste case and s = t or s is the proximal point of intersection of
the circles coded by w,x and by y,z

(14d) # ’ like # but for distal

(14e) ∃’ like ∃ but for distal

Here in (14bcde) proximal and distal are to be understood relative to the benchmarks t,u,v.

Three trivial three-place functions as follows will also be wanted:

(15a) i(t,u,v) = t (15b) j(t,u,v) = u (15c) k(t,u,v) = v

Applied to a system of benchmarks these pick out, respectively, the origin and horizontal and vertical unit
points.

One further abbreviation will make for conciseness: Let § f g1 . . .gn denote the m-place function obtained
by substituting n given m-place functions in the n-place function f , thus:

(16) § f g1 . . .gn(x1, . . . ,xm) = f (g1(x1, . . . ,xm), . . . ,gn(x1, . . . ,xm))

Then a program for constructing a configuration of k points (starting from given benchmarks) can be represented
as a k-tuple of complexes of the above-mentioned nine symbols ∀ ,# ,∃ ,# ’,∃’,i,j,k and §.

To apply this apparatus to Euclid’s Book I, Proposition 1, we will want a complex & provably satisfying
the following:
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(17) ↫ (i(a,b,c),j(a,b,c),&(a,b,c))

Here i and j applied to our system of benchmarks will simply give us the first two of them, thus determining a
line segment such as is given at the outset in Euclid’s construction. The crucial & applied to our benchmarks
should yield the proximal point of intersection of two circles, the radius of each being the distance between the
first two benchmarks, and the centers of the two being the first and the second benchmark. This amounts to ∃
(a, b, c, a, b, b, a), which amounts to the composition of the seven-place function ∃ with the seven three-place
functions i, j, k, i, j, j, i.

Hence the program for the construction of the vertices of an equilateral triangle, given benchmarks a,b,c
can be represented by a trio of symbol complexes ∋,(,& as follows:

(18) ∋ = i ( = j & = §∃abcabba

And the existence theorem that there is an equilateral triangle, namely,

(19) ≃x≃y≃z ↫ (x,y,z)

is implied by the following restatement of (17):

(20) ↫ (∋(a,b,c),((a,b,c),&(a,b,c))

Leaving the benchmarks to be understood we may write this as ↫ (∋,(,&) for short. And what has just been
said about the equilateral triangle applies equally to the regular heptadecagon, substituting Gauss’s construction
for Euclid’s. Behind a formalized version of (1) in the style of (19) there stands a formalized version of (3) in
the style of (20).

More generally, for any condition expressible in a formula ∀, a statement of type (3), to the effect that an
explicitly specified program would produce a configuration of points x1,x2,x3, . . . satisfying ∀, can be taken to
be a formula of the form

(21) ∀(∋1,∋2,∋3, . . .)

wherein ∋1,∋2,∋3, . . . are symbol complexes of our notation for representing programs, indicating how points
x1,x2,x3, . . . are to be constructed from the benchmarks, applying specified cases of (8abc) in a specified order.

In sum, while a constructibility assertion of type (2), to the effect that there exists a program that would
produce a given kind of configuration, has to be expressed in the “metalanguage,” as the statement that there
exist ∋s for which (21) is a theorem, by contrast we have produced (or at least sketched, relying on results of
Tarski and his school) a way, namely (21) itself, of expressing in the “object language” a construction assertion
of type (3), QEF.

5. There Is a Construction Theorem for Any Pure Existence Theorem

A purely existential formula (respectively, purely universal formula) is one that, when it is written out in
primitive notation, with all defined symbols replaced by their definitions, consists of a string of existential
quantifiers ≃ (respectively, universal quantifiers ⇐) in front of a quantifier-free formula. (A bit confusingly,
formulations of a theory that have only purely universal formulas as axioms are conventionally called quantifier-
free formulations. This is because of the custom of omitting the initial universal quantifiers when a purely
universal axiom is stated, leaving them to be tacitly understood. Thus for instance in arithmetic the commutative
law for addition is expressed as

x+ y = y+ x

where what is really meant is the universal closure of this formula, namely
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⇐x⇐y(x+ y = y+ x).

In effect, assertion of the version without the initial string of universal quantifiers is taken to be tantamount to
assertion of the version with them.)

A formula provably equivalent in G to a formula that is purely existential (respectively, purely universal) is
said to be of class % (respectively, class &). A formula of class ∋ is any that is of both classes % and &, thus
expressing a notion that can be given both a purely existential and a purely universal definition. The function
denoted by a symbol ! introduced as above is of class ∋ if its defining formula is.

The basic features of these notions belong to general definability theory and include the following closure
properties:

(22a) % is closed under ∝ and ↗ and ≃

(22b) & is closed under ∝ and ↗ and ⇐

(22c) ∋ is closed under ∝ and ↗ and ¬

and all three are closed under substitution of ∋ functions. There is nothing specifically geometrical about
these facts, nor about the fact that the negations of % formulas are & formulas, and vice versa. Notably, the
general proofs about % and ∋ are very much like those for semi-recursive and recursive in computability theory
(compare Boolos et al., 2007, p. 76, Theorem 7.4).

Now obviously (21) implies the existence statement

(23) ≃x1,≃x2,≃x3, . . .∀(x1,x2,x3, . . .)

which will be purely existential provided ∀ is quantifier-free (and will be % provided ∀ is %). This covers the
case of the formula stating that the xs are the vertices of a regular polygon of n sides, for any n ′ 3. It also
covers many other cases, for we will soon see that the class % and indeed the class ∋ is quite large.

The main result whose proof will be outlined here is that for any purely existential theorem of G of type
(23) there is a theorem of G of type (21) that implies it. (And note that we have already in effect seen in
connection with (7) that if some statement about the distinguished system of benchmarks denoted a,b,c is a
theorem of G, the corresponding generalization about all systems of benchmarks will be a theorem of G0.)

It is crucial for the proof of this result that the defining formulas ∃ for our ∀,# ,∃ can be taken to be ∋.
This is verified by going through the list of defined notions in the preceding section one by one, and that list
could be indefinitely extended. At the beginning, collinearity and equidistance and equilaterality were given
quantifier-free definitions (11abc). Then perpendicularity and nearness were each given a % and an equivalent
& definition in (11df). The first problematic case comes only with (13a), or the parallelism of the lines coded by
x,y and by u,v. Here the obvious definition is & (the non-existence of a common point). The parallel postulate
implies a less obvious equivalent definition that is %, in terms of the existence of points on the one line and on
the other with the segment between them perpendicular to both lines. The other cases are left as exercises to the
reader. The end result is that in a case of the kind that interests us, where ∀ is %, the formulas of type (23) will
be %, by the closure of that class under substitution of ∋ functions and the other closure properties (22abc) of %
and ∋.

The rest of the proof draws on the beautiful nineteenth-century algebra used to show that the classic
problems of giving straightedge and compass constructions for duplicating the cube and trisecting the angle
or constructing a regular heptagon are unsolvable (as expounded, for instance, in Papantonopoulou, 2002,
chapters 11 and 12; the impossibility of squaring the circle, involving as it does the number pi, requires analytic
methods). The constructible field is the smallest set of real numbers containing 0 and 1 and closed under the
rational operations of addition, subtraction, multiplication, and division by non-zero numbers, as well as under
extraction of square roots of positive numbers.
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Tarski shows that a minimal model M0 of G0 can be obtained by taking as “points” pairs constructible
numbers and defining the primitive relations just as in the Cartesian model, which is to say, just as in middle
school analytic geometry. Square roots are needed to get the circle axiom. This M0 may be called the
constructible plane and contrasted with the Cartesian plane in which B and C are defined by the same formulas
(6ab), but the points are pairs of arbitrary real numbers. The points a = (0,0), b = (1,0), c = (0,1) may
be taken as benchmarks to get a minimal model M of G, and a crucial property of M is that every point is
straightedge and compass constructible from those benchmarks.

This result has a long history. Euclid has in Book V a theory (which historians associate with Eudoxus) of
ratios and proportions of lengths and other magnitudes, but he does not speak of these ratios as real numbers
the way we would. Numbers for Euclid are positive integers. That is why it is an anachronism to speak of the
Greek discovery of the incommensurability of the side and diagonal of a square as the discovery that

∞
2 is an

irrational number. In Euclid ratios are not things that can be added and multiplied.

But ratios were considered numbers at least as early as Omar Khayyam, and constructions in Euclid could
then be reconstrued as rational operations on ratios, as well as extraction of square roots. This picture is
in the background in Descartes’ Géométrie and the foreground in Newton’s Universal Arithmetick, and the
theory is treated fully rigorously in Hilbert. It is also behind the results in Burgess (1984) on the possibility of
reconstructing or reconstruing analytically-formulated theories of classical physics in a “synthetic” style.

The treatment of the straightedge and compass constructions related to multiplication, division, and square
roots has found its way into the more thorough introductory textbooks of abstract algebra, as part of Galois
theory. (See Papantonopoulou, 2022, Propositions 11.1.12 through 11.1.14, pp. 345-346.) In the constructible
plane, any point (x,0) on the horizontal axis can be obtained from (0,0) and (1,0) by the geometric steps
corresponding to the algebraic steps used to obtain x from 0 and 1. Likewise any point (0,y) on the vertical axis
is constructible from the benchmarks (0,0) and (1,0). And then any point at all (x,y) is constructible from the
benchmarks as the intersection of the horizontal line through (0,y) with the vertical line through (x,0).

Now suppose (23) is a theorem of G, with ∀ quantifier-free or even just %. Then it must be true in the
constructible plane, where every point is constructible, and if we take symbol complexes, ∋s, describing the
construction of the pertinent xs, then (21) will be true in the constructible plane. But part of what was meant
by calling M a “minimal” model is that any model of G has the constructible plane (or an isomorph or copy
thereof) as a submodel. And it is a quite general fact of model theory, not at all tied to geometry specifically,
that any % statement true in a submodel of a model is true in the model itself. Because (21) is %, it will thus be
true in every model of G. And finally, by the Gödel completeness theorem it follows that it will be a theorem of
G. And so we have shown (at least in outline) that behind every pure existence theorem there is a construction
theorem, QED.

6. Related Issues

Let me take note now of a few questions about potential extensions or refinements of the results discussed so
far.

First question. A proof has been outlined for the following “metatheorem”: For every pure existence
theorem there exists a construction theorem implying it, or more long-windedly, for every proof ) of a pure
existence theorem ∀, there exists a pair of proofs (∗,+) with ∗ being a proof of a construction theorem #, and
+ being a proof of the logical implication ∀ ↘ #. The question now arises: is the “metaproof” that has been
given or sketched for this result “constructive” in the sense of that there is an effective procedure that applied to
any given pertinent ) will compute a suitable (∗,+)?

Yes, there is, and it goes like this: Nineteenth-century set theory established that given a finite alphabet of
symbols, one can effectively list all finite strings , of symbols from this alphabet in a sequence ,0,,1,,2, . . .
indexed by natural numbers. Given a pertinent ) , for any , on the list one can effectively decide or compute
whether it is a suitable pair (∗,+) for ) . So just go down the list until a suitable pair is found. This procedure
is “effective” or “computable” in the sense that in any given case it is possible in principle (not worrying about
the amount of time needed to carry it out or the amount of space needed to record intermediate results), for a
digital machine to carry it out.
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But it is not feasible in practice. The function taking one from ) to (∗,+) in the manner described is
computable or recursive but might take astronomically long to compute. And this raises the question: Is there
any more efficient way to find a construction theorem behind any given existence theorem? To begin with,
could there be a procedure producing not just a recursive but a primitive recursive function? Such questions of
“complexity theory” virtually always arise when something is proved to be computable or recursive. They are
often quite difficult to answer, or anyhow, often go unanswered for a long time after they are originally posed.
We need not be especially troubled, therefore, if the question just enunciated turns out to be one that has to be
left open for the present and foreseeable future.

Second question. We may ask how far can results similar or analogous to those established in this note
for straightedge and compass construction be obtained for other kinds of geometric construction? This is
obviously not a single question but a series of them for different species of constructibility. Probably the most
interesting case, and the only one I will explicitly discuss, is that of so-called neusis or verging constructions
(known to be equivalent to origami constructions). Where straightedge and compass permit the duplication
of the square and the bisection of an angle and the construction of a regular pentagon, they do not allow for
the duplication of the cube or the trisection of an angle or the construction of a regular heptagon. These three
things do have neusis or verging constructions.

By definition these are constructions using in addition to the compass a “marked ruler” or “notched
straightedge.” They are equivalent to constructions involving drawing of conic sections (using a string as
mentioned in a note early on here in the case of the ellipse, or in some other way) and finding the intersections
of such curves. They are equivalent also to constructions using a curve called the conchoid of Nicomedes, for
the drawing or producing of which there is a mechanism whose invention is attributed by a commentator (one
Eutocius of Ascalon) to Archimedes.

This class of constructions has been analyzed algebraically as thoroughly as have been straightedge and
compass constructions. (See Papantonopoulou, 2002, pp. 357ff.) The algebraic counterpart of going beyond
straightedge and compass constructions to neusis or verging constructions is in jargon that of going beyond
“Euclidean” to “Vietan” fields, or in plainer language, from solving quadratic to solving cubic equations. This
last is a problem that itself has long history, in which the outstanding figures are Omar Khayyam in the eleventh
or twelfth century, for geometric solutions by intersecting conics, and Gerolama Cardano in the sixteenth
century, for algebraic solutions by radicals.

There is much more that could be said, but what is most relevant here is that since the algebra has been
so thoroughly analyzed it ought not to be very difficult to extend the methods of the present note to establish
analogues of (A) and (B) for the wider class of constructions. Still, since I have not worked through the details,
I can for the moment only advance this as a very plausible conjecture rather than claim it as a theorem.

Third question. How widely beyond the case of purely existential theorems can the notions and results of
the present note be extended? What has been shown so far is that there is a construction theorem behind any
purely existential theorem, that is, any theorem of form (23) above with ∀ quantifier-free; and a moment’s
thought shows that this results extends to the case where ∀ consists of a string of existential quantifiers follow
by something quantifier-free. The next cases to consider would be those of universal-existential theorems, of
the type

(24) ⇐x1,⇐x2 . . .⇐xm . . .≃y1,≃y2 . . .≃yn∀(x1,x2, . . . ,xm,y1,y2, . . . ,yn)

with ∀ quantifier-free.

The methods used here do establish some results of this kind. For instance, it can be shown not just how
to construct an equilateral triangle but how for any line segment to construct an equilateral triangle having
that segment as a side (which is the actual result in Euclid’s Proposition 1). For the construction given above
establishes that there is an equilateral triangle having the segment ab joining the first two benchmarks as one
side, and we have already seen that what is provable in G to hold for a,b,c, is provable in G0 to hold for any
system of benchmarks, and that for any two distinct points there is a system of benchmarks of which they are
the first and the second. The general case is, however, so far as I know open.

The next case to consider would be that of existential-universal theorem, of the type
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(25) ≃y1,≃y2 . . .≃yn⇐z1,⇐z2 . . .⇐zp∀(y1,y2, . . . ,yn,z1,z2, . . . ,zp)

with ∀ quantifier-free. But it can be shown that there is not always a construction theorem behind such a
result. It will be worthwhile to spell out a counterexample, since it will illustrate an important point about the
distinction between Euclid-type construction-oriented geometry and Brouwer-type constructivist or intuitionist
logic, a theme that thus far has been left in the background here since it was initially enunciated. For the
counterexample will depend on the law of excluded middle.

It is known that proportionality or equality of ratios of segments, written in traditional notation thus:

st : uv :: wx : yz

is expressible in the language of G, and indeed is of class ∋. Hence it is expressible that the quintuple u of
points u1,u2,u3,u4,u5 are so related that

(26a) they all lie on the same line and in the order listed

(26b) u1 and u5 lie at the same distance from u2 on opposite sides, so that u1u2 and u1u5 are in the ratio 1 to
2

(26c) u1u2 is to u1u3 as u1u3 is to u1u4 and as u1u4 is to u1u5, so that u1u2 and u1u3 are in the ratio 1 to 3∞2

Since 3∞2 is the number that has to be constructed in the problem of the duplication of the cube, when
(26abc) hold for u1,u2,u3,u4,u5 let us say the quintuple u is a cube-duplicator, and write Qu. Similarly write
Pu to express that the quintuple u is pentagonal in the sense that u1,u2,u3,u4,u5 in that order are the successive
vertices of a regular pentagon. Let us also write ≃u to abbreviate ≃u1≃u2≃u3≃u4≃u5. Then the counterexample
to be discussed will be statable in this abbreviated notation thus:

(27) ≃u(Qu ↗ (Pu & ¬≃vQv))

This is logically equivalent to the following existential-universal formula:

≃u⇐v(Qu ↗ (Pu & ¬Qv))

It is provable in G that ≃uPu. It is neither provable nor disprovable in G that ≃uQu, for there is a cube-
duplicator in the full Cartesian plane but not in the restricted constructible plane. To prove (27), note that by
excluded middle (in any given model) there either does or does not exist a cube-duplicator. If there does, any
cube-duplicator may be taken for the u in (27) and the disjunction will hold because its first disjunct does. If
there does not, then the second conjunct of the second disjunct in (27) will hold, and if we take for u any regular
pentagon—and we know there will be one—the first conjunct will hold as well, and hence the second disjunct
as a whole, and hence the disjunction as a whole. So either way, (27) holds. The argument here is only slightly
fancier than that used for (4).

Now consider any quintuple & = (&1,&2,&3,&4,&5) of operations compounded out our basic operations
∀,# ,∃ , and so on, and apply it to the benchmarks to obtain the quintuple of points

(28) &1(a,b,c),&2(a,b,c),&3(a,b,c),&4(a,b,c),&5(a,b,c)

Part of what was meant by calling the constructible plane a “submodel” of the Cartesian plane is that when
applied to the benchmarks or any other elements of the smaller plane, ∀,# ,∃ , and the rest will give the same
results whether we are thinking of them as operators on that plane or on the larger plane. So the notation (28),
which may be abbreviated as or &(a,b,c), or even just as & , is unambiguous. A construction theorem implying
the existence theorem (27) would have to look like this:

(29) Q& ↗ (P& & ¬≃vQv)
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But no such thing can be a theorem of G, since nothing like (29) can be true in both the constructible and
the Cartesian plane. To be true in the smaller plane, where there are no cube-duplicators and hence the first
disjunct is false, the second disjunct and in particular its first conjunct, must be true. But that means that &
is giving us a regular pentagon. By contrast, to be true in the larger plane, where the second conjunct of the
second disjunct, and hence the second disjunct as a whole, is false, the first disjunct must be true. But that
means that & is giving us a cube-duplicator. And nothing is both a regular pentagon and a cube-duplicator.

So while the main results (A) and (B) above hold for purely existential theorems as was seen in §3, we
have just seen this success does not extend to arbitrary existence theorems. One can only conclude that G is
“constructive” in one sense and “non-constructive” in another sense. But that was true already of Euclid and
does not in itself demonstrate infidelity of the Tarskian approach to the Euclidean.

7. Not Unrelated Developments
At the suggestion of a reader of an earlier draft of this note, let me before closing describe some previous work
on constructivity in geometry by Nancy Moler and Patrick Suppes (1968). It is clearly relevant to the present
discussion, even though its results do not directly quite yield (A) and (B) above, while inversely and more
emphatically, what is done here certainly does not accomplish the aims of the joint authors’ more ambitious
project. A certain gap or space exists between the two investigations, which in some respects are even opposite
in their perspectives.

Here, in attempting to modernize the Euclidean context of Beere’s and Morison’s historical discussion
of existence theorems versus construction problems, I have simply adopted Tarski’s axiomatization, whose
primitives are predicates, and whose postulates include items (notably Pasch’s axiom) of universal-existential
form. The tradition originating with Moler and Suppes, by contrast, seeks to do for geometric theories what
has already been done for any number of arithmetic or algebraic theories, namely, to formulate them with only
function symbols rather than predicates as primitives—constants are also allowed, since they may be counted
as zero-place function symbols—and with all axioms as so-called quantifier-free (really, purely universal)
statements. It might not be too inaccurate to say that whereas the interest here has been in finding construction
theorems “behind” existence theorems, the interest in the tradition under discussion is more in simply avoiding
existence assertions in favor of construction assertions.

Moler and Suppes are aiming to give a different axiomatization of what is in some sense supposed to be
the “same” geometric theory as the Tarskian formulation they contrast with it. In the end they establish the
agreement of their proposal with earlier models by means of representation theorems, which play a large role
elsewhere in Suppes’ œuvre. It is, however, also possible to give a more syntactic definition of the sort of thing
that is wanted:

(30a) The function symbols of the new theory are to be definable in terms of the predicates of the old theory.

(30b) The axioms of the new theory are to be deducible from those of the old theory together with the
definitions just mentioned of the function symbols.

(30c) The old predicates are to be definable in term of the function symbols of the new theory.

(30d) The axioms of the old theory are to be deducible from those of the new theory together with the
definitions just mentioned of the predicates.

What is meant in (30a) is definability in exactly the same sense in which ∀,# ,∃ here were defined in terms
of B and C and a,b,c. It should be mentioned that it turns out to be needful, in order to avoid trivialization, for
Moler and Suppes also to introduce constants a,b,c denoting three non-collinear points, like the benchmarks in
this note. Once this is done there is a very general way, not specifically geometrical, and perhaps not optimal,
but always available, to introduce function symbols r,s, t,. . . for the new theory that will be interdefinable with
the predicates R,S,T,. . . of the old theory.

How this may be done is sufficiently illustrated by the case of a single two-place predicate R. We associate
with the predicate a symbol r for (a version of) the characteristic or indicator function r for R, which for given
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x and y as inputs returns as output the item denoted a if R(x,y) holds, and that denoted b if not. Replacing
R(x,y) by r(x,y) = a will be enough to enable one to accomplish (52cd), and inversely, accomplishing (56ab)
can be carried out by the usual methods of eliminating function symbols (as in Boolos et al. 2007, §19.4, pp.
255-258).

hat usual method will involve introducing some existence axioms like (9). Moving in the opposite direction
will make such axioms superfluous, but will not by itself eliminate all the old existence axioms already present
in the original version of the theory. It is, however, as mentioned in passing above, the avowed aim of Moler
and Suppes in their geometric context to do just that: eliminate all existential axioms from the new theory,
finding an axiomatization using only universal formulas. As they say (p. 143)

In view of the highly constructive character of Euclidean geometry, it seems natural to strive for a
formulation that eliminates all dependence on purely existential axioms. . .

And there exists what may superficially appear to be an all-purpose method for eliminating existential axioms
at the cost of introducing new function symbols, a method of which some readers will have heard, called
“reduction to Skolem normal form” or simply “Skolemization” (as in Boolos et al. 2007, §19.2, pp. 247-253).
But in fact Skolemization is a red herring, not really relevant to the Moser-Suppes project, or to that of this note.
(And readers unfamiliar with it may simply skim or skip the next paragraph here, which explains why.)

In general, Skolemization does not even guarantee that the new functions introduced will be definable in
terms of what was there before their introduction, as required by (30a). That aside, it is certainly not something
Moler and Suppes wish to rely on, since they continue the passage just quoted with these words:

. . . but not, of course, by use of some wholly logical, non-geometric method of quantifier elimiina-
tion.

And Skolemization is the very paradigm of a wholly logical, non-geometric method of quantifier elimination.
Rather, Moler and Suppes call for primitive function symbols representing “familiar constructions,” of the
kind whose use is acknowledged in the tradition of geometric construction problems, and something like this
requirement of connection with historically given functions or operations has also been implicitly or tacitly
assumed in the approach taken in this note.

Moler and Suppes take as their “familiar” geometric constructions finding the intersection of lines, a version
of which was the first (8a) of the basic constructions (8) used in §3 above, and the laying out of segments as in
Euclid, Book I, Proposition 2. Here the aim has been similar, to use only what are recognizably versions of the
familiar construction steps (8abc).3 Moler and Suppes do not concern themselves with finding the intersection
of circles as was done in this note with (8bc), because they are working not with the Euclidean geometry that
has been the focus here, but with the weaker Pythagorean geometry, which lacks the circle axiom.

The difference between the two geometries parallels the difference in algebra between Euclidean ordered
fields, in which every positive element has a square root, and Pythagorean fields, satisfying the weaker condition
that every sum of squares has a square root. The Euclidean as opposed to Pythagorean case was taken up later,
by Horst Seeland (1978). By the time we come to the survey of Victor Pambuccian (2008), multiple geometries
have come into play (including the stronger geometry of neusis or verging constructions alluded to earlier, and
the oldest kind of non-Euclidean geometry, the hyperbolic), and the bibliography of this tradition has grown

3 That the primitives such as # used here are importantly different from the ordinary straightedge-and-compass construction of the intersections
of a lines and circles is evident and must be acknowledged. Tibor Beke (personal communication) has in this connection pointed to the
difficulty, which I take to be the impossibility, of determining by ordinary staightedge-and-compass constructions which of three collinear
points lies between the other two. This can be determined if one is able to determine, given any two of the points, which is nearer the third.
For if C and B are equidistant from A, then A is the in-between point; and otherwise, if say C is further away than is B from A, then C
cannot be the in-between point, and hence A and B must lie on the same side of C, in which case whichever is nearer to C is the in-between
point. Now by ordinary straightedge-and-compass constructions one can obtain the line on which the three points lie, and on that line
the midpoint of the segment AB, and therewith obtain the circle with center on that line passing through both points A and B. With the
distinction made by # between the proximal and distal points of intersection of the line in question with the circle in question, relative to a
system of benchmarks that may be freely chosen, and in particular so chosen that C is the origin, the proximal point of intersection will be
the nearer to and the distal point of intersection the farther from that origin, and the problem can be solved.
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to nearly 150 items. There is a great deal here that might be looked over again from the somewhat different
perspective of this note.

Moler and Suppes encounter the difficulty, which they describe as “akin to division by zero,” that their
functions are not always defined (as the intersection of lines does not exist when the lines are parallel). Indeed,
they cite such difficulties as probably the main reason why something like their project was not carried out
much earlier in the history of formalized geometry. Here such difficulties were dealt with by conventionally
assigning a sort of null value, the origin, to waste cases where this happens. Moler and Suppes take the bolder
line of simply allowing some functions in some models to be partial, and generalizing model-theoretic notions
such as submodel and isomorphism to apply to this wider-than-usual range of models.

The paper of Moler and Suppes was published in a journal founded by Brouwer after Hilbert had, at a sort
of climax of the Grundlagenstreit, manœuvred him off the editorial board of the Mathematische Annalen. And
in a footnote at the bottom of the first page of their work they refer to Brouwer’s chief disciple and tell us the
following:

It is a pleasure to dedicate this paper to Professor Heyting on the occasion of his seventieth
birthday. In view of his long interest in constructive mathematics and in geometry, we believe the
subject of our paper make it particularly appropriate to dedicate it to him.

For there is indeed a long tradition among intuitionists of concern with geometry, from parts of Brouwer’s
dissertation onward, through work by Heyting partly on problems to which Brouwer directed him, and then
on to Heyting’s student Dirk van Dalen and beyond. Still. overlap with the Moler-Suppes tradition may be
somewhat limited insofar as the latter sticks to classical logic.

A genuine intuitionist would not allow definitions by cases, as repeatedly used here (in particular, in
the definitions of ∀,# ,∃) unless the case hypotheses are decidable. And just as in intuitionistic algebra the
identity of real numbers is not assumed decidable, so also for the coincidence of planar points in intuitionistic
geometry. There exists a large and more recent body of work produced by Michael Beeson, culminating in
Beeson (to appear), specifically concerned with geometry that is “constructive” in the double sense of being
both occupied with straightedge and compass constructions and based on Brouwer’s and Heyting’s intuitionistic
or constructivistic logic. But this work inevitably has a rather different flavor from the work discussed or
reported here.
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Definiteness in Early Set Theory

Laura Crosilla and Øystein Linnebo

Abstract: The notion of definiteness has played a fundamental role in the early developments of set
theory. We consider its role in work of Cantor, Zermelo and Weyl. We distinguish two very different
forms of definiteness. First, a condition can be definite in the sense that, given any object, either
the condition applies to that object or it does not. We call this intensional definiteness. Second, a
condition or collection can be definite in the sense that, loosely speaking, a totality of its instances
or members has been circumscribed. We call this extensional definiteness. Whereas intensional
definiteness concerns whether an intension applies to objects considered one by one, extensional
definiteness concerns the totality of objects to which the intension applies. We discuss how these
two forms of definiteness admit of precise mathematical analyses. We argue that two main types of
explication of extensional definiteness are available. One is in terms of completability and coexistence
(Cantor), the other is based on a novel idea due to Hermann Weyl and can be roughly expressed in
terms of proper demarcation. We submit that the two notions of extensional definiteness that emerges
from our investigation enable us to identify and understand some of the most important fault lines in
the philosophy and foundations of mathematics.

Keywords: Intensional definiteness, Extensional definiteness, Concept of set, Potentialism, Cantor,
Zermelo, Weyl

1. Introduction

Philosophers of mathematics sometimes talk about definiteness and kindred notions. For example, Michael
Dummett and others have claimed that the concepts of ordinal number and set are indefinitely extensible,
in the sense, roughly, that any definite totality of instances of the concept can be used to define yet another
instance, outside of the mentioned totality.1 It follows that there can be no definite totality of absolutely all
ordinals or sets. Others, including both philosophers and mathematicians, react with impatience and incredulity.
Furthermore, mainstream mathematicians are today less prone to talk about definiteness.2 So, one might suspect,
the philosophers’ notions of definiteness are just detached philosophy and mathematically sterile.3

We contend that this reaction is unwarranted. Far from being mathematically sterile, we show that there are
philosophically interesting notions of definiteness that lend themselves to precise mathematical explication and
ultimately also to some interesting mathematics. In particular, during and after the Cantorian revolution that
ushered in modern set theory, various notions of definiteness figured in the work of some of the most prominent
mathematicians. Debates about these notions helped shape the emerging theory of sets.
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To defend our contention, we discuss some prominent mathematicians’ appeals to definiteness in the
first half century of Cantorian set theory, roughly between the 1880s and the 1930s. We find it necessary to
disentangle two very different forms of definiteness. First, a condition (by which we mean an open formula,
possibly with parameters) can be definite in the sense that, given any object, either the condition applies to that
object or it does not. We call this intensional definiteness. Second, a condition or collection can be definite in
the sense that, loosely speaking, a totality of its instances or members has been circumscribed. We call this
extensional definiteness. Whereas intensional definiteness concerns whether an intension applies to objects
considered one by one, extensional definiteness concerns the totality of objects to which the intension applies.
Thus, there are two importantly different families of notions of definiteness. We show that notions from both
families are invoked repeatedly in the literature during the emergence of set theory.

We also investigate how these two forms of definiteness admit of precise mathematical analyses. A natural
explication of intensional definiteness is in terms of bivalence. That is, a condition ∋(x) is intensionally definite
just in case, for any given object a, either ∋(a) is true or it is false. For example, ‘x is transitive’ is intensionally
definite on the domain of sets, whereas ‘x is small’ is not. Of course, since we talk about truth and falsity, this
explication takes place in a metalanguage. In the context of intuitionistic logic, a closely related explication is
available in the object language, namely, that the Law of Excluded Middle (LEM) holds for the condition:

⇐x(∋(x)↗¬∋(x))

The idea of extensional definiteness leaves more choice. We distinguish two main types of explication. One
takes its departure from the Aristotelian idea of potential infinity. According to Aristotle, only finitely many
numbers can coexist; the rest are merely potential. As we will see, Cantor liberalized this idea massively so as
to allow various huge infinite collections to coexist, while denying that all sets coexist. To be extensionally
definite can then be analyzed as (possible) coexistence. Another explication is based on a novel idea due to the
great mathematician Hermann Weyl.4 Loosely speaking, the idea is that extensional definiteness is a matter
of proper demarcation. Remarkably, this intuitive idea is given a precise logical explication. A collection is
extensionally definite just in case quantification over that collection “behaves classically”. As we shall see, the
resulting notion is less demanding than the liberalized Aristotelian notion of possible coexistence.

2. Cantor

Recall that a condition is said to be intensionally definite when, for any given object, either the condition applies
to the object or it does not. We begin with some appeals to intensional definiteness in the work of Cantor.

I call a manifold (an aggregate [Inbegriff], a set) of elements, which belong to any conceptual
sphere, well-defined [wohldefiniert], if on the basis of its definition and in consequence of the
logical principle of excluded middle, it must be recognized that it is internally determined whether
an arbitrary object of this conceptual sphere belongs to the manifold or not, and also, whether two
objects in the set, in spite of formal differences in the manner in which they are given, are equal or
not. (Cantor, 1882)5

We see that Cantor characterizes a “manifold” as “well-defined” just in case two conditions are met. (‘Manifold’
is his generic term for any kind of collection.) First, it must be “determined whether an arbitrary object” of the
appropriate sort “belongs to the manifold or not”. Second, it must be determined whether any two members
of the manifold are equal or not. In short, a “manifold” is well-defined just in case it is associated with an
intensionally definite membership condition and a criterion of identity for its members.6

A similar characterization of a well-defined collection can be found in work by Dedekind dated 1872–74:

4 See our (Crosilla and Linnebo, 2024).
5 Translation by (Tait, 2009, p. 271).
6 As the quote shows, Cantor also presupposes that the “manifold” belongs to a single “conceptual sphere”. He does not, however, explicitly

lay that down as a requirement for the manifold to be well-defined, let alone explain how such a requirement is to be understood.
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A set or collection is determined when for every thing it can be judged whether it belongs to the
set or not. (Dedekind 1872, quoted in Ferreirós, 2023, p. 261)

Yet another example from the same period is Frege, whose preferred notion of a collection is that of an extension
of a sharply defined concept—or, as we may put it, an intensionally definite concept.7

Thus, following Dedekind and Frege, Cantor began with a notion of set that emphasized the provision of
an intensionally definite membership condition. This may be slightly more guarded than the so-called naïve
conception of sets, which allows any condition to define a set. After all, the three mentioned mathematicians
emphasize that the proposed membership condition has to be intensionally definite. Cantor may also assume
that the set is contained in a single “conceptual sphere” (see note 6). Regardless, Cantor soon realized that
greater care is needed.

An important step in that direction is Cantor’s (1895/97, p. 481) famous definition of set:

By a ‘set’ we understand every collection into a whole [Zusammenfassung] M of determinate,
well-distinguished objects [bestimmten wohlunterschiedenen Objekten] m of our intuition or our
thought (which will be called the ‘elements’ of M). We write this as: M = {m}. (Cantor 1895,
p. 481; translation by Florio and Linnebo, 2021).

Here we find a somewhat different characterization of what a set is. We start with some objects m. Indeed, since
we may start with a plurality of objects, it is tempting to use the resources of contemporary plural logic and
say that we start with one or more objects mm.8 These objects are then “collected” or gathered into a whole
M, which is the set of the objects in question. Using plural logic, we may write this as M = {mm}. But again,
successful definition of a set is not guaranteed. Cantor requires the operation of collecting many objects into a
single set to be applied to some “determinate, well-distinguished objects” mm.

How should this requirement be understood? At the very least, the notion of being one of the objects
mm to be collected into a single set must be intensionally definite. That is, for any given object x it must be
determined whether x is one of mm or not. But the requirement that the operation of collecting into a whole
be applied to some “determinate, well-distinguished” objects can also be understood to demand more. To see
how, a distinction is useful. A property of some objects is said to be distributive just in case the ascription
of the property to some objects is equivalent to the ascription of it to each of these objects. By contrast, a
property is said to be collective or non-distributive when it says something about all of the objects together.
For example, ‘the students are French’ involves a distributive predicate, whereas ‘the students surround the
building’ involves a collective one. Returning to the property of being some “determinate, well-distinguished
objects”, the question is whether this should be understood in a distributive or a collective way.

We submit that the collective reading is more plausible. To have some objects that can be collected
into a single set it is not enough that each of the objects is “determinate” and that any two of them are
“well-distinguished”; rather, the objects in question have to be collectively determinate, that is, we must have
pinned down which objects they are. As we will see shortly, this is also the reading that Cantor later says he
intended. It is plausible, therefore, to understand Cantor’s 1895 characterization of a set as requiring that a set
be extensionally definite.

In fact, even prior to 1895 Cantor appears to have invoked the idea of extensional definiteness. One example
concerns the generative approach of (Cantor, 1883) to transfinite numbers, which are close to what we now call
ordinal numbers.9 His first principle of number generation states that for any number ∀ , we may add one so as
to obtain its successor ∀ +1. A more interesting second principle states that:

if any definite [bestimmte] succession of defined integers is put forward of which no greatest
exists, a new number is created by means of this second principle of generation, which is thought
of as the limit of those numbers; that is, it is defined as the next number greater than all of them.
(Cantor, 1883, pp. 907–908)

7 See esp. (Frege, 1893), as well as (Parsons, 2012) for discussion.
8 See (Boolos, 1984) for a seminal contribution, as well as (Florio and Linnebo, 2021) for a recent survey and assessment.
9 See (Tait, 2009, pp. 281-82) for discussion.
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In short, the second principle allows us to form the least upper bound of any “definite succession” of numbers.10

Assume, following Cantor, that the natural numbers form a “definite succession”. Then the second principle
of number generation allows us to define their limit, namely − . Repeated application of the first principle now
yields all numbers of the form − +n, for n a natural number. Since this too is a “definite succession”, we can
take their limit, so as to obtain − +− . Clearly, we can generate larger and larger ordinal numbers. This yields
what Cantor calls “the extended number sequence” (p. 912).

What is it for some numbers to be a “definite succession” and thus, by the second generating principle,
to possess a limit or least upper bound? We submit that this is best understood as some form of extensional
definiteness. Unlike the sequence of natural numbers, which is surpassed by their limit, − , the extended number
sequence is “absolutely infinite” (p. 916). As such, it has no limit but (says Cantor, quoting Albrecht von Haller)
“lie[s] always ahead of me” (ibid.). This fundamental difference between the natural number sequence and the
extended number sequence cannot be explained in terms of intensional definiteness alone. For applied to any
given object, the notion of being an extended number is just as clear and well-defined as that of being a natural
number: either this object is an (extended) number or it is not. The difference pertains rather to the extended
number sequence in its entirety, namely, that it is not extensionally definite. Thus, we contend, Cantor’s notion
of a “definite succession” is best understood as involving some form of extensional definiteness.11

A second example of extensional definiteness in Cantor prior to 1895 is found in his critical 1885 review of
(Frege, 1953). Cantor complains that Frege “overlooks altogether the fact that the ‘extension of a concept’ is, in
general, something quantitatively completely indeterminate” (Ebert and Rossberg, 2009, p. 346).12 Whether the
extension of a concept is “quantitatively determinate” is, we contend, a question about extensional definiteness,
not intensional. First, Cantor makes it explicit that the question concerns the extension of a concept, not the
concept itself. Second, the word “quantitatively” makes it clear that the question is whether all the instances of
the concept, taken together, can be assigned a number or quantity, not whether it is well-defined what it is for
the concept to apply to any given single object.

Let us return to our discussion of what it takes for a set to be well-defined. We argued that it is most
plausible to interpret Cantor’s famous 1895 characterization of a set as requiring that the one or more objects to
be collected together into a whole (namely, a set) be collectively well-defined or circumscribed. That is, we find
it natural to read Cantor 1895 as requiring that a set be extensionally, not just intensionally, definite. After the
set-theoretic paradoxes were discovered and started to be discussed among German mathematicians around
1897, Cantor wrote two letters that clearly and unequivocally make this requirement. These letters also take
some important steps towards explaining how he understood this notion of extensional definiteness.

We begin with an 1897 letter to Hilbert.

I say of a set that it can be thought of as finished [. . . ] if it is possible without contradiction (as
can be done with finite sets) to think of all its elements as existing together, and so to think of the
set itself as a compounded thing for itself ; or (in other words) if it is possible to imagine the set as
actually existing with the totality of its elements. (Ewald, 1996, p. 927)

Cantor proceeds to commend the French and Italian words for set (‘ensemble’ and ‘insieme’, respectively),
which emphasize that the elements of a set must exist together. He continues:

And so too in the first article of [Cantor 1895, which was quoted above], I define ‘set’ (meaning
thereby only the finite or transfinite) at the very beginning as an ‘assembling together’ [Zusammen-
fassung]. But an ‘assembling together’ is only possible if an ‘existing together’ [Zusammensein]
is possible. (928)

10 Cantor’s use of the second principle makes it clear that ‘integer’, in the quoted passage, is used as synonymous with ‘number’. A third
principle is also formulated, which need not concern us here.

11 Cantor thus comes close to the Burali-Forti paradox, which is the paradox of the ordinal associated with the well-ordered sequence of all
ordinal numbers. There is a scholarly debate about whether or not Cantor already in 1883 has some understanding of this paradox; cf.
(Moore and Garciadiego, 1981), (Ferreirós, 1999, p. 292) and (Tait, 2009, p. 281). We need not here take a stand on this question.

12 There is a scholarly debate about whether this should be seen as warning Frege of the disaster that struck seventeen years later when he
received a letter from Bertrand Russell (Tait, 2009; Ebert and Rossberg, 2009). Cf. also (Dummett, 1994, p. 26]) who argued that Cantor
was well ahead of Frege in seeing the importance of indefinite extensibility. Once again, we need not take a stand on this matter.
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We wish to make two observations. First, the property of “existing together” is clearly collective, not distributive.
So Cantor in 1897 reads his own 1895 characterization of a set as requiring that a set be extensionally, not just
intensionally, definite. Second, the intended notion of extensional definiteness is now becoming clearer. It is a
matter of all of the elements of the desired set coexisting so that the set resulting from collecting them together
can be regarded as “finished”.

An 1899 letter to Dedekind continues this explication of the sense in which each set is extensionally definite.

[I]t is necessary [. . . ] to distinguish two kinds of multiplicities (by this I always mean definite
multiplicities).

For a multiplicity can be such that the assumption that all of its elements ‘are together’ leads to a
contradiction, so that it is impossible to conceive of the multiplicity as a unity, as ‘one finished
thing’. Such multiplicities I call absolutely infinite or inconsistent multiplicities. [. . . ]

If on the other hand the totality of the elements of a multiplicity can be thought of without
contradiction as ‘being together’, so that they can be gathered together into ‘one thing’, I call it a
consistent multiplicity or a ‘set’. (Ewald, 1996, p. 931-932)

Cantor’s thought here appears to be that there is an intrinsic difference between multiplicities that form sets
and multiplicities that do not, and that this intrinsic difference explains why some but not all multiplicities are
eligible for set formation. A set is characterized as a “finished” collection, all of whose elements can “exist
together” or be imagined as “actually existing”. So for a multiplicity to be eligible for set formation, it must be
capable of being regarded as “finished”, and its elements must be capable of “existing together”. A multiplicity
that is capable of the sort of “completion” is thus intrinsically suited for set formation, whereas a multiplicity
that resist such “completion” is intrinsically unsuited for set formation. For instance, since the multiplicities of
everything thinkable and of all ordinals resist “completion”, there can be no universal set or set of all ordinals.

Some will complain that the quasi-temporal language of coexistence and being finished has no place in the
analysis of an abstract subject matter that exists independently of us. It must be admitted that Cantor’s remarks
about legitimate set formation [Zusammenfassung] and his associated response to the paradoxes are loose and
underdeveloped. We nonetheless find his remarks suggestive.

We would therefore like to propose a way to understand Cantor’s remarks about coexistence and being
finished on which these remarks have genuine explanatory potential.13 The idea is to understand Cantor’s
notion of extensional definiteness as a potentialist notion of completability. Let us explain. In stark contrast to
Cantor, Aristotle held that only potential infinities are coherent, not actual ones. For example, however many
natural number are instantiated—and thus, according to Aristotle, exist—it is possible to instantiate yet more.
Writing ‘SUCC(m,n)’ for the claim that m is directly succeeded by n, he thus endorses:

!⇐m"≃n SUCC(m,n) (1)

However, Aristotle denies that it is possible to complete this process of producing successors of natural numbers:

¬"⇐m≃n SUCC(m,n) (2)

Another way to put this is that the notion N(x) of being a natural number is incompletable, in the sense that
it is impossible for some objects to coexist which are all the numbers there ever could be:

¬"≃xx!⇐y(y ∈ xx ∋ N(y)) (3)

We here treat every plurality as “finished”. That is, when we generalize plurally over one or more objects, we
assume that the objects in question coexist.14

13 See (Parsons, 1983b), (Linnebo, 2013) and (Studd, 2013) for attempts to realize that explanatory potential.
14 These are fairly standard assumptions in the contemporary literature on the modal logic of plurals; see (Florio and Linnebo, 2021, ch. 10

and references therein). The contemporary notion of plurality differs, in this regard, from Cantor’s less demanding notion of a “multiplicity”,
which permits multiplicities to be “inconsistent’ or “unfinished”. As Charles Parsons (1977, Sect. III) observes, Cantor’s inconsistent
multiplicities are better understood as Fregean concepts than some given objects.
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Cantor, of course, is famous for rejecting Aristotle’s claims (2) and (3). The natural numbers are completable,
he argues, and therefore form a set. Nevertheless, in the quoted letters Cantor can be understood as making
claims that are logically analogous to Aristotle’s. Let us write ‘SET(xx,y)’ for “y is the set obtained by collecting
xx into a whole”. Cantor can be understood as claiming that the operation of set formation can be applied to
any coexistent objects but that it is impossible to complete “the process” of applying the operation:

!⇐xx"≃y SET(xx,y) (4)

¬"⇐xx≃y SET(xx,y) (5)

These two claims echo (1) and (2), respectively.

More generally, a condition ∋(x) is completable just in case it is possible for the generation of instances to
be “finished”, such that all the instances the condition could ever have are available:

"≃xx!⇐y(y ∈ xx ∋ ∋(y))

The “multiplicity” associated with a condition is thus intrinsically suitable to form a set just in case the condition
is completable.

Our proposal is that Cantor’s use of temporal and modal language need not be dismissed as just colorful
language but can be understood as conveying a valuable idea about set formation. Whenever a mathematical
operation is iterated, the metaphor of a process is natural. But the operation of set formation has a special
feature, namely, that it takes many objects as input and outputs their set. This raises the question of what kinds
of input this operation might take. Cantor’s attempt at an answer is that availability to serve as input to set
formation is a matter of coexistence or being finished. Using the metaphor of a process, he thus identifies a new
theoretical primitive of joint availability for set formation. This new primitive can be explicated using modality
and plural logic; and thus explicated, its explanatory potential can be realized (cf. footnote 13).

Summing up, we have seen that Cantor began with a conception of set that emphasizes the intensional
definiteness of every well-defined set but gradually shifted to a conception that adds the requirement that a
set be extensionally definite. We have also argued that his mature notion of extensional definiteness can be
understood as the potentialist one of all the elements of a set “coexisting”, or being jointly available for set
formation. While this is far from a worked-out account of legitimate set formation, it at least points the direction
for such an account.

3. Zermelo

The notion of definiteness plays a key role in Zermelo’s foundational work. It features prominently in his
well-known axiomatisation of set theory of 1908 and motivates his subsequent foundational reflections in
the 1920s and 1930s. A constant reference of Zermelo is Cantor’s set theory. Zermelo repeatedly states that
Cantor’s “original definition” of set in (Cantor, 1895) had been long recognized as insufficient in view of the
antinomies of set theory.15 Throughout his work Zermelo puts forth a number of original proposals that improve
Cantor’s definition of set.16 Here we focus on (Zermelo, 1908b) and some ideas presented in (Zermelo, 1929a)
and (Zermelo, 1930c).

At the beginning of (Zermelo, 1908b) Zermelo writes:

[...] the very existence of [set theory] seems to be threatened by certain contradictions, or
‘antinomies’, that can be derived from its principles [...] and to which no entirely satisfactory
solution has yet been found. (Zermelo, 1908b, p. 189)

15 See e.g. (Zermelo, 1908b, p. 189-91) and (Zermelo, 1929b, p. 38). Moore (1978) argues that Zermelo’s axiomatisation was primarily
motivated not by the paradoxes but by the desire to reply to widespread criticism of his 1904 well-ordering theorem.

16 Zermelo’s ideas are difficult to interpret as they lack a precise framework and language. We think, however, that Zermelo offers a significant
and original perspective on definiteness and for this reason we review its key characteristics. For detailed analysis of Zermelo’s thought on
definiteness see, for example, (Ebbinghaus, 2003), (Ebbinghaus, 2010) and (Felgner, 2010).
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He claims that in view of “Russell’s antinomy” it is no longer admissible “to assign to an arbitrary logically
definable notion a ‘set’, or ‘class’, as its ‘extension’ ”. This, Zermelo argues, shows that

Cantor’s original [viz. 1895] definition of a ‘set’ as ‘a collection, gathered into a whole, of certain
well-distinguished objects of our perception or of our thought’ therefore certainly requires some
restrictions [...]. (Zermelo, 1908b, p. 189-91)

To overcome these difficulties, Zermelo presents an axiom system intended to be sufficiently restricted to
exclude all contradictions, but also sufficiently wide to retain all that is valuable in set theory. Zermelo’s key
restrictions are introduced in his schema of separation (Axiom III) and it is here that definiteness comes into
play. Zermelo’s separation allows us to define a subset of a given set, say M, by separating out of M those of its
elements that satisfy a “definite” property.

In (Zermelo, 1908b, p. 195) the separation schema reads as follows:17

Whenever the propositional function E(x) is definite for all elements of a set M, M possesses a
subset ME containing as elements precisely those elements x of M for which E(x) is true.

Separation is therefore more restrictive than naive comprehension in two respects:

• it defines a subset of an already given set, M, by separating out those elements of M that satisfy some
property;

• it requires that the property used to define the subset of M is definite.

The first restriction is fundamental, as it aims at excluding “contradictory notions such as ‘the set of all
sets’ or ‘the set of all ordinal numbers’ ” (Zermelo, 1908b, p. 195). The second restriction is needed to
avoid paradoxes such as Richard’s paradox. The idea is that notions such as ‘definable by means of a finite
number of words’ are not definite, so that separation cannot be applied to them. This second restriction is also
highly significant, since Zermelo’s axiomatisation is not expressed on the basis of a fixed formal language.
The restriction is intended to rule out problematic notions such as the notion of definability that figures in
Richard paradox. As Zermelo retrospectively observed, “a universally acknowledged ‘mathematical logic’ on
which I could have relied did not exist” at the time (Zermelo, 1929b, p. 359). Therefore in 1908 he appeals
to definitenss to excise problematic properties. However, lacking a rigorous description of the language of
set theory, Zermelo’s notion of definiteness was soon criticised for being too vague. Before looking at this
criticism, we need to examine in more detail how Zermelo characterises definiteness and how his notion relates
to our distinction between intensional and extensional definiteness.

Zermelo (1908, p. 191) starts by presupposing a given domain, B, and a system of fundamental relations
over B. He then offers the following explanation of definiteness (Zermelo, 1908, p. 193):

A question or assertion E is said to be “definite” if the fundamental relations of the domain, by
means of the axioms and the universally valid laws of logic, determine without arbitrariness
whether it holds or not. Likewise, a “propositional function” E(x) in which the variable term
x ranges over all individuals of a class K, is said to be “definite” if it is definite for each single
individual x of the class K.

17 Zermelo’s schema of separation figures also in (Zermelo, 1908a), where Zermelo employs the expression “well-defined property”
(“wohldefinierte Eigenschaft”). More precisely in that text the separation axiom reads as follows: “All elements of a set M that have a
property E well-defined for every single element are the elements of another set, ME , a ‘subset’ of M” (Zermelo, 1908a, p. 121). It is clear
that definiteness is here to be read distributively, as applying to each individual element of the set M. As argued in (Felgner, 2010, p. 180),
at first Zermelo’s terminology reminds us of Cantor’s 1882 definition of set in terms of “wohldefinierte Mannigfaltigkeiten”, which was
quoted at page 44. Similar terminology appears in lecture notes by Zermelo from the winter semester 1900/1901 (with additions from the
years 1904-1906). Felgner argues that when later Zermelo employed the term “definit”, he borrowed it from Husserl. See also (Moore,
1982, pp. 155-6) for a discussion of earlier attempts by Zermelo to formulate separation.
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Zermelo’s passage suggests that definiteness is determined by three components: (a) the fundamental relations
of the domain, (b) the axioms of set theory and (c) the laws of logic. To this we need to add the claim (d) that
such a determination ought to be non-arbitrary. But how is this meant to eliminate the threat of paradoxes such
as Richard’s? Presumably we can reason as follows. Suppose we start from the fundamental relations of set
theory. These are of the form a △ b and a = b, for a and b elements of the domain B. Given these fundamental
relations we do not have a non-arbitrary way of determining, by employing only the laws of logic, whether a
property such as ‘definable by means of a finite number of words’ holds of some number or not. Therefore we
cannot apply separation in such cases.

Given this characterisation of definiteness, we may now wonder how it features within our distinction
between intensional and extensional definiteness. After stating the axiom of separation, Zermelo writes that the
criterion defining a subset of a set M is definite if “for each single element x of M the ‘fundamental relations of
the domain’ must determine whether it holds or not” (Zermelo, 1908, p. 195). This explanation makes it clear
that Zermelo understands definiteness distributively, as a definite condition either holds or does not hold of
each individual element of a given set. In this respect, definiteness looks like a form of intensional definiteness.

As we have seen, Zermelo presents his definition of set as an improvement of Cantor’s original (1895)
definition, which, we argued, can be plausibly read as requiring that a set be extensionally definite. As we find
plausible to read Zermelo’s definiteness as a form of intensional definiteness, one may wonder how this can
result in an improvement with respect to Cantor’s definition of set. We have two main observations in this
respect. First, there is substantial improvement, of course, in Zermelo’s axiomatic presentation of set theory,
which affords a more rigorous account of sets. While Cantor may require that a set be extensionally definite,
his definition does not furnish clear criteria for sethood, which is something Zermelo’s axiomatization strives
to do. It is true that Zermelo’s separation schema runs into difficulties as it is not sufficiently precise, as we
will see shortly. But Zermelo’s approach made a rigorous formulation of separation urgent, prompting further
improvements to the formulation of set theory.

Second, in the separation schema we find a distinctive interplay between intensional definiteness and the
restriction of the defining condition to an already given set, M. It is plausible that Zermelo’s separation schema
is meant to fix the extension of (the property expressed by) a definite condition relative to the given set M, while
M is thought of as extensionally definite. The idea seems to be that as we single out a subset of an already given
set M by means of a definite condition, we also fully determine the extension of that condition when its range
of application is restricted to the elements of the set M.

This seems a reasonable reconstruction of how definiteness is supposed to restrict and improve on Cantor’s
definition of set. Let us return now to the complaint that Zermelo’s notion of definiteness is insufficiently
precise to achieve its purpose. Zermelo’s characterisation of definiteness is imprecise, as it lacks the required
detail that would allow us to decide in each case whether a property is definite or not. For example, Zermelo
does not specify the language in which the axioms of set theory are formulated. In addition, an explication of
definiteness that refers to the axioms of set theory is problematic, since definiteness is required to make sense of
the separation axiom. Indeed, the lack of precision and the resulting vagueness of Zermelo’s notion of ‘definite
property’ was criticised by mathematicians such as Weyl, Fraenkel and Skolem (Weyl, 1910, 1918; Fraenkel,
1922; Skolem, 1922). They proposed improvements leading to the first-order formulation of Zermelo-Fraenkel
set theory we are familiar with. We will discuss Weyl’s proposal in Section 4.18

The reflection on Zermelo’s notion of definiteness that followed his axiomatisation of set theory helped
shape set theory. The proposed solution to the question of how to define definite properties developed in a fully
rigorous way ideas already implicit in Zermelo’s informal explication of definiteness, in particular components
(a)–(c). The idea was to make precise the language of set theory in terms of the (now) ordinary first-order
language, with the equality and membership predicates as basic. The legitimate (definite) properties are those
that are expressible by repeated application of the first-order logical operations to atomic statements of the form
a = b and a △ b. The thought was that this suffices to rule out problematic definitions such as that of a number
definable by means of a finite number of words. As a consequence, the explicit reference to definiteness that

18 See (Ebbinghaus, 2003, 2010; Felgner, 2010; Taylor, 2002) for discussions of Zermelo’s contemporaries’ criticism of his notion of
definiteness and for an analysis of Zermelo’s different proposals on how to spell out definiteness.

50



Definiteness in Early Set Theory

characterised Zermelo’s 1908’s formulation of the separation schema disappeared. There was no further need
to distinguish the definite properties from those that are not, as the language, once appropriately regimented,
ensured that only definite properties are expressible.

It is natural to wonder, though, whether the resulting explication of definiteness in terms of definability in
the first-order language of set theory is satisfactory. Both directions can be challenged: we will now look at
Zermelo’s challenge to the thought that every definite property is definabile in the first-order language of set
theory. In the next section we will discuss Weyl’s misgivings about the reverse inclusion.

In a paper from 1929 and in other texts from the 1930s, Zermelo explored new ways of clarifying the
notion of definiteness, sketching new intriguing ideas.19 Zermelo’s new reflections on definiteness followed a
number of distinct threads without reaching a definitive and clear solution to the difficulties that afflicted his
original approach to definiteness. In fact, Ebbinghaus (2003) argues that Zermelo developed contrasting ideas,
differing for the choice of language and the view of the nature of the set-theoretic universe, but did not succeed
in bringing them together into a unified approach (Ebbinghaus, 2003, p. 198).

Of particular significance for our investigation is the text “On the concept of definiteness in axiomatics”
(Zermelo, 1929). There Zermelo replies to the criticism levelled against his earlier (Zermelo, 1908) formulation
of definiteness, stating that he had not been understood. He then scrutinizes his critics’ proposed solutions.
Among them is Fraenkel’s approach to definiteness, that Zermelo terms “genetic”. This may be considered
a variant of the approach proposed by Weyl (1910) and Skolem (1922), which replaces definiteness by
first-order definability in the language of set theory. One of Zermelo’s complaints is that the genetic approach
makes essential use of the natural numbers, in the form of the finite repetitions of the logical operations. It
therefore presupposes the natural numbers instead of grounding them set-theoretically.20 Another complaint is
that a genetic characterization of definiteness “contradicts [the] purpose and nature of the axiomatic method”
(Zermelo, 1929, p.359). Zermelo proposes instead what he calls an “axiomatic” approach, that is, he gives a
series of conditions that are to be satisfied by the collection of definite properties. In this new attempt to pin
down the notion of definiteness, Zermelo simultaneously hints at two distinct ideas, one model-theoretic and
one syntactic.21

The first is presented as follows. Zermelo introduces the notion of logically closed system, which is,
essentially, the deductive closure of a set of axioms (Zermelo, 1929, p. 361). He claims that if a logically closed
system is consistent,

“then it must be ‘realizable’ as well, that is, representable by means of a “model”, by means of a
complete matrix of the ‘fundamental relations’ that occur in the axioms or in the system”.

Now, each fundamental relation R is ‘disjunctive’, in the sense that either R or its negation holds in the model.
The same holds also for composite relations, so that “it is uniquely decided in every model by means of the
matrix of the fundamental relations whether or not they hold in it.” The definite properties are then those that
are “decided by means of the fundamental relations in every model”. Zermelo (1929, p. 361-63) also states that

“[d]efinite” is thus what is decided in every single model, but may be decided differently in
different models; “decidedness” refers to the individual model, whereas “definiteness” itself refers
to the relation under consideration and to the entire system.

This enables Zermelo to claim that non-definite properties are those that are either not uniquely determined by
the fundamental relations or “alien to the system”. For example, the property “not definable by means of a finite
number of words in any European language” is not uniquely determined by the fundamental relations, while the
property of being a set “painted in green” is alien to the system. To sum up, the key idea of this model-theoretic

19 See, for example, (Zermelo, 1929, 1930c, 1930a, 1930b).
20 See page 52 (below) for a passage by Zermelo in which he considers, but then quickly dismisses, a genetic characterisation of definiteness.

The reliance of a genetic characterisation of definiteness on the natural numbers is also an important element of Weyl’s reflection.
21 It should be noted that while Zermelo clearly makes use of second-order quantifiers in his axiomatic characterisation, he does not fully

specify the underlying language.
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characterisation is that definiteness is what is decided in every model of the axioms of set theory on the basis of
the fundamental relations of the domain.

It is tempting to see this as a novel development of components (a) - (d) of the 1908 characterisation of
definiteness, now focusing on the models of the axioms of set theory. Zermelo briefly mentions also categorical
systems of axioms, but does not explain the relation between his notion of definiteness and categorical systems.
Categoricity, indeed, becomes a crucial theme in his foundational investigations in the 1930s, when he tries to
develop a notion of set as categorical domain, that is, as a domain that can be characterized by a categorical
system of axioms. Perhaps one way to round out Zermelo’s 1929 proposal is to suggest that a categorical
system of axioms would ensure that definite properties are uniquely determined by the fundamental relations
in every model in the same way. This would ensure non-arbitrariness, that is, the satisfaction of requirement
(d) that figured in the 1908 characterisation, without been fully accounted for. We will return to Zermelo’s
model-theoretic considerations shortly, when we discuss (Zermelo, 1930c).

The second characterisation of definiteness Zermelo sketches in (Zermelo, 1929) is syntactical. Its purpose
is to further clarify which properties are definite. Zermelo asks:

But which propositions and properties are now in fact ‘definite’? How can we decide whether a
given proposition is ‘definite’?

To answer these questions Zermelo first considers a genetic characterisation of definiteness (Zermelo, 1929, p.
363; his italics):

A proposition is called “definite” for a given system if it is constructed from the fundamental
relations of the system only by virtue of the logical elementary operations of negation, conjunction
and disjunction, as well as quantification, all these operations in arbitrary yet finite repetition and
composition.

He finds a genetic characterisation wanting for the reasons already mentioned, in particular, for its relying on
the natural number concept. He therefore presents his “axiomatic approach”. As in (Zermelo, 1908), Zermelo
starts by presupposing a given a domain, B, and a system of fundamental relations over B. He then gives the
following clauses (Zermelo, 1929, p. 365):

I) all fundamental relations are definite;

II) 1) the logical operations of negation preserves definiteness;

2) conjunction and disjunction preserve definiteness;

3) the first-order quantifiers preserve definiteness;

4) the second-order quantifiers applied to “definite functors” preserve definiteness. More precisely, if F( f )
is definite for all definite “functors” f , then so is the quantified statement ⇐ f F( f ).

Zermelo supplements these clauses with a closure condition, whose aim is to rule out non-definite properties
without making use of the natural number concept. Calling P the totality of all definite properties, he states that
no subtotality of P satisfies all the postulates I) and II) (Zermelo, 1929, p. 364).22

The fourth clause is particularly important, as it extends the notion of definiteness to the second-order
(although it introduces also a puzzling restriction, by requiring that the arguments of the second-order quantifiers
be definite). It is here that Zermelo clearly goes beyond the first-order characterisation of definability and
considers definite also statements involving the second order quantifiers. He will further explore the fundamental
shift to the second-order language (unrestricted) in subsequent work, especially (Zermelo, 1930c).

We have seen that Zermelo sketches both a model-theoretic and a syntactic explication of definiteness.
In both cases the fundamental relations play a key role in determining what is and what is not definite.
This corresponds to component (a) of definiteness in (Zermelo, 1908). Since the fundamental relations are

22 This new definition was criticised by Skolem (1930), who offered two main criticisms: it requires set theory (to express the closure
condition) and it uses a vague notion of second order quantification.
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presumably determined by the axioms of the theory, condition (b) also plays a role. Furthermore, in both
explications the laws of logic, namely component (c), are key to the preservation of definiteness from the
fundamental relations to complex ones. Although Zermelo’s focus on the decidability of definite properties
makes these new explications of definiteness still close to intensional definiteness, there are also new elements
to them that point in a different direction. In the model-theoretic case, Zermelo takes a “global” perspective,
by requiring intensional definiteness in every model, while in the syntactic case he stresses its preservation
with respect to the quantifiers.23 The model-theoretic characterisation gestured at in 1929 was further explored
by Zermelo in the 1930s, reaching a more refined form in (Zermelo, 1930c). There, we argue, we find clear
elements of extensional definiteness.

In (1930c) Zermelo presents a second-order set theory.24 Definiteness is somehow built in and does not
figure any more in the separation axiom, similarly to the standard first-order approach to separation in ZFC.
Namely, it is the second-order language of set theory, alone, that suffices to formulate separation. Zermelo now
states that the propositional function used in the separation schema to separate a subset of a given set should be
completely arbitrary.25

In this paper Zermelo is concerned with normal domains, which are models of his set theory indexed by
inaccessible cardinals. Zermelo crucially presupposes the availability of an unbounded series of (strongly)
inaccessible cardinals, which ensures that the totality of normal domains is itself open-ended. As each normal
domain is followed by a “next” normal domain, it is to be thought of as closed from the point of view of the next
normal domain. The interaction between normal domains, which are thought of as closed, and their open-ended
hierarchy is taken by Zermelo to offer a satisfactory solution to the antinomies of set theory. The hierarchy of
normal domains also brings Zermelo to realise that his set theory is non-categorical, although its models satisfy
important isomorphism theorems. In (1930a, p. 437), Zermelo summarises his findings as follows:

Two normal domains are “isomorphic” if and only if 1) their “bases” (that is, the totality of their
urelements) are equivalent to one another and 2) their “characteristics” (that is the upper limits of
the occurring alephs) are equal, if, in other words, to each set of one domain there corresponds at
least one equivalent one in the other domain. Of two domains with equivalent bases (but different
characteristics) one is always isomorphic to a “canonical” development of the other.

A little later, Zermelo mentions a connection between his notion of normal domain and Cantor’s “concept of
set”. He introduces the notion of “closed domain”, which, he claims, corresponds to that of set in Cantor’s sense.
Zermelo claims that a “closed domain” can be reduced to the concept of “categorical system of postulates” and
that every normal domain is a closed domain and can therefore be conceived of as a set in a higher normal
domain. A more precise characterisation of closed domains is offered in (Zermelo, 1930a, p. 453) as follows:

A “closed domain” is one which can be determined or ordered by means of a categorical system
of postulates. It is precisely that which Cantor really meant by his well-known definition of “set”.

A closed domain is contrasted by Zermelo with an open domain (Zermelo, 1930a, p. 453):

An “open domain” is a well-ordered sequence of domains successively comprising one another
constituted so that every closed subdomain can always still be extended in it. [...] Furthermore,
the entire open domain can be well-ordered so that all elements of a preceding layer precede all
elements of every subsequent one.

23 The syntactic characterisation has important similarities, as well as differences, with Weyl’s notion of extensional definiteness that is the
focus of the next section.

24 Zermelo’s variant of ZF includes second-order formulations of separation and replacement. Zermelo omits infinity, presupposes the axiom
of choice, which he considers a “general logical principle” (Zermelo, 1930c, p. 405), and introduces the axiom of foundation. He also
assumes urelements.

25 See (Zermelo, 1930c, p. 403, fn. 2), as well as (Zermelo, 1930b, p. 449).
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Going back to our distinction between extensional and intensional definiteness, we argue that a domain
being closed is a matter of extensional definiteness: we are interested in all the elements of the domain, rather
than considering them one by one. It is thus tempting to regard Zermelo’s closed domains as completed or
"finished", in Cantor sense: as they admit no further extension their elements coexist. A key novelty of Zermelo
compared with Cantor is that he develops an axiomatic approach to set theory. He therefore can take models
of the axioms of set theory into consideration. This brings him to suggest that a closed domain should be
determined by a categorical system of postulates. Therefore, what comprises it, its elements, is fully determinate
and fixed in every model in the same way.

To summarize, in the new phase of Zermelo’s reflection on definiteness beginning with (Zermelo, 1929),
second-order logic and categoricity play a key role. Zermelo sketches both syntactic and model-theoretic
presentations of definiteness. The syntactic presentation takes the form of preservation of definiteness through
the logical operations, including the second-order quantifiers. The model-theoretic characterisation is given in
terms of what is decided within (categorical) models of the axioms of set theory. This subsequently gives rise
to a notion of closed domain, which explicates (what we would call) a form of extensional definiteness. It is
tempting to think that this notion of definiteness is close to the Cantorian notion of completability. Zermelo,
at any rate, seems to have thought that through a crucial use of the axioms of set theory, the notion of closed
domain offered a more precise rendering of Cantor’s ideas.26

4. Weyl

Let us return to the problem of clarifying the notion of a definite property that figures in Zermelo’s original
1908 statement of the axiom of Separation. The usual explication—as a property definable in the language
of first-order set theory—can be challenged. As we have seen, Zermelo contested one direction, arguing that
properties definable in the language of second-order set theory can also be definite. We will now see that Weyl
comes to reject the reverse direction, that is, to deny that every formula of first-order set theory defines a definite
property.

In his Habilitation Vortrag from 1910 Weyl discusses Zermelo’s separation schema, writing that:

According to Zermelo, a definite expression is one whose application or non-application can be
determined unequivocally and without arbitrariness on the basis of the fundamental relation .
that holds between the objects of set theory. Here, to my mind, greater precision is necessary
because the expression ‘determined unequivocally and without arbitrariness’ strikes me as too
vague. (Weyl, 1910, p. 304; our translation)

He proposes to characterize a definite relation as one obtained from the fundamental relations of set theory,
namely membership and equality, by finitely many applications of five principles of definition that he sets forth.
These principles have a clear algebraic character but are usually taken to capture the relations that are definable
in (what we call) the language of first-order set theory.

Weyl returns to this issue in his pioneering work on predicativity, Das Kontinuum (Weyl, 1918), where
he mentions that his “investigation began with an examination of Zermelo’s axioms for set theory”. He now
sets out in full detail the principles of definitions in terms of the ordinary logical operations, but crucially he
focuses on the case where these operations are applied to the domain of natural numbers. As we will see,
the most important change is that Weyl now rejects the idea that quantification over all sets can be assumed
to result in a formula that is (intensionally) definite. This rejection springs from a stronger preference for
some generative approach to mathematical objects. Indeed, Weyl espouses a view that is closer to Aristotle’s
austere potentialism than to Cantor’s extremely relaxed set-theoretic potentialism. For whereas Cantor accepts
a plethora of transfinite sets as completable, Weyl regards every infinity—even that of the natural numbers—as
incompletable; for “ ‘inexhaustibility’ is essential to the infinite” (Weyl, 1918, p. 23). Weyl’s potentialist
outlook becomes particularly clear in a later passage, commenting on how to place mathematics on a sound
foundation:

26 See, e.g., (Ebbinghaus, 2003; Taylor, 2002) for detailed analysis of this phase of Zermelo’s foundational reflection. See also (Taylor, 2002)
for discussion of another proposal by Zermelo, involving infinitary languages.
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The deepest root of the trouble lies elsewhere: a field of possibilities open into infinity has been
mistaken for a closed realm of things existing in themselves. As Brouwer pointed out, this is a
fallacy, the Fall and Original Sin of set-theory, even if no paradoxes result from it. (Weyl, 1949, p.
234)

So, for Weyl, every infinite mathematical domain is incompletable.

Weyl proceeds to make an important and highly innovative distinction. Not all infinite (and therefore
incompletable) domains have the same character: some are “extensionally determinate”, whereas others are
not (Crosilla and Linnebo, 2024).27 Let us follow Weyl and begin with a loose and intuitive way of drawing
the distinction, which we will gradually make more precise. A concept’s being “clearly and unambiguously
defined”, Weyl contends,

does not imply that this concept is extensionally determinate, i.e., that it is meaningful to speak of
the existent objects falling under it as an ideally closed aggregate which is intrinsically determined
and demarcated. (Weyl, 1919, p. 109)

Thus, for an infinite domain to be extensionally determinate is, loosely speaking, for it to be properly demarcated.

Weyl’s mathematical genius is revealed when he proceeds to give this loose and intuitive idea a precise
logical articulation. His first step in this direction reads as follows.

Suppose P is a property pertinent to the objects falling under a concept C. [. . . ] if the concept C is
extensionally determinate, then not only the question “Does a have the property P?” [. . . ] but also
the existential question “Is there an object falling under C which has the property P?”, possesses a
sense which is intrinsically clear. (ibid.)

Let us paraphrase. Suppose some property P is well-defined on all objects falling under a concept C. That is,
suppose that for every individual instance a of the concept C, the question whether a has P has an “intrinsically
clear sense”. (In our terminology, we suppose that P is intensionally definite on instances of C.) What is it,
then, for the concept C to be extensionally determinate or “properly demarcated”? Weyl proposes that this
demarcation would enable us to quantify over all Cs and ask—again with an intrinsically clear sense—whether
there is some C that has P.28 This suggests the following analysis:

A concept C is extensionally determinate just in case: for every property P such that the question
‘Pa?’ has an intrinsically clear sense whenever a is C, also the quantificational question ‘(≃x :
Cx)Px?’ has an intrinsic clear sense.

In short, for a concept C to be extensionally determinate is for quantification over Cs to preserve the property of
possessing an intrinsically clear sense.

The next step is to clarify what is it for a statement to “possess a sense which is intrinsically clear”. Weyl
writes that a question has an intrinsically clear sense when it “address[es] an existing state of affairs that allows
one to answer the question with yes or no” (Weyl, 1921, p. 88). That is, a statement has an intrinsically clear
sense when it is subject to the principle of bivalence, which says that the statement is either true or false.

A final step is now very natural—although it is not, as far as we know, explicitly taken by Weyl himself.
The idea is to explicate bivalence in the metalanguage with the Law of Excluded Middle holding in the object
language. When this step is taken, we arrive at a formal analysis in the object language itself:

27 As a terminological convention, we reserve the term ‘extensionally determinate’ and its cognates for Weyl’s particular explication of the
broader idea of extensional definiteness.

28 In a potentialist setting where objects are successively defined and the principles of definition may themselves be an “open system” to
which we can make additions, possession of an “intrinsically clear sense” cannot be taken for granted. See (Weyl, 1918, p. 87), as well as
(Linnebo and Shapiro, 2023, pp. 2–4).

55



Laura Crosilla and Øystein Linnebo

Extensional determinateness (formal analysis)
A concept C is extensionally determinate iff quantification restricted to C preserves the property
of LEM holding, that is, iff, for every property P:

(⇐x : Cx)(Px↗¬Px)↘ (≃x : Cx)Px↗¬(≃x : Cx)Px

We have thus arrived at an idea that Feferman has recently expressed with pleasing succinctness: “What’s
definite is the domain of classical logic, what’s not is that of intuitionistic logic" (Feferman, 2011, 23). To
highlight the central role of quantification in this analysis, we prefer to say that a concept that is extensionally
determinate in this sense defines a domain of classical quantification.

Equipped with this distinction between two kinds of incompletable domains—those that are extensionally
determinate and those that are not—we can ask which domains fall on which side. The following passage
summarizes Weyl’s own view:

The intuition of iteration assures us that the concept “natural number” is extensionally determinate.
[...] However, the universal concept “object” is not extensionally determinate—nor is the concept
“property,” nor even just “property of natural number”. (Weyl, 1919, p. 110)

We see that Weyl is very sparing in what he regards as extensionally determinate. The domain of natural
numbers is extensionally determinate, thanks to our “intuition of iteration”.29 But Weyl is unwilling to go much
further. Extensional determinateness is lost as soon as we consider properties—or, for that matter, sets—of
natural numbers. We will shortly explain why Weyl held this very strict view.

First, though, we wish to observe that the view explains why Weyl came to reject the idea that every formula
of (what we would now call) first-order set theory is intensionally definite. To begin, since the concept of
natural number is extensionally determinate, there is a set of all natural numbers. And this set obviously has all
kinds of subsets. A formula of first-order set theory aspires to quantify over all these subsets—and many other
sets as well. But according to Weyl, already the collection of sets of natural numbers fails to be extensionally
determinate. Thus, a formula of first-order set theory may quantify over a domain that fails to be extensionally
determinate. It follows that such a formula may lack an intrinsically clear sense, or, in our terminology, that it
may fail to be intensionally definite. Weyl therefore has to reject the standard explication of Zermelo’s 1908
notion of a ‘definite property’ as being too lax. For this explication allows instances of Separation involving
conditions that cannot be guaranteed to be intensionally definite.

Why, then, did Weyl reject the prevailing view that there is a properly demarcated domain of sets of natural
numbers and perhaps larger domains still? The answer is that Weyl rejects the combinatorial conception of set
as applied to infinite domains:

The notion of an infinite set as a “gathering” brought together by infinitely many individual
arbitrary acts of selection, assembled and surveyed as a whole by consciousness, is nonsensical:
“inexhaustibility” is essential to the infinite. (Weyl, 1918, p. 23)

Without the combinatorial notion of an arbitrary subset of the natural numbers, we are left without a reason to
take the domain of all such sets to be extensionally determinate.

Weyl is not content with these negative claims. Starting in 1918, he develops a positive alternative, namely,
a novel predicative conception of set, which can legitimately be applied to the domain of natural numbers.
Since an infinite set is incompletable (or “inexhaustible”), it needs to be described by means of a rule that
“indicates properties which apply to the elements of the set and to no other objects”. (Weyl, 1918, p. 20) And
these rules need to be carefully specified in a bottom-up manner that avoids any circularity. In essence, when
formulating a rule that determines membership in an infinite set, it is permissible to quantify over the natural

29 (Hartimo, forthcoming) suggests that Husserl’s notion of “material definiteness” is rather like Weyl’s “extensional determinateness”,
and that the former’s “formal definiteness” is like Zermelo’s “categorically determined”. The idea is that what ensures that a domain is
extensionally determinate, for Weyl, is that the domain is “materially” generated from below in some iterative procedure.
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numbers, since these are independently given; but it is not permissible to quantify over sets of numbers, since
these are the very objects we are trying to characterize.

Suppose we follow Weyl and allow only predicative subsets of N. Then there is a strong argument that the
collection of sets of naturals is not properly demarcated or extensionally determinate. For, if this collection
were extensionally determinate, we could use quantification over the collection to define yet further sets of
numbers. It follows, therefore, that there is no extensionally determinate collection of absolutely all sets of
natural numbers.

Let us examine what this view yields when we explicate extensional determinateness in the way outlined
above, that is, using intuitionistic logic. Every atomic predication of natural numbers is decidable. For example,
we have:

x+ y = z↗¬ x+ y = z

Likewise, since the domain of natural numbers is assumed to be extensionally determinate, quantification over
this domain behaves classically. We capture that by means of the so-called principle of Bounded Omniscience
(BOM):

(⇐x : N(x))(∋(x)↗¬∋(x))↘ (≃x : N(x))∋(x)↗¬(≃x : N(x))∋(x)
An easy induction on syntactic complexity now shows that LEM holds for every formula of first-order
arithmetic. By contrast, we do not have Omniscience for sets of naturals. That is, the quantifier ‘⇐X ▽ N’
behaves intuitionistically, not classically.

5. Three notions of definiteness
Let us take stock. We hope to have made it clear that definiteness isn’t just a “philosophers’ notion”, detached
from “real” mathematics. Some leading mathematicians during the first half century of modern set theory
thought long and hard about definiteness. They typically started with some intuitive but rather loose ideas.
That is, they started in what one may regard as philosophical territory. Through a mixture of philosophical and
mathematical analysis, these intuitive ideas were then gradually transformed to precise logical notions.

Moreover, it has transpired that several different notions of definiteness are in play. There are two main
families. First, a condition can be intensionally definite, in the sense of being well-defined or sharply defined
in an instance-by-instance manner. This idea figures in early Cantor as well as in (Zermelo, 1908) and the
ensuing debate. The idea is naturally explicated in terms of bivalence (as in Weyl, 1921, p. 88)—and thus
also, in the context of intuitionistic logic, in terms of LEM (as we have suggested). Then, there is extensional
definiteness, which is a collective property of a collection of objects, not a distributive one. We have seen that
this notion admits of two distinct explications. One is in terms of the potentialist idea of possible coexistence
or completability, which we encountered in Cantor (especially in his letters to Hilbert and Dedekind) but also
in Zermelo’s later work, such as (Zermelo, 1930). Weyl proposes a different explication. He starts with the
intuitive idea of a domain being properly demarcated, which he explicates as a matter of the domain supporting
classical quantification.

The following table summarizes our findings, with intuitive philosophical ideas in italics and sharp logico-
mathematical explications in boldface.

ID ED

sharp, well-defined completable

Cantor Cantor

̸ ̸
Zermelo ’08 Zermelo ’30

̸

Weyl ↘
properly demarcated

̸
Weyl

̸ ̸
decidable classical quantification a plurality
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To recall, a concept C is said to be decidable just in case ⇐x(Cx↗¬Cx). Further, C is said to define a domain of
classical quantification just in case C is decidable and for every property P:

(⇐x : Cx)(Px↗¬Px)↘ (≃x : Cx)Px↗¬(≃x : Cx)Px

It remains only to clarify the precise logico-mathematical cash value of the domain forming a plurality.

Before we do that, though, we would like to make two initial observations about the relation between
the two forms of extensional definiteness. First, Weyl’s notion of extensional determinateness can be less
demanding than Cantor’s neo-Aristotelian notion of completability. We have seen that Weyl regards some
domains, such as that of the natural numbers, as incompletable yet still extensionally determinate. While such
domains have a well-defined extension, they simultaneously have an irreducibly intensional character. The
incompletability means that the domain cannot be specified as a plurality of objects but instead requires an
intensional specification. Second, Weyl’s notion of extensional determinateness is more closely connected with
the notion of intensional definiteness than Cantor’s neo-Aristotelian notion of completability. For a domain to
be extensionally determinate, in Weyl’s sense, just is for quantification over the domain to preserve intensional
definiteness. This explains the single left-to-right arrow in the above table.

We turn now to the task of providing a sharper description of the logical-mathematical cash value of having
a plurality of objects as opposed to “just” an extensionally determinate domain. Part of the answer is found in
[an already quoted] passage from Weyl:

The notion of an infinite set as a “gathering” brought together by infinitely many individual
arbitrary acts of selection, assembled and surveyed as a whole by consciousness, is nonsensical:
“inexhaustibility” is essential to the infinite. (Weyl, 1918, 23)

Weyl claims that when a domain is incompletable (or “inexhaustible”), the combinatorial conception of an
arbitrary subset of the domain is unavailable. He also implies that this is the reason why the combinatorial
conception is unavailable, which suggests that the availability of the combinatorial conception goes hand in hand
with the completability of the domain. We believe this is correct—even if one follows Cantor, as against Weyl
(and Aristotle) and regards some infinite domains as completable. The completability of a domain, whether
finite or infinite, licences talk about arbitrary subsets of the domain.

We would like to extend this analysis yet further. To do so, we find it useful to recall (Bernays, 1935)’s
rightly famous notion of “quasi-combinatorial” reasoning. The idea is introduced in the following passage:

But analysis is not content with this modest variety of platonism [i.e. the use of classical logic]; it
reflects it to a stronger degree with respect to the following notions: set of numbers, sequence of
numbers, and function. It abstracts from the possibility of giving definitions of sets, sequences,
and functions. These notions are used in a “quasi-combinatorial” sense, by which I mean: in the
sense of an analogy of the infinite to the finite. (p. 259)

To reason quasi-combinatorially is thus to treat an infinite domain as if it were finite. This “analogy of the
infinite to the finite” has several aspects. First, quantification over the domain can be understood as infinite
conjunctions or disjunctions of instances. Second, we argue as if we can form arbitrary sets of objects from the
domain. Thus, in particular, impredicative comprehension is permissible for sets of objects from the domain.
Relatedly, the Axiom of Choice will be acceptable. For any family of non-empty and non-overlapping sets
from the domain, there is a choice set containing precisely one member of each of the mentioned sets.

We can now state our proposal. The logical-mathematical cash value of a domain being completable, or
specifiable as a plurality, is that quasi-combinatorial reasoning about the domain is licensed.30 Plugging this
analysis into the above table and compressing the chronology, we obtain the following truncated table:

30 See (Florio and Linnebo, 2021, Chs. 10 and 12) for an elaboration and defense of this proposal. As the authors acknowledge (pp. 288-89),
this explication means that plural logic has rich and strong mathematical content. Indeed, as we have seen, Weyl (1918, p. 23) finds the idea
of an infinite plurality, in this sense, “nonsensical”.
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ID ED

sharp, well-defined properly demarcated completable

Cantor, Zermelo, Weyl Weyl Cantor, Zermelo

decidable classical quantification quasi-combinatorial

We observed above that a concept can define a domain of classical quantification without defining a
quasi-combinatorial domain. We now contend that there is an inclusion in the reverse direction; that is, every
quasi-combinatorial domain is also a domain of classical quantification. When a domain can be completed
as a plurality of objects, say dd, then for any generalization over the domain, there is a well-defined plurality
of instances concerned with objects from the domain. This enables us to understand quantification over the
domain as a (perhaps infinite) conjunction or disjunction of instances. And this, in turn, ensures that the domain
can be taken to support classical quantification. Thus, the Cantorian notion of extensional definiteness entails
Weyl’s. It follows that Cantor’s notion is strictly more demanding than Weyl’s.

6. A classification of views in the foundations of mathematics
We wish to close by using the two forms of extensional definiteness—namely, defining a domain of classical
quantification or even a quasi-combinatorial domain—to describe a way to classify various views in the
foundations of mathematics. A key question to ask of any view in the foundations of mathematics, we propose,
is how large a domain its proponents are willing to regard as extensionally definite in either of these two senses.

The most important types of domain to consider are: finite domains, the domain of all natural numbers,
the domain of all sets of natural numbers, any domain based on a Cantorian transfinite set, and the domain
of all Cantorian sets. Thus, there are five types of domain, each of which can be classified as having either a
weak or a strong form of extensional definiteness or neither of the two. We propose to measure the theoretical
commitments of a view in the foundations of mathematics by asking how strong a form of extensional
definiteness the view is willing to ascribe to how large a domain. Bernays (1935) famously regards these
theoretical commitments as steps towards platonism in the foundations of mathematics.

To illustrate how our proposed classification works, let us apply it to four important positions in the
foundations of mathematics identified by Bernays (1935), whose associated theoretical commitments he orders
as follows:31

intuitionism < “semi-platonism” < “restricted platonism” < “absolute platonism”

First, intuitionism accepts only finite domains as extensionally definite in either respect. Next, “semi-platonism”
regards the collection of natural numbers as a domain of classical quantification but not as a quasi-combinatorial
domain (pp. 263 and 268). This is predicativism in the sense of (Weyl, 1918). Then, “restricted platonism”,
which is Bernays’ own preferred view, regards any Cantorian transfinite set as completable (and a fortiori also a
classical domain) (p. 261). Lastly, there is “absolute platonism”, which regards the entire universe of sets as
completable (pp. 261, 267, and 269). According to Bernays, absolute platonism is shown incoherent by the
set-theoretic paradoxes, while “restricted platonism is not touched at all by the antinomies” (p. 261; see also
p. 269). We thus obtain the following classification:

31 Although (Bernays, 1935) does not use the word ‘definite’ or any cognate thereof, the four positions he identifies consist of answers to the
question of which domains have the two forms of extensional definiteness that we have identified.
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The classification can be extended beyond Bernays’ four positions as well. Let us briefly mention two
examples. First, we believe there is a coherent and interesting position that regards the countable infinity of
natural numbers as completable, and the collection of all sets of natural numbers as a classical domain, but that
refuses to go further with either notion of definiteness. This position is a form of countabilism.32 Second, it
is interesting to ask whether there is a coherent position that regards the collection of all transfinite sets as a
domain of classical quantification but not as a quasi-combinatorial domain. In the literature on potentialism,
this view has had several defenders, sometimes under the name of “liberal set-theoretic potentialism”.33 Others,
though, have questioned the coherence of the view, arguing that in the end it fares no better than Bernays’
“absolute platonism”.

We submit that the two notions of extensional definiteness that emerge from our investigation enable
us to identify and understand some of the most important fault lines in the philosophy and foundations of
mathematics. Thus, far from being detached philosophy, these notions are mathematically illuminating.
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Categoricity-like Properties in the First Order Realm

Ali Enayat and Mateusz !e"yk

Abstract: By classical results of Dedekind and Zermelo, second order logic imposes categoricity
features on Peano Arithmetic and Zermelo-Fraenkel set theory. However, we have known since
Skolem’s anti-categoricity theorems that the first order formulations of Peano Arithmetic and Zermelo-
Fraenkel set theory (i.e., PA and ZF) are not categorical. Here we investigate various categoricity-like
properties (including tightness, solidity, and internal categoricity) that are exhibited by a distinguished
class of first order theories that include PA and ZF, with the aim of understanding what is special
about canonical foundational first order theories.

Keywords: Solidity, Tightness, Internal categoricity, Schemes, Biinterpretability, Retract, Nonstan-
dard models, Peano Arithmetic, ZF

1. Introduction

By classical results of Dedekind and Zermelo, second order logic imposes categoricity features on Peano
Arithmetic and Zermelo-Fraenkel set theory. More explicitly:

Dedekind Categoricity Theorem (1888). There is a sentence + in second order logic of the form ⇐X∋(X),
where ∋(X) only has first order quantifiers, such that + holds in a structure M iff M ∼= (N,S,0), where S is
the successor function.

Zermelo Quasi-categoricity Theorem (1930). There is a sentence / in second order logic of the form ⇐X&(X),
where &(X) only has first order quantifiers, such that / holds in a structure M iff M ∼= (V0 ,△), where 0 is a
strongly inaccessible cardinal.

The above categoricity results have captured the imagination of several generations of philosophers in relation
to the debate about the determinacy of the truth-value of arithmetical and set-theoretical statements. The debate
is mediated by Skolem’s ingenious theorems that indicate that categoricity fails dramatically for the first order
formulation PA of Peano Arithmetic, and for the first order formulation ZF of Zermelo-Fraenkel set theory.1

Skolem Anti-categoricity Theorems.

(a) (1934) There is a structure M such that Th(N,+, ·) = Th(M ), but M contains an ‘infinite’ element.
Thus M ⊋ (N,+, ·).

(b) (1922) Every structure in a countable language has a countable elementary submodel. Thus, for any
strongly inaccessible cardinal 0 , there is a (countable) structure M ⊋ (V0 ,△) with Th(M ) = Th(V0 ,△).
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Here we bring together two distinct research threads in the foundation of mathematics that can be viewed
as attempting to regain the ‘lost’ categoricity of PA and ZF by formulating ‘categoricity-like’ features that
demonstrably hold for PA, ZF, and certain other canonical foundational theories.

One of these threads can be traced back to a potent result of Visser concerning PA that appears in
his substantial paper (Visser, 2006) that builds a category-theoretic framework for the study of (relative)
interpretability theory. Visser’s result inspired Enayat (2016) to introduce the notion of solidity of an arbitrary
first order theory, which allows Visser’s result to be expressed as: PA is a solid theory. Solidity is defined
model-theoretically (see Definition 7), but the completeness theorem of first order logic makes it clear that
it implies a remarkable purely syntactic condition dubbed tightness: a theory T is tight if there is no pair
of distinct deductively closed extensions of T (in the same language as T ) that are bi-interpretable (for the
definition of bi-interpretability, see Definition 1). Thus Visser’s aforementioned theorem on the solidity of PA
implies that if T1 and T2 are two consistent extensions of T in the same language as PA such that for some
arithmetical sentence ∋ , we have:

T1 ∀ ∋ and T2 ⫅̸ ∋,

then T1 and T2 are not bi-interpretable. The solidity of certain canonical foundational theories, including ZF,
was established in (Enayat, 2016) (see Theorem 14 of this paper). Enayat’s work was further extended by Freire
and Hamkins (2021) in the context of ZF and its fragments; their work shows that Z (Zermelo set theory) and
ZF

↓ (ZF without the powerset axiom) fail to be tight (and therefore are not solid). More recently, Freire and
Williams (2023) investigated tightness in the context of fragments of Kelley-Morse theory of classes and their
arithmetical counterparts; their work shows that the commonly studied proper subtheories of the aforementioned
theories fail to be tight.

The other research thread explored in this paper has a more complicated history, but for the purposes of this
introduction it can be described as germinating in the introduction of the concept of internal categoricity of
PA in full second order logic by Hellman and Parsons, which was followed by Väänänen’s introduction of the
notion of internal categoricity of Peano Arithmetic and Zermelo-Fraenkel set theory in the context of Henkin
models of second order logic in (Väänänen, 2021) and in joint work with Wang (2015), and later in the context
of first order logic, as in (Väänänen, 2019) and (Väänänen, 2021). Internal categoricity has been substantially
explored and debated in the philosophical literature, as witnessed by Button and Walsh’s monograph (2018),
the recent monograph of Maddy and Väänänen (2023), and in the recent work of Fischer and Zicchetti (2023).

Both threads explore categoricity-like properties of first order foundational theories, but they differ in an
important respect: the former thread is ‘extensional’ in the sense that its objects of study are first order theories
viewed as a set of sentences, whereas the latter thread studies the ‘intensional’ schematic representations of PA
and ZF. As we shall see in Theorem 52 of Section 4, this distinction is fundamental since despite the internal
categoricity of the ‘usual’ axiomatizations of PA and ZF, there are other schematic representations of PA and
ZF that fail to be internally categorical.

The paper is planned as follows. Section 2 is devoted to preliminary matters and a review of the pertinent
results in the literature. Our novel technical results are presented in Sections 3 and 4. Section 3 presents a
number of ‘negative’ results that demonstrate the failure of tightnness/soldity of commonly studied subtheories
of PA and ZF, thus probing the optimality of the solidity proofs established in (Enayat, 2016). One of these
negative results shows if T0 is a subtheory of any of the known canonical solid theories T (such as T = PA or
T = ZF) that is axiomatized by a collection of sentences of bounded quantifier-complexity, then T0 fails to be
tight. Section 4 studies internal categoricity and the generalizations of the categoricity-like properties studied in
(Enayat, 2016) to the context of schematic representations. This allows us to delineate the relationship between
the aforementioned threads that explore categoricity-like properties of first order foundational theories. For
example, we introduce a straightforward generalization of the concept of solidity (dubbed e-solidity) that is
applicable to schematic presentations of theories and holds for the usual schematic axiomatization of PA (but
not for ZF), and show that e-solidity implies internal categoricity. In Section 5 we reflect on the philosophical
ramifications of the technical results of the paper; and Section 6 describes what remains to be done.
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2. Preliminaries
2.1. Basic Definitions

Definition 1. We view a first order theory as a set of sentences, thus in the setting of this paper a theory need
not be deductively closed. Suppose U and V are first order theories, formulated in relational languages2 LU
and LV (respectively); and let FormLU and FormLV be the set of first order LU -formulae and LV -formulae
(respectively).

(a) We say that I is an interpretation of U in V , written U ↬I V , if I specifies a translation function

+ : FormLU ↘ FormLV

such that for each ∋ △ LU ,
U ∀ ∋ ∃V ∀ +(∋),

and the translation ∋+ := +(∋) of ∋ satisfies the following three conditions:
(1) There is a designated LV -formula % (x1, ...,xk) referred to as the domain formula (and k is referred to as the
dimension of the interpretation).
(2) There is a designated mapping P ¬↘ FP that translates each n-ary LU -predicate P into some kn-ary LV -
formula FP (including the case when P is the equality relation).
(3) The translation function + commutes with propositional connectives, and is subject to:

(⇐x∋)+ = ⇐x1 · · · xn (% (x1, · · ·,xn)↘ ∋+ ).

The translation + is called direct iff it is unrelativized, i.e.

% (x1, . . . ,xk) = (x1 = x1)∝ . . .∝ (xk = xk),

and + translates equality to equality on k-tuples.
Note that each translation + : FormLU ↘ FormLV gives rise to a uniform transformation of LV -structures into
LU -structures. That is, given any LV -structure M we obtain an LU -structure +(M ) whose domain is the set
defined in M k by % and each predicate P (including the equality predicate) is interpreted as the set defined
in M by FP. Moreover, an interpretation I based on + such that U ↬I V gives rise to an internal model
construction that uniformly builds a model M I |=U for any M |=V , where M I := +(M ).3

(b) U is interpretable in V , written U ↬ V , if U ↬I V for some interpretation I . U and V are mutually
interpretable when U ↬V and V ↬U.

(c) We indicate the universe of each structure with the corresponding Roman letter, e.g., the universes of
structures M , N , and M → are respectively M, N, and M→. Given an L -structure M and X ▽ Mn (where n is
a positive integer), we say that X is (parametrically) M -definable iff there is an n-ary formula ∋(x1, . . . ,xn)
in the language LM (respectively LM , where LM is the result of augmenting L with constant symbols cm
for each m △ M), such that X = ∋M , where ∋M = {(m1, · · ·,mk) △ Mn : (M ,m)m△M |= ∋(cm1 , · · ·,cmk)}. We
stress that in this paper M -definability means "definability in M without parameters".

(d) Suppose N is an LU -structure and M is an LV -structure. We say that M (parametrically) interprets N ,
written M ⊜ N (M ⊜par N ), iff there is a (parametric) translation + of LU -formulae to LV -formulae such
that N = +(M ). Unravelling the definition, this means that the universe of discourse of N , as well as all
the N -interpretations of LU -predicates are (parametrically) M -definable.4 Note that both ↬ and ↬par are
transitive relations.

(e) Suppose M is structure that (parametrically) interprets the structures N0 and N1. Let %0 and %1 be
the domain formulae, and ∼0, ∼1 be translations of the equality relation in the respective translations. A
(parametrically) M -definable isomorphism between N0 and N1 is a (parametrically) M -definable relation
R ▽ %M

0 ↑%M
1 such that the following hold:

2 This assumption is only for ease of exposition.
3 We often write M I instead of +(M ) to emphasize that +(M ) |=U in the context of U ↬I V . Note that translations relate formulae, and

interpretations relate theories (and their models).
4 In the case of translations that are not equality-preserving, N is the quotient structure of a definable subset of Mn under an M -definable

equivalence relation, and the predicates and functions on N are treated accordingly.

65



Ali Enayat and Mateusz !e"yk

1. The domain and the codomain of R are %M
0 and %M

1 , respectively.

2. If x0Rx1 and y0 ∼0 x0 and y1 ∼1 x1, then y0Ry1.

3. The function F : N0 ↘ N1, defined: F([x0]∼0) = [x1]∼1 iff x0Rx1, is an isomorphism between N0 and N1.

(f) A structure M is a (parametric) retract of a structure N if there is an isomorphic copy M → of M such that
M ⊜ N ⊜ M → (M ⊜par N ⊜par M →), and moreover there is a (parametrically) M -definable isomorphism
between M and M →.

(g) U is a retract of V iff there are interpretations I and J with U ↬I V , and V ↬J U a binary U-formula F
such that F is, U-verifiably, an isomorphism between idU (the identity interpretation on U) and I ∅J (where
∅ is the composition operation on interpretations). In model-theoretic terms, this translates to the requirement
that every model of U is a retract of some model of V in uniform and parameter-free manner, i.e., that the
following holds for every M |=U :

FM : M
∼=↓↘ M → := M I ∅J .

(h) U and V are bi-interpretable iff there are interpretations I and J as above that witness that U is a retract
of V , and additionally, there is a V -formula G, such that G is, V -verifiably, an isomorphism between idV and
J ∅I , where idV is the identity interpretation. In particular, if U and V are bi-interpretable, then given
M |=U and N |=V , we have

FM : M
∼=↓↘ M → := M I ∅J and GN : N

∼=↓↘ N → := N J ∅I .

(i) Suppose T is a theory formulated in a language L , and T+ is a theory formulated in a language L + ℜ L ,
and assume without loss of generality that both L and L + are relational languages. T+ is said to be a
definitional extension of T if for each n-ary relation R △ L + \ L there is an n-ary L -formula %R such that T+

is logically equivalent to the L +-theory obtained by augmenting T with axioms of the form

⇐x1 · · · ⇐xn [R(x1, · · ·,xn)∋ %R(x1, · · ·,xn)].

With the above definition in mind, two theories T1 and T2 that are formulated in disjoint languages are said to
be definitionally equivalent if they have a common definitional extension, i.e., there is a theory T such that T is
a definitional extension of both T1 and T2. Definitional equivalence is also commonly referred to as synonymy,
see (Lefever and Székel, 2019) for more detail.

Remark 2. As shown by Visser in Theorems 4.2 and 4.12 of his paper (2006), two theories U and V are
definitionally equivalent iff they satisfy a stronger form of bi-interpretability, namely, in the definition of
bi-interpretability, the condition that F is U-verifiably an isomorphism between idU and I ∅J is strengthened
to the stronger condition that F(x) = x, and similarly, the condition that G is V -verifiably an isomorphism
between idV and J ∅I is strengthened to the condition that G(x) = x. In model theoretic terms this translates
to:

M I ∅J = M for all M |=U , and N J ∅I = N for all N |=V.

Thus definitional equivalence is a stronger form of bi-interpretation; however, by a result of Friedman and Visser
(2014), in many cases definitional equivalence is implied by bi-interpretability, namely, when the two theories
involved are sequential5, and the bi-interpretability between them is witnessed by a pair of one-dimensional,
identity preserving interpretations. See also Theorem 16 below.

5 At first approximation, a theory is sequential if it supports a modicum of coding machinery to handle finite sequences of all objects in the
domain of discourse. Sequentiality is a modest demand for theories of arithmetic and set theory; however, by a theorem of Visser (2016),
(Robinson’s) Q is not sequential. However, by a theorem of Jeřábek (2012) the ‘algebraic’ fragment PA↓ of PA is already sequential; for
more on this theory, see the paragraph preceding Definition 30.
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2.2. Examples

In what follows, Q is the set of rational numbers, − is the set of finite ordinals (i.e., natural numbers), and
Th(M ) is the first order theory of the structure M .

Theorem 3. (J. Robinson, 1949) Th(Q,+, ·) and Th(−,+, ·) are bi-interpretable.6

Theorem 4. Let ZFfin be the result of replacing the axiom of infinity in the usual axiomatization of ZF by its
negation, and let TC denote the statement that every set has a transitive closure.

(a) (Ackermann, 1937; Mycielski, 1964; Kaye-Wong, 2007) PA and ZFfin+TC are definitionally equivalent.
Moreover, PA is a retract of ZFfin.

(b) (Enayat-Schmerl-Visser, 2011) ZFfin is not a retract of PA.

Theorem 5 below arose from the work of Mostowski (based on earlier ideas going back to of Gödel).7 In
what follows,

ZF
↓ := ZF

Sep+Coll \{Powerset},

where ZF
Sep+Coll is the result of substituting the Replacement scheme in the usual axiomatization of ZF with

the schemes of Separation and Collection.8 Also, in part (b) Inacc(0) expresses "0 is a strongly inaccessible
cardinal greater than (0".

Theorem 5. (Mostowski)

(a) Z2 +&1
!-AC is bi-interpretable with ZF

↓+⇐x |x|⇑ (0.

(b) KM+&1
!-AC is bi-interpretable with ZF

↓+≃0(Inacc(0)∝ ⇐x |x|⇑ 0).

Remark 6. As shown in Theorem 16 bi-interpretability cannot be strengthened to definitional equivalence
in Theorem 5. Note that Friedman and Visser (2014) exhibited a pair of ad hoc theories to show that bi-
interpretability does not imply definitional equivalence; thus Theorem 16 points to a counterexample involving
canonical theories.

2.3. Categoricity-like properties

The notions of solidity, neatness, and tightness encapsulated in the following definition were formulated in
(Enayat, 2016), but the notion of a minimalist theory in (a) below is new.

Definition 7. Suppose T is a first-order theory.

6 As pointed out by Friedman and Visser, the main result of (2014) can be used to show that bi-interpretability can be improved to definitional
equivalence here.

7 For further bibliographical references for part (a) of Theorem 5, see Notes for section VII.3 of Simpson’s encyclopedic exposition (2009),
and for part (b) see Chapter 2 of Williams’ doctoral dissertation (2018).

8 Indeed this is how ZF is sometimes axiomatized, as in Chang and Keisler’s textbook on model theory (1990), in contrast to set theory
textbooks by Kunen (1980) and Jech (2003) that use the replacement scheme. Recall that the instances of the Separation scheme consist of
universal generalizations of formula of the form

⇐b≃a⇐x(x △ a ∋ ∋(x)) ,
where the parameters of ∋ are suppressed, and instances of the Collection scheme consist of universal generalizations of formulae of the
form

(⇐x △ a ≃y &(x,y))↘ (≃b ⇐x △ a ≃y △ b &(x,y)) ,

where the parameters of & are suppressed. It is well-known that ZF and ZFSep+Coll axiomatize the same theory; but in the absence of the
powerset axiom, the latter theory is stronger; as demonstrated in (Gitman, Hamkins and Johnstone, 2016). By a classical theorem of Scott
(1961), the same discrepancy between ZF and ZFSep+Coll arises in the absence of the extensionality axiom.
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• Each of the following definitions is in the form of an implication. Note that in parts (a) and (b), the
parameters in the conclusion of each of the implications should be understood to be a subset of the
parameters used in the premises. 9

(a) T is minimalist (maximalist) iff for every model M |= T and every model N |= T such that M ⊜par N ,
there is a unique parametrically M -definable embedding of M into N (resp. embedding of N into M ).

(b) T is solid iff the following holds for all models M , M →, and N of T :

If M ⊜par N ⊜par M → and there is a parametrically M -definable isomorphism i0 : M ↘ M →, then there is a
parametrically M -definable isomorphism i : M ↘ N .

In other words, T is solid iff for every two models M and N of T , if M is a parametric retract of N , then
M and N are isomorphic via a parametrically M -definable isomorphism.

(c) T is neat iff for any two deductively closed extensions U and V of T (both of which are formulated in the
language of T ), if U is a retract of V , then V ▽U .

(d) T is tight iff for any two deductively closed extensions U and V of T (both of which are formulated in the
language of T ), U and V are bi-interpretable iff U =V.

Remark 8. The following can be readily verified on the basis of the relevant definitions.

(a) If T is minimalist (maximalist), then T is solid.

(b) A solid theory is neat, and a neat theory is tight.

(c) Solidity, neatness and tightness are invariant under bi-interpretations.

Remark 9. Suppose we define a theory T to be strongly solid if, in the definition of solidity, the conclusion
that there is a (parametrically) M -definable isomorphism between M and N , is changed to the existence of a
(parametrically) N -definable isomorphism between N and M →. It is easy to see that strong solidity implies
solidity. Surprisingly, strong solidity is implied by solidity. We owe this observation to Leszek Ko"odziejczyk.
To see why, suppose that i is an isomorphism between M and N , and j is an isomorphism between M and
M →. Also let h(p), where p denotes the parameters, be the translation that yields an interpretation of M → in
N . Then M sees h(i↓1(p)) and sees an isomorphism between itself and the model given by h(i↓1(p)) (the
isomorphism is i↓1 ∅ j). Hence by applying i to M , N sees its isomorphism with the model given by h(p),
and hence with M →.

3. Categoricity of first-order theories

3.1. Positive results

In this section we present known results about categoricity-like properties. We begin with the following result
of Albert Visser that inspired the first-named-author’s paper (Enayat, 2016). Visser’s result follows from
Corollaries 9.4 and 9.6 of his paper (Visser, 2006). For a streamlined proof, see (Enayat, 2016).

Theorem 10. (Visser) PA is solid.

Another way of seeing that PA is solid is via part (a) of Remark 8 since PA can be readily shown to be a
minimalist theory, as indicated in the proposition below.

Proposition 11. PA is minimalist.

9 This restriction on parameters was only implicit in (Enayat, 2016); it is made explicit in light of two considerations: (1) the solidity proofs
established in (Enayat, 2016) that inspired the definition abide by this restriction; and (2) The proof of Theorem 74 of this paper that
establishes that internally categoricity is implied by e-solidity does not go through for the ‘liberal’ notion of solidity that imposes no
restriction on the behaviour of the parameters (indeed we have an example that shows that the aforementioned implication provably fails if
the restriction stipulated here on parameters is violated).
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Proof. Suppose M and N are models of PA and M ⊜par N . A recursion within M can be used to construct
a parametrically definable embedding f of M onto an initial segment of N , where f (0M ) = 0N , and
f ((x+1)M ) = ( f (x)+1)N . Then, by using induction in M , one can readily show that if g is a parametrically
definable embedding of M onto an initial segment of N , then f (m) = g(m) for all m in M .10

In light of part (a) of Theorem 4 and part (b) of Remark 8, Theorem 10 yields the following corollary.

Corollary 12. ZFfin+TC is solid.

Remark 13. It is easy to see that PA is not a maximalist theory, since for example a nonstandard model of PA
is interpretable in the standard model of PA, but of course the latter cannot be embedded in the former. It is also
noteworthy that ZF is neither minimalist nor maximalist. To see the former, note that if M |= ZF+≃0 Inacc(0),
then M can interpret ZF via its definable submodel (V0 ,△)M , however there can be no definable embedding
of M into (V0 ,△)M .11 To see that ZF is not a maximalist theory, let M be a well-founded model of ZFC,
and let N be an internal ultrapower of M modulo a nonprincipal ultrafilter over P(−)M . Note that N is
interpretable in M and N is ill-founded, and clearly there can be no embedding of N into M .

The list of examples of solid theories was extended in the first-named-author’s paper (Enayat, 2016) to other
well-known foundational theories, as indicated in the next theorem. In what follows Zn is n-th order arithmetic,
and KMn is n-th order Kelley-Morse theory of classes, where Z1 := PA, and KM1 := ZF. Also, Z− is the theory
of types (with full comprehension) whose level-zero objects form a model of PA (equivalently ZFfin+TC), and
KM− is the theory of types whose level-zero objects form a model of ZF are also solid theories.

Theorem 14. Each of the theories in the family S of theories below is solid:

S = {Zn : 1 ⇑ n △ −}ℑ{KMn : 1 ⇑ n △ −}ℑ{Z− ,KM−}.

As noted in (Enayat, 2016), the following corollary follows from putting part (c) of Remark 8 together with
Theorem 14 and the bi-interpretability of the theories in (a) and (b) of Theorem 5 with appropriate extension of
Z2 and KM (respectively). Recall from the paragraph preceding Theorem 5 that ZF↓ is the result of removing
the Powerset axiom from ZF

Sep+Coll.

Theorem 15. The following theories are solid:

(a) ZF
↓+⇐x |x|⇑ (0.

(b) ZF
↓+≃0(Inacc(0)∝ ⇐x |x|⇑ 0).

Theorem 16. Bi-interpretability cannot be improved to definitional equivalence in parts (a) and (b) of Theorem
5 (assuming the consistency of ZF plus an inaccessible cardinal for part (a), and the consistency of ZF with two
inaccessible cardinals for part (b)).

Proof. We first deal with part (a). Note that by a classical argument going back to Mostowski (which inspired
Theorem 5), within ZFC the standard model (P(−),−,+, ·,△) of Z2 +&1

!-AC is bi-interpretable with the
standard model (H(−1),△) of ZF↓+⇐x |x|⇑ (0. Thus, thanks to Theorem 5 and part (a) of Theorem 15 any
model of ZF↓+⇐x |x|⇑ (0 that is bi-interpretable with (P(−),−,+, ·,△) must be isomorphic to (H(−1),△).

On the other hand, by a classical theorem, due to Solovay (1970, Theorem 2), assuming the existence of an
inaccessible cardinal, there is a model M of ZFC (obtained by set forcing) in which CH holds (i.e., 2(0 = (1)
and all projective sets of reals are Lebesgue measurable. Note that (1) the submodel H(−1)M of hereditarily
countable sets of such an M satisfies ZF↓+⇐x |x|⇑ (0, and the standard model (P(−),−,+, ·,△)M of Z2
of M satisfies &1

!-AC. Within M evidently H(−1) has a parameter-free definable subset of order-type −1, but

10 Note that the proof only uses the fact that N |=Q (where Q is Robinson Arithmetic).
11 One can bypass the appeal to the existence of an inaccessible cardinal in M with a more refined argument that takes advantage of the

reflection theorem in M .
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(P(−),−,+, ·,△) does not have a parametrically definable subset of order-type −1. More specifically, recall
that the projective sets are precisely the subsets of P(−) that are parametrically definable in (P(−),−,+, ·,△);
and under CH, Fubini’s theorem (in measure theory) implies that any linear order on P(−) that is of order
type −1 fails to be measurable when viewed as a subset of the cartesian product of P(−) with itself as first
observed by Sierpiñski. Here P(−) is identified with the coin-tossing product measure space 2− . In light of
the first paragraph of the proof, this shows that the definitional equivalence of the theories Z2 +&1

!-AC and
ZF

↓+⇐x |x|⇑ (0 within M implies that, as viewed in M , there is a projective nonmeasurable subset of the
cartesian product of P(−) with itself, contradiction.

A similar argument can be carried out for part (b), using a generalization of Solovay’s proof (which requires
the existence of at least two inaccessible cardinals) in which − is replaced by an inaccessible cardinal, and
"projective" is replaced by "parametrically definable in the natural model of KM associated with V0 in which
classes are interpreted as members of V0+1". For a proof outline of this generalization, see Schultzenberg’s
MathOverflow answer (2023).

Note that the statement "U and V are definitionally equivalent", where both U and V are arithmetically
definable theories (let alone computable theories) is an arithmetical sentence, and therefore its truth-value
does not change in the passage to a Boolean-valued extension of the universe obtained by forcing; thus, we
have shown (reasoning in ZFC plus “there is an inaccessible cardinal") that the two theories asserted to be
bi-interpretable in part (a) of Theorem 5 not only fail to be definitionally equivalent in some model of ZFC, but
are outright not definitionally equivalent assuming the existence of an inaccessible cardinal. A similar comment
applies to part (b) of Theorem 5, assuming the existence of two inaccessible cardinals.

Remark 17. In private communication, Vincenzo Dimonte has pointed out that the above generalization of
Solovay’s theorem (for the proof of part (b) of Theorem 16) can be derived from Theorem 2.19 and Lemma
2.21 of Schlicht’ paper (2017) (that pertain to the same model considered by Schultzenberg). Moreover, one
of the referees has pointed out the following two points. Firstly, Schultzenberg’s aforementioned proof in
(2023) contains a small gap that can be filled by consulting Kanamori’s exposition (2009, p. 141) of Solovay’s
proof that the perfect set property holds. Secondly, the assumption for part (a) of Theorem 16 can probably be
reduced to the consistency of ZF since by forcing with the partial order Col(−,<Ord) one obtains a model that
sufficiently behaves like the Solovay model (and one can probably use the same idea to reduce the assumption
in part (b) of Theorem 16 to the consistency of ZF plus an inaccessible).

The following adds another prominent theory to the list of solid theories.

Theorem 18. ZF\{Infinity}+TC is solid.

Proof. As shown by Visser (see Corollaries 9.6 and 9.8 of Visser, 2006), if U is a consistent extension of PA
and V is a consistent extension of ZF, then U is not a retract of V , and V is not a retract of U . An inspection of
Visser’s proofs of the aforementioned results allows us to conclude the following stronger statements:
(1) No model of PA is a parametric retract of a model of ZF.
(2) No model of ZF is a parametric retract of a model of PA.
Since TC is a theorem of ZF, it is routine to verify that ZF\{Infinity}+TC is a solid theory with the help of
(1) and (2) together with the bi-interpretability of ZFfin+TC and PA (part (a) of Theorem 4), the solidity of PA
and ZF (Theorem 14), and part (c) of Remark 8.

3.2. Reflecting on the positive results

Let S be the list of theories whose solidity is asserted in Theorem 14. The following question is motivated
by the fact that none of the theories T △ S is finitely axiomatizable. This is because each theory T △ S is
inductive, i.e., T proves Q

N + Ind
N (LT ); here N is a designated interpretation N of arithmetic in T , Q

is Robinson Arithmetic, and Ind
N(LT ) is the scheme of induction over natural numbers for LT -formulae (in

which the parameters are allowed to vary over the domain of discourse and are not limited to the ‘numbers’ of
N ). Recall that by a classical theorem of Montague (1961), for a sequential12 theory T , the T -provability of
Q

N + Ind
N (LT ) implies that T is not finitely axiomatizable.
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Question A. Is there a consistent sequential finitely axiomatized solid theory?

In Theorem 39 and 38 of this paper we give a partial negative answer to Question A by showing that finitely
axiomatized subtheories of the theories PA, Z2, ZF, and KM fail to be tight (and therefore they are not solid).
Indeed our method can be used to show that no finitely axiomatized subtheory of any theory T in the list S of
Theorem 14 is tight.

An inspection of the proofs of the different cases of Theorem 14 presented in (Enayat, 2016) makes it clear that
the proofs of solidity of each of the T △ S uses the ‘full power’ of T . This prompts the next question.

Question B. Is there an example T of one of the theories whose solidity is established in Theorem 14, and some
solid deductively closed proper subtheory of T ?

Remark 19. Very recent joint work (in progress) of Piotr Gruza, Leszek Ko"odziejczyk, and the second-named-
author of this paper shows that Question B has a positive answer for T = PA; indeed their work shows that the
example in this case can be even required to contain any prescribed I%n. Also, note that by putting Corollary 12
and part (a) of Theorem 18 we obtain a positive answer to Question B for the subtheory ZF\{Infinity}+TC of
T = ZF.

In the remaining subsections of this section, we first review published results concerning the failure of
solidity/tightness established in (Enayat, 2016), (Freire and Hamkins, 2021), and (Freire and Williams, 2023) in
Subsection 3.3, and then we present new results concerning the failure of solidity/tightness in Subsection 3.4.

3.3. Known negative results

As pointed out in (Enayat, 2016) inductive13 sequential theories need not be tight since the theory PA(G), with
no extra axioms for G, is not tight (where G is a fresh predicate). Here PA(G) is the result of augmenting PA

with the scheme of induction for all formulae in the language LPAℑ{G}. In the same paper, the proofs of the
following results were outlined:

(1) ZFfin is not tight (the proof is based on a construction from Enayat, Schmerl and Visser, 2011). This makes
it clear that ZF\{Infinity} is not tight, since tightness is inherited by theory extensions (in the same language).

(2) ZF\{Foundation} and ZF\{Extensionality} is not tight (the proofs employs classical techniques for building
models in which Extensionality or Foundation fails).

The list of proper subtheories of ZF that fail to be tight/solid was further extended by Freire and Hamkins
(2021), who showed that Z (Zermelo set theory) and ZF \ {Powerset} also fail to be tight (even when ZF is
formulated with the schemes of Separation and Collection).

More recently, Freire and Williams (2023) established the failure of tightness of well-known fragments of
Z2 and KM. Their work shows that for each n △ − , the fragments of Z2 and KM in which the comprehension
schema is limited to &1

n-formulae fails to be tight even when the full scheme of induction (for the case of
fragments of Z2) or the full scheme of △-induction (for the case of fragments of KM) are included. In
particular, their work shows that the subsystems &1

n-CA of Z2 in which the comprehension scheme is limited to
&1

n-formulae (but the full induction scheme is kept) fail to be tight.14

12 At first approximation, a theory is sequential if it supports a modicum of coding machinery to handle finite sequences of all objects in
the domain of discourse. Sequentiality is a modest demand for theories of arithmetic and set theory; however, by a theorem of Visser
(2016), (Robinson’s) Q is not sequential. There are many equivalent definitions of sequentiality; the original definition due to Pudlák is as
follows: A theory T is sequential if there is a formula N(x), together with appropriate formulae providing interpretations of equality, and
the operations of successor, addition, and multiplication for elements satisfying N(x) such that T proves the translations of the axioms of Q
(Robinson’s arithmetic) when relativized to N(x); and additionally, there is a formula # (x, i,w) (whose intended meaning is that x is the i-th
element of a sequence w) such that T proves that every sequence can be extended by any given element of the domain of discourse. For
more detail and references see Visser’s (2013).

13 Inductive theories are defined in the paragraph preceding Question A.
14 Independently and earlier, the first-named-author of this paper demonstrated the failure of tightness of the subsystem ACA (i.e., ACA0 with

the full scheme of induction) using a forcing argument similar to the one used by Freire and Williams. The proof was presented in an online
seminar talk (Enayat, 2021).
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3.4. New negative results

Definition 20. N is the standard model of PA, i.e., (−,+, ·), and given a model of arithmetic M ,

Th&n(M ) = {∋ △ &n : M |= ∋}.

Also PA&n = {∋ △ &n : PA ∀ ∋}.15 Here &n refers to the usual hierarchy of arithmetical formulae as in (Kaye,
1991) and (Hájek and Pudlák, 1998).

Definition 21. For M |= PA and n △ − , Kn(M ) is the submodel of M whose universe consists of elements of
M that are definable in M by a %n-formula.

The following result is classical; it is due independently to the joint work of Kirby and Paris (1978) and to
Lessan.16 An exposition can be found in Kaye’s monograph (1991).

In what follows the notation A ∈&n B means that &n-formulae are absolute in the passage between the
arithmetical structures A and B; I%n is the fragment of PA in which the induction scheme is limited to
%n-formulae, and B%n is the result of restricting the collection scheme to %n-formulae.

Theorem 22. (Kirby-Paris, Lessan) Suppose n △ − , n ′ 1, and M is a nonstandard model of PA, then:

(a) Kn(M )∈&n M , hence Kn(M ) |= Th&n+1(M ).

(b) If Kn(M ) is nonstandard, then Kn(M ) |= PA&n+1 + I%n↓1 +¬B%n.

The following result also appears in Lessan’s doctoral dissertation.

Theorem 23. (Lessan) Suppose n △ − , n ′ 1, M |= PA, and Kn(M ) is nonstandard for some model M |= PA.
Then the standard cut − is first order definable in Kn(M ).

Proof. (Outline) The key idea is that the complement of the standard cut can be defined in Kn(M ) via the
formula that expresses “every element is definable by a %n-formula whose code is below x”. Recall that there is
a %k-definable satisfaction class of complexity %k within models of I∋0+Exp for each nonzero k △ − (see Hájek
and Pudlák, 1998). In particular since Kn(M ) |= PA&2 for n ′ 1, Kn(M ) carries a %n-definable satisfaction
class of complexity %k for each nonzero k △ − .

Theorem 24. For each n △ − the following statements hold:

(a) N is bi-interpretable with a nonstandard model of the form Kn+1(M ), where M |= PA, and Kn+1(M ) |=
Th&n(N)+¬B%n+1.

(b) Th(N) is bi-interpretable with a complete extension of PA&n+2 +Th&n(N)+¬B%n+1.

Proof. To establish (a), we note that for a prescribed n △ −, Th&n(N) is arithmetically definable, thanks to the
existence of a definable &n-satisfaction class, i.e., an arithmetically definable predicate that satisfies Tarski’s
recursive clauses for a satisfaction predicate for all &n-formulae. Consider the arithmetically definable theories
Tn and T+

n defined by:

Tn := PA+Th&n(N), and T+
n := Tn +¬Con(Tn).

15 It is easy to see that I%n is a proper subtheory of PA&n+2 . The inclusion follows from the fact that each axiom of I%n is of complexity
at most &n+2; for the inequality, use Gödel’s second incompleteness theorem and the fact that for all n △ − , ConI%n △ PA&1 (thanks to
Mostowski’s Reflection Theorem, which asserts that PA and all of its extensions prove the formal consistency of each of their finitely
axiomatized subtheories).

16 The result appears in Lessan’s doctoral dissertation (Manchester, 1978) that was reprinted in (Cégielski, Cornaros and Dimitracopoulos,
2013).
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Recall that Gödel’s second incompleteness theorem, when phrased for arbitrary consistent sound arithmetical
theories U , states that U +¬Con(U) is consistent (see, e.g., Chao and Seraji’s (2018)). Here U is sound means
that N |=U . Therefore N |= Con(T+

n ). Thanks to the arithmetized completeness theorem, this makes it clear
that there is an arithmetical model M |= T+

n ; thus N⊜M , so we can fix a translation +1 such that M = +1(N).

Let c △ M be the least proof of inconsistency of Tn in M . Since True&n is &n-definable (for n ′ 1),
the predicate P(x) expressing "x codes a proof of contradiction from PA+True&n” is &n, and therefore the
predicate Q(x) := P(x)∝⇐y < x ¬P(x) is of the form &n∝%n; hence c is %n+1-definable in M . This shows that
Kn+1(M ) is nonstandard. Thanks to the availability of a truth-definition for %n+1-formulae in M , Kn+1(M ) is
interpretable in M , thus there is a translation +2 such that Kn+1(M ) = +2(M ). This makes it clear that by
composing +1 and +2 we obtain a translation + such that Kn+1(M ) = +(N).

By Theorem 22,
Kn+1(M ) |= PA&n+2 +¬B%n+1,

and by Theorem 23, N is definable in Kn+1(M ). This makes it clear that Kn+1(M )⊜ N. It is routine now to
verify that N is a retract of Kn+1(M ). Note that this shows that Th&n(N) is not solid since N and Kn+1(M ) are
non-isomorphic. Indeed, Kn+1(M ) is also a retract of N (with the same interpretations at work) since Kn+1(M )
has a truth-definition for %n+1-formulae, so it can define an isomorphism between itself, and the model that N
cooks up via the translation + (recall that Kn+1(M ) = +(N)). This concludes the proof of (a).

The proof of (b) is based on the observation that the proof of (a) works uniformly for all models of for
U = Th(N) and V = Th(Kn+1(M )).

Part(b) of Theorem 24 immediately implies the following result.

Theorem 25. The following statements hold for each n △ − .

(a) Th&n(N) is not tight.

(b) PA&n is not tight.

The failure of tightness (and, a fortiori, the failure of solidity) for bounded fragments of PA (i.e., those
axiomatized by a collection of sentences of bounded quantifier complexity) naturally prompts one to investigate
the possibility of solidity/tightness of commonly studied fragments of PA that are unbounded. One such
fragment is presented in the following definition.

Definition 26. Given a recursively enumerable theory T extending I!0 +Exp, let RefT consist of the collection
of sentences of the form

ProvT (≿∋≳)↘ ∋,

where ∋ ranges over arithmetical sentences, and ProvT (x) is the arithmetical sentence that expresses “∋ is
provable in T ”.

Proposition 27. (Feferman, 1960). T +Th&1(N) ∀ RefT .17

Proof. It suffices to show that if M |= T +Th&1(N), then M |= ProvT (≿∋≳)↘ ∋ for any given arithmetical
sentence ∋ . Suppose not, then:

(1) M |= ProvT (≿∋≳), and

(2) M |= ¬∋.
The key observation is that since ProvT (≿∋≳) is a %1-statement, N |=ProvT (≿∋≳); otherwise N |=¬ProvT (≿∋≳),
which by the assumption that M |= Th&1(N), contradicts (1). But if N |= ProvT (≿∋≳), then ∋ is provable in T ,
which contradicts (2).

17 In Feferman’s formulation, T was specifically chosen as PA, but the same reasoning handles the general case. Also, as pointed by Lev
Beklemishev (in private conversation) Feferman noticed this fact while thinking on Turing’s (false) hope that iterated local reflection can
prove all true &2-sentences.
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Theorem 28. PA&n +RefPA&n
is not tight for each n △ − .

Proof. This is readily established by putting Theorem 25 together with Proposition 27 (for T = PA&n).

Remark 29. It is important to bear in mind that the stronger scheme REFT whose instances are uniform
versions of the instances of RefT , i.e., implications of the form

⇐x ProvT (≿∋( ·x)≳)↘ ∋(x)),

behaves very differently, since by a classical result of Kreisel and Levy, (1968), for T = I∋0+Exp the deductive
closure of T +REFT coincides with the deductive closure of PA.

Another unbounded subtheory of PA that we shall consider is PA↓+Collection . The following definition
describes an important family of models of the well-known fragment PA↓ of PA, whose axioms describe the
non-negative substructure of discretely ordered rings (with no instance of the induction scheme, hence the
minus superscript), as in Chapter 2 of Kaye’s text (1991) on models of PA. As we shall see, PA↓+Collection

fails to be solid.

Definition 30. Let Z be the ring of integers and (I,<I) be a linear order.

(a) Z[Xi : i △ I] is the ring of polynomials with coefficients in Z, whose indeterminates come from the I-indexed
collection {Xi : i △ I} of indeterminates.

(b) Each nonconstant p △ Z [Xi : i △ I] can be written as:

p(Xi1 ,Xi2 , · · ·,Xin) where i1 <I i2 <I · · ·<I in,

for some finite subset {i1, i2, · · ·, in} of I, with the understanding that {i1, i2, · · ·, in} is the least (in the sense of
inclusion) subset of A ▽ I such that p △ Z[Xi : i △ A]. With this notation in mind, we refer to {i1, i2, · · ·, in} as
the support of p.

(c) The ordering on Z [Xi : i △ I] is defined by first declaring p(Xi1 ,Xi2 , · · ·,Xin)> 0, provided the coefficient of
Xin is positive; and then given p and q in Z [Xi : i △ I], we define p > q iff p↓q > 0.

The following proposition is well-known and easily verified.

Proposition 31. For every linear order (I,<I) the substructure Z[Xi : i △ I]′0 of non-negative elements of
Z[Xi : i △ I] is a model of PA↓.

Remark 32. The set − of standard natural numbers (equivalently: constant non-negative polynomials) is
defined in Z[Xi : i △ I]′0 as the longest initial segment of elements with parity, i.e., for all p △ Z[Xi : i △ I]′0,
p △ − iff ⇐q ⇑ p ≃r [(q = 2r)↗ (q = 2r+1)] .

In the proposition below, Q is the set of rational numbers and Q
↓ is the set of negative rational numbers, both

equipped with their natural ordering.

Proposition 33. Z [Xi : i △Q]′0 elementarily end extends Z [Xi : i △Q
↓]′0 .

Proof. It is routine to verify that Z [Xi : i △Q
↓]′0 is end extended by Z [Xi : i △Q]′0, so we focus on verifying

elementarity. Suppose ∋(p1, · · ·, pk) is an arithmetical sentence all of whose parameters p1, · · ·, pk are from
Z[Xi : i △Q

↓]′0. Since the support of each polynomial is finite, there is an initial segment S of Q↓ such that:

(1) S has no last element;

(2) Q↓\S has no first element; and

(3) For 1 ⇑ i ⇑ k, the support of pi is a subset of S.
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Note that (1) implies that S is a DLO (dense linear order without end points), and (2) implies that both Q
↓\S

and Q\S are also DLOs. Thanks to (0-categoricity of DLOs, this shows that there is an order isomorphism
f : Q↓ ↘Q such that f (s) = s for each s △ S. This isomorphism naturally induces an isomorphism F with:

F : Z
[
Xi : i △Q

↓]′0 ↘ Z [Xi : i △Q]′0 ,

such that F fixes all elements in Z [Xi : i △ S]′0 . This makes it clear that ∋(p1, · · ·, pk) holds in Z [Xi : i △Q
↓]′0

iff ∋(p1, · · ·, pk) holds in Z [Xi : i △Q]′0, since by an elementary fact of model theory if g is an isomorphism
between two L -structures M and N , then for any n-ary L -formula ∋(x1, · · ·,xk), and any k-tuple (a1, · · ·,ak)
from M , M |= ∋(a1, · · ·,ak) iff N |= ∋(g(a1), · · ·,g(ak)).

In light of the well-known fact that the Collection scheme holds in linearly ordered structures that possess
an elementary end extension18, the following is an immediate consequence of Proposition 33.

Corollary 34. Z[Xi : i △Q]′0 |= Collection.

Theorem 35. PA
↓+Collection is not solid.19

Proof. By Proposition 31 and Corollary 34 Z[Xi : i △Q]′0 is a model of PA↓+Collection, and of course so is
N, and the two structures are nonisomorphic, so it suffices to verify that there are I and J such that:

N⊜I
Z[Xi : i △Q]′0 ⊜J

N,

and there is an N-definable isomorphism i : N↘ N
J ∅I . The description of Z[Xi : i △Q]′0, and the fact that

there is an arithmetically definable ordering <Q on − such that (−,<Q)∼=Q yields I such that N⊜I
Z[Xi :

i △Q]′0. On the other hand, the definability of − in Z[Xi : i △Q]′0 (as indicated in Remark 32) provides J
such that Z[Xi : i △Q]′0 ⊜J

N, and there is an N-definable isomorphism i : N↘ N
J ∅I .

Remark 36. We conjecture that the method of proof of Theorem can be adapted to show the failure of solidity
of the much stronger theory IOpen+Collection, where IOpen is the fragment of PA in which the induction
scheme is limited to open formulae (i.e., quantifier-free formulae). Note that IOpen+Collection is a proper
subtheory of PA. Our conjecture is based on the following two well-known facts:

(1) There is a countable nonstandard model M0 of IOpen that has no nonstandard primes; this implies, thanks
to Bertrand’s ‘postulate’, that the standard cut is definable in M0 by the ∋0 formula % (x) := "There is a prime
number between x and 2x". This result is due to Shepherdson (1964).

(2) As noted by Marker (1991) every model of IOpen has an end extension to a model of IOpen; the basic
ingredients of Marker’s construction are found in Shepherdson’s paper (1964); the end extension is built using
the technology of Puiseux series/polynomials.

More specifically, since the axioms of IOpen are of the form ⇐≃, they are preserved under unions of chains, so
(2) can be used to build a continuous end-extension chain of countable model ↙M∀ : ∀ < −1⊤, where M0 is
as in (1). This makes it clear that the union M−1 of the chain satisfies IOpen+Coll and end extends M0. It
is evident that M−1 is a model of IOpen in which the standard cut is definable, thus M−1 is not a model of
PA. By a variation of this argument, we can build an arithmetically definable model M (I) of IOpen for any
arithmetically definable linear order (I,<I) such that M (Q↓) is elementarily end extended by M (Q), and thus
M (Q) satisfies the collection scheme. Then with an adaptation of the proof strategy of Theorem 35 one can
verify the failure of solidity of IOpen+Collection. A detailed description of M (Q) is presented in (Enayat,
!e"yk and Visser, to appear).

Remark 37. In contrast with Theorem 35 and Remark 36, I∋0 + Collection is a solid theory since it is
well-known (see Kaye, 1991) that it is deductively equivalent to PA, which is solid by Theorem 10.

18 Indeed, by a classical result of Keisler, for countable models, the converse also holds, i.e., if a countable linearly ordered model M (in a
countable language) satisfies the collection scheme, then M has an elementary end extension.

19 Perhaps the proof of this theorem can be fine-tuned so as to demonstrate the failure of tightness of PA↓+Collection, but we have not yet
been able to formulate such a fine-tuning.
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We close this subsection by showing that Theorem 25 can be extended to other theories whose solidity was
asserted in Theorem 14.

Theorem 38. No finitely axiomatizable subtheory of T is tight, where T is any of the theories in the list S of
Theorem 14.

Below in Theorem 39 we present a stronger version of the above result for T = ZF; our method of proof together
with Theorem 5 make it clear that similar results can be given for each of the theories T whose solidity was
asserted in Theorem 14. What allows us to extend the argument is that the analogue of Theorem 5 holds for Z∀
and KM∀ for each ∀ ⇑ − , as shown in (Marek and Zbierski, 1978).

Our method of proof is similar to the proof of Theorem 24. In what follows we use the notation ∋0,
%n, and &n in the context of the Levy hierarchy of set-theoretical formulae; and we use ZF&n to denote
{∋ △ &n : ZF ∀ ∋}.

Theorem 39. If ZF is consistent, then for each n △ − the following hold:

(a) ZF&n is not solid.

(b) ZF&n is not tight.

Proof. Assuming the consistency of ZF, by Gödel’s second incompleteness theorem, and Gödel’s relative consis-
tency proof of ZF+V = L, ZF+V = L+¬ConZF is consistent, and therefore by the arithmetized completeness
theorem there is a countable model M such that:

(1) M |= ZF+V = L+¬ConZF, and

(2) The elementary diagram of M is definable in N; in particular, N⊜ M .

As in the arithmetical case, given n △ − , let Kn(M ) be the submodel of M whose universe consists of elements
of M that are definable in M by a %n-formula.

The lemma below is the analogue of Theorem 22. Notice that there is a ‘lag’ in relation to the arithmetical
case in the amount of theory-inheritance of Kn(M ) from the parent-structure M ; this is due to the higher
complexity of the global well-ordering at work in set theory (under the assumption that V = L), as we shall see.
Also notice that in part (b) there is no nonstandardness assumption. In part (b) of Lemma 40, Coll(%n) is the
collection scheme for %n-formulae of set theory, whose instances are of the form:

(⇐x △ a ≃y &(x,y))↘ (≃b ⇐x △ a ≃y △ b &(x,y)) ,

where & is a %n-formula whose parameters are suppressed.

Lemma 40. Suppose M |= ZF+V = L, and n △ − with n ′ 2.

(a) Kn(M )∈&n↓1 M , hence Kn(M ) |= Th&n(M ).

(b) Kn(M ) |= ZF&n +¬Coll(%n+1).

Proof of Lemma 40. The proof of part (a) is similar to the proof of part (a) of Theorem 22 except for one
important difference: in the arithmetical case, the well-ordering < of the universe has a ∋0-graph, but within
ZF+V = L the canonical well-order <L of the universe has a %1-graph (see Lemma 13.19 of Jech, 2003). We
present the proof of (a) for n = 2, the general case is handled similarly.

By the Tarski-Vaught test, to show that K2(M )∈&1 M it suffices to verify that if for some a △ K2(M )
we have M |= ≃x+(x,a) for some %1-formula +(x,y), then there is some b △ K2(M ) such that M |= +(b,a).
Towards this goal, assume that for some a △ K2(M ) we have:

M |= ≃x ≃v % (x,v,a),
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where % (x,v,a) is ∋0. Thanks to the availability of a ∋0-definable ordered pairing function ↙·, ·⊤ we can re-write
the above as:

M |= ≃w % ((w)0,(w)1,a),

where w = ↙(w)0,(w)1⊤. In the next step we minimize the w in (3) using the %1-definable global well-ordering
<L by choosing c in M such that:

M |= % ((c)0,(c)1,a)∝⇐z(z <L c ↘ ¬% ((c)0,(c)1,a)) .

An inspection of the above makes it clear c has a &1-definition )(y,a) (with parameter a) in M . Since the
element a is %2-definable in M by assumption, let &(y) be a %2-formula defining a in M . It suffices to show
that by eliminating a from )(y,a) with the help of &(y) we reach a %2-definition of c in M . Towards this aim,
consider the formula:

/(x) := ≃y()(x,y)∝&(y)).

Clearly c is the unique element in M that satisfies /(x). The formula /(x) is of the form ≃(%2 ↗%1), so it can
be put in the form ≃(%2), which makes it clear that / is %2. This concludes the proof of part (a).

We now turn to the proof of (b). It is clear from part (a) that Kn(M ) |= ZF&n↓1 since M is assumed to be a
model of ZF. So we focus on the failure of %n-Collection in Kn(M ) |= ZF&n↓1 . But first we need to address the
question of definability of %k-satisfaction predicate within fragments of ZF (it has been known since Levy’s
pioneering work that within full ZF there is a %k-satisfaction class that is %k-definable for each k ′ 1).

As pointed out in Theorem 2.9 of (Enayat and McKenzie, 2021) (the statement of which involves KP + the
axiom of infinity, but the axiom of infinity is not used in the proof) within KP there is a %k-satisfaction class
that is %k-definable for each k ′ 1.20 Here KP is Kripke-Platek set theory; a frugal theory of sets whose axioms
do not include the axiom of infinity. In our formulation (following recent practice, led by Mathias, 2021) the
scheme of foundation is limited to &1-formulae (equivalently: the scheme of △-induction for %1-formulae).
Thus in contrast to Barwise’s KP in (1975), which includes the full scheme of foundation, our version of KP is
finitely axiomatizable; and a straightforward calculation shows that it is axiomatizable by a &2-sentence.

With the above preliminaries in place, for n ′ 2, Kn(M ) |= KP, thanks to &2-axiomatizability of KP and
part (a) of Lemma 40. Therefore there is a %n-satisfaction predicate in Kn(M ) for %n-formulae. Consider the
function f that maps (the code of) each %n-formula in Kn(M ) to 0, if there is no element that satisfies +(x),
and otherwise to the least <L-element satisfying +(x). Thanks to the availability of a %n-definable satisfaction
predicate in Kn(M ) for %n-formula, the graph of f is readily seen to be defined by a %n+1-formula. Note that
the domain of f is a set in Kn(M ) but its range is the whole of Kn(M ). Thus Coll(%n+1)-fails in Kn(M ). This
concludes the proof of part (b) Lemma 40.

Lemma 41. The standard cut − is definable in Kn(M ) for each n △ − such that n ′ 2.

Proof. Recall that Kn(M ) is not −-standard since it satisfies ¬ConZF. So, similar to the proof of Theorem 23,
i is a nonstandard member of −Kn(M ) iff every element of Kn(M ) is definable by a %n-formula below i. This is
first order expressible, thanks to the definability of a %n-satisfaction predicate in Kn(M ).

By Lemma 40 given any 2 ⇑ n < k, both in − , N is bi-interpretable with a model of ZF&n +¬Coll(%n+1),
and also N is bi-interpretable with a model of ZF&k . Since Coll(%n) is of complexity at most &n+3, this shows
that by choosing k ′ n+3, Coll(%n) △ ZF&k , which in turn makes it clear that ZF&n is not solid.

To see that ZF&n is not tight it suffices to note that the above argument works uniformly; thus there are
distinct deductively closed extension of ZF&n that are bi-interpretable. This concludes the proof of Theorem
39.

20 The existence of definable partial satisfaction classes in KP follows from two facts: (1) KP can prove that every set is contained in a
transitive set; and (2) KP can define the satisfaction predicate for all of its internal set structures. The proofs of both of these facts can be
found in Barwise’s monograph (1975); the proofs therein make it clear that only &1-Foundation is invoked.
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4. Categoricity of schemes

In this section we investigate various categoricity-like notions within the framework of first order logic that
pertain specifically to scheme-templates (as opposed to arbitrary first order theories). These notions include
adaptations of the notions introduced in Definition 7, but there is one which has no counterpart in Definition 7,
namely, internal categoricity. Internal categoricity has been widely present in philosophical discussions in the
context PA and ZF but to our knowledge it has not been previously probed in the context of general first-order
schematic theories. In Subsection 4.1 we focus on internal categoricity, and in Subsection 4.2 we investigate
various generalizations of the notions introduced in Definition 7.

Definition 42. Assume L is a finite language. In what follows all languages are allowed to be n-sorted for
some n △ − .

(a) An L -template (for a scheme) is given by an L -sentence ,(P) formulated in the language obtained
by augmenting L with an n-ary predicate P(x1, ...,xn) for some n △ − , where x1, . . .xn belong to the same
sort.21 Given a language L + ℜ L , an L +-sentence & is said to be an instance of , if & is of the form
⇐v ,[∋(x1, ..,xn,v)/P], where ,[∋(x1, ..,xn,v)/P] is the result of substituting all subformulae of the form
P(t1, ..., tn), where each ti is a term, with ∋(t1, t2, · · ·, tn,v) (and re-naming bound variables of ∋ to avoid
unintended clashes).

By calling , an L -template we shall mean that L is the smallest language (w.r.t. to the inclusion) which
augmented with P contains , .

(b) Suppose L + ℜ L . We use ,[L +] to denote the collection of all L +-formulae that are instances of , . We
say that an T is axiomatized by a scheme if T = ,[L +] for some scheme , and some L +.

(c) For familiar schematic theories such as PA and ZF the notation PA(L +) and ZF(L +) is often used in the
literature to respectively denote ,Ind[L +] and ,Repl[L +].22 Here ,Ind is the template that is conjunction of two
sentences, the first conjunct of which in turn is the conjunction of the finitely many axioms of (Robinson’s) Q,
and the second conjunct of which is the sentence expressing "If P includes 0 and is closed under successors, then
P is everything". Similarly, ,Repl is the template that is conjunction of two sentences, the first of which asserts
that Emptyset, Pairs, Union, Infinity, and Powerset hold, and the second conjunct of which is the sentence
expressing "If P is a class function whose domain is a set, then its range is also a set".

Remark 43. Let LArith denote the language of arithmetic. As shown in (Enayat and !e"yk, 2023), the
complexity of the collection of (Gödel numbers) of LArith-templates , such that ,[LArith] = PA is a complete
&2-set in the arithmetical hierarchy, and in particular it is not recursively enumerable.

4.1. Internal Categoricity

The notion of internal categoricity was initially explored in the context of second order logic (see the recent
monograph by Maddy and Väänänen, 2023, for references). The definition below of internal categoricity
generalizes Väänänen’s formulation, who focused on the internal categoricity of the first order formulations of
Peano Arithmetic and Zermelo-Fraenkel set theory, as summarized in (Väänänen, 2021). More specifically,
the notion of internal categoricity encapsulated in the definition below coincides with the one formulated by
Väänänen in the setting of the usual schematic formulations of PA and ZF, so we recommend the readers
unfamiliar with the notion of internal categoricity to consult (Väänänen, 2021) for the motivation of the
definition below.

21 The theories we study all have access to a pairing function and therefore by elementary coding we can limit ourselves to a single unary
predicate P, but for the purposes of exposition we are not insisting on P being unary. Note that notion of a schematic axiomatization
presented here is not affected in our context where a pairing function is available if the template , is allowed to use finitely many predicate
symbols P1, · · ·,Pk of various finite arities.

22 The notation PA→ is used in the model theory of arithmetic for PA(L ) , where L is clear from the context, or unimportant.

78



Categoricity-like Properties in the First Order Realm

Definition 44. Suppose ,(P) is an L -template.

(a) Let L red and L blue be two fresh disjoint copies of the language L and R and B be two fresh unary
predicates. Let +r and +b be the trivial direct translations of L into L red and L blue respectively and let + rel

r
(+ rel

b ) be the extension of +r (+b, resp.) which relativize the quantifiers to R (B, resp.). The result of applying +r
(+b, + rel

r , + rel
b ) to , will be denoted , red (,blue, , red

rel , ,blue
rel , respectively). We assume that each of the translations

acts trivially on P.

(b) Let L duo = L red ℑL blue and let

,duo = , red(P)∝ ,blue(P).

,(P) is said to be internally categorical if there is an L duo-binary formula ∀(x,y) such that, provably in
,duo[L duo], ∀ defines an isomorphism between the L red-reduct and the L blue-reduct of the universe, i.e., for
all models M of ,duo[L duo], ∀ defines an isomorphism between M red (the L red-reduct of M ) and M blue

(the L blue-reduct of M ).23

(c) Let L duo+ = L ℑL blue ℑL red ℑ{R,B} and let

,duo+ := ,[L ]ℑ , red
rel [L

duo+]ℑ ,blue
rel [L duo+].

Thus in contrast with L duo-structures M , the domain of discourse of the ‘colored’ submodels are allowed to
be proper subsets of the domain of discourse of an L duo+ structure M . , is said to be strongly internally
categorical iff there is an L duo+-binary formula ∀(x,y) such that, provably in T duo+, ∀ defines an isomorphism
between the L red model with the universe given by R (called the red model) and L blue model with the universe
given by B (the blue model). From the model-theoretic perspective, this is equivalent to ∀ defining an
isomorphism between + rel

r (M ) (the red model) and + rel
b (M ) (the blue model) for an arbitrary L duo+ model

M |= T duo+.

Example 45. Let , be ,Repl, L be the language of set theory, and 01, 02, and 03 be strongly inaccessible
cardinals, with 01 > 02 > 03. Then we can expand (V01 ,△) into a model ,duo+ by interpreting R as V02 , B as
V03 , and interpreting △, △red, and △blue as the membership relation in the real world.

The following proposition motivates our choice of the terminology "strong internal categoricity":

Proposition 46. If a scheme template , is strongly internally categorical, then , is internally categorical.

Proof. Assume that , is strongly internally categorical and let ∀ be a L duo+ binary formula which witness the
isomorphism. Let ∀r result from ∀ by

• substituting each occurrence of R(t) and B(t) with t = t and

• colouring each symbol of L into red (i.e. applying +r to the formula obtained in the first step).

We claim that ∀r provably in ,duo[L duo] defines an isomorphism between the red and the blue part of the
universe. Indeed, take any model M |= ,duo[L duo]. By interpreting R and B as the whole universe and
interpreting L symbols as their red counterparts, one can see that M definably expands to a model M+ |=
T duo+. Hence ∀ defines in M+ an isomorphism between the red and the blue model. By definitions, ∀r defines
an isomorphism between M red and M blue.

The converse of the above proposition need not hold; this was implicitly observed in (Maddy and Väänänen,
2023). Part (a) of the theorem below appears without proof in (Maddy and Väänänen, 2023) as Theorem 9,
p. 32, where the result is stated in a different notation.

23 By Compactness, this is equivalent to: For all models M of ,duo[L duo], there is an M -definable isomorphism between M red and M blue.
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Theorem 47. (Väänänen) Let ,Ind and ,Repl be the scheme templates axiomatizing PA and ZF (respectively) as
in part (c) of Definition 42.

(a) ,Ind is strongly internally categorical.

(b) ,Repl is internally categorical, but not strongly internally categorical (assuming the consistency of ZF+
≃0 Inacc(0)).

Proof. To see that (a) holds, suppose M is a model of PA, and N1 and N2 are models of PA such that for
i △ {1,2} the domain of discourse Ni of Ni is a subset of the domain of discourse M of M (and therefore the
graphs of addition and multiplication for Ni are subsets of M2). Furthermore, assume:

()) For each subset D of M that is parametrically definable in (M ,N1,N2), and for each i △ {1,2},
(Ni,D⊥Ni) |= PA(X), where X is interpreted by D⊥Ni.

Let ∋(x,v1,v2) be the formula that expresses that v1 △ N1, v2 △ N2 and x codes an isomorphism between the
initial segment of N1 determined by v1 and the initial segment of N2 determined by v2 (when addition and
multiplication are viewed as ternary relations).

Let
I1 = {a △ N1 : (M ,N1,N2) |= ≃x≃v2 ∋(x,a,v2)},

and
I2 = {b △ N2 : (M ,N1,N2) |= ≃x≃v1 ∋(x,v1,b)}.

Using the assumptions on N1 and N2 it is easy to see that I1 is an initial segment of N1 that contains 0N1 and
is closed under the successor relation of N1, and therefore by ()) I1 = N1; and I2 is an initial segment of N2
that contains 0N2 and is closed under the successor relation of N2 and therefore I2 = N2. It can also be readily
shown using ()) that for every a in N1 there is a unique b in N2 such that (M ,N1,N2) |= ≃x∋(x,a,b). This
makes it clear that there is an (M ,N1,N2)-definable isomorphism between N1 and N2.24

For (b), the proof that ,Repl is internally categorical appears in (Väänänen, 2019) (note the proof is stated
for the schematic axiomatization of ZFC, but the axiom of choice can be dispensed with). Let M be a model of
ZF and let 0 △ M be a strongly inaccessible cardinal (we do not assume that M is well-founded). We expand
M to a model of M+ by interpreting

• △,△red,△blue as △M ,

• R as the whole universe and

• B as (V0)M .

Since in M+ the red model is just the whole universe, then clearly, the red part satisfies the replacement scheme.
That for every parametrically definable subset D of M the expansion (V M

0 ,△M ,D⊥V M
0 ) of the blue model

satisfies the replacement scheme in the extended language follows from basic properties of strongly inaccessible
cardinals.

Remark 48. The direct proof of tightness of ZF (as presented in Freire and Hamkins, 2021) is similar to proof
of internal categoricity of ,Repl (as presented in Väänänen, 2019), and they can be viewed as refinements of
Zermelo’s quasi-categoricity theorem for ZF. However, the proof of solidity of ZF in (Enayat, 2016) involves
a step that is not present in the proofs of tightness/internal categoricity of ZF, namely, an appeal to Tarski’s
undefinability of truth theorem.

24 It is worth pointing out that the proof makes it clear that the assumption M |= PA can be substantially reduced to the assumption that the
theory of M is sequential. Thus in light of the sequentiality of PA↓ (established in Jeřábek, 2012) it is sufficient to assume that M |= PA↓.
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Remark 49. Hamkins and Freire (2021) showed that two distinguished schematic subtheories of ZF fail
to be internally categorical, namely Zermelo set theory (axiomatized by the separation scheme), and ZF

↓

(axiomatized by the schemes of separation and collection). In the same paper, Hamkins and Freire showed that
internal categoricity of ZF implies the tightness of ZF using a soft argument (an easier similar soft argument
gives the corresponding result for PA); see Theorem 16 of (Hamkins and Freire, 2021), and the paragraph
following it. The proof of the implication employs a class version of the Schröder-Bernstein theorem, plus the
fact that ZF has a property known in model theory as eliminating imaginaries (cf. Section 4.4 of Hodges, 1993),
i.e., if E is a definable equivalence relation on the universe of discourse, then there is a definable function f
that maps distinct E-equivalence classes to distinct objects (in ZF such a function can be readily described by
what is commonly known as the ‘Scott trick’, which takes advantage of the stratification of the universe into
the well-ordered family of sets of the form V∀ , as ∀ ranges over the ordinals; see Exercise 2 of Section 4.4 of
Hodges, 1993). In light of the fact that the class version of Schröder-Bernstein is provable in all sequential
theories as shown by Friedman and Visser (2014), the proof strategy of Hamkins and Freire can be used to show
the following general proposition.

Proposition 50. For sequential theories T that eliminate imaginaries, the internal categoricity of T implies the
tightness of T .

Remark 51. There is an interesting conceptual difference between internal categoricity and the notions from
the previous section (tightness, solidity), namely: the formulation of the latter ones do not depend on T being
a schematic theory, but internal categoricity applies primarily to schemes. More explicitly: given a scheme
, the theory ,duo[L duo] is not simply the union of , red[L red] and ,blue[L blue]. Additionally, there seems to
be no “natural” definition of such a doubling of a theory T , if T is not readily presented through a scheme.
A way to bypass this issue would be to show that actually for any two schemes , and , ⇒ and a language L ,
if ,[L ] and , ⇒[L ] are deductively equivalent (axiomatize the same theory), then , is internally categorical
iff , ⇒ is internally categorical. The next theorem shows that, actually, the exact opposite of the above claim
is true: every sufficiently interesting theory of arithmetic is axiomatizable via a scheme that is not internally
categorical. In particular, even though the induction scheme template is internally categorical, there is a scheme
template that can be used to axiomatize the same first-order theory (i.e. Peano Arithmetic) that is not internally
categorical. Moreover, we cannot escape this conclusion by looking at "sufficiently strong" theories.

Theorem 52. Let T be any consistent recursively enumerable extension of PA (in the same language) or of ZF
(in the same language). Then there is a schematic axiomatization of T that is not internally categorical.

Proof. We shall first explain the proof when T is an extension of PA. Fix T and let + be a formula that strongly
represents a primitive recursive axiomatization of T (such a + exists by Craig’s trick). Let Sat(P,x) be the usual
formula that expresses that P is a satisfaction predicate for formulae of logical depth at most x. More explicitly,
Sat(P,x) asserts:

(1) Members of P are ordered pairs ↙∋,∀⊤, where ∋ is a formula of depth25 at most x, and ∀ is an assignment
for ∋; and

(2) P satisfies Tarski’s clauses for a satisfaction predicate for all formulae of depth at most x.

Let EA= I∋0 +Exp; by a theorem of Wilkie, EA is finitely axiomatizable (see Hájek and Pudlák, 1998, for an
exposition). Consider the following scheme template ,Vaught,+ (P):

EA+⇐x
(
Sat(P,x)↘⇐∋

(
pdepth(∋)⇑ x∝+(∋)↘ P(∋,⫆̸)

))
.

In the above pdepth(∋)⇑ x expresses that the pure depth26 ∋ is at most x and ⫆̸ is the empty assignment. As
shown in Theorem 12 of (Enayat and !e"yk, 2023) ,Vaught,+ axiomatizes T ; the proof therein is a streamlined
version of Vaught’s original proof in (1967).

25 The depth of a formula ∋ is the length of the longest chain in the formation tree of ∋ (which allows for arbitrary atomic formulae as leaves).
26 The pure depth of a formula takes into account also the complexity of terms occurring in it. More precisely: the pure depth of an atomic

formula is the maximal complexity of terms occurring in it. The pure depth of compound formulae is then defined recursively in the
standard way. See (Enayat and !e"yk, 2023) for details.
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To see that ,Vaught,+ is not internally categorical take any two non-isomorphic nonstandard models M and
N of T such that neither M nor N is recursively saturated. For example, using the assumptions on T , we
can invoke the first and second incompleteness theorems to get hold of two distinct completions T1 and T2 of
T +¬ConT . Note that T1 and T2 have the property that all of their models are nonstandard. We can choose M
to be a pointwise definable model of T1, and choose N to be a pointwise definable model of T2. Since M and
N are both countable, without loss of generality assume that the universes of M and N are the same. Let K
be the model with the same universe as that of M and which carries the interpretations from both M and K ;
thus the red model of K is isomorphic to M , and the blue model of K is isomorphic to N . As previously, we
shall refer to symbols of T as interpreted in M (N ) as the red (blue) ones. We claim that K |= ,duo[L duo].
To see this is it is enough to argue that for any formula #(x,y) △ L duo we have:

K |= ⇐x
(
Sat(#,x)↘⇐∋

(
pdepth(∋)⇑ x∝+(∋)↘ #(∋,⫆̸)

))
,

where all basic symbols which appear outside of # belong to L red (the same argument applies in the case of
L blue).

Fix # and work in K . Fix x, and assume that Sat(#,x). We claim that x is a standard number (according
to ⇑red). If not, then the satisfaction class S defined by # in K is a partial nonstandard satisfaction class on M ,
and therefore by Lachlan’s theorem (see 15.5 of Kaye, 1991) M must be recursively saturated, contradicting
our choice of M . So take an arbitrary ∋ of pure depth at most x. It follows that ∋ corresponds to a standard
formula (of L red). Assuming additionally that +(∋) holds, we conclude that ∋ is an axiom of T red. So ∋ must
hold in M . Consequently #(∋,⫆̸) holds because # satisfies the Tarski T -scheme for sentences of L red.

The above proof strategy can be modified to work for extensions T of ZF. More specifically, the definition
of the template ,Vaught,+ (P) is modified by replacing EA with KP.27 Since it is well-known that Lachlan’s
theorem also holds for −-nonstandard models of ZF, to complete the proof we only need to explain how to
get to hold of two countable nonisomorphic −-nonstandard models of T that are not recursively saturated. As
in the arithmetical case we can use the first and second incompleteness theorems to get hold of two distinct
completions T1 and T2 of T +¬ConT . Note that T1 and T2 have the property that all of their models are
−-nonstandard. Then we can choose M to be a Paris model of T1 and N to be a Paris model of T2 (A Paris
model is a model all of whose ordinals are pointwise definable, therefore a Paris model is not recursively
saturated). Since every consistent extension of ZF has a Paris model by a classical theorem of Paris (see Enayat,
2005) this concludes the proof.

Remark 53. Since, as shown in (Jeřábek, 2012), the canonical theory of (the non-negative parts) of the
discretely ordered rings, i.e. PA↓ (see Kaye, 1991), is sequential, the above proof works also for an arguably
more natural axiomatization of PA which results from ,Vaught,+ (P) by replacing EA with PA↓.

Proposition below complements Theorem 52.

Proposition 54. Every recursively enumerable extension T of PA or of ZF can be axiomatized by a scheme
whose template is internally categorical.

Proof. Use Craig’s trick to get hold of + that strongly represents a primitive recursive axiomatization of T .
Thanks to Vaught’s Theorem (1967) and Theorem 47, if T is an extension of PA, then the desired template is
,Vaught,+ (P)∝,Ind(P); and if T is an extension of ZF, then the desired template is ,Vaught,+ (P)∝,Repl(P).

At first sight Theorem 52 and Proposition 54 might seem to diminish the importance of the notion of internal
categoricity, because there is a strong intuition that a foundationally interesting property of theories shouldn’t
depend on how the theory is presented. However, in what follows we experiment with a different option: we
check whether schemes can be viewed as a self-standing and, in a sense, primitive object of foundational
analysis. In the rest of this section we scrutinize mathematical benefits from taking this point of view: we
show that this perspective enables us to generalize and make explicit some patterns that can be observed in the
hierarchy of solid/tight theories.

27 Recall that KP is Kripke-Platek set theory with &1-Foundation (as in Mathias, 2001); its well-known that KP is finitely axiomatizable.
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Furthermore, there are natural adaptations of the notion of solidity to the context of schemes, which bring
to light interesting distinctions between various natural foundational schemes, such as the scheme of induction
and the replacement scheme. We shall discuss the philosophical consequences of taking this perspective in the
next section.

Definition 55. The scheme template ,ArithColl is the arithmetical sentence that is conjunction of two sentences;
the first conjunct asserts that EA holds, and the second conjunct is the following sentence:

⇐x
(
⇐y < x ≃z P(y,z)↘≃b ⇐y < x ≃z < b P(y,z)

)
.

Similarly, The scheme template ,SetColl is the set-theoretical sentence that is conjunction of two sentences; the
first conjunct asserts that KP holds, and the second conjunct is the following sentence:

⇐x
(
⇐y △ x ≃z P(y,z)↘≃b ⇐y △ x ≃z △ b P(y,z)

)
.

Theorem 56. The scheme templates ,ArithColl and ,SetColl are not internally categorical, even though they respectively
axiomatize PA and ZF.

Proof. We already commented in Remark 37 PA is axiomatized by all arithmetical instances of ,Coll. It is also
well-known that ZF is axiomatized by the set-theoretical instances of ,SetColl (since an induction on the complexity
of formulae shows that the full separation scheme is provable in the resulting theory, thanks to the availability
of ∋0-separation and full collection).

To demonstrate the failure of internal categoricity for ,ArithColl , we resort to the fact that there are (many)
nonisomorphic −1-like models of PA (e.g., see p.237 of Kossak and Schmer, 2006). Recall that a model of PA
is said to be −1-like if it is uncountable but every proper initial segment of it is countable.

Let M and N be any two non-isomorphic −1-like models of PA, let K be the disjoint union M , N (as in
the proof of Theorem 52). Obviously K |= EAred∝EAblue. Moreover, since each component of K is −1-like,
for every ∋(x,y) △ L duo,

K |= ,ArithColl [∋(x,y)/P].

The set-theoretical case is handled similarly to the arithmetical case; thanks to the well-known fact that
there are (many) nonisomorphic −1-like models of ZF; see (Enayat, 2004). Here, a model of ZF is said to be
−1-like if it is uncountable but whose every proper rank-initial segment is countable.

Remark 57. The Vaught schemes template ,Vaught,+ (P) (introduced in the proof of Theorem 52, where + is a
formula that strongly represents a primitive recursive axiomatization of PA), and the Collection scheme template
,ArithColl (P) (introduced in Definition 55) do not give rise to &1

1-statements ⇐X,(X) that characterize the standard
model of arithmetic N. Clearly the standard model of arithmetic satisfies the &1

1-statements corresponding to
,Vaught,+ and to ,ArithColl . However, the &1

1-statement corresponding to ,Vaught,+ is also satisfied in any countable
model of PA that is not recursively saturated (by the proof of Theorem 52), and the &1

1-statement corresponding
to ,ArithColl is satisfied in any −1-like model of PA.

Remark 58. It is easy to see that if ,(P) is a template in the language of arithmetic that is internally categorical
and the scheme it generates is true in N, then the &1

1-statement ⇐X,(X) characterizes N in full second order
logic. However, as shown in recent (to be published) joint work of the second-named-author with Piotr Gruza,
there is a template ,(P) in the language of arithmetic that is not internally categorical but which has the property
that the &1

1-statement ⇐X,(X) characterizes N in full second order logic.

Next, we show that internal categoricity is preserved upwards w.r.t. to the ordering determined by provability
of &1

1 sentences in two-sorted logic.
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Definition 59. For a theory T in an n-sorted language L , let PC(T ) be the extension of T in the (n+1)-sorted
language by the predicative comprehension axioms, that is all sentences of the form

≃Xn+1⇐Xn(Xn △n+1 Xn+1 ⇓ ∋(Xn,Y )
)
,

where ∋(Xn,Y ) is an L -formula (see Pakhomov and Visser, 2009). The upper index of a variable denotes its
sort.

Theorem 60. Let , and + be two L -scheme templates that ,[L ] and + [L ] axiomatize the same theory T .
Suppose further that PC(T ) ∀ ⇐X,[X ]↘⇐X+ [X ]. Then if + is internally categorical, then so is , .

Proof. Take any M |= , red[L duo]∝ ,blue[L duo]. Let X consists of L duo-definable subsets of M . Then, it
follows that for col △ {red,blue},

(M ,X) |= PC(T col)∝⇐X,col[X ].

In particular, by our assumption (M ,X) |= PC(T col)∝⇐X+col[X ]. It follows that

M |= +col[L duo],

hence, by the internal categoricity of + , it follows that there is a definable isomorphism between the red and
blue parts of M .

4.2. Generalizations of solidity

In this subsection we adapt the categoricity-like properties of theories introduced in Subsection 2.3 to the
context of schemes. As we shall see in Theorem 74, these generalizations can be viewed as providing a (short)
hierarchy of ‘categoricity grades’ of scheme templates.

Definition 61. Below all the languages are arbitrary n-sorted languages. In the paper we shall deal only
with translations which are sort-preserving, i.e. types of all the variables are preserved under the translation.
Moreover we shall deal only with the translations which have the same dimension on every sort. Last but not
least, we assume that the isomorphisms between sorted structures need to preserve sorts.

(a) Let m ⇑ n. A (k-dimensional) translation + between an m-sorted language L1 and an n-sorted L2 is given
by

• a tuple of formulae (%1(x̄1), . . . ,%m(x̄m)), where each %i(x̄i) is a formula of the i-th order logic and all x̄i

are variables of the i-th sort.

• a mapping P ¬↘ AP, where P is an l-ary predicate of L1 and AP is a k · l-ary formula

As in the previous section we allow the equality to be redefined and our interpretations to be multidimensional.
A translation + is direct iff it is direct with respect to all sorts.

(b) Let ,(P) be an L1-template, where P is a predicate of arity l and + be any k-dimensional translation
L1 ↘ L2. Let R be any fresh predicate of arity kl. Let + [P/R] be a translation L1 ℑ{P}↘ L2 ℑ{R} which
translates P to R and behaves like + otherwise. By ,+ we denote the following scheme template:

("R is a ⫋-invariant l-ary relation on k-tuples")↓↘ ,+ [P/R].

In the above ⫋ is the translation of equality according to + and ,+ [P/R] is the translation of , according to
+ [P/R].

(c) We say that an L2-structure M accommodates a scheme template ,(P) iff there is a translation + of L1
into L2 such that,

(M ,Defkn(M )) |= ⇐X,+ (X/R),

84



Categoricity-like Properties in the First Order Realm

where Defkn(M ) denotes the set of parametrically M -definable subsets of Mkn. In other words, for each
X △ Defkn(M ), (M ,X) |= ,+ (X/R). Note that the translation + is allowed to use parameters from M .

(d) We say that an L2-structure M directly accommodates a scheme template , iff M accommodates , via a
direct translation + . In such a case, M is also called a strong model of , .

(e) We say that a theory T (directly) accommodates a scheme , iff there is a translation + such that for every
model M |= T , M (directly) accommodates , via + .

Example 62. Since in this paper we are primarily interested in sequential theories, we can always assume
that for our purposes interpretations are one-dimensional. Assuming additionally that , is equality-preserving,
we can easily show that M accommodates an L -scheme , via a one-dimensional and equality-preserving
translation just in case the following condition holds:

There exists an L -structure N ↬par M such that for every parametrically M -definable set P ▽ M,
(N ,P⊥N) |= ,(P).

In particular, if M is a model of Z2 (Second Order Arithmetic) or a model of Z (Zermelo set theory), then
M accommodates the induction scheme ,Ind. Similarly, every model of KM accommodates the replacement
scheme ,Repl.

Example 63. A structure M accommodates the induction scheme ,Ind, just in case M parametrically interprets
a model N of PA with the additional property that N has no proper parametrically M -definable proper
cuts. Note that under this scenario if the ‘accommodating‘ structure M |= PA, then there is an M -definable
isomorphism between M and N ; this readily follows from the fact that PA is a minimalist theory (as indicated
in part (a) of Remark 8).

Remark 64. We note that M is a strong model (in the sense of part (d) of Definition 61) if an L -scheme ,
just in case there is an extension (perhaps higher order) L + ℜ L and a definitional expansion M+ which is
an L + model, such that M+ |= ,[L +].

Definition 65. Suppose ,(P) is an L -template.

(a) , is g-minimalist (generalized minimalist) if the following holds for all strong models M and N of ,: If
M parametrically accommodates , via a translation +0, N ↬par M , and N accommodates , via a translation
+1, then there is a unique M -definable embedding

F : +0(M )↘ +1(N ).

(b) , is g-solid28(generalized solid) iff the following holds for all strong models M , N , and M → of , that
respectively accommodate ,(P) via translations +l ,+c and +r: If

M ⊜par N ⊜par M →,

and there is an M -definable isomorphism F : +l(M )↘ +r(M →), then there is an N -definable isomorphism

G : +c(N )↘ +r(M
→).

(c) , is e-solid (expansion solid) iff , satisfies the definition for g-solidity with the added requirement that +l ,
+c and +r are direct interpretations.

Remark 66. The e-solidity terminology is informed by the fact that e-solidity can be equivalently formulated
in terms of the notion of expansion in model theory. Observe that an L -template , is e-solid just in case for
all expansions L1, L2, L3 of L , and all structures M1, M2, M3 such that Mi |= ,[Li] for i △ {1,2,3}, the
following condition holds:

28 Note that general solidity is a generalization of the notion of strong solidity that was shown in Remark 9 to be equivalent to solidity. The
proof strategy of the equivalence does not seem to generalize to the generalized setting. We have opted for this stronger notion because (1)
it is satisfied by the usual schematic representations of PA and ZF, and (2) it comes handy in the proof of solidity of KFµ (see Theorem 88).

85



Ali Enayat and Mateusz !e"yk

if M1 ⊜par M2 ⊜par M3 and there is an M1-definable isomorphism between M1⪆L and M3⪆L , then there is
an M2-definable isomorphism between M2⪆L and M3⪆L .

In the above M ⪆L denotes the reduct of a model M to the language L .

Remark 67. Note that the categoricity-like notions defined in Definition 65 are attributes of scheme templates,
whereas those defined in Definition 7 are attributes of first order theories.

Definition 68. The scheme template ,Repl+Tarski(P) is the result of adjoining Tarski’s undefinability of truth
theorem to the usual axiomatization of ZF using ,Repl, i.e.,

,Repl+Tarski(P) := ≃x △ −¬Sat(P,x)∝ ,Repl(P).

In the above, Sat(P,x) is the formula obtained by adding the unary predicate P to the language {△} of set theory
that expresses that P satisfies Tarski conditions for a satisfaction predicate for all set-theoretical formulae of
depth at most x.

Remark 69. ,Repl+Tarski ensures that replacement holds for all formulae, and no formula defines a full
satisfaction predicate for L = {△}. Thanks to Tarski’s undefinability of truth theorem ,Rep+Tarski axiomatizes
ZF. However, note that if 0 is a strongly inaccessible cardinal, then the natural Kelley-Morse model associated
with V0 whose classes are elements of V0+1 does not satisfy the &1

1-sentence ⇐X,Repl+Tarski(X).

Theorem 70. The scheme-templates ,Ind and ,Repl+Tarski are e-solid.29

Proof. (Outline). A close examination of the proof of the solidity of PA presented in (Enayat, 2016) shows
that the same proof strategy succeeds in establishing the e-solidity of ,Ind. The e-solidity of ,Repl+Tarski is
established by using the proof strategy of the solidity proof of ZF presented in (Enayat, 2016) (or the one
presented in Freire and Hamkins, 2021) with the difference that the Tarski clause comes to the rescue at the
point in the proof of solidity of ZF where Tarski’s undefinability of truth is invoked. More specifically, the
Tarski clause of ,Repl+Tarski makes sure that none of the extra predicates included in the expansion of the first
of the three models of ZF (in the set-up of the e-solidity proof) is a satisfaction predicate for the first model of
ZF.

Example 71. For T = PA, Theorem 70 can be rephrased as follows: Suppose M1, M2, and M3 |= PA , and
that M+

i is an Li-structure that is an expansion of Mi and M+
i |= PA(Li) for i △ {1,2,3}, where each Li is

an extension of the usual language of arithmetic. Suppose, furthermore, that M+
1 ⊜ M+

2 ⊜ M+
3 and there is

an M+
1 -definable isomorphism i0 : M1 ↘ M3. Then there is an M+

1 -definable isomorphism i : M2 ↘ M3.

Note that in the above, the existence of i : M1 ↘ M2 cannot in general be strengthened to the existence of
i : M+

1 ↘ M+
2 , e.g., let M+

1 = (M ,D1) and M+
1 = (M ,D2), where D1 and D2 are distinct M -definable

sets.

Example 72. ,Repl is not e-solid. To see this, suppose 0 and 1 are strongly inaccessible cardinals with 0 < 1 .
Let ∃ be an ordinal such that 0 △ ∃ △ 1 . By the Löwenheim-Skolem theorem, there is an elementary submodel
K = (K,△) of (V1 ,△) that ∃ △ K and V0 ▽ K and |K| = |V0 |. Note that the order-type of the ordinals in
K is higher than 0 . Using a bijection g between K and V0 there is a binary relation E on V0 such that g
is an isomorphism between (V0 ,E) and (K,△). Thus there is an embedding f of (V0 ,△) as a topped rank
initial segment of (V0 ,E). By well-foundedness of (V0 ,E) there is some ordinal ∀ △V0 such that (V∀ ,△)-as-
calculated-in-(V0 ,E) is isomorphic to (V0 ,△); thus ∀ is the first ordinal in (V0 ,E) that is not in the range of
f (and the order-type of the E-predecessors of ∀ in (V0 ,E) from an external point of view is precisely 0).
Now let M = (V0 ,△,E, f ); this is obviously a model of ZF(E, f ) since 0 is strongly inaccessible. Also let
N = (V0 ,E), and let M → = (V∀ ,△)N (i.e., (V∀ ,△)-as-calculated-in-N ), where ∀ is as define above. Note
that:

1. N is a reduct of M , so clearly N is parameter-free interpretable in M .

29 Recall from Definition 42 that ,Ind axiomatizes PA and ,Repl axiomatizes ZF.
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2. M → is interpretable in N with the use of the parameter ∀ .30

3. There is an N -definable isomorphism between (V0 ,△) and M →, thanks to having f available as one of
the "oracles" in M .31

This shows that ,Repl is not e-solid since (V0 ,△) is not isomorphic to (V0 ,E) since the latter is isomorphic to
(K,△) whose ordinal height exceeds the ordinal height of (V0 ,△), i.e., 0 .

Theorem 73. The template ,Ind for the induction scheme is g-minimalist.

Proof. The proof is analogous to the proof of Proposition 11.

Theorem 74. The following implications hold for an arbitrary L -scheme template ,:

, is g-minimalist

!! ""
, is g-solid

!!

,[L ] is minimalist

, is e-solid

## ""
, is internally categorical ,[L ] is a solid theory

Proof. Note that based on the relevant definitions, three of the implications are trivial, namely that g-solidity
implies e-solidity, e-solidity implies solidity and g-minimalist implies minimalist.

Recall that by Remark 8 a minimalist theory is a solid theory (on the basis of the relevant definitions). A
similar argument shows that if , is g-minimalist, then , is g-solid.

It remains to show that e-solidity entails internal categoricity. In the interest of notational clarity, we will
present the proof for the template ,Ind of the usual schematic presentation of PA; the same proof strategy
works in general. We want to show that if M duo :=

(
M,+red, ·red,+blue, ·blue

)
|= ,duoInd [L duo

PA ], then there is an
M duo-definable isomorphism i : M red ↘ M blue. Define:

M1 = M2 = M3 := M duo;

+1 = +3 := [+ ¬↘+red, · ¬↘ ·red],+2 := [+ ¬↘+blue, · ¬↘ ·blue].

Then clearly M1 ⊜ M2 ⊜ M3 and there is an M1-definable isomorphism i0 : +1(M1) ↘ +3(M3), so the
desired M duo -definable isomorphism i : M red ↘ M blue exists by e-solidity of ,Ind.

Remark 75. We suspect that the implication "g-solid implies e-solid" of Theorem 74 cannot be reversed; but
we have not yet found a counterexample. The following show that none of the other implication arrows of
Theorem 74 reverses.

1. Let ,CT[PA] be the template axiomatizing CT[PA] obtained conjuncting ,Ind with finitely many axioms of
compositional truth CT. Then by part (c) of Theorem 88 , is g-solid, but not g-minimalist by Remark 89.

2. If , is template for the Vaught schematic axiomatization of PA, and L is the language of arithmetic,
then ,[L ] is solid by Theorem 10, but , is not internally categorical by Theorem 52, and since e-solidity
implies internal categoricity by Theorem 74, , is not e-solid. A similar argument shows that the fact that
,[L ] is minimalist does not imply , is g-minimalist.

30 If 0 is chosen as the first strongly inaccessible cardinal, then ∀ is definable in N as the first strongly inaccessible cardinal and therefore the
interpretation of M → in N becomes parameter-free.

31 Indeed, with a little extra work one can show that f is definable in (V0 ,△,E), but this flourish is not needed for our purposes.
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3. As indicated in Example 72, ,Repl is not e-solid, but by part (b) of Theorem 47 it is internally categorical.

Remark 76. In light of Remark 8 and Proposition 50 the bottom part of the diagram of implication arrows of
Theorem 74 can be complemented with two more implications, one indicating that the solidity of ,[L ] implies
the tightness of ,[L ]; and the other indicating that the internal categoricity of ,[L ] implies the tightness of
,[L ] with the additional assumption that ,[L ] is a sequential theory that eliminates imaginaries.

Recall from part (b) of Theorem 47 that ,Repl is not strongly internally categorical and not e-solid by
Example 72. The result below shows that there is a schematic axiomatization of ZF that is both ‘more internally
categorical’ and ‘more solid’ than the schematic axiomatization given by ,Repl.

Theorem 77. The scheme template ,Repl+Tarski (that axiomatizes ZF; see Definition 68 and the remark following
it), is both strongly internally categorical and g-solid.

Before presenting the proof of 77, we need some preliminary lemmas.

Lemma 78. Suppose K and M are models of ZF, where M is a proper rank extension of K (i.e., the
rank of every element in M \K is higher than the rank of every element of K). Assume furthermore that for
every parametrically M -definable subset D of M, (K ,D⊥K) |= ZF(P), where P is a fresh unary predicate
interpreted by D⊥K. Then there is some ∃ △ OrdM \OrdK such that:

K ℵ (V∃ ,△)M .

In particular, there is a parametrically M -definable set that is a full satisfaction class for K .

Proof. This follows immediately from Theorem 4.4 of (Enayat, 2024) (whose proof is obtained by an adaptation
of the proof of Theorem 3.3 of Enayat, 1986).

Lemma 79. Suppose M and K are models of ZF such that the universe K of K is a subset of the universe
M of M (and therefore the membership relation △K of K is a subset of M2). Moreover, assume for every
parametrically M -definable subset D of M, (K ,D⊥K) |=ZF(P), where P is a fresh unary predicate interpreted
by D⊥K. Then precisely one of the following three conditions hold:

(1) There is an (M ,K )-definable isomorphism between K and (V0 ,△)M for some strongly inaccessible
cardinal 0 of M .

(2) There is an (M ,K )-definable isomorphism between K and M .

(3) There is an (M ,K )-definable embedding of M as a proper rank initial segment of K .

Proof. Using the assumptions on K , it is easy to see that the membership relation △K of K is well-founded
from the point of view of M . The proof strategy of solidity of ZF (as in Enayat, 2016) can be used to show that
(1) holds if K is a set in M ; (2) holds if K is a proper class in M such that △K is set-like32 in the sense of M ;
and (3) holds if K is a proper class in M such that △K is not set-like in the sense of M .

Proof of Theorem 77. We shall explain why ,Repl+Tarski is g-solid. A similar argument shows that it is also
strongly internally categorical. Suppose M , M2, and M3 are strong models of ZF, M1 ⊜par M2 ⊜par M3, and
Mi accommodates ,Repl+Tarski for i △ {1,2,3} via a model Ki such that for every parametrically Mi-definable
subset D of Mi,

(Ki,D⊥Ki) |= ,Repl+Tarski(P).

Note that since ZF eliminates imaginaries, we can assume without loss of generality that the interpretation of
each Ki in Mi is identity preserving. By Lemma 79, for each i △ {1,2,3} either (1) there is an Mi-definable
isomorphism between Ki and (V0 ,△)Mi for some inaccessible cardinal 0 of Mi, or (2) there is an Mi-definable

32 In other words, for each x △ K, the collection {y △ K : y △K x} forms a set in M as opposed to a proper class.
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isomorphism between Mi and Ki, or (3) there is an Mi-definable embedding of Mi into a proper rank initial
segment of Ki.

Thanks to ,Repl+Tarski and Lemma 78, possibility (1) is ruled out, and (3) is ruled out by Tarski’s theorem
on undefinability of truth and Lemma 78. So for each i △ {1,2,3} there is a Mi-definable isomorphism
between Mi and Ki. This reduces the initial problem to the assumptions of e-solidity of ZF. Hence the desired
conclusion follows from Theorem 70.

Below we consider two natural operations that preserve g-solidity and e-solidity of schemes. The first one
(the comprehension scheme) is connected to the process of enriching a given language L with a new sort
of sets (that are interpreted as subsets of the domain of discourse of L ); and the second (extremal schemes)
enriches L with a new predicate.

Definition 80 (The comprehension scheme). If L is any n-sorted language, then L +1 is a natural extension of
L with the n+1-st sort.

Suppose that L is an n-sorted language and P a fresh predicate for the n-th sort. The comprehension
scheme ,Comp(P) is the following statement of L +1:

≃Xn+1⇐Xn(Xn △n+1 Xn+1 ⇓ P(Xn)
)
.

Example 81. If L is the 1-sorted language of PA, then ,Comp(P) is the template for the comprehension scheme
of Z2 (Second Order Arithmetic); and if L is the 2-sorted language of Z2, then ,Comp(P) is the template for
the comprehension scheme of Z3 (Third Order Arithmetic).

The following result generalizes the fact that Z2 and KM and their higher older analogues mentioned in
Theorem 14 are solid. Recall that, as indicated in Theorem 70, the scheme templates for usual axiomatizations
of PA and ZF are e-solid.

Theorem 82. Let → be either g or e. Suppose ,(P) is an L -template that is *-solid. Then , ∝ ,Compr is *-solid
(as an L +1 template).

Proof. We show the proof for g-solidity. Assume that L is an n-order language. Assume that M , N and M →

are strong models of , ∝ ,Compr which accommodate , ∝ ,Compr via the translations +l , +c and +r respectively
and that I is an M -definable isomorphism between +l(M ) and +r(M →).

For the ease of exposition we assume that the translations are one -dimensional and equality-preserving,
however the proof below can clearly be adapted to the more general setting. Let +̂l , +̂c, +̂r, Î be the natural
restrictions of + ⇒s and I to the first n-sorts. Hence M , N and M → are strong models of , which accommodate
, through +̂l , +̂c, +̂r and Î is an isomorphism between +̂l(M ) and +̂r(M →). Hence, by g-solidity of , we have an
N -definable isomorphism Ĵ between +̂r(M →) and +̂c(N ). Ĵ can be canonically extended to an N -definable
embedding J : +r(M →)↘ +c(N ) by putting, for an arbitrary (n+1)-st order object X

J(X) :=
{

Ĵ(x) △ +̂c(N ) | x △ X
}
(= Ĵ[X ]).

The fact that J is a well defined function between the (n+1)-st sorts of +r(M →) and +c(N ) follows from the
fact that N accommodates the full comprehension scheme through +c.

We claim that J is onto the (n+ 1)-st sort of +c(N ). Assume not and consider K := J ∅ I. Then K is
an M -definable embedding of +l(M ) into +c(N ), which is not onto. Let X be outside the image of this
embedding. Let K̂ be the restriction of K to the first n-sorts, hence K̂ = Ĵ ∅ Î. Hence K̂ is an isomorphism
between +̂l(M ) and +̂c(N ). Consider the M -definable subset Y of +̂l(M ) given by K̂↓1[X ]. We claim that
K(Y ) = X contradicting the choice of X . Indeed, fix an arbitrary x △ +̂c(N ) and y △ +̂l(M ) such that x = K̂(y).
Clearly we have:

x △ X A K̂(y) △ X A y △ Y A K(y) △ K(Y )A x △ K(Y ).

By Extensionality, this shows that J(Y ) = X , as desired.
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Definition 83 (Extremal schemes). Let L be any language containing a predicate P. Let ∀ be any L -sentence
and # be any L -formula. The (∀,# )-minimality scheme, denoted µ# (∀) is the following L -sentence

∀ ↘⇐x
(
# (x)↘ P(x)

)
.

The (∀,# )-maximality scheme is defined analogously as

∀ ↘⇐x
(
P(x)↘ # (x)

)
.

Example 84. Both the induction scheme and the Burgess minimality scheme (Burge, 1996) are instances of the
minimality schemes for sufficiently chosen ∀ and # . Indeed, to see the former, take ∀ := P(0)∝⇐x

(
P(x)↘

P(x+1)
)

and # := x = x. In this way, µ# (∀) says that the universe is its least subset closed under successor
and containing 0. To see the latter, take ∀ to be the conjunction of the compositional axioms of KF (with the
predicate P substituted for T ) and # := T (x). By considering the extension of KF with the (∀,# )-maximality
scheme (for ∀,# defined as above) one obtains the dual version of Burgess extension of KF.

Theorem 85. Let → be either g or e. Suppose that ,(P) is a →-solid scheme for a language L and let Q be a
fresh predicate. Let ∀ be any sentence of LP. Then the schemes , ∝∀[Q/P]∝µQ(∀) and , ∝∀[Q/P]∝2Q(∀)
are both →-solid (as LQ templates).

Proof. We run the proofs for g and e in parallel. Pick Ml ,Mc,Mr as in the definition of →-solidity for
, ∝∀[Q/P]∝µQ(∀) (i.e. Ml , Mc and Mr rename M , N and M →, respectively, for notational convenience).

Let +l , +c and +r witness the accommodations of , ∝∀[Q/P]∝µQ(∀), respectively. Finally let F be the
Ml-definable isomorphism between +l(Ml) and +r(Mr). Let + ⇒

l ,+ ⇒
c,+ ⇒

r be the restrictions of these translations
to the language L . By definition, each + ⇒

i witnesses that Mi accommodates , .

By the →-solidity of , we obtain an Mc-definable isomorphism Gc : + ⇒
c(Mc)↘ + ⇒

r(Mr) and consequently
an Ml-definable isomorphism G↓1

c ∅F =: Gl : + ⇒
l (Ml)↘ + ⇒

c(Mc). For i △ {l,r,c}, let Qi be the interpretation
of Q in +i(Mi).

We shall argue that Gc maps Qc to Qr and hence is also an isomorphism of +c(Mc) with +r(Mr). Since
G↓1

l [Qc] is an Ml-definable subset of +l(Ml) such that

(+ ⇒
l (Ml),G↓1

l [Qc]) |= ∀[Q/P],

by the minimality scheme in Ml it follows that Ql ▽ G↓1
l [Qc]. Hence F [Ql ]▽ Gc[Qc]. However, since F is an

isomorphism of LQ structures, then F [Ql ] = Qr. By applying G↓1
c we get G↓1

c [Qr]▽ Qc. However, since

(+ ⇒
c(Mc),G↓1

c [Qr]) |= ∀[Q/P],

and G↓1
c [Qr] is Mc-definable, by the minimality scheme we obtain Qc ▽ G↓1

c [Qr], which concludes the
proof.

For completeness we note the following solidity variant of Theorem 60, which is proved with a similar
argument.

Theorem 86. Let , and + be two scheme-templates and L be a language such that ,[L ]⇓ + [L ]. Denote
this theory with T . Suppose further that PC(T ) ∀ ⇐X,[X ]↘⇐X+ [X ]. Then if + is →-solid (for → △ {e,g}), then
so is , .

We close this section by applying our results to canonical axiomatic theories of truth.

Definition 87. (Truth theories)

(a) CT[PA] is the theory obtained by augmenting PA with CT (finitely many axioms of compositional truth over
arithmetic) with all instances of induction in the extended language (i.e., the language of PA augmented with a
truth predicate).
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(b) KFµ [PA] is Burgess’ extension (2014) of the Kripke-Feferman truth theory KF[PA]; the choice µ is informed
by the fact that the truth theory corresponding to the least fixed point of the usual construction of a model of
KF[PA] yields a model of KFµ [PA].

(c) Let CT+ [,] be the theory in the language LS with a fresh binary predicate S extending the schematic theory
generated by the template , ∝ ,Ind[LS] with axioms that are the natural counterparts of compositional axioms
of CT in the language with the satisfaction predicate, in which:

(1) the syntactical operations are translated by + ;

(2) the quantifiers over syntactical objects are relativized to the domain of + ;

(3) the quantifiers over assignments are unrelativized.

(d) KFµ,+ [,] is analogously defined as CT+ [,], as an extension of the schematic theory generated by the
template , ∝ ,Ind∝µT (

∧
KF), where

∧
KF denotes the conjunction of the compositional axioms of KF.

Theorem 88. The following axiomatic truth theories are solid:

(a) CT[PA], and each of its finite iterates CT[CT[PA]], etc.

(b) KFµ [PA].

(c) More generally, suppose that , is a →-solid (where → is either g or e) L -scheme such that ,[L ] accomm-
dates the induction scheme ,Ind via a translation + . Then CT+ [,] and KFµ,+ [,] are solid theories.

Proof. The solidity of CT[PA] (as well as its finite iterates) can be readily obtained through the g-solidity of the
scheme

∧
CT∝ ,Ind, , where

∧
CT is the conjunction of the finitely many compositional axioms of CT. Indeed,

observe that over PC(CT[PA]), the sentence ⇐X,Ind(X) implies the minimality of T , i.e. ⇐XµT (
∧

CT). Since
,Ind∝

∧
CT∝µT (

∧
CT) is g-solid (Theorem 85), so is

∧
CT∝ ,Ind. Hence CT is indeed solid.

For the proof of (b) it is enough to observe that Burgess’ KFµ is axiomatized by the scheme + :=
,Ind∝

∧
KF∝µT (

∧
KF), where

∧
KF is the conjunction of the finitely many compositional axioms of KF. ,IND

is g-minimalist, hence by Theorem 85 + is g-solid. Thus + [LT ] is solid (where LT is the language extending
the language of arithmetic with a fresh unary predicate T ).

The proof of (c) follows from Theorem 85, which generalizes parts (a) and (b).

Remark 89. The minimalist property of PA is not shared by CT[PA]. To see this, it is sufficient to observe
that if M and N are models of CT[PA] and M is a submodel of N , then the arithmetical theories of the
two models are the same. Hence, in order to demonstrate that CT[PA] is not minimalist, it is enough to
consider M |= CT[PA] +ConCT[PA]. Then M , by the formalized second Gödel’s incompleteness theorem,
M |= ConCT[PA]+¬ConCT[PA]

, hence M interprets a model N |= CT[PA] +¬ConCT[PA] via the Arithmetized
Completeness Theorem. However there can be no embedding between M and N as the arithmetical theories
of the two models are different.

5. Philosophical discussion

In this section we outline the philosophical implications of the formal results in the preceding sections that
we view as relevant for contemporary debates and discussions in philosophy of science and the foundations of
mathematics. We focus mostly on two topics: (1) The use of bi-interpretability and synonymy (definitional
equivalence) as good explications of sameness of theories, a view present in discussions in the philosophy
of science; and (2) The use of categoricity-style arguments in the debate over the determinacy of some core
mathematical concepts, such as the notion of a number, or the notion of a set. These two conceptual areas
naturally correspond to Sections 3 and 4 of our paper.

91



Ali Enayat and Mateusz !e"yk

5.1. The meaning of bi-interpretability, solidity and tightness

Synonymy is typically treated as a good explication of the notion of sameness of theories, which works nicely
for theories in different signatures.33 Intuitively, a definitional extension of a theory T "says no more" than T
itself, hence two theories that have a common definitional extension "say the same thing", and thus they should
have the same content. However, despite the conceptual attractiveness of synonymy, this approach needs to
contend with some notorious examples of theories that are synonymous, yet seem to be clearly different. One
of the most famous examples is provided by two extensions of KF[PA] with axioms expressing (Cons) "No
sentence is both true and false" and (Comp) "Every sentence is either true or false". By trivially disjoining the
signatures of KF[PA]+Comp and KF[PA]+Cons, one easily finds a common definitional extension of the two
theories.34 However, KF[PA] ∀ Cons↘ ¬Comp, so the two theories are inconsistent.

Section 3.4 provides new examples of such unexpected failures of sameness between synonymous theories:
each restricted fragment of any of the canonical theories from among {PA,ZF,Z2,KM} has two different
complete bi-interpretable extensions. In particular for each n, I%n has a model in which I%n+1 induction fails
and yet the model is bi-interpretable with the standard model of arithmetic. By examining the proof, one
notices that in fact the interpretations used in the bi-interpretability do not involve parameters and are equality
preserving, hence by the Visser-Friedman theorem (Friedman and Visser, 2014) the theories of both models are
synonymous (treated as theories in disjoint signatures). However, the theories disagree on whether the induction
holds and it is hard to imagine a more striking example of a foundational disagreement.

One can counter the conclusions of the above paragraphs, by pointing out that we misinterpret the content
of theories, as measured by synonymy. For if we agree that a definitional extension of a theory U says no
more than U , then we implicitly assume that what we really care about is the structure of U-definable sets. We
abstract from the complexity of the definitions and treat all the notions that can be expressed in U on a par. This
explains the sameness of KF[PA]+Cons and KF[PA]+Comp: using a consistent truth predicate we can indeed
define a complete one and vice versa. Hence two theories are equally expressive, only they disagree on which
truth predicate is "the basic one". We agree with this argument, however we think that for the philosophical
use of axiomatic theories one would expect a more fine-grained notion. As we explain in the next paragraph,
bi-interpretability over tight theories seems to preserve more information about what the theories are meant to
axiomatize.

Positive results about solidity and tightness show that "counterexamples" of the above discussed type do
not occur if we restrict attention to the extensions of appropriate theories: whenever U and V are theories in the
same language which both extend any of the solid theories from the list including PA, ZF, Zn, KM, CT[PA],
KFµ [PA] . . ., then U is a retract of V implies U ∀ V . This leads to a conclusion that bi-interpretability and
synonymy are more restrictive on "cones" originating from foundationally salient theories35

The above naturally leads to a question: What is so special about solid theories? Unlike internal categoricity,
whose definition preserves many intuitions supporting the traditional notion of categoricity, solidity seems to
lack such a ‘conceptual charm’. We shall try to explain the intuitions behind this notion more carefully. First of
all, let us observe that solidity speaks about the local behaviour of a first-order U across all models of U , i.e., it
considers what happens in each of the models of the theory separately. Speaking very informally, each model
of a solid theory thinks of itself as a special or distinguished model from among the ones that it can talk about.
More formally: consider a solid theory U and a model M |=U and let U(M ) be the set of all models of U that
are parametrically definable in M (considered up to the M -definable isomorphism). Of course, M itself is
an element of U(M ). Elements of U(M ) are naturally pre-ordered by the relation of parametric definability.
Intuitively speaking N is (strictly) greater in this ordering than a model K , if N can see K , but not vice
versa. Solidity simply says that M is the greatest element in this pre-order: whenever N △UM (hence M sees
N ) and N is also greater or equal to M (N sees an isomorphic copy of M ), then actually N is equal to M
(there is an M -definable isomorphism between N and M ). We think that this explanation should suffice to

33 It is worth adding that sometimes synonymy is taken to be too restrictive and a weaker notion, called Morita equivalence is preferred; as
shown in (McEldowney, 2020) Morita equivalence implies bi-interpretability under very mild assumptions.

34 One defines a complete/consistent truth predicate T2 using a consistent/complete one, T1 by putting T2(x) := ¬T1(¬̇x).
35 Recent unpublished work due to Piotr Gruza, Leszek Ko"odziejczyk and the second-named-author show that in some of these cases, and most

probably in all of them, the full strength of these theories is not necessary to eliminate pathologies in the behaviour of bi-interpretability.
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put solidity on the list of categoricity-like properties for first-order theories. Let us observe that, unlike internal
categoricity, solidity is a categoricity-like notion which naturally applies to first-order theories as opposed to
schemes.

Let us complete this subsection with a metaphor that guides our thinking about an important consequence
of solidity, namely neatness (as in Definition 7), which links the notion of a retract with that of theory extension.
One can "define" a natural or canonical theory as the one that "has a story to tell". If so, then one can see a
neat theory to be akin to the first episode of a well-written series of stories, in which the characters, and the
relationships and tensions between them, are well-developed. Such a successful first episode is self-standing
in its own right, but also allows the next episodes to be developed on the basis of it, without being seen as its
inevitable conclusion.

5.2. Internal categoricity: second order predicates, schemes vs. (first-order) theories

We shall start from a reconstruction of an extensively discussed philosophical puzzle: the structure of the natural
numbers seems to be both (a) well determined (by the operation of the successor and basic recursive equations
for addition and multiplication) and (b) first-order describable. Of course, a natural way of making the above
claim mathematically precise demonstrates that in fact (a) contradicts (b): the full (complete) first-order theory
of the natural numbers (the standard model) can be realized in various nonstandard models. One can react to
this phenomenon by admitting that there is indeed an irreducible second-order factor in our understanding of the
canonical structure of the natural numbers; or one might try to explicate the condition of "uniqueness" in some
other way. The internal categoricity approach uncovers a path leading towards a philosophically intriguing
explanation of the latter option. It starts with an observation that actually the categoricity of various prominent
second-order systems is essentially a very concrete phenomenon (we shall refer to this loosely defined property
as "concrete categoricity")36: the statement "Each two structures which satisfy the theory U are isomorphic"
is provable in the canonical proof system for second-order logic (which is sound and complete w.r.t. Henkin
semantics) for the cases when U is one of the canonical theories such as PA, CT[PA], restricting to models of
the same ordinal height in the case of ZF. Even though to obtain these results one makes use of the second-order
logic with Henkin semantic (with full comprehension), the appeal to the full second-order semantics has been
bypassed. Secondly, one can formulate a first-order version of this observation by further noticing that in each
of the cases there is a procedure of finding the required isomorphism, which is uniform with respect to the
definitions of the models for the given theory. In this way one arrives at the definitions of internal categoricity
(for first-order theories) and what we here dubbed strong internal categoricity in Definition 44. In both the
syntactic second-order and the first-order approaches one obtains intolerance results: If U is a concretely
categorical theory, then for every sentence ∋ separately one can prove that either ∋ holds in all U-structures
or ¬∋ holds in all U-structures.37 An interesting variation of the syntactic second-order approach and the
first-order approach was put forward by Fischer and Zicchetti (2023): the authors use an axiomatic theory of
truth to obtain a first-order intolerance in the form of a single universal sentence (as opposed to a scheme).

Our results from Section 4 bring more information about the peculiarities of each of the above introduced
approaches to formalising the idea of concrete categoricity, i.e., the syntactic second-order approach, the
first-order approach and the truth-theoretic approach.38 First of all, we developed a simple hierarchy of
categoricity-like notions (as in Theorem 74) in the first-order realm that can serve as a simple indicator of a
‘concrete categoricity degree’ of a given first-order portion of mathematics. The internal categoricity is at the
bottom of this hierarchy. Secondly, we claim that the properties defining each level in this categoricity scale
(including internal categoricity) are best seen as properties of schemes, as opposed to first-order theories. This
is supported by the following observations:

(a) A first order theory may be axiomatized by schemes with very different "degrees of concrete categoricity",
ranging from those that are not internally categorical (the Vaught schemes, see Theorem 52) up to those
that are g-minimalist (in the case of the usual schematic axiomatization of PA).

36 This is because we decided to fix a meaning of "internal categoricity" that seems to be used in this context.
37 For the precise explanation of these results in each scenario, consult (Maddy and Väänänen, 2023).
38 Indeed, Fischer and Zicchetti consider also one more perspective based on the work of Feferman and Hellman.
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(b) This perspective is fruitful: we can define a simple syntactic operations on schemes and show that some
categoricity degrees are preserved by them thus explaining some regularities in the distribution of internally
categorical theories.

What is more, there is a very clear philosophical idea explaining why schemes are better carriers of internal
categoricity than first-order theories: as opposed to theories, schemes are potentially open-ended, which means
that they are meaningfully applicable to any first-order language. Continuing along these lines, mathematical
agents can accept a given scheme , as an open-ended entity, which means that they commit to extending ,
to any language they find comprehensible. Mathematically speaking, schemes are functions which, when
applied to a first-order language, return a first-order theory. Seen from this perspective, Theorem 52 shows
that two such functions may coincide on a given language, however behave very differently on another ones.
Further degrees on our scale, e-solidity, g-solidity and g-minimalist, are underpinned by the same intuition:
how competent a given scheme is when presented with sets definable in various other languages. However, in
designing the formal definitions we were admittedly led by analogies with the categoricity notions of theories
and interpretability theory (the distinction between g- and e-solidity reflects the difference between the direct
and relative interpretation).

The above highlights the core difference between schemes and first-order theories. How about schemes and
second order formulations of theories, present in the syntactic second-order approach? Here we point to one
interesting phenomenon linked to the Tarski component added to various schemes. Consider the replacement
scheme conjuncted with the scheme expressing "no formula defines the truth for the set-theoretic universe" (as
in ,Repl+Tarski of Definition 68). As shown in Theorem 77 this scheme is, on our scale, at least one level ‘more
categorical’ in relation to the usual schematic axiomatization of ZF.39 Moreover, there is a clear philosophical
idea why mathematical agents might like to accept such a scheme in an open-ended fashion. Let’s think about
a set-theorist claiming that there is one all-embracing universe of sets, V , and all of mathematics takes place
within it. It would be natural to think that there is no external-to-V point of view. By the Tarski undefinability
of truth theorem, the truth for V should be absolutely undefinable, a claim which is reflected in the acceptance
of the Tarski component of our scheme.40

What can be said about the categoricity of ,Repl+Tarski in the context of second-order logic with Henkin
semantics and full comprehension? Indeed, in this second order context ,Repl+Tarski is categorical (in the sense
that any two models of the second order theory are isomorphic), provably in the second order logic. However,
this is because of the fact that provably in second order logic there is no structure that satisfies the second order
version of ,Repl+Tarski (for a scheme , in the signature with one binary relational symbol and for two second
order variables X ,E, ,X ,E denotes the result of relativizing the quantifiers in , to X and substituting E for the
relational symbol):

Theorem 90. The following sentence is provable in pure second order logic (with full comprehension):

⇐X ⇐E ¬⇐Y ▽ E ,X ,E
Repl+Tarski(Y ).

Proof. Suppose otherwise and consider a Henkin model M such that some pair of sets (X ,E) satisfies
,Repl+Tarski with respect to all subsets of X which exists in M . However, the Tarskian satisfaction class for
(X ,E) can be seen (via coding) as a subset of X , which is %1

1-definable in (X ,E), so by comprehension it exists
as an element of M . This contradicts the fact that (X ,E) satisfies the Tarski component of ,Repl+Tarski.

We think that the above observation speaks in favour of the schematic approach to the phenomenon of
concrete categoricity. Unlike in the syntactic second order approach, the schematic approach can do justice to
the coherence of the standpoint motivating the acceptance of schemes with the Tarski component. The fact that
this cannot be accomplished in the syntactic second-order framework is, in our opinion, due to the fact that the
full second-order comprehension introduces a perspective that is (at least partially) external to second order
theories under consideration. In our proof, the Tarskian satisfaction class, although undefinable in the structure

39 And two levels "more categorical" if g-solidity is strictly stronger than e-solidity, which we conjecture.
40 The philosophical ramifications of the open-ended feature of schemes has been explored by Charles Parsons, see, e.g., (Parsons, 2008).
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(X ,E) can be shown to exists by the use of %1
1-comprehension, available in the full second-order logic. Let us

observe that these arguments are in line with the known objections against making use of impredicative (&1
1)

comprehension to explain Parson’s problem on how can mathematicians know that they are talking about the
same structure of natural numbers. We refer to (Fischer and Zicchetti, 2023) for a discussion.

Last but not least, we stress how our results can be used to extend the truth-theoretic approach, put forward
in (Fischer and Zicchetti, 2023). An important step in this approach was to show that the the usual scheme
axiomatizing the theory CT[PA] is strongly internally categorical. We show (Theorem 85) that also an untyped
theory of truth, KFµ [PA] is g-solid, and a similar argument can be applied to show that it is strongly internally
categorical. Hence one can devise a truth-theoretic approach based on an untyped truth predicate.

6. Future work

There is still much to be learned about categoricity-like properties of first order theories. The following list of
questions and conjectures provides a glimpse of the unexplored part of the territory.

1. Question. Is there a consistent sequential theory that is maximalist? The notion of a maximalist theory
was introduced in Definition 7.

2. Conjecture. There is no finitely axiomatizable sequential tight theory. Note that by Theorem 38 the
conjecture is confirmed for finitely axiomatized subtheories of the canonical theories in the list S of
Theorem 14.

3. Question. Is there a solid deductively closed proper subtheory of ZF that includes KP (Kripke-Platek set
theory) and the axiom of infinity? This question is informed by the solidity of ZF.

4. Question. Is the PA↓+Collection a tight theory? Recall from Theorem 35 that PA↓+Collection is not a
solid theory.

5. Conjecture. For every sequential r.e. theory T in a finite language L there is an L -scheme template ,
such that ,[L ] = T and , is not internally categorical. This conjecture is informed by Theorem 52.

6. Question. What is the relationship between the notion of internal categoricity in the context of Henkin
models of pure second order logic (as in Button and Walsh, 2018) and the categoricity-like concepts of
scheme templates studied in this paper? This question is motivated by juxtaposing the (proof of) Theorem
77 with Theorem 90.

7. Question. What are the categoricity-like properties of the so-called restricted schemes (in the sense of
Wilkie, 1987)?

8. Conjecture. There is an e-solid scheme template , that is not g-solid and , axiomatizes a sequential
theory.

9. Question. Is there an arithmetical template that is e-solid, the theory T it generates includes PA↓, and the
deductive closure of T is a proper subtheory of PA?

10. Question. Do the results in this paper shed any light on the Parsons’ dilemma about the determinacy of
the structure of the natural numbers?
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Logical Constants and Unrestricted Quantification

Volker Halbach

Abstract: Variants of the so-called permutation criterion have been used for distinguishing between
logical and non-logical operations or expressions. Roughly, an operation is defined as logical if, and
only if, it is invariant under arbitrary permutations on every domain. Thus a logical operation behaves
on all objects in the same way. An expression is logical if, and only if, the operation expressed by it
is logical. I consider a variant of the permutation criterion that eliminates domains: An operation is
permutation-invariant if, and only if, it is invariant under arbitrary permutations of the universe. An
expression is logical if, and only if, it expresses an operation that is permutation-invariant in this sense.
This domain-free definition of the invariance criterion matches definitions of logical consequence
without domains where first-order quantifiers are taken to range over all (first-order) objects in all
interpretations. Without domains some problems of the invariance criterion disappear. In particular,
an operation can behave on all objects of any domain in the same way, while still behaving very
differently in each domain. On the criterion without domains, a logical operation always behaves on
all objects in the same way, not only on all objects of any given domain.

Keywords: Logical consequence, Logical constants, Permutation criteria for logical constants,
Absolutely unrestricted quantification, Second-order logic

An argument is logically valid if, and only if, there is no interpretation of the non-logical vocabulary under
which the premisses are all true and the conclusion is false. On this semantic definition, logical consequence
depends on the distinction between the logical and non-logical vocabulary. The logical vocabulary is widely
taken to be the vocabulary that is independent of the subject matter and behaves on all objects in the same
way. Logicians have tried to cast this characterization into a more formal criterion: An expression is a logical
constant if, and only if, the behaviour of the expression cannot be changed by replacing every object with a
proxy in such a way that every object is a proxy of something. In other words, the behaviour of logical constants
is invariant under arbitrary permutations.

Logicians have discussed various versions of this invariance criterion. Usually, the behaviour of a term or
the operations expressed by the term is said to be logical if, and only if, the behaviour of the term or operation,
when interpreted in a model with a certain domain, is not affected by permuting the model’s domain. This
yields a criterion relative to a model; but one can usually choose the ‘intended’ interpretation over the domain.
This model-theoretic version of the invariance criterion is formulated in set theory, even if it is applied to
type-theoretic languages.

The model-theoretic criterion of logicality deviates from the initial informal characterization as follows:
According to the formal criterion, a term or operation is defined as logical if, and only if, it behaves on all
objects of any domain in the same way, while the original informal characterization takes a term or operation to
be logical if, and only if it behaves on all objects in the same way; no mention is made of domains. In this paper
I discuss a formal version of the invariance criterion without domains. It is closer to the original conception of
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independence from the subject matter than the model-theoretic. Not only is my criterion closer to the initial
informal characterization of logical constants; it also avoids certain well-known problems that are generated by
the use of domains.

Of course, domains are essential to the understanding of interpretations as (set-theoretic) models and,
consequently, to the model-theoretic definition of logical consequence. However, there are also definitions of
logical consequence that do not rely on domains. For such definitions my invariance criterion is much better
suited than the model-theoretic. Before delving into the discussion of invariance criteria, I explain why one
might want to eliminate domains from the definition of logical validity.

1. Two strategies for defining logical consequence

Two strategies for defining logical truth and consequence have their origin in Tarski’s work. One of them
features domains; the other does without. The latter strategy – let us call it the type-theoretic strategy – is
associated with his brief conference paper (1936), which was an application of his theory of truth developed in
The Concept of Truth in the Formalized Languages (1935). On this strategy, a formula is classified as logically
valid if, and only if, the result of replacing all non-logical terms in it with variables of the appropriate type is
satisfied by all variable assignments. For instance, the sentence ⇐x(Px ↘ Qx↗Px) is declared logically valid,
because ⇐x(Xx ↘ Y x↗Xx) is satisfied by all (second-order) variable assignments. The techniques developed
by Tarski in The Concept of Truth yield a definition of satisfaction of a formula of order n in a language of
order n+1 relative to a variable assignment. No mention is made of domains of quantification on Tarski’s
type-theoretic strategy.1

The second strategy devised by Tarski is the usual model-theoretic definition of logical consequence. There
is no need to ascend to higher-order languages on this approach: Logical truth and consequence for first-order
sentences can be defined in first-order set theory. Tarski developed this strategy only later, after first-order set
theory had largely replaced type-theory as the foundations of mathematics.2 The domain of quantification in a
model is always a set, at least if we work in first-order set theory in the usual way. Satisfaction over a class-sized
domain cannot be generally defined within first-order set theory. Logical truth or validity of a sentence is then
defined as truth, that is, satisfaction by all variable assignments, in all models.

Logical consequence, that is, the logical validity of an argument, can be defined in a way that is analogous
to that of logical truth or validity of a single sentence on both, the model- and the type-theoretic strategy.

Here in this paper I focus on definitions of logical consequence for first-order languages with a special
interest in the language LZF of set theory and its finite first-order expansions. I see these languages as
regimented versions of the language that many logicians use for theorizing; they are the languages in which
logical consequence can be defined in the model-theoretic way. No ascent to a higher-order language is required.
On this strategy, logic is universal in the sense that the definition of logical validity in set theory applies to all
first-order languages, including LZF itself and its first-order expansions.

This is not to say that the model-theoretic definition is an adequate analysis of logical validity for all these
languages. Especially when the language of set theory is considered, the absence of interpretations that take
quantifiers to range over all sets has worried Kreisel (1967) and many others. In particular, there is no model
that can be taken to be the ‘intended’ interpretation.

The worries can be made more palpable by drawing parallels with restricted versions of the model-theoretic
definition. If we concentrate on countable first-order languages only, we could omit all uncountable models as
permitted interpretations without actually changing the extension of the consequence relation. This is obvious
from the usual Henkin proof of the completeness theorem. However, hardly anyone working in the usual
set-theoretic framework would advocate a model-theoretic definition of logical consequence that excludes
uncountable models without citing the Löwenheim–Skolem theorem or a version of Kreisel’s (1967) squeezing
argument (and thus the completeness theorem).

1 The purpose of this paragraph is to sketch the general strategy, not to give a precise account of what Tarski (1936) did. Satisfaction for
formulæ of order n with free variables of order n+1 is required for the definition of logical validity above. All this was at Tarski’s disposal
from his earlier work; in (1936) he did not provide formal definitions.

2 (Tarski and Vaught, 1956) is an early paper with the modern definition of a model and the set-theoretic definition of satisfaction in a model.
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The restriction to countable (including finite) models becomes a problem when more expressions with
a fixed interpretation are added to the language. For instance, once cardinality quantifiers such as ‘there are
countably many’, the Härtig quantifier ‘there are as many As as Bs’, or second-order quantifiers are added,
the omission of uncountable models yields an extensionally incorrect definition of the consequence relation.
Examples are easy to come by. This is not to say that cardinality quantifiers and so on are actually logical
constants; but it should be possible to keep their interpretations fixed without obtaining an inadequate definition
of consequence. Definitions of logical consequence that yield inadequate definition of consequence relations
when new terms with fixed interpretation are added, are called unstable in (Halbach, 2024). Unstable definitions
may still yield an extensionally adequate definition when the interpretation of sufficiently many expressions can
be varied; but this adequacy then relies on the expressive weakness of the terms whose interpretation is kept
fixed.

The usual model-theoretic definition of logical consequence with models of arbitrary cardinality is also
unstable. It is stable under the addition of the usual generalized quantifiers, but falters on the addition of the
McGee quantifier ≃AIx 3(x) expressing that there are absolutely infinitely (i.e. proper class many) 3 . As McGee
(1992, p. 279) explains, ≃AIxx= x is not true in any (set-theoretic) model and thus a contradiction on the
model-theoretic definition, although it is true. Thus, the usual model-theoretic definition of logical consequence
cannot completely avoid instability, because quantifiers are always interpreted as ranging over the elements of a
set.

On the type-theoretic strategy, a higher-order metalanguage is required for the definition of first-order
logical truth and consequence. Domains can be and often are omitted from this account. Etchemendy (1999)
and others have criticized Tarski for the absence of domains from his (1936) definition of logical consequence.
As first-order quantifiers are always interpreted as ranging over all individuals, sentences such as ≃x≃yx ↔=y
come out as logically valid.3

With the rise of first-order set theory as a foundation for mathematics, the model-theoretic definition of
logical consequence has become the dominant method. However, Williamson (1999) and others have tried to
revive Tarski’s first strategy.4 They are prepared to bite the bullet by using higher-order logic and accepting
the logical truth of ≃x≃yx ↔=y. The absence of domains means that quantifiers are interpreted as ranging over
all (first-order) objects. In particular, the quantifiers of LZF range over all sets. Thus, quantifiers are always
interpreted in the same way – as they should if they are logical constants.5

I add a remark on my terminology to avoid misunderstandings: The language in which logical consequence
is defined needs to be distinguished from the language for which it is defined, although they may coincide
in special cases. When I talk about the model- or type-theoretic strategy, I refer to the language in which
logical consequence is defined, whatever the language may be for which it is defined. My main focus is on
the type-theoretic strategy, applied to the language LZF of first-order set theory. The strategy for defining
logical consequence even for type-theoretic languages is nowadays typically model-theoretic. That is, logical
consequence for type-theoretic languages is defined in set theory: Interpretations are understood as type
structures, which are a special kind of models.

2. Invariance with domains

Obviously both strategies of defining consequence rely on a distinction between the logical and the non-logical
vocabulary. On the type-theoretic strategy, only non-logical terms are replaced with variables. On the model-
theoretic definition, models assign values only to non-logical terms. For languages such as LZF there is a
traditional distinction: In LZF the membership symbol △ is the only non-logical symbol, while connectives and
quantifiers are logical. If generalized quantifiers are taken into account, the picture is more blurred. But even if

3 There are some discussions about the exact interpretation of (Tarski 1936). Some authors have denied that Tarski is committed to accepting
that ≃x≃yx ↔=y is a logical truth. See (Sher, 1996; Gómez-Torrente, 1998, 2009) for a discussion.

4 Logical consequence without domains can also be developed in theories that are not type-theoretic. Friedman (1999) has studied logical
consequence without domains in a theory of predication.

5 McGee (2004, p. 374) provides a more thorough discussion. He called quantifiers restricted to domains ‘logical hybrids’ because their
interpretation is varied between models, although the interpretation of logical constants should not be varied in the definition of validity. I
should define what is meant precisely by saying that the interpretation of a term is kept fixed. In contrast to (Sagi, 2018), I focus here on
keeping extensions fixed.
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generalized quantifiers are set aside, one would like to have a principled reason for the classification of terms
other than tradition. Several ways to make the distinction have been advocated (see, e.g., MacFarlane, 2017, for
an overview).

In his (1986) – a talk given in 1966 – Tarski advocated the use of a permutation-invariance criterion for
logical notions. This does not directly yield a criterion for classifying terms, that is, syntactic expressions
in the language. However, usually it is taken for granted that those terms are logical constants that express
logical notions and that it is clear which notion(s) are expressed by a term of the language.6 I will return to the
problem of terms expressing notions later. For now, I proceed as if the transition from logical notions to logical
terms were obvious. After the publication of Tarski’s paper, invariance criteria for logical notions were further
developed in some detail by Sher (1991), McGee (1996), Feferman (1999), Bonnay (2008), and many others
(see Bonnay, 2014, for an overview). It is common to all these approaches that they employ domains, as is
natural if the distinction is to be applied to the model-theoretic definition of logical consequence.

There is a vast literature on the invariance criteria for logical notions, and there are different attempts to
motivate invariance criteria. Tarski (1986) started from the invariance of certain geometric properties under
certain transformations and generalized this to invariance under arbitrary permutations. As I mentioned at
the beginning, I take the invariance criteria as an attempt to spell out a more traditional characterization of
logical constants. Logical ‘notions’ or operations – the operations expressed by logical terms – should behave
indiscriminately on all objects in the same way; they must not behave in a subject-specific way. This requirement
is at least partially captured by invariance criteria: A logical operation should behave on objects in the same way
as on their proxies (given by some permutation). In the first instance, permutations of a non-empty (set-sized)
domain D, that is, an injective mapping of D onto itself, are considered. Then invariance under all permutations
of D is defined. Of course, a criterion of logicality is required that is not relative to a domain D: An operation is
classified as logical if, and only if, it is logical on all domains.

Usually, relations and operations on D such as identity, relative complementation, intersection, union, and
cylindrification are invariant under all permutations over any given domain D. They are thus classified as logical,
which is taken as evidence that the terms expressing them – assumed to be the identity, negation, conjunction,
disjunction, and existential quantifier symbols – are logical terms relative to every domain. Also cardinality
quantifiers like ‘There are (17 many As’ are logical on every domain.

McGee (1996) gave examples that show that a clearly non-logical operation may qualify as logical over
certain domains by this criterion. One of them is wombat disjunction on p. 575, which is defined as follows for
all variable assignments + :

+ satisfies (3W &) iff either there are wombats in the universe of discourse and + satisfies either
3 or & or there are no wombats in the universe and + satisfies both 3 and & .

Wombat disjunction behaves on all domains containing at least one wombat like disjunction and like conjunction
on domains without wombats. Since conjunction and disjunction are permutation-invariant on every domain, the
operation of wombat disjunction is also permutation-invariant on every domain. If W expresses the operation
of wombat disjunction, it expresses a permutation-invariant operation just like ∝ and ↗.

The operation expressed by W is obviously not logical. The operation of wombat disjunction is sensitive
to which objects are in the domain and thus sensitive to the subject matter. Consequently, simple invariance
under permutation over arbitrary domains fails to capture the initial informal characterization of logicality as
subject independence. Sher (1991) suggested considering not only permutations of domains, but also bijections
between domains.7 McGee (1996) endorsed this generalization to solve the problem of wombat disjunction
and other pathological notions. This move is well motivated: A logical operation should work in the same way
whether wombats are included in the domain of discourse or not.

6 At this point many authors remark that (Tarski, 1986) and (Mautner, 1946) have a significant overlap. Tarski was certainly not the first to
connect permutation invariance and logicality. Presumably, the are much older predecessors, although they lacked the resources to develop
invariance criteria formally. (Mostowski, 1957) also proved to be highly influential.

7 Mostowski (1957) considered already mappings between domains for generalized quanitfiers, but not for a general characterization of
logicality.
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However, invariance under all bijections cannot fully solve the problem. Bijections exist only between
domains of the same cardinality. A variant of wombat disjunction may not be sensitive to the presence of
wombats in the domain, but to the cardinality of the domain. In particular, it may act like disjunction on domains
of certain cardinalities, but not others, as (McGee 1996, p. 577) acknowledged: ‘The Tarski–Sher thesis does
not require that there be any connections among the ways a logical operation acts on domains of different sizes.’

Connections between domains of different cardinalities are established by considering surjective mappings
between domains, that is, injectivity is omitted from the admissible mappings between domains. Feferman
(1999, 2010) pursued such an approach.8 If McGee’s general framework is retained and bijections are replaced
with arbitrary surjective mappings, negation, conjunction, and universal quantification are no longer logical.
Feferman obtains the logicality of all the usual logical constants, including negation, conjunction, and universal
quantification, of first-order logic without equality by a suitable modification. The main point is the transition
from relational (Russellian) type structures to functional type structures. Feferman adds truth values explicitly
as elements in the type structure to obtain semantic structures that are in Frege’s spirit. But this move trivializes
the logicality of the connectives and generates further problems.9

The canonical logical notions of first-order logic behave in the same way (in the sense of permutation
invariance) on all infinite cardinalities because of the Löwenheim–Skolem theorem. Hence, the problem of
different behaviour on domains of different cardinalities does not arise for them. One can now stipulate that
a logical notion is ‘more logical’ if it behaves in the same way on all infinite cardinalities or, at least, on all
cardinalities beyond a small cardinal. Sagi (2018) suggested a graded account of logicality in this direction.
Kennedy and Väänänen (2021) mapped the resulting classification of logicality. Such an approach means that
an additional criterion for logicality beyond permutation invariance is added, namely an independence from
the cardinality of the domain. It has led to interesting results; but here I pursue another, more simple-minded
strategy for avoiding the problem arising for different behaviour on domains of different size.

3. Invariance over all objects

The complications generated by wombat disjunction and similarly pathological operations have their root in
the relativization of the permutation-invariance criterion to domains, which makes it necessary to consider
complicated ways for connecting domains.

The relativization of the criterion to domains was motivated by the model-theoretic strategy of defining
logical truth and consequence. On the type-theoretic strategy there are no domains, and there is no reason
for relativizing invariance criteria to domains. In the remainder of this paper, I argue that, if the criterion of
permutation invariance is not relativized to domains, it becomes simple, elegant, and closer to the original aim
of capturing independence from the subject matter.

This is by no means a new idea. Already Tarski (1986, p. 149) may have considered both, defining
invariance over elements of a specific domain as well as over all objects:

we would consider the class of all one-one transformations of the space, or universe of discourse,
or ‘world’, onto itself.

Also Williamson (1999) seems to make use of a formulation of the permutation-invariance criterion without
domains.

There are obvious obstacles to formulating invariance criteria over all objects. The first difficulty is
generated because the extensions of predicates are no longer necessarily sets; they may be proper classes. Even
if the extension is a set, to deal with negation, the absolute complement of that set, that is, a proper class, is
required. The second obstacle is the need for permutations of the entire universe. Such a permutation cannot be

8 Feferman’s characterization of logicality is known as ‘homomorphism invariance’ approach. There are many subtleties to Feferman’s
theory, which are not discussed here.

9 Casanovas (2007) provides a more detailed discussion of these two ways of setting up the framework. Here in this paper I focus on
operations available in first-order languages and do not discuss (higher-order) type structures.
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modelled as a set-sized function. The least tractable objects are the operations themselves; they map proper
classes to classes and are thus third-order entities.

I will now formulate the permutation-invariance criterion without domains.10 Writing out the definitions
will help me to assess the resources required – or at least naturally required – for the formulation of the criterion.
Operations such as negation or quantification operate on extensions, that is, classes of objects. They will
be conceived as functions on extensions and, therefore, as third-order objects. I will define a criterion of
permutation invariance only for first-order languages. However, the definition can be extended to higher-order
languages; but the definition of permutation invariance for a language of order n necessitates then the ascent to
a metalanguage of order n+2.

There may be ways to avoid third-order quantifiers, but only with some serious modifications. That
third-order logic is needed should not come as a surprise. In the usual setting, type structures over set-sized
domains are employed. There, first-order quantifiers are conceived as properties of properties and thus as
third-order objects.

A universal definition of logical consequence, in particular, a definition of logical consequence for the
language that is being used in that very same language is not within the reach of the proponents of the type-
theoretic strategy. Some have left behind all scruples about higher-order quantification and will not mind the
use of third-order logic. Those who prefer a lean reading of second-order quantifiers as plural quantification
or quantification over predicatively definable classes will find it hard to accept the definitions below, not only
because of the use of third-order logic, but also because weak forms of comprehension will make the application
of the criterion less plausible.11

I choose the language of Zermelo–Fraenkel set theory with urelements as the language for which permu-
tation invariance and finally logical consequence is to be defined because it is a candidate of a language that
features quantifiers ranging over all (first-order) objects and has high expressive strength. Of course, this is
not what Tarski had in mind in the 1930s; but it is closer to the kind of language formal philosophers of the
present day would use as their working language. Together with this language come appropriate axioms. For
the sake of definiteness I start with the axioms of Zermelo–Fraenkel set theory with the axiom of choice and an
axiom stating that the urelements form a set.12 I then add full second-order and third-order comprehension. The
schemata of first-order Zermelo–Fraenkel are replaced with their higher-order counterparts. Once we accept talk
about proper classes, this is a natural way to expand the first-order theory Zermelo–Fraenkel to a higher-order
language. This is not a necessary move: For the purposes here, I only need weak assumptions: I define a few
notions that require that sequences and functions can be expressed; in the last section I also assume that syntactic
facts can be proved in the theory. However, the full development of the theory of logical consequence may be
sensitive to whether some strong assumptions are made. For instance, whether the completeness theorem for
first-order logic can be proved for languages with quantifiers that are not relativized to domains may depend on
the availability of global choice or at least a linear ordering of all first-order objects (Friedman, 1999; Rayo and
Williamson, 2003). The existence of a linear ordering can be formulated without any set-theoretic vocabulary;
second-order quantification is sufficient.

Urelements do not play a significant role in the formal development. They need to be included because we
consider invariance over all objects; and, since there are objects besides the pure sets, I admit urelements. In
what follows V is the class of all sets and urelements.

Working informally in the third-order theory, I first define the notion of a variable assignment: A variable
assignment is a function from −; the values of the function can be any (first-order) objects. I write V − for
the class of all variable assignments. A class of variable assignments is any class A ▽V − . The variables are

10 McGee (1996) sketched already how to proceed if proper classes are admitted as domains. The approach here is much simpler: There is
only one first-order domain, namely the class of all (first-order) objects.

11 In (2020) I consider the formulation of a similar criterion in a pure first-order language. Here I have no ambition to use of a lean metatheory.
12 The referee mentioned in the acknowledgements asked what justifies the assumption that the urelements form a set. The question is tough,

because it touches upon question in metaphysics. For instance, propositions may be among the urelements and there may be too many of
them to fit into a set. I reject such a conception of propositions. Generally, I think of set theory as the most difficult task that has ever been
undertaken for the sake of metaphysics, and nothing can be put on top of the universe of sets, especially not from the realm of more flimsy
metaphysics. This is my honest answer; I realize that it is not an argument.
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indexed by the elements of − . I write v0,v1, . . . for these variables. For a △V − I write a(k) for the value of the
variable vk with index k. I use a and b as variables ranging over variable assignments.

Unlike McGee (1996) for instance, I am only interested in formulæ with finitely many free variables. In
particular, I do not admit predicate symbols with infinite arities or infinite conjunctions. They may qualify as
logical by some permutation criterion, but the requirement of expressibility in a language with formulæ of finite
length overrides the permutation criterion. The use of finite variable assignments leads to notoriously clumsy
definitions: For binary connectives, when the variables assignments for the conjoined formulæ are not defined
on the same variables, variable assignments have to be merged. It is easier to use variable assignments that are
total functions on − and think of them as finite variable assignments that have been padded out in some way.

The extension of a formula 3(v0,v2), for instance, is understood as the class of all variable assignments that
satisfy 3(v0,v2). Since I consider only formulæ with finitely many free variables, all extensions of formulæ are
finitary in the following sense:

Definition 1. A class A ▽ V − of variable assignments is finitary iff there is a finite set I B − such that
⇐b

(
≃a△A⇐i△ I b(i)=a(i) ↘ b△A)

)
.

The class V − itself is a finitary class of variable assignments, as is the empty set Ø. The class V − is the
extension of formulæ satisfied by all variable assignments and, in particular, of all true sentences, while Ø is the
extension of all formulæ not satisfied by any variable assignment and, in particular, of all false sentences.

I could also have employed functions with finite domains as variable assignments. As the extension of a
formula 3(v0,v2) with exactly the free variables v0 and v2, I could have used the class A f of all functions from
{0,2} such that a(0) for v0 and a(2) for v2 satisfy 3(v0,v2). Working with such finite variable assignments is
more awkward, however. Relative to a set I of (indices of) variables, there is a one-one correspondence between
such classes of finite functions with I as domain and the corresponding finitary class of variable assignments.
In the example we have I = {0,2}. The finitary class A corresponding to A f is obtained by padding out all
functions b △ A f with arbitrary objects:

a △ A iff ≃b△A f
(
b(0)=a(0) and b(2)=a(2)

)

That is, we pad out the finite variable assignments in A f in any possible way. Conversely, restricting all functions
in A to the domain I = {0,2} yields A f . This generalizes to other finite index sets I in the obvious way.

I use the term finitary, because the restriction to finitary classes of variable assignments corresponds to the
restriction that any formula has only finitely many free variables; that is, the arity of any predicate symbol is
finite, and there are no infinite conjunctions or predicate symbols with infinite arity.

All non-empty finitary classes of variable assignments are proper classes. In what follows, classes of
variable assignments are always assumed to be finitary. However, nothing would go amiss without this
restriction. I denote the class of all classes of finitary variable assignments with F. Here it is not necessary to
ascend to third-order logic, because having a second-order defining formula for F will suffice, and thus I can
use F in the same way that set theorists use V or On without committing themselves to proper classes.

The semantic values or extensions of the predicate symbols, the logical connective and quantifier symbols
can be understood as operations in the following sense:

Definition 2. For n ′ 0 an n-ary operation O is a function that maps every n-tuple ↙A0, . . . ,An↓1⊤ of classes of
finitary variable assignments to a class of finitary variable assignments A.

As mentioned above, operations are third-order objects. The operation of negation is a unary operation. It maps
a class A△F to the complement V − \A. The operation of conjunction is binary and maps ↙A1,A2⊤ to A1 ⊥A2.
The operation of existential quantification of the k-th variable is unary and maps A to the class

{b : ≃a△A⇐i ↔=k a(i)=b(i)}.

Note that the values of all these functions are finitary classes of variable assignments, as long as they are applied
only to finitary classes of variable assignments.
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Strictly speaking, I do not consider relations simpliciter, but rather extensions of atomic formulæ. Thus,
for instance, there is no single extension for the (class-sized) relation of identity. There are only the classes
Idi, j := {a : a(i) = a( j)} for all i ↔= j. Instead of the extension of the formula v0 = v1, I could consider the
binary relation (set of ordered pairs) Id := {↙a(0),a(1)⊤ : a(0) = a(1)}, and similarly for other relations. The
relation Id is independent of the used variable; that is, in place of 0 and 1, I could have chosen any two variables
vi and v j with i ↔= j. Therefore, we can always abstract away from the chosen variables.13

The requirement that the indices i and j are distinct cannot be dropped. The formulæ vi = vi do not express
the identity relation; they do not express any relation, but rather the unary property of being self-identical. In
the end, the identity relation and the property of being self-identical qualify as logical; but using the same
variable in two distinct occurrences can make a difference to the logicality of the relation or property expressed.
For instance, v0 △ v1 expresses the membership relation (or rather the padded out A △ F ) and does not qualify
as logical, while v0 △ v0 expresses the logical empty property Ø. In definition 5 I formally spell out what it
means for a formula to express an operation; but I hope that it is sufficiently clear why v0 △ v1 and v0 △ v0
express the respective operations.

The advantage of using classes of variable assignments and thus extensions of formulæ rather than predicate
symbols is that it permits a uniform treatment of predicates, connectives, and quantifiers. Classes of variable
assignments are just 0-ary operations as in (McGee, 1996). Thus, relations are classes of variable assignments,
that is, relations are identified with their extension. In what follows I will be sloppy and talk about the operation
of identity.

Definition 3. A permutation of V is an injective mapping of V onto V . The permutation &⇒ of variable
assignments induced by a permutation & of V is the class-sized function mapping every a△V − to the variable
assignment b△V − such that b(i) = &(a(i)) for all i△ − . If & is a permutation of V and A a class of variable
assignments, the permutation &⇒⇒(A) induced by & of A is the class {&⇒(a) : a△A}.

As usual, I conflate permutations of V and the permutations induced by it and write & where I should write &⇒

or &⇒⇒. It should be clear from the context whether I mean a permutation of V or the induced permutations.

As pointed out above, I am interested in classes of variable assignments in F . Permutations will always
stay within F in the sense that A△F implies &(A) △ F .

Permutation invariance can now be defined in the obvious way without any recourse to domains.

Definition 4. An n-ary operation O is permutation-invariant iff for all permutations & and all Ai△F with
i < n:

O↙&(A1), . . . ,&(An↓1)⊤ = &(O↙A0, . . . ,An↓1⊤)

The definition yields the expected classification of most operations. All operations of the truth-functional
connectives are permutation-invariant, as are the operations of existential and universal quantification and
cardinality quantifiers. Also the relation of identity is permutation-invariant. In contrast, the relation {a△V − :
a(0) △ a(1)} of set-theoretic membership fails to be permutation-invariant, as expected.

Permutation invariance has been defined for operations in general, including those for which our language
lacks a primitive symbol. McGee (1992) considered the quantifier ≃AIvk expressing that there are absolutely
infinitely many. This quantifier corresponds to the operation that maps A△F to the class B of all variable
assignment such that

b △ B iff ({a△ A : ⇐i ↔=k a(i)=b(i)} is a proper class.)

On a straightforward domain-relative formulation of the permutation-invariance criterion, the operation will also
qualify as permutation-invariant, but in a trivial way because there is no proper class of variable assignments
over a set-sized domain. Without domains the quantifier also qualifies as permutation-invariant. However, it
can be shown that the domain-based definition leads to an incorrect classification in contrast to the domain-free

13 More formally, one could consider the equivalence class of all binary relations Idi, j with i ↔= j and then use Id0,1 as the representative of the
equivalence class. The equivalence class is a second-order definable, and thus there is no real need to ascend to third-order logic. It should
be obvious how to generalize this to other relations. I think a referee for helpful notes on this.
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definition. The difference can be brought out by considering relativizations of the quantifier. Consider the
operation corresponding to ≃AIvk (On(vk)∝ . . .) expressing that there absolutely infinitely many ordinals such
that so-and-so. This still qualifies as permutation-invariant on the domain-based account, because it still works
like the trivial quantifier ≃AIvk (vk ↔=vk ∝ . . .). However, on the domain-free account here, ≃AIvk (On(vk)∝ . . .)
fails to be invariant under permutations, as a permutation can map ordinals to non-ordinals. This brings
≃AIvk (On(vk)∝ . . .) in line with other restricted quantifiers such as ‘there is at least one cat such that . . . ’ that
fail to be logical on both accounts.

Finally, the problem of wombat disjunction is eliminated. The entire problem of connections between
domains has vanished because the permutations here are no longer restricted to a domain. Since wombats
exist, the operation of wombat disjunction is identical with the operation of disjunction, which is permutation-
invariant.

4. Absolutely general quantification

The unrestricted first-order existential and universal quantifiers (or rather the operations expressed by them) are
permutation-invariant and thus qualify as logical constants. The domain-based and the domain-free definitions
of permutation invariance yield the same results on these quantifiers, and thus is may seem that they treat
quantifiers in the same way; but this is misleading.

The application of the traditional domain-based criterion of logical invariance yields the result that relative
to each domain the universal and existential quantifiers are permutation-invariant. One might object that
they are not invariant under expanding or shrinking the domain; for a definitive verdict a clear method for
cross-comparisons between different domains would be required. As I have mentioned above, it is far from
clear how this can be achieved.

On the domain-free account, quantifiers ranging over a domain D can be mimicked by relativized quantifiers
like ≃vk (vk △D∝ . . .). For fixed k and class D, the relativized quantifier expresses the following operation OD
on all A△F :

OD(A) = {b : ≃a△A (⇐i ↔=k a(i)=b(i)∝a(k)△D)}

The operation OD is only permutation-invariant if D is empty or the universal class. Thus, on the definition
outlined above, the absolutely unrestricted existential and universal quantifiers are permutation-invariant, while
the domain-relativized quantifiers are not, because a domain in the sense of model theory is never empty and
always a set.14

As before, I assume explicitly that whether the symbols ≃, ∝, ¬, and = are logical constants depends
exactly on whether the corresponding operations are. Since then identity qualifies as permutation-invariant, it is
hard to avoid an alleged problem in (Tarski, 1936), namely that sentences such as ≃x≃yx ↔=y qualify as logical
truths.

As the logical validity of these sentences will not be palatable to many, one might try to show that identity
is not logical. In fact, Feferman (2010, p. 10) seems to think that the logicality of identity is not decided by
invariance approaches:15

Finally, as pointed out to me by Bonnay, it is hard to see how identity could be determined to be
logical or not by a set-theoretical invariance criterion of the sort considered here, since either it is
presumed in the very notion of invariance itself that is employed – as is the case with invariance
under isomorphism or one of the partial isomorphism relations considered in the next section – or
it is eliminated from consideration as is the case with invariance under homomorphism.

However, on the account here, distinctness (i.e. non-identity) can be treated as non-logical only by switching
from injective to merely surjective mappings. Distinctness is not invariant under such possibly non-injective

14 Perhaps Frege and others would agree, and only the triumph of model-theoretic semantics since the 1950s makes the claim that domain-
restricted quantifiers are not logical sound outlandish. See (McGee, 2004) for a further discussion.

15 See (van Benthem, 2002, p. 429) for a related circularity objection.
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mappings, because objects may be ‘merged’. But also conjunction and negation would lose their status as
logical constants, because the respective operations are not invariant under all surjective mappings.16 This
is hardly acceptable. Therefore, only invariance under mappings that are surjective and injective should be
considered; and identity and distinctness are invariant under such bijections.

In response, one could argue that a functional approach as in (Feferman, 1999) could or should be employed;
but, as in the case of the domain based approach, that would trivialize the logicality of the connectives, because
their values would be truth values that are unaffected by permutations.17

Therefore it is hard to see why identity and non-identity should not be logical constants. ≃x≃yx ↔=y is true
and does not contain any non-logical constant that can be re-interpreted. Hence, it is logically valid. If that is
rejected, another criterion not solely based on invariance is needed.

5. Expressing operations

Even if a criterion for distinguishing between logical and non-logical operations is available, we still need to
distinguish between logical and non-logical terms or expressions in the language. Only if we have a criterion
for deciding which operations are expressed by terms in the language, will a criterion for operations be of use
in the definition of logical consequence. This is because for the definition of logical truth and consequence, we
must know which terms can be re-interpreted and which ones have an interpretation that is kept fixed. Only
atomic, not complex, expressions need to be classified for the purpose of defining logical truth and consequence.
Therefore, by ‘term’ I always mean ‘atomic term’.

The distinction between atomic and complex expressions is not trivial. Predicate symbols should qualify
as atomic, as should connective and quantifier symbols. By ‘atomic’ I do not mean ‘syntactically atomic’.
Arguably, in standard infix notation the brackets in (3 ∝&) belong to the term of conjunction. One might like
to say that an expression is atomic if it has a meaning of its own; but that does not clarify much. At any rate, the
distinction should be sufficiently clear for the standard first-order languages.

Criteria of invariance such as the one above only yield a criterion of logicality for operations if it is stipulated
that an operation is logical iff it is invariant under the relevant mappings. To apply the criterion to terms one
would like to say that a term is logical iff the operation expressed by the term is permutation-invariant. The
guiding idea behind much of the literature on permutation invariance and in the section above has been the
following definition:

Definition of logical constants. A term is logical iff is expresses a permutation-invariant operation.

Of course, it needs to be made precise what it means for a term to express an operation. Still working in
third-order set theory, it can be made precise for use with my invariance criterion by defining a formula Sat(x,y)
in second-order set theory expressing that the first-order formula x is satisfied by the variable assignment y.

Definition 5. Assume that ∅ is a predicate symbol or an n-ary connective or quantifier and define |3 | :=
{a△V − : Sat(≿3≳,a)}. Then ∅ expresses an operation O that maps ↙|31|, . . . , |3n|⊤ to |∅ (31, . . . ,3n)| for all
first-order formulæ of the chosen language.

This contains the special case of atomic formulæ: An atomic formula Rvi1 . . .vin expresses the 0-ary operation
{a△V − : Sat(≿Rvi1 . . .vin≳,a)}. Consequently, extensionality is built into this account: Whether a formula
expresses a permutation-invariant relation depends only on the objects to which it applies, not on any other
features of the formula.

As I have mentioned above, atomic formulæ Rvi1 . . .vin and Rv j1 . . .v jn express different operations if
ik ↔= jk for some k ⇑ n and R does not happen to apply to all objects in the k-th argument place. However, as
explained above, we can abstract away from the specific variables. The operations expressed by Rvi1 . . .vin
and Rv j1 . . .v jn will both be permutation-invariant (or not) as long as for every k, l ⇑ n, ik = il iff jk = jl . The

16 See again (Casanovas, 2007).
17 See again (van Benthem, 2002, p. 429).
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last condition means that in Rvi1 . . .vin the same argument places must occupied by identical variables as in
Rv j1 . . .v jn . The example of membership above provides a counterexample to the claim without this restriction:
v0△v1 expresses an operation that fails to be permutation-invariant, while the operation expressed by v0△v0
is permutation-invariant. In the first formula the two variables are distinct, while they coincide in the second.
This is what one would intuitively expect: v0△v1 expresses membership, v0△v0 the empty relation, at least is
standard set theory with foundation.

The definition of expressing an operation is relative to the language of the formulæ 31, . . . ,3n. There may
be sets of finitary variable assignments that cannot be defined in the given language. That is, there may be (and
there will be) sets of variable assignments that are not identical to any |3 |. The definition thus does not impose
any restrictions on how the operation has to behave on undefinable sets of finitary variable assignments. Thus ∅
will express more than one operation.

It is not sufficient to define |3 | := {a△V − : 3(a(k1), . . . ,a(kn))} for 3 containing exactly vk1 , . . . ,vkn

free. This would yield only a schema. The problem is that in the definition I quantify over formulæ; but in
{a△V − : 3(a(k1), . . . ,a(kn))} the formula is used, not mentioned, and can thus not be quantified.

Definition 5 is not available on the standard model-theoretic account with domains, because Sat cannot
be defined. Only satisfaction relative to a set-sized model is definable. Moreover, |3 | is always a proper
class unless it is empty. In informal discussions philosophers do make use of a satisfaction predicate that
presumably belongs to a not further specified metatheory. It should be clear that this metatheory cannot be
Zermelo–Fraenkel set theory, but some properly stronger theory.

For the usual predicate, connective, and quantifier symbols this definition yields the expected result: v0 = v1
expresses the relation, that is, the 0-place operation Id0,1 of identity above, while the symbol ¬, for instance,
expresses the operation that maps A to its complement V − \A.18

After having given the definition of logical constants a precise form, or at least a form that can easily
be made precise, I conclude with a few remarks about its adequacy and how it can be tested by introducing
new terms into the language. There are counterexamples against the adequacy of the right-to-left direction of
the definition, that is, there are non-logical terms expressing a permutation-invariant operator. Various such
examples have been discussed in the literature in the context of domain-based invariance criteria. Wombat
disjunction is one of them; but, of course, that is no longer a problem once we move to the domains-free
account.

McGee (1996, p. 569) gave another example, unicorn negation U , which expresses the same operation as
negation:

U 3 := (¬3 ∝ there are no unicorns),

Since there are no unicorns, the two connectives ¬ and U express the same operation. Assuming that a term is
logical if, and only if, it expresses a permutation-invariant operation, as in my definition above, both, ¬ and U ,
are therefore logical constants. There is no way that a criterion based on invariance can distinguish between the
two, although one would expect ¬ to be a logical constant while U is not.

One might try to argue that unicorn negation poses the same problem as wombat conjunction by insisting
that there are domains with and without unicorns; the only difference would be that unicorns are mere possibilia.
However, if we follow Kripke (1980), there are no unicorns by necessity, and it will not help to consider other
metaphysically possible worlds than our own, as they also lack unicorns. If we do not follow Kripke in this and
believe that there are possible unicorns, we can replace ‘unicorns’ with ‘heptahedrons’ in the sense of ‘regular
polyhedron of seven faces’, which do not exist by mathematical necessity (Gómez–Torrente, 2002, p. 18). The
point is that the second conjunct is not true in any domain.

Examples of potentially logical terms such as unicorn negation introduced via definitions have their
problems. Sagi (2015) turned the attention to the way unicorn negation is introduced. She points out that the

18 To show that, e.g., negation expresses complementation relative to F , one will use ⇐3 ⇐a(Sat(≿¬3≳,a)∋ ¬Sat(≿3≳,a)). Bernays–Gödel
set theory can define a truth predicate that yields the T-sentences for set-theoretic sentences; but such a truth predicate cannot provably
commute with connective and quantifiers (see Halbach, 2014, p. 19f). This is the main reason to employ full second-order comprehension
as in Morse–Kelley, and not only a conservative theory such as Bernays–Gödel set theory.
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example is unconvincing if the symbol ‘:=’ in the definition of unicorn negation is understood as expressing
that U 3 is merely an abbreviation of the right-hand side. If it were a mere abbreviation, I could tweak my
definitions above. Probably the most obvious way would be to change the definition of (atomic) term; and an
expression such as U should be treated as a complex expression and thus not be a candidate for being a logical
constant. Alternatively, one could try to declare such abbreviations as U logical if, and only if, all terms in the
definiens are logical. Whether unicorn negation is logical then depends on whether ‘is a unicorn’ is logical or
not. As the predicate ‘is a unicorn’ does not apply to anything, it qualifies as logical under the permutation
criterion.19

At any rate, I doubt that we should think of unicorn negation or wombat conjunction as having been
introduced as mere abbreviations; at least we do not have to think of them as mere abbreviations. Introducing
terms like unicorn negation or the McGee quantifier ≃AIx by definition is a somewhat confusing affair. We
can easily introduce a new logical term if the definition contains only logical terms: For instance, we can
introduce a new atomic symbol for distinctness from negation and identity, or for ternary conjunction from
binary conjunction. If a new term is defined from terms that are logical by the above criterion, one can prove
that the new term is also logical. However, these are less interesting examples. In the interesting cases a
new term is introduced by a definiens containing non-logical terms, and it is not possible to give a definition
with merely logical terms. For instance, the quantifier ‘there are at least (5-many As’ can be introduced only
by a complex set-theoretic formula, at least as long as we are in the usual expansions of the language of set
theory. The complex formula, and presumably even an atomic expression merely abbreviating it, are not logical
constants, because membership is not logical by any invariance criterion. However, one can understand the
definition as a way of picking out a certain quantifier whose meaning then no longer depends on the chosen
defining formula.

Defining new terms that may qualify as logical constants resembles in some aspects the introduction of a
designator using Kaplan’s (1978) dthat, which generates a directly referring term from a description. For the
introduction of new quantifiers we would need an operator that generates a new primitive quantifier from a
given complex formula.20

If we were able to introduce new quantifiers by such definitions, there would be two main kinds of formulæ
in the language for stating that there are at least (5-many self-identical objects: One could use either a set-
theoretic formula or the newly introduced atomic quantifier. In the former case the resulting formula contains
non-logical vocabulary, in particular the membership symbol; in the latter it contains only logical vocabulary,
because the quantifier expresses a permutation-invariant operation. Under the type-theoretic theory of logical
consequence, the latter will be logically valid while the former is not. This does not seem unreasonable. Perhaps
even the definition of unicorn negation can be understood this way, merely as a way to fix a logical operation
(although, clearly, this is not how McGee intends it to be understood).

If I were to introduce the McGee quantifier ≃AIx in a proper way, I would resort to such a definition that
is not merely an abbreviation. ≃AIx 3(x) would be defined as ¬≃y⇐x(x△y ∋ 3(x)) expressing that there is
no set of all 3s; but ≃AIx 3(x) would not be a mere abbreviation of the formula; the set-theoretic formula
¬≃y⇐x(x△ y ∋ 3(x)) is only used to pick out the operation of the quantifier. Thus, ≃AIx x= x is at least a
candidate for being a logical truth, while ¬≃y⇐x(x△y ∋ x=x) is not and only a set-theoretic truth.21

I do not think that artificial examples with defined terms such as unicorn negation are required as counterex-
amples to the adequacy of logical constants given above. The predicate ‘is a unicorn’ is already an example. It
expresses a permutation-invariant operation and is thus logical, according to the criterion. There is no reason to

19 Sagi (2015, p. 167) seems to suggest that McGee does not give us any reason to think that ‘is a unicorn’ is logical. This is correct. I suppose
that McGee thought that its logicality is thus obvious, if an invariance criterion is applied.

20 A referee suggested the analogy to dthat. I had used the definition of Neptune as the planet that is causing the perturbations in the orbit of
Uranus (Kripke 1972). Here ‘Neptune’ is not a mere abbreviation of the definite description, but directly referring to the planet. All these
analogies have their limits. In particular, the notion of a directly referring term can be made precise by using metaphysically possibility,
which does not appear to be of much use here.

21 (Sagi 2015, p. 160) mentions that we could think of U as having been introduced by a rule in the metalanguage. At least I do not think it
should be introduced by fixing how U should be interpreted in a given model. The McGee quantifier ≃AI could definitely not be introduced
in this way, because every sentence ≃AIx 3(x) is false in all models. What is missing from Sagi’s account is a third way of introducing
new vocabulary: A definition in the object language need not be just an abbreviation. This is well-known from examples such as ‘dthat’,
Neptune, and standard metre bar examples examples.
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assume that ‘is a unicorn’ need or can be introduced by a definition of any kind. Unicorn negation is merely
an attempt to provide an example that is a connective; but predicates not satisfied by anything are already a
problem for the usual invariance accounts of logicality.

There are duller examples: The sentence parameter or 0-place predicate P could happen to be false; it
could stand for something like ‘it is raining’. No criterion of permutation invariance can tell us that the 0-place
connective ⇔ for falsum is a logical constant and P is not, because the semantic status of neither depends on
any object.

Therefore, as it stands, I do not endorse the definition of logical constants above. It is an improvement on
the domain-based criterion; but it still yields only a necessary criterion for the logicality of an expression in the
language.22
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How the Continuum Hypothesis could have been a Fundamental Axiom

Joel David Hamkins

Abstract: I describe a simple historical thought experiment showing how we might have come to
view the continuum hypothesis as a fundamental axiom, one necessary for mathematics, indispensable
even for calculus.

Keywords: Continuum hypothesis, Philosophy of set theory, Infinitesimals, Categoricity

1. Introduction

I should like to describe how our attitude toward the continuum hypothesis could easily have been very different
than it is. If our mathematical history had been just a little different, I claim, if certain mathematical discoveries
had been made in a slightly different order, then we would naturally view the continuum hypothesis as a
fundamental axiom of set theory, one furthermore necessary for mathematics and indeed indispensable for
making sense of the core ideas underlying calculus.

The continuum hypothesis (CH) is the assertion that the cardinality of the set of real numbers is the first
uncountable infinity, or in other words, that 2(0 = (1. This hypothesis is known to be independent of the
Zermelo-Fraenkel ZFC axioms of set theory—it is neither provable nor refutable, if ZFC itself is consistent, and
it remains independent even relative to any of the usual large cardinal axioms. Currently CH is not generally
regarded as part of the standard axiomatization of set theory, but rather is taken as a separate supplemental
hypothesis, one to be mentioned explicitly, assumed or denied, proved or refuted, in diverse circumstances
for different purposes. The continuum hypothesis holds, for example, in the constructible universe L and in
other canonical inner models, but we can make it fail (or hold) in forcing extensions; it is refuted by the forcing
axioms PFA and MM, which settle the continuum as (2. In the study of the cardinal characteristics of the
continuum, set theorists routinely work with ¬CH as the subject is trivialized in a sense under CH, since there
would be no room for variation in the cardinal characteristics, although it is also trivialized in a different way
under the forcing axioms, since these imply that they are all fully pushed up to value continuum.

Since the truth or falsity of CH cannot be settled on the basis of proof from the ZFC axioms, set theorists
have offered various philosophical arguments aiming at a solution to the continuum problem, the problem
of determining whether CH holds or its negation. (See my survey discussion in Hamkins, 2021, chapter 8.)
For example, Chris Freiling (1986) advances an argument for ¬CH based on prereflective intuitions about
randomness as a primitive notion. W. Hugh Woodin made a case for ¬CH based on considerations of ∗-logic
and forcing absoluteness (see the survey in Koellner, 2023). More recently, Woodin argues on the other side,
making a case for CH based on features of his theory of Ultimate L, a canonical inner model accommodating
even the largest large cardinals (see Rittberg, 2015, for an account of Woodin’s change of heart). Defending
set-theoretic pluralism, I argue in (Hamkins, 2012) that it is incorrect to describe CH as an open question—the
answer to CH, rather, is pluralist, consisting of the deep body of knowledge that we have concerning how
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it behaves in the set-theoretic multiverse, how we can force it or its negation while preserving diverse other
set-theoretic features.

Many set theorists have yearned for what I call the dream solution to the continuum problem, by which we
settle the CH once and for all by introducing a new set-theoretic principle, the “missing” axiom, which everyone
agrees is fully consonant with the concept of set and which also provably settles CH. I argue in (Hamkins,
2015), however, that this will never happen.

Our situation with CH is not merely that CH is formally independent and we have no additional
knowledge about whether it is true or not. Rather, we have an informed, deep understanding of
how it could be that CH is true and how it could be that CH fails. We know how to build the CH
and ¬CH worlds from one another. Set theorists today grew up in these worlds, comparing them
and moving from one to another while controlling other subtle features about them. Consequently,
if someone were to present a new set-theoretic principle ∀ and prove that it implies ¬CH, say,
then we could no longer look upon ∀ as manifestly true for sets. To do so would negate our
experience in the CH worlds, which we found to be perfectly set-theoretic. It would be like
someone proposing a principle implying that only Brooklyn really exists, whereas we already
know about Manhattan and the other boroughs. And similarly if ∀ were to imply CH. We are
simply too familiar with universes exhibiting both sides of CH for us ever to accept as a natural
set-theoretic truth a principle that is false in some of them.

Nevertheless, I should like to explain in this article how it all might easily have been different. If our
mathematical history had been slightly revised in a way I shall presently describe, if certain mathematical
discoveries had been made in a slightly different order, then we might have come to look upon CH as
fundamental principle for set theory, one necessary to make sense of mathematical ideas at the core of classical
mathematics.

2. The thought experiment—two number realms
As a thought experiment, let us imagine that Newton and Leibniz in the early days of calculus provide somewhat
fuller accounts of their ideas about infinitesimals. In the actual world, to be sure, a satisfactory account of the
basic nature and features of infinitesimals was lacking—the foundations of calculus were famously mocked by
Berkeley (1734) with withering criticism:

And what are these same evanescent Increments? They are neither finite Quantities nor Quantities
infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?

It was simply not clear enough in the early accounts of calculus what kind of thing the infinitesimals were and
whether they were part of the ordinary number system or somehow transcending it, inhabiting a different larger
realm of numbers.

According to Jesseph (1993, p.168), Berkeley argued that

If infinitesimal magnitudes are introduced into analysis, the question arises whether they obey the
ordinary laws of addition, subtraction, multiplication, and division.

And he found fault with both sides of the resulting dichotomy.
What I propose is that we imagine that Newton and Leibniz provide greater clarity concerning the conception

of infinitesimals. Specifically, I would like to imagine that Newton and Leibniz conceive of the infinitesimals,
as many do today, as living in a larger field of numbers, distinct from but extending the ordinary real numbers.
Let us suppose that they posit two “realms” of numbers, the ordinary realm R of the real numbers and a further
realm R

→ consisting of what we might call the hyperreal numbers, to use the contemporary terminology, a
transcendent number field accommodating the infinitesimals.

This idea alone, that infinitesimals inhabit another realm of numbers, immediately addresses the mocking
Berkeley criticism, releasing the tension of the otherwise paradoxical claim that infinitesimals are positive
yet also smaller than every positive number, for we need only claim that infinitesimals are smaller than every
positive real number, of course, and not smaller than all the other infinitesimal numbers or themselves. The
two-number-realms idea serves to clarify much of the early discussion surrounding infinitesimals, enabling a
frank discussion of how the real numbers are related to the hyperreal numbers and what the hyperreal numbers
are like.

114



How the Continuum Hypothesis could have been a Fundamental Axiom

3. Two specific clarifications of the nature of infinitesimals
Let us imagine that two further clarifying principles are introduced. First, in order to explain the nature and
existence of infinitesimals, our imaginary Leibniz writes:

(1) Every conceivable gap in the numbers is filled by infinitesimals.

The gap between 0 and the positive real numbers, for example, is thus filled with the infinitesimal hyperreal
numbers, and similarly there are hyperreal numbers at infinitesimal distance to

∞
2 and to ) . This idea, of

course, amounts to an incipient form of saturation, expressing how the hyperreal number system transcends
the real numbers. Namely, we know now the hyperreal numbers R

→ of nonstandard analysis are countably
saturated, which means that every countably specified gap

x0 ⊸ x1 ⊸ x2 ⊸ · · · · · ·⊸ y2 ⊸ y1 ⊸ y0

with xi < yi is filled by some hyperreal number z strictly between

x0 ⊸ x1 ⊸ x2 ⊸ · · · < z < · · ·⊸ y2 ⊸ y1 ⊸ y0

Indeed, there will be many such z strictly in the gap, since the gap between the xn and z itself will also get filled,
as will the gap above z and below all the yn.

In our actual history, the actual Leibniz was already inclined toward (1), considering higher orders of
infinitesimality. According to (Jesseph, 1993, p.173), Berkeley complains:

Some mathematicians (notably Leibniz and L’Hopital) hold that there are infinitesimal quantities
of all orders and “assert that there are infinitesimals of infinitesimals of infinitesimals, without
ever coming to an end.”

The historical Euler (1780; see also Button and Walsh, 2018, p.87–88) also was busy exploring the vast space
of infinite orders of the infinitely large and the infinitely small, discovering the saturation-like manner in which
gaps get filled. He observed that for any infinitely large quantity x the number x2 will be infinitely larger still
and x3 infinitely larger than that. In contrast,

∞
x will be infinitely smaller than x, but still infinite, and the

higher roots 3
∞

x, 4
∞

x, similarly get infinitely smaller with each step, while remaining infinite. Nevertheless,
Euler demonstrates that we may find orders of infinity that are infinitely smaller than every n

∞
x, but still infinite.

One such number is lnx, and then (lnx)2 will be infinitely larger than this, but still smaller than every n
∞

x, and
similarly

∞
lnx smaller again. By taking reciprocals, he finds the same rich phenomenon amongst the orders of

infinitesimality relevant for calculus. In this way, he makes a festive party out of filling gaps in the orders of
infinity, realizing more and more instances of saturation and thereby supporting principle (1). And of course
this kind of thinking fed into the much later work of Hardy (1910) on the orders of infinity and Hausdorff’s
related work showing in his context that all countably specified gaps are filled.

Second, in order to justify his calculations with fluxions, the ultimate ratios, and evanescent increments, let
us imagine that Newton writes:

(2) The two number realms fulfill all the same fundamental mathematical laws.

According to the new dictum, the hyperreal numbers would thus fulfill the associativity and distributivity
laws, or indeed any law that is true for the real numbers. From our perspective, of course, we can view this
statement as an incipient form of the transfer principle, by which the hyperreal field is an elementary extension
of the real field R∈ R

→, even in expansions of the field structure to include other functions and relations. In
particular, R→ would be a real-closed field, an ordered field in which every positive number has a square root
and every odd-degree polynomial has a root.

Jesseph (1993, p.135) writes that “Wallis [1685] took infinitesimal methods to be essentially the same as
the method of exhaustion but shorter and more readily applied,” which can be seen as a conservativity claim
about the methods, and Button and Walsh (2018, §4.7) describe Leibniz’s philosophy of fictionalism about
infinitesimals, expressed in his letter to Varignon, which can also be seen as a form of conservativity in that
there is nothing really new in them. Newton himself in the Principia (1687) expresses conservativity for his
methods, stating:
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These Lemmas are premised to avoid the tediousness of deducing perplexed demonstrations ad
absurdum, according to the method of the ancient geometers. (Newton, 1846, p.102)

Thus again, there is nothing mathematically new going on. This conservativity attitude fits with the proto-
transfer-principle idea of statement (2), which also expresses a kind of conservativity, that there are no new
mathematical rules arising in the new hyperreal number realm.

The proposal here with my thought experiment is definitely not that Newton and Leibniz have a full-blown
well formulated theory of saturation and transfer, or even of the concept of a field (which only came much later,
after Galois), but rather only that they have expressed the primitive idea of two distinct number realms, the real
numbers and hyperreal numbers, with vaguely expressed ideas that appear from a contemporary perspective as
incipient forms of saturation and the transfer principle. The thought experiment requires only very small initial
steps towards the two-realms conception, since further development and rigor would naturally come in time,
just as it did in our actual mathematical history.

Nevertheless, the proposal does call for us to imagine that mathematicians might have been a little more
modern in their attitude toward number systems, moving beyond the historical understanding of numbers at
that time as ratios of geometric magnitudes toward the idea of there being distinct number realms. To be sure,
mathematicians have long distinguished at least between natural numbers and other kinds of magnitudes, such
as when considering number-theoretic concepts such as even, odd, and prime, and the thought experiment calls
for further analogous distinctions concerning the infinitesimals.

Meanwhile, the extent to which the historical Newton had used infinitesimals in the first place is a matter of
discussion by historians of mathematics. He had renounced them explicitly, taking himself to mount instead
his method of fluxions and the concept of ultimate ratios, which can be seen arguably either as a proto-limit
concept or as disguised infinitesimals. In any case, for the purposes of my thought experiment we needn’t
be troubled by Newton’s possible hesitancy towards infinitesimals, since the thought experiment is not about
the historical Newton, but about the infinitesimal concept itself, which certainly did exist at the time. For the
success of the thought experiment, therefore, if this is an issue we could simply imagine if necessary that it was
mainly Leibniz or another Leibniz-like figure who had provided the somewhat fuller explication of the nature
of infinitesimals that I am discussing.

4. The hyperreals are fundamentally coherent
The main initial point I should like to stress is that we know that these ideas about saturation and the transfer
principle for the real and hyperreal numbers are fundamentally coherent and mathematically correct in light
of the much later developments of nonstandard analysis, due to Abraham Robinson in the 1960s; they are
definitely sufficient for a robust infinitesimal theory of calculus. A glance at Keisler’s remarkable infinitesimals-
based undergraduate calculus text (Keisler, 2000) shows what is possible when beginning even with only very
elementary ideas—the entire classical theory can be developed on these notions. To be sure, in our actual
mathematical history, the development of calculus proceeded to enormous success on the basis of very primitive
infinitesimal ideas, without a fully rigorous foundation, and yet still achieved the key mathematical insights.
The thought experiment I propose is that all those developments and insight would still occur, of course, and
more, because even a slightly greater initial clarity in the infinitesimal concept would naturally lead to and
support fruitful further analysis. In the imaginary history, the development of calculus would be something a
little closer to the developments of what we now call nonstandard analysis, perhaps primitive at first, but with
increasing sophistication and rigor. Precisely because we know that calculus can be successfully developed this
way, the approach would not meet with any fundamental obstacle.

Kurt Gödel explains his views on nonstandard analysis after Robinson’s talk on the subject at the IAS
Princeton in 1973:

There are good reasons to believe that non-standard analysis, in some version or other, will be the
analysis of the future.

One reason is the just mentioned simplification of proofs, since simplification facilitates discovery.
Another, even more convincing reason, is the following: Arithmetic starts with the integers
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and proceeds by successively enlarging the number system by rational and negative numbers,
irrational numbers, etc. But the next quite natural step after the reals, namely the introduction of
infinitesimals, has simply been omitted. I think in coming centuries it will be considered a great
oddity in the history of mathematics that the first exact theory of infinitesimals was developed 300
years after the invention of the differential calculus. (Gödel, 1990, p. 311)

Gödel thus paints the picture that it is our own actual mathematical history that is odd and strange—the history
of ideas in my imaginary thought experiment, in contrast, would be the more natural progression. I take this as
truly very strong support for the fundamental reasonableness of my thought experiment.

5. The hyperreal numbers become a familiar mathematical structure

In this imaginary early history, therefore, the hyperreal numbers would be successful in the foundations of
calculus, and as a result they would be taken seriously as a distinct realm of numbers, becoming a core part
of the mathematical conceptions underlying the calculus. In the imaginary world, calculus would be founded
fully on infinitesimals, without any need for ⇐. ≃% limit concepts; the use of infinitesimals would become
increasingly sophisticated and rigorous.

The hyperreal numbers would thus enter the Pantheon of number systems at the center of mathematics, the
fundamental structures that mathematicians discovered and then used throughout their mathematical work.

N Z Q R C R
→

The hyperreal numbers would thereby find their place in mathematics alongside the other familiar standard
mathematical number systems—the natural numbers, the integers, the rational numbers, the real numbers, the
complex numbers—and in the world of my thought experiment, there would stand also the hyperreal numbers.

Reflecting on the move from the real numbers R to the hyperreal numbers R→, one might be encouraged to
seek out saturated versions of all our favored mathematical structures. But actually, for the number systems I
have mentioned in the Pantheon above, the hyperreals already provide this. By the transfer principle, we get
the hypernatural numbers N→, the ring of hyperintegers Z→, the field of hyperrational numbers Q→, all sitting
inside the hyperreal number field R

→, as well as the hypercomplex numbers C→ = R
→[i], consisting of numbers

a+bi, where a,b △ R
→ are hyperreal. In this way, we may view the move to the hyperreals simply as the move

of saturating all our familiar structures.

6. On the necessity of categoricity for structuralism

Daniel Isaacson (2011), taking inspiration from Kreisel, describes the process by which mathematicians come
to know their mathematical structures. Namely, as I describe it in (Hamkins, 2021), by informal rigor “we
become familiar with a structure; we find the essential features of that structure; and then we prove that those
features axiomatically characterize the structure up to isomorphism. For Isaacson, this is what it means to
identify a particular mathematical structure, such as the natural numbers, the integers, the real numbers, or
indeed, even the set-theoretic universe.” Isaacson says,

. . . the reality of mathematics turns ultimately on the reality of particular structures. The reality of
a particular structure, constituting the subject matter of a branch of mathematics such as number
theory or real analysis, is given by its categorical characterization, i.e. principles which determine
this structure to within isomorphism. (Isaacson, 2011, p. 2)

In this way, the categorical characterizations of our familiar particular structures become the framework of our
mathematical reality.

This plays out in our actual mathematical history when Dedekind (1888) proves that the natural number
structure N is uniquely specified up to isomorphism by his theory of the successor operation, leading directly
to Peano’s elegant development of elementary number theory in that framework. Building upon this, math-
ematicians provide categorical accounts of the integer ring Z and the rational field Q. Cantor (1895, 1897,
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1952) proves that the rational order Q is characterized as the unique countable endless dense linear order.
Huntington (1903) provides the categorical account of the real field R as the unique complete ordered field. The
complex numbers are characterized as the algebraic closure of R. The categorical characterizations of these
core mathematical structures are the central results for the coherence of the mathematical enterprise, enabling
us to refer to the various fundamental mathematical structures by their defining characteristics.

I have pointed to the categoricity results as the origin of the philosophy of structuralism in mathematics.

Categoricity is central to structuralism because it shows that the essence of our familiar mathe-
matical domains, including N, Z, Q, R, C, and so on, are determined by structural features that
we can identify and express. Indeed, how else could we ever pick out a definite mathematical
structure, except by identifying a categorical theory that is true in it? Because of categoricity,
we need not set up a standard canonical copy of the natural numbers, like the iron rod kept in
Paris that defined the standard meter; rather, we can investigate independently whether any given
structure exhibits the right structural features by investigating whether it fulfills the categorical
characterization. (Hamkins, 2021, p. 31)

In short, having categorical accounts of all our core mathematical structures is necessary for mathematical
reference and supports a structuralist mathematical practice.

In set theory, this phenomenon arises after the improvement of Zermelo’s flawed initial set theory to
Zermelo-Fraenkel set theory, with the addition of the replacement and foundation axioms, an improvement
that makes possible Zermelo’s famous quasi-categoricity results of (Zermelo, 1930), showing that the models
of second-order set theory ZFC2 agree with one-another on initial segments. The new ZFC2 theory thus
enjoys a measure of categoricity for the intended set-theoretic universe, leaving open only how high the
ordinals will grow. To my way of thinking, categoricity should be a bigger part of the conversation concerning
Zermelo’s original set theory versus Zermelo-Fraenkel set theory. The models of this theory ZFC2 are exactly
the uncountable Grothendieck-Zermelo universes, now used pervasively in the foundations of category theory,
and of course set theorists study them in connection with the inaccessible cardinals. Many of these models
admit fully categorical characterizations, and Robin Solberg and I (Hamkins and Solberg, 2020) explore the
spectrum of fully categorical extensions of ZFC2, while considering the curious tension between categoricity
and reflection principles in the foundations of set theory.

7. The key imaginary event

In the world of my historical thought experiment, we shall similarly have categorical characterizations of all the
various principal mathematical structures at the end of the 19th century and early 20th century, including the
natural numbers, the integers, the real numbers, and the complex numbers.

But what about the hyperreal numbers? In the imaginary history, after all, the hyperreal numbers R→ have
become a core mathematical structure alongside all the others, situated at the very foundations of calculus,
present from the start of that subject. Mathematicians would demand an account of the definitive underlying
theory of the hyperreal numbers, which would require a categorical characterization like all the others. Naturally,
one would expect this characterization to involve the key features already recognized as characteristic of the
hyperreal numbers, the saturation ideas and the transfer principle, just as the characterization of the natural
numbers involves induction and that of the real numbers involves the least-upper-bound completeness principle.

Thus we come to the key imaginary event of the thought experiment. Namely, let us imagine that in the
early 20th century, a Zermelo-like figure formulates a sufficient theory—the theory ZFC+CH suffices—able
to prove a categorical characterization of the hyperreal number field R

→, similar to how the actual Zermelo
introduced his set theory as an explanation of his proof of the well-order theorem.

The theory ZFC+CH is indeed able to provide the desired characterization of the hyperreal field R
→ as

follows, which shows under CH how R
→ is characterized by refined versions of the two ideas we had attributed

to Newton and Leibniz in the thought experiment.

118



How the Continuum Hypothesis could have been a Fundamental Axiom

Hyperreal categoricity theorem. Assume ZFC+CH. Then there is up to isomorphism a unique smallest
countably saturated real-closed field.

This theorem is by now a standard result in elementary model theory, proved using a back-and-forth
argument in the style of Cantor’s famous argument about the rational order, except that here the back-and-forth
construction proceeds transfinitely through −1 many steps rather than just countably many (see Erdős, Gillman
and Henriksen, 1955). A model is countably saturated, that is, (1-saturated, if it realizes every finitely
satisfiable type with countably many parameters, but in the theorem we actually need to require only that the
order is saturated—all countably described gaps should be filled. The general fact in play here is that any two
saturated models of the same complete theory and size are isomorphic, and that would be the situation for our
hyperreal fields under the hypotheses of the categoricity theorem. The smallest possible size in question would
be the continuum, since countably saturated real-closed fields must have size at least continuum, and there are
such fields of size continuum.

Indeed, we have several various constructions of a countably saturated real-closed field of size continuum.
Namely, (1) we can construct the ultrapowers RN/µ of the real field by any nonprincipal ultrafilter µ on N, and
this is always a countably saturated real-closed field of size continuum; (2) we can proceed via Hahn series, a
generalized kind of power series, to construct a countably saturated real-closed field of size continuum; (3) we
can undertake a general model-theoretic construction, successively realizing types in a transfinite elementary
chain, to produce a countably saturated model of any given consistent theory, including the theory of real-closed
fields; (4) perhaps exemplifying this construction in an attractive, concrete general manner, we can undertake
the Conway construction of the surreal field through all countable ordinal birthdays, filling all possible gaps
that arise—the result is No(−1), a countably saturated real-closed field of size continuum.

The hyperreal categoricity theorem shows under ZFC+CH that all these various constructions give rise to
exactly the same hyperreal field, which we may thereby regard as the canonical structure of the hyperreal field
R
→. The situation for the hyperreals under CH is thus rather like that of the real field in ZFC, for which we also

have a variety of constructions, proceeding with Dedekind-cuts in the rationals or equivalence classes of Cauchy
sequences and so forth. All the various presentations of complete ordered fields are provably isomorphic in
ZFC, and this categoricity enables a structuralist treatment of the real field as the unique complete ordered
field. In a sense ZFC is aimed at providing the satisfactory theory of the real numbers, for the real categoricity
theorem is not provable in weaker systems, such as constructive mathematics, where mathematicians must treat
the Dedekind reals as a distinct conception from the Cauchy reals.

Similarly, in ZFC+CH, all the various constructions of the hyperreal field give rise to the same underlying
canonical structure, thereby enabling a structuralist account of infinitesimals—the hyperreals are the unique
smallest countably saturated real-closed field.

8. CH is required

I should like to call attention to a key feature of the thought experiment, namely, the mathematical fact that
the CH is required. We can provide the categorical characterization of the hyperreal numbers in ZFC+CH
as stated in the hyperreal categoricity theorem, but this is not possible in ZFC alone. Judith Roitman (1982)
showed that it is relatively consistent with ZFC+¬CH that there are multiple non-isomorphic hyperreal fields
arising as ultrapowers R−/µ , and these are always countably saturated real-closed fields of size continuum.
Alan Dow (1984) showed that whenever CH fails, then indeed there are multiple non-isomorphic ultrapowers
R

−/µ , non-isomorphic even merely in their order structure. Thus, CH is outright equivalent to the hyperreal
categoricity assertion that there is a unique smallest countably saturated real-closed field (see also Esterle,
1977).

These results show that the phrase “the hyperreal numbers” is not generally meaningful in ZFC, because
in ZFC there is not necessarily just one mathematical structure fitting the description. But in ZFC+CH, there
is. With the continuum hypothesis, we can specify the hyperreal numbers up to isomorphism as a canonical
structure, the unique smallest countably saturated real-closed field.
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9. How CH gets on the list
So this is how CH gets on the list of fundamental axioms. The thought experiment, at bottom, is that the
hyperreal field R

→ is long a core mathematical idea, pre-rigorous at first, but then with increasing rigor and
sophistication. To give a foundational account of the hyperreal number system and thus of the theory of
infinitesimals, the Zermelo-like figure provides an existence proof and categorical characterization, introducing
the fundamental axioms of ZFC+CH in order to do so. We know that this is possible and, furthermore, that CH
cannot be omitted. So CH gets onto the list of fundamental axioms, being necessary to establish the basic
coherence or even (in the Isaacson sense) the reality of the hyperreal numbers and thus indispensable for the
foundations of calculus.

10. Extrinsic and intrinsic support for CH
The developments would provide enormous extrinsic support for CH, similar to the extrinsic justification ZFC
currently enjoys in light of its robust foundational account of the real numbers R. The theory ZFC+CH would
be seen as similarly successful regarding the theory of the hyperreal numbers.

In the imaginary history, I would find it quite likely that after the CH had found its extrinsic justification in
this way as a mathematical necessity, then intrinsic justifications would also begin to find their appeal, similar
to how the axiom of choice is often viewed as extrinsically justified by its widespread use and important central
consequences, but set theorists also point to its intrinsic justification under the concept of arbitrary set existence.
In the case of the continuum hypothesis, the intrinsic justification I imagine is that CH asserts that the two
methods of achieving uncountability agree, that is, the process of going to the next higher cardinal gives the
same result as taking the power set; in short, (1 = ⫌1. This can be seen as a unifying, explanatory principle of
the uncountable, and therefore an intrinsic justification for CH.

We might also reflect on the fact that by basic human rationalizing nature, one naturally finds it easier to be
convinced by arguments for the intrinsic truth of an axiom, once one has already been convinced of the axiom’s
extrinsic necessity.

11. A generalized thought experiment and the generalized continuum hypothesis
The hyperreal categoricity theorem is that under CH, the hyperreal field is the unique smallest countably
saturated real-closed field. Perhaps a critic objects that the smallest-size requirement is ad hoc—wouldn’t it be
more natural to relax this and consider hyperreal fields of other sizes? And isn’t it unnatural to require only
countable saturation, rather than full saturation?

Let me address this initially by defending countable saturation as a rich, natural notion. Countable saturation
is both easy to express and understand, and suffices for the robust existence of infinitesimals in a vast hierarchy
of orders. It leads to a rich, successful theory, without the need for higher levels of saturation. Furthermore, the
construction of a countably saturated real-closed field, as with the surreal construction through the countable
birthdays, is both clear and natural. So there is very little lacking in our conception of the hyperreals as a
countably saturated real-closed field. And Hausdorff’s 1909 proof that NN/Fin is countably saturated but has
an unfilled (−1,−1) gap would tend to encourage a greater focus specifically on countable saturation.

Meanwhile, to be sure, full saturation does imply categoricity in any given cardinality in which it occurs by
the back-and-forth construction. And furthermore, the existence of fully saturated models does not require CH.
The existence of saturated real-closed field of size continuum is equivalent merely to c<c = c, which can occur
say, even if c= 2(0 = 2(1 = (2, and in many other kinds of cases. There will be a fully saturated real-closed
field of uncountable size 0 if and only if 0<0 = 0 , which is independent of the CH and GCH, and it can
hold consistently by forcing with any particular regular uncountable cardinal, although it holds necessarily of
any inaccessible cardinal. And yet, even in these cases, where CH fails and there is a saturated field of size
continuum or more, there will also be numerous non-isomorphic countably saturated such fields, which may
detract from the sense of uniqueness for the hyperreal conception.

Nevertheless, let me take on board both of the critical objections at once with a generalized thought
experiment. Let me imagine that the Zermelo-like figure adopts an expansive attitude toward the hyperreals,
proving instead the following generalized hyperreal categoricity theorem, on the basis of the generalized
continuum hypothesis (GCH), which asserts that 20 = 0+ for every infinite cardinal 0 .
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Generalized hyperreal categoricity theorem. Assume ZFC+GCH. Then there are up to isomorphism unique
saturated real-closed fields in every uncountable regular cardinality.

The theorem can be proved by observing that saturated models of the same size and theory are unique up to
isomorphism by the back-and-forth construction, as we have mentioned, and you get existence of saturated
models from the GCH by realizing types in a transfinite elementary tower. In fact the converse of this theorem
also is true—that is, the GCH is required for the generalized categoricity here—since 0<0 = 0 is necessary for
there to be a 0-saturated model of size 0 , and this implies the GCH if it holds for every uncountable regular
cardinal. Thus, the generalized hyperreal categoricity principle is itself equivalent over ZFC to the GCH.

On the basis of the GCH we thereby find ourselves blessed with canonical hyperreal fields in every desired
size, a transfinite tower of orders of infinitesimality continuing to all higher cardinals. This would be a natural
continuation of the saturation ideas originating with Leibniz and continuing with Euler’s exploration of the
diverse orders of infinity, and then with Hardy and into contemporary times. And since the GCH is required,
this is how the GCH could also get on the list of fundamental axioms. These higher uncountable hyperreal
fields would be seen as converging in a vast elementary chain ultimately to the surreal numbers, another core
number concept with a proper-class categoricity characterization.

12. Foundationalism and a priori knowledge

Williamson (2016, §III) speculates on how it would be that other beings, with physical and mathematical powers
similar to humans, might settle the continuum hypothesis.

One normal mathematical process, even if a comparatively uncommon one, is adopting a new
axiom. If set theorists finally resolve CH, that is how they will do it. Of course, just arbitrarily
assigning some formula the status of an axiom does not count as a normal mathematical process,
because doing so fails to make the formula part of mathematical knowledge. In particular, we
cannot resolve CH simply by tossing a coin and adding CH as an axiom to ZFC if it comes up
heads, ∼CH if it comes up tails. We want to know whether CH holds, not merely to have a true or
false belief one way or the other (even if we could get ourselves to believe the new axiom). Thus
the question arises: when does acceptance of an axiom constitute mathematical knowledge?

My thought experiment engages with Williamson’s challenge by describing the richer context and process
that would lead mathematicians to the CH. In the alternative world I describe, mathematicians have gained
increasing familiarity over the centuries with the hyperreal number system, embedding it at the center of classical
mathematical developments, especially in the calculus, and thus they have gained increasing confidence in their
use of the hyperreals as a particular, familiar mathematical structure. Seeking a more thorough underlying
mathematical explanation of it, including a categorical account, as we do with all our particular mathematical
structures, they would find it in a theory including CH, which can prove hyperreal categoricity, and we know
that CH is necessary for this. In this way, my thought-experiment mathematicians are led to the CH by
undertaking what Williamson calls the “normal mathematical process.” The axiom they accept in effect is
hyperreal categoricity, since it is necessary for the coherence and reality of their mathematical practice, and this
principle is equivalent to the CH.

In another thought experiment, Berry (2013) introduces the mathoids, creatures who look upon Fermat’s
last theorem as intuitively and immediately obvious, a foundational belief, without feeling any need to
justify this stance with an argument that we would find convincing; similar imaginary creatures are discussed
in (Williamson, 2016, §III). This is part of her investigation into foundationalism about a priori mathematical
knowledge, in which she highlights a problematic conclusion, namely, “that nothing in the current literature lets
us draw a principled distinction between what these creatures are doing and paradigmatic cases of good a priori
reasoning.”

I take myself to sidestep that particular debate in my thought experiment, precisely because I took pains
to describe mathematical characters that we would find convincing. My imaginary Newton and Leibniz
and the imaginary Zermelo-like figure seem perfectly reasonable given what we know about the underlying
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mathematics—far more reasonable than the mathoids, who strike us (and this is important for Berry’s point)
as unreasonable in their mathematical beliefs. My thought experiment, after all, is simply to reorder certain
mathematical discoveries that we know are correct, in such a way that the hyperreals would naturally become
far more central in classical mathematics than they are in our actual history, with the consequence that the need
for a categorical account of them would become more urgent. This would lead us, I have argued, to a very
different attitude towards the foundational theories able to provide such an account, and these theories would
have to include CH.

13. Imaginary later history

Let us continue the thought experiment by considering how later mathematical developments would be received
in the world of the imaginary history I have proposed. Gödel proves that ZFC+CH is true in the constructible
universe L, which would of course be very welcome confirmation of the main theory. This could even lend some
extrinsic support for V = L, more so than it enjoys currently. Indeed, the fact that GCH holds in L would provide
further support for V = L in light of the generalized hyperreal categoricity result in section 11. Solovay’s
theorem (Solovay, 2006), showing that under V = L every finitely axiomatizable complete second-order theory
is categorical, might be welcomed as a corresponding fundamental principle in the same light, rather than a
curiosity about L as currently. (Solovay’s theorem has been generalized to L[µ] and the large cardinal context by
Saarinen, Väänänen, and Woodin, 2024, who also show under the axiom of projective determinacy, a unifying
consequence of large cardinals, that every finitely axiomatizable complete second-order theory with a countable
model is categorical.)

A commitment to a robust theory of the hyperreals presumes in certain ways a commitment to the axiom of
choice or at least fragments of it. One needs the prime ideal theorem to have suitable ultrafilters µ with which
to form the ultrapower RN/µ , and one needs countable choice in order to know that indeed these satisfy the
transfer principle and are countably saturated. Conversely, the existence of a hyperreal field with infinitesimals
and the transfer principle outright implies the existence of nonprincipal ultrafilters on the natural numbers, since
for any fixed infinite number N △ N

→ we can define X △ µ C∃ X ▽ N and N △ X→, in effect defining that X
is µ-large when it expresses a property that N exhibits. Meanwhile, the existence of ultrafilters implies the
existence of non-Lebesgue measurable sets in the real numbers, an often-mentioned consequence of the axiom
of choice. In this way, my thought-experiment inhabitants take the modus tollens to Alan Connes’s criticism of
nonstandard analysis (see Goldstein and Skandalis, 2007, and my related discussion Hamkins, 2021, p. 81). In
this way, a commitment to the hyperreal numbers carries a small accompanying commitment to the axiom of
choice.

Meanwhile, the discovery via forcing that without CH there can be multiple non-isomorphic hyperreal fields,
as mentioned in section 8, would be seen as chaotic and bizarre, perhaps a little like current attitudes about
models of ZF with strange failures of the axiom of choice. For example, it is known to be relatively consistent
with ZF without the axiom of choice that the rational field Q can have multiple distinct non-isomorphic algebraic
closures, a countable one as well as an uncountable one (Läuchli, 1962/63; Hodges, 1976). Mathematicians
often find this situation very strange, and many regard this model as getting something fundamentally wrong
about the algebraic numbers. I believe similarly that the mathematicians in the imaginary world would find it
very odd to have multiple non-isomorphic hyperreal fields, and this would reinforce the view that ZFC+CH is
the right theory.

The method of forcing would be received differently in the imaginary world than in our own world—it
would be perceived as a little less successful. For us, one of the attractive central features of forcing is that
it necessarily preserves ZFC. Every forcing extension of a model of ZFC is another model of ZFC. But in
the imaginary world, the main standard theory is ZFC+CH, and the corresponding feature is not true of this
theory, since forcing can destroy CH. Indeed, this was Cohen’s main initial application, to produce a model of
ZFC+¬CH. Perhaps the forcing method would be viewed in a similar way to how some people currently view
the symmetric model constructions, which preserve ZF, but not necessarily the axiom of choice. We often use
the symmetric model construction to build strange badly behaved models of ZF, enabling us to see how things
can go awry when one doesn’t have the axiom of choice. Similarly, in the imaginary world I propose, forcing
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could be used to build “strange” models of ZFC with ¬CH, showing how things can go awry when one doesn’t
have the continuum hypothesis.

In particular, my imaginary mathematicians would have a very different attitude concerning the dream-
solution situation I described in the introduction, since in the thought experiment, they have adopted CH as
fundamental before having had the experience via forcing of the ¬CH worlds, which they would view as strange.
My thought experiment shows in effect how it could have been that the dream solution was achieved, even
though it is no longer possible for us to achieve it. For my imaginary mathematicians, CH is a consequence of
categoricity for the hyperreal numbers, and that is for them an instance of the dream solution.

In the imaginary world, of course eventually the ⇐. ≃% accounts of limits and continuity would be discovered,
but these would be seen as complicated and unnecessary abstractions, in light of the straightforward use of
infinitesimals. The situation would be an inversion of current attitudes towards nonstandard analysis and
ultrapowers.

A challenging counterpoint would eventually flow from the discovery by Esterle (1977) (see also Ehrlich,
2012, theorem 17) that in ZFC there is an initial countably saturated real-closed field, that is, one that embeds
isomorphically into all other such fields, without requiring CH. By stratifying the field as a union of fields with
all cuts having countable cofinality, one can mount a subtle back-and-forth argument along that hierarchy to
show that this field is unique, again without CH. Indeed, this initial field is simply the field No(−1) of the surreal
numbers born at a countable ordinal birthday. This is a highly canonical mathematical structure, a countably
saturated real-closed field that admits a very natural construction and furthermore embeds isomorphically into
all such fields—it is therefore “smallest” in a stronger way than mere cardinality as in the hyperreal categoricity
theorem, and furthermore its categorical characterization does not require CH. Would this undermine the status
of the hyperreal categoricity theorem in my imaginary world? Perhaps people would want to replace the
previous understanding of what the hyperreal numbers are with a new categorical account—they are the unique
initial countably saturated real-closed field.

I would have several responses to this. First, the situation when CH fails, as I have mentioned, would
remain chaotic, with numerous non-isomorphic minimal-size countably saturated real-closed fields, arising as
ultrapowers RN/µ and by other constructions, including No(−1). Second, while the initiality of No(−1) is a
very natural property, I totally agree, meanwhile there would be other hyperreal field candidates with other
very natural properties. For example, if c<c = c there would also be a fully saturated real-closed field of size
continuum, which would definitely be different than No(−1) when CH fails, and yet this alternative would also
be a natural, canonical structure. Which would be the real hyperreals? It recalls the situation of the real numbers
in constructive mathematics, where one must distinguish between the Dedekind reals and the Cauchy reals and
so forth, and these are not constructively isomorphic. Which are the real reals in constructive mathematics?
Similarly, which are the real hyperreals in ZFC+¬CH? Under CH, all the various candidates are isomorphic,
which largely dissolves the issue, and in this sense, the categoricity situation is simply much better with CH. But
meanwhile, perhaps in my imaginary world there would be a community of mathematicians proving theorems
about the various kinds of hyperreal fields in mere ZFC, in the same way that we currently have a community
of mathematicians proving theorems about the various real fields in constructive mathematics.

14. Hyperreal hesitancy in the actual world

To my way of thinking (see Hamkins, 2021, p. 78-79, Questions 2.18, 2.19, 2.20), the lack of a categoricity
result for the hyperreal numbers in ZFC is a principal part of the explanation for the hesitancy amongst many
mathematicians to take up nonstandard analysis. Mathematicians are naturally loathe to mount a fundamental
mathematical theory like calculus with an underspecified mathematical structure at its core. We don’t want to
found calculus on an unknown hyperreal structure, if there are multiple non-isomorphic hyperreal structures to
choose from. Which one do we choose? What if the resulting theory and features would depend on the particular
choice? And how are we to refer anyway to a particular one of the hyperreal fields in the first place, if we lack a
categorical description that picks it out from the alternatives? The need for categorical characterizations of all
our fundamental mathematical structures seems necessary for a coherent structuralist mathematical practice of
referring to them.
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This explanation of the observed hyperreal hesitancy amounts to the contrapositive of the claim that we
require categorical accounts for all our core mathematical structures. In our actual mathematical history, ZFC
is already established as the core foundational theory before hyperreals are discovered, and so the lack of
categoricity for the hyperreals means that we cannot accept them as a core structure.

One might inquire whether the proposed argument for CH could be convincing in our actual world, now
that we know about the hyperreal number systems. One problem is that in our actual history, the hyperreal
numbers never became a core mathematical structure in the first place, and so there is perhaps no pressing need
to provide a categorical account of them. In actual history, we made calculus rigorous with the ⇐. ≃% limit
formalism of Bolzano and Weierstrass, and the hyperreal number systems were a later discovery, a logical
curiosity, superfluous for calculus. This is why the hyperreal-categoricity argument for CH is more compelling
in the imaginary thought-experiment world, where hyperreals were a core structure from the start, and less so in
the actual world, where they were not.

15. Historical contingency

Penelope Maddy (1988) argued that there is a certain historical contingency to the ZFC axioms of set theory.

The fact that these few [ZFC] axioms are commonly enshrined in the opening pages of mathematics
texts should be viewed as an historical accident, not a sign of their privileged epistemological or
metaphysical status. (Maddy, 1988)

She was concerned mainly with the large cardinal extensions of ZFC and the accompanying determinacy
principles, seeking reasons to justify their incorporation into our basic conception of set theory.

I have argued in this paper similarly for the historical contingency of ZFC, describing how it could have
been that we view the continuum hypothesis itself as a basic principle, necessary for the success of mathematics.
While this kind of contingency for ZFC is a consequence of my argument, my main conclusion is not about
contingency as such, but rather specifically that we might easily have had very different views about the
continuum hypothesis.

Nevertheless, perhaps there would be other historical thought experiments by which we might have come
to view ¬CH as fundamental, although the current examples I know of strike me as less compelling than the
example I have described in this paper. Solovay (in personal discussions) has defended a vision of the real
continuum that it should be a real-valued measurable cardinal, and this would necessarily involve an outsized
failure of the CH, by which the continuum is extremely large, but also there would be a fully saturated hyperreal
field of size continuum. Moore (2010) has defended the vision of set theory under the forcing axiom PFA, and
others with MM and MM+, all of which imply the continuum is (2 and that there is a fully saturated hyperreal
field of size continuum. Moore says, “Forcing axioms have proved very effective in classifying and developing
the theory of objects of an uncountable or non separable nature,” and it would seem possible to expand this
with a similar kind of thought experiment by which PFA was essential for the resolution of some fundamental
mathematical commitment. Similarly, I have described in (Hamkins, 2003; Hamkins and Woodin, 2005) forcing
axioms such as the c.c.c. maximality principle MPccc and a generalization to the necessary c.c.c. maximality
principle MPccc, which imply that the continuum is larger than any cardinal that we can describe in any way
that would be absolute to c.c.c. forcing extensions. I can imagine similar thought experiments by which these
principles could be taken as fundamental.

If indeed such thought experiments are possible, or indeed only on the basis of the thought experiment of
this paper in comparison with the standard ZFC-only foundations, I am inclined to take them all as an argument
against the view that mathematical foundations have a necessary nature. Rather, for various sound reasons,
mathematicians might have come to various different and perhaps incompatible conclusions about what they
will take to be the central mathematical principles around which they intend to organize their mathematical
investigations. For this reason, I regard my thought experiment here as supporting pluralism in the foundations
of mathematics, by showing how it could naturally have been that we take a different theory as fundamental
than we do currently.
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Nevertheless, I recognize that for set theorists taking the universe view, by which there is a unique
determinate set-theoretic reality, to have an argument that CH could have been a fundamental truth is in effect to
have an argument that it is in fact a fundamental truth. And for this, I shall simply place my thought-experiment
argument alongside the other CH arguments on offer. Namely, taken this way, as a proposal to those with the
universe view, my argument is that CH is true because it provides the categorical theory of the infinitesimal
numbers and indeed it is necessary for this.

16. Conclusion

I have described how we could have come to have a very different perspective on the continuum hypothesis.
It could easily have been that the early theory of calculus had been a little more clear about infinitesimals,
positing that they inhabit a distinct further realm, a system of numbers we might call the hyperreal numbers.
This hyperreal number system would thereby have come to be embedded as a necessary component at the core
of calculus. Clarifying the relation between the real and hyperreal numbers, early incipient forms of saturation
and the transfer principle would have been put forth, vaguely at first, but then with increasing sophistication. We
know from nonstandard analysis that these ideas are capable of serving as foundational in the development of
infinitesimals-based calculus, and so the resulting theory would have been robust and successful. With the rise of
rigor at the end of the 19th and early 20th centuries, when mathematicians were providing categorical accounts
of all the familiar mathematical structures, a Zermelo-like figure would have provided such a characterization
of the hyperreal numbers. The theory would be something like ZFC+CH, which we know suffices, and also we
know that CH cannot be omitted for this. This would have provided enormous extrinsic justification for the
continuum hypothesis, for this axiom would be seen as necessary for making sense of one of the core number
systems underlying calculus. Thus, we would view CH as a fundamental principle necessary for mathematics
and indispensable in the foundations of calculus.

To be sure, I am not arguing that CH already is or should be considered this way as fundamental, but rather
only that it could have been. Thus, I claim, we must face a certain degree of contingency in our fundamental
theories. What we consider to be bedrock foundational principles could have been different—we could have
seen the continuum hypothesis as fundamental.
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Aristotle meets Frege: from Potentialism to Frege Arithmetic

Stewart Shapiro

Abstract: The purpose of this paper is to present a genuinely potentialist account of Frege arithmetic.
The (cardinal) numbers are not generated from Hume’s Principle, but rather from more or less standard
principles of potentialism. The relevant version of Hume’s Principle is a principle stating a condition
for numbers to be identical with each other. Essentially, (HP) tells us what we are generating—
cardinal numbers—but the generation does not go through (HP) itself. We also develop an Aristotelian,
potentialist set theory—in effect, a theory of hereditarily finite sets—a theory that is definitionally
equivalent to Dedekind-Peano arithmetic.

Keywords: Abstractionist neo-logicism, Crispin Wright, Bob Hale, Hume’s Principle, Aristotelian
potentialism, finitude, Dedekind finite

1. Introduction

The abstractionist, neo-logicist program in the philosophy of mathematics began with Crispin Wright’s seminal
(Wright, 1983). Bob Hale (1983) joined the cause, and it continues through many extensions, objections,
and replies to objections (see Hale and Wright, 2001). The program’s overall plan is to develop branches of
established mathematics using abstraction principles in the form:

⇐a⇐b(%(a) = %(b)∋ E(a,b)), (ABS)

where a and b are variables of a given type (typically first-order or monadic second-order), % is an operator,
denoting a function from items of the given type to objects in the range of the first-order variables, and E is an
equivalence relation over items of the given type.

Gottlob Frege (1884, 1893), employed at least three equations in the form (ABS). One of them, used for
illustration, comes from geometry:

The direction of l1 is identical to the direction of l2 if and only if l1 is parallel to l2.

The second was dubbed N= in (Wright, 1983) and is now called Hume’s Principle:

⇐F⇐G(#F = #G ∋ F D G), (HP)

where F D G is an abbreviation of the second-order statement that there is a one-to-one relation mapping the
F’s onto the G’s. In words, (HP) states that the number of F is identical to the number of G if and only if F is
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equinumerous with G. Georg Cantor deployed this principle to obtain extensive and profound results, especially
concerning the transfinite.1

Unlike the direction-principle, the relevant variables, F,G here are second-order. We will follow the
literature and refer to items in the range of these variables as “Fregean concepts”, or sometimes just “concepts”,
essentially properties construed extensionally (and not necessarily identified with mental phenomena).

Frege’s (1893) third exemplar of an abstraction principle is the infamous Basic Law V:

⇐F⇐G(.F = .G ∋⇐x(Fx ∋ Gx)). (BLV)

Like Hume’s Principle, Basic Law V is second-order, but unlike Hume’s Principle, it is inconsistent (at least
with classical or intuitionistic logic).

As is now well-known, Frege’s Grundlagen (1884) and Grundgesetze (1893) contain the essentials of a
derivation of the Dedekind-Peano postulates from Hume’s Principle, plus some more or less straightforward
definitions.2 This result, now called Frege’s Theorem, reveals that Hume’s Principle, together with suitable
definitions, entails that there are infinitely many natural numbers. The development of arithmetic from (HP)
is sometimes called Frege arithmetic. This theory is taken to be the first success story of abstractionist neo-
logicism. The underlying theme is that one can introduce (HP) as a sort of stipulative, implicit definition of the
“number-of” operator, and develop arithmetic from that. There is an ongoing program of attempting to found
other, richer mathematical theories on abstraction principles. Here, we will only be concerned with arithmetic
and (HP).

In their informal discussion of the abstractionist program, Wright and Hale occasionally speak of mathe-
matical objects as “generated” by the abstraction principle (e.g., Hale and Wright, 2001, pp. 19, 224, 237n, 278,
289, 412, 414), but for them, this term is only a metaphor. Their version of abstractionism is not a potentialist
enterprise, as the quantifiers in the description of the equivalence relation on the right hand side are explicitly
intended to include the “generated” abstracts, cardinal numbers in this case. Frege’s Theorem depends on this.
Sometimes, the word “generated” appears in scare-quotes, as in:

One obvious danger here arises from the fact an equivalence relation defined on the concepts on a
specified underlying domain of objects may partition those concepts into more equivalence classes
than there are objects in the underlying domain, so that a second-order abstraction may ‘generate’
a domain of abstracts strictly larger than the initial domain of objects. This, in itself, need be no
bad thing—indeed, it is essential, if there is to be a neo-Fregean abstractionist route to (classical)
analysis. (Hale and Wright, 2001, p.19)

The plan here is to present a genuinely potentialist account of Frege arithmetic. The (cardinal) numbers are
not generated from (HP), but rather from more or less standard principles of potentialism. The relevant version
of (HP) is a principle stating a condition for numbers to be identical with each other. So the account is not an
abstractionist one. Essentially, (HP) tells us what we are generating—cardinal numbers—but the generation
does not go through (HP) itself.

The perspective here is that of an Aristotelian potentialist who rejects even the possibility of an actual
infinity (as presented in Linnebo and Shapiro, 2019). We also develop an Aristotelian, potentialist set theory—in
effect, a theory of hereditarily finite sets—a theory that is definitionally equivalent to Dedekind-Peano arithmetic.
The orientation is deductive: we articulate an axiomatic (higher-order and plural) language in which to express
the main principles, and explore what can be deduced in order to express and sustain the potentialist insights (if
that is what they are).

This is in contrast with the lovely study Stafford (2023), which draws on Hodes (1990). Like the present
project, Stafford treats potentialist arithmetic, drawing on (HP), but its orientation is “semantic”, i.e., model-
theoretic. Using a background set theory, presumably full ZFC (or perhaps Zermelo set theory), he develops

1 More details to follow. By rights, this abstraction principle should be called “Cantor’s Principle”, but the name “Hume’s Principle” has
caught on.

2 Frege (1893) used Basic Law V to derive the two conditionals in (HP). The rest of the Dedekind-Peano postulates follow from those.
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Kripke structures for a modal language, structures in which each world is finite. He shows how to interpret a
standard first-order (but not second-order or plural) version of Dedekind-Peano arithmetic in the model-theoretic
structures. This particular model-theoretic perspective is, of course, not available to an Aristotelian, since the
meta-theory makes heavy use of actual infinity. In the developed framework, each world is finite, but the Kripke
structure itself has infinitely many worlds.

Stafford notes that he leaves the “development of a deductive theory for future work” (p. 557). Although
the present project is deductive, it does not recapitulate Stafford’s theory. The target here is full second-order
Dedekind-Peano arithmetic, but as noted, Stafford’s theory does not satisfy that.3

The present paper is self-contained. The next Section 2 provides a brief overview of the potentialist
perspective—for more details, see (Linnebo and Shapiro, 2019). We present an axiom, called “(Aristotle)”,
that entails that infinite concepts and pluralities are impossible—all worlds are (Dedekind) finite. Section 3
provides a sketch of Frege’s own development of arithmetic (based on Hume’s Principle (HP)), giving the
usual definitions. Section 4 shows how to formulate (HP) in the modal, potentialist setting, along with axioms
entailing the possible existence of various numbers. Then, in Section 5, we formulate definitions and show how
to derive the relevant analogues of the Dedekind-Peano axioms. Section 6 drops the (Aristotle) axiom. At that
point, we do not assert the possibility of an actual infinity; rather, the theory is officially neutral on whether
there is or there could be an actual infinity. The development there is a bit closer to Frege’s own treatment,
along with that of the abstractionist neo-logicists. The final Section 7 presents an Aristotelian set theory (of
hereditarily finite sets), and shows that arithmetic can be interpreted in that theory in the usual way.

2. Potential infinity — a crash course

Aristotle famously rejected the actual infinite—the existence of any complete collection with infinitely many
members. He argued that the only sensible notion is that of potential infinity. In Physics 3.6 (206a27-29), he
wrote:

For generally the infinite is as follows: there is always another and another to be taken. And the
thing taken will always be finite, but always different (2o6a27-29).

As Richard Sorabji (2006, pp. 322-3) once put it, for Aristotle, “infinity is an extended finitude”(see also Lear,
1980). This attitude toward the infinite was expressed by the vast majority of mathematicians and philosophers
at least until late in the nineteenth century. In 1831, for example, Gauss (1831) wrote:

I protest against the use of infinite magnitude as something completed, which is never permissible
in mathematics. Infinity is merely a way of speaking.

In line with the mathematicians of his day, Aristotle did accept what is sometimes called potential infinity,
against the ancient atomists (see Miller, 2014). Mathematicians in antiquity followed this, and, indeed, made
brilliant use of potential infinity. But what is potential infinity?

Either directly or indirectly, the idea seems to be that potential infinity is tied to certain procedures that
can be repeated indefinitely. A nice example is provided by Aristotle’s claim, against the atomists, that matter
is infinitely divisible. Consider a body of mud. However many times one has divided the mud, it is always
possible to divide it again—or so it is assumed.

As indicated by the term “it is possible”, the thesis here can be explicated in a modal way.4 This yields the
following analysis of the infinite divisibility of the body of mud s:

!⇐x(Pxs ↘"≃yPyx), (6)

3 Thanks to a referee for pressing this comparison, and to Tim Button for an insightful exchange on the issues.
4 I make use of contemporary modal notions here. There is no attempt to recapitulate what Aristotle himself says about modality.
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where the variables range over parts of the given body of mud, and Pxy means that x is a proper part5 of y. If
the parts of the mud formed an actual infinity, the following would hold:

⇐x(Pxs ↘≃yPyx). (7)

According to Aristotle, it is impossible for there to be infinitely many divisions of the mud, existing all at once:

¬"⇐x(Pxs ↘≃yPyx). (8)

By endorsing both (6) and (8), one is is asserting that the divisions of the mud are merely potentially infinite.

As noted, present concern is with mathematics, and the natural numbers in particular. According an
Aristotelian, the sequence of natural numbers is merely potentially infinite. This can be represented as the
conjunction of the following theses:

!⇐m"≃n SUCC(n,m) (9)

¬"⇐m≃n SUCC(n,m), (10)

where SUCC(n,m) states that n comes right after m. The modal language thus provides a nice way to distinguish
the merely potential infinite from the actual infinite.

Linnebo and Shapiro (2019) develop an account that can accept some actually infinite collections, and
still leaves room to insist that some other “totalities” are merely potentially infinite. The analysis provides a
framework in which actual and potential infinity can live side by side, sometimes in the very same system.
Here the focus is on a more Aristotelian perspective that allows no actually infinite collections. Our goal is to
vindicate, for arithmetic,6 Aristotle’s claim about geometry:

Our account does not rob the mathematicians of their study, by disproving the actual existence of
the infinite in the direction of increase, in the sense of the untraversable. In point of fact they do
not need the <actually> infinite and do not use it. They postulate only that the finite straight line
may be produced as far as they wish. (207b27-30)

2.1. Three orientations towards the infinite

It is useful to distinguish different orientations towards a given infinite totality, such as the natural numbers
or the parts of a given body of mud (according to Aristotle). Actualism accepts actual infinities, of the given
kind, and thus finds no use for modal notions—or at least no use that is specific to the analysis of the infinity in
question. Actualists maintain that the non-modal language of ordinary mathematics is already fully explicit and
thus deny that we need a translation into some modal language. Furthermore, actualists accept classical logic
when reasoning about the infinite (or the infinite in question).

Potentialism is the orientation that stands opposed to actualism. Accordingly, the objects with which
mathematics is concerned—or some of the objects with which mathematics is concerned—are generated
successively, and at least some of these generative processes cannot be completed. Present concern is with the
natural numbers. Our potentialist thinks of numbers as generated, presumably one at a time.

There are (at least) two different forms of potentialism. As characterized above, potentialism is the view
that some or, in the present case, all of the objects with which mathematics is concerned are successively
generated. What about the truths of mathematics? Of course, on any form of potentialism, these are modal
truths concerned with certain generative processes. But how should these modal truths be understood?

Liberal potentialists regard the modal truths as unproblematic, adopting bivalence for the modal language,
and excluded middle for the underlying modal logic. Consider Goldbach’s conjecture. As potentialists interpret

5 A referee notes that this presupposes that the “parts” of the mud all have non-zero measure. In particular, the mud that occupies an
extensionless point would have no proper parts, thus violating (1). However, Aristotle explicitly insisted that points are not parts of
anything—see, for example, (Hellman and Shapiro, 2018, Chapter 1).

6 There is some anachronism here. As far as we know, there was nothing like full Dedekind-Peano arithmetic in Aristotle’s day.
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it, the conjecture says that necessarily any even natural number, greater than two, that is ever generated can be
written as a sum of two primes. Liberal potentialists maintain that this modal statement has a truth-value—it is
either true or false. Their approach to modal theorizing in mathematics is thus much like a realist approach
to modal theorizing in general: there are objective truths about the relevant modal aspects of reality, and this
objectivity warrants the use of some classical form of modal logic.

Strict potentialists differ from liberal potentialists by requiring, not only that every object generated at
some stage of a process, but also that every truth be “made true” at some stage. Consider, again, the Goldbach
conjecture. If there are counterexamples to the conjecture, then its negation will presumably be “made true” at
the stage where the first counterexample is generated. But suppose there are no counterexamples. Since the
conjecture is concerned with all the natural numbers, it is hard to see how it could be “made true” without
completing the generation of natural numbers. This completion would, however, violate the strict potentialists’
requirement that any truth be made true at some stage of the process.

Linnebo and Shapiro (2019) argue that strict potentialists should adopt a modal logic whose underlying
logic is intuitionistic (or intermediate between classical and intuitionistic logic). This allows them to adopt a
conception of universal generality which does not presuppose that all the instances are ever “available” at a
stage. In particular, strict potentialists should not accept every instance of the law of excluded middle in the
background modal language. For the most part, we adopt the liberal perspective here, at least partly because we
wish to recapitulate a version of classical arithmetic.

2.2. The modality and the modal logic

It is useful here to invoke the contemporary heuristic of possible worlds when discussing the modality in
question. But it is insisted that this is only heuristic, as a manner-of-speaking (unlike the treatment in Stafford,
2023). The theory is formulated in the modal language, with (one or both of) the modal operators as primitive.
The modal language is not explained or defined in terms of anything else.

The potentialist does, of course, reject the now common thesis that mathematical objects exist of necessity—
if they exist at all. To invoke the heuristic, the now common thesis is that all mathematical objects exist in all
worlds. The potentialist gives that up. There is no world with all of the objects in question—all natural numbers
in the present case. Nor, of course, is there an actual infinity of possible worlds (again, unlike Stafford, 2023).

What about the philosophical nature of the modality invoked in the analysis of potentiality? For the Aris-
totelian, it can perhaps be an ordinary metaphysical modality invoked in contemporary philosophy (or perhaps
defined from that notion)—waiving the now widely held thesis that mathematical objects exist necessarily if
they exist at all. For that matter, the modality can also be a very ordinary circumstantial modality, as studied in
linguistic semantics (suitably idealized, of course).

The idea is that natural numbers are generated in time. At any stage—in any world—there are finitely many
natural numbers, but each such world has access to another where some more numbers have been generated.
Given enough time, any natural number can be generated, even though there is no time when they are all
generated.

Following the heuristic, we assume that every possible world is finite, in the sense that it contains only
finitely many objects. For convenience, we wish to avoid invoking a free logic, at least here. So we do not
wish to countenance objects—mathematical or otherwise—going out of existence. To paraphrase Aristotle, we
study generation, but not corruption. This entails that the domains of the possible worlds grow (or, better, are
non-decreasing) along the accessibility relation. So we assume:

w1 ⇑ w2 ↘ D(w1)▽ D(w2) (11)

where ‘w1 ⇑ w2’ says that w2 is accessible from w1, and for each world w, D(w) is the domain of w.

Again, for convenience, in this initial foray, one can think of a possible world as determined completely by
the objects it contains. So we assume the converse of (11). This motivates the following principle:
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Partial ordering: The accessibility relation ⇑ is a partial order. That is, it is reflexive, transitive,
and anti-symmetric.

So the underlying modal logic is at least S4. As is well-known, the conditional (11) entails that the converse
Barcan formula is valid. That is,

≃x"3(x)↘"≃x∋(x). (CBF)

So far, then, we have S4 plus (CBF).7

We also assume, for simplicity (and convenience) that the only things generated are mathematical. If we
think of the natural numbers as generated one at a time, in order, it is perhaps natural to assume that the possible
worlds have a linear ordering. But it is useful to tie the present framework in with other, more general ones,
in order to invoke, or eat least discuss, some existing results. At any stage in a process of construction, we
generally have a choice of which objects to generate. For some types of construction, but not all, it makes
sense to require that a license to generate objects is not revoked at accessible worlds. Intuitively, geometric
construction is like this. For example, we might have, at some stage, two intervals that don’t yet have bisections.
We can choose to bisect one or the other of them, or perhaps to bisect both simultaneously. Assume we are at a
world w0 where we can choose to generate objects, in different ways, so as to arrive at either w1 or w2. Say at
w1 we bisect an interval i and at w2 we bisect another interval j. It seems plausible to require that the license to
bisect i can be executed at w2 or any later world. In other words, nothing we do can prevent us from being able
to bisect the other interval.

This corresponds to a requirement that any two worlds w1 and w2 accessible from a common world have a
common extension w3. This is a directedness property known as convergence and formalized as follows:

⇐w0⇐w1⇐w2(w0 ⇑ w1 ∝w0 ⇑ w2 ↘≃w3(w1 ⇑ w3 ∝ w2 ⇑ w3))

For constructions that have this property, then, we adopt the following principle:

Convergence: The accessibility relation ⇑ is convergent.

This principle ensures that, whenever we have a choice of mathematical objects to generate, the order in
which we choose to proceed is irrelevant. Whichever object(s) we choose to generate first, the other(s) can
always be generated later. Unless ⇑ is convergent, our choice whether to extend the ontology of w0 to that of
w1 or that of w2 might have an enduring effect.8

It is well known that the convergence of ⇑ ensures the soundness of the following principle:

"∴p ↘∴"p. (G)

The modal propositional logic that results from adding this principle to a complete axiomatization of S4 is
known as S4.2.

2.3. The logic of potential infinity

What is the correct logic when reasoning about potentially infinite collections? Informal glosses aside, the
language of mathematics is usually non-modal. We thus need a translation to serve as a bridge connecting
the non-modal language in which mathematics is ordinarily formulated with the modal language in which our
analysis of potentiality is developed. Suppose we adopt a translation → from a non-modal language L to a

7 Recall that S4 and (non-free) first-order logic entails (CBF). We can also require the accessibility relation to be well-founded, on the
grounds that all mathematical construction has to start somewhere. However, nothing of substance turns on this here.

8 Other types of “generation” are not like this. Suppose for example, that I can bake bread or I can bake a cake, since I have enough time
and ingredients to do either. But it may be that if I bake bread, then I can no longer bake a cake, since I may have used up the needed
ingredients or I won’t have enough time. Or suppose that a country has a law that a couple can have only two children. If a given couple
already has one, then it is possible for them to have a boy and it is possible for them to have a girl. But if they do one, they will not be
allowed to go on and do the other.
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corresponding modal language L !. The question of the right logic of potential infinity is the question of which
entailment relations obtain in L .

To determine whether ∋1, . . . ,∋n entail & , we need to (i) apply the translation and (ii) ask whether ∋→
1 , . . . ,∋→

n
entail &→ in the modal system. This means that the right logic of potential infinity depends on several factors.
First, the logic depends on the bridge that we choose to connect the non-modal language of ordinary mathematics
with the modal language in which our analysis of potential infinity is given. Second, the logic obviously depends
on our modal analysis of potential infinity; in particular, on the modal logic that is used in this analysis—in
particular, on whether the underlying logic of the modal language is classical or intuitionistic. Let us now turn
to the first factor.

The heart of potentialism, or at least the present explication of potentialism, is the idea that the existential
quantifier of ordinary non-modal mathematics has an implicit modal aspect. In the developed interpretive
program, a statement that a given number has a successor is interpreted as a statement that this number
potentially has a successor—that it is possible to generate a successor. This suggests that the right translation of
≃ is "≃.

Similarly, a potentialist statement that a given property holds of all objects (of a certain sort) is interpreted
as a statement that the property holds of all objects (of that sort) whenever they are generated. This suggests
that ⇐ be translated as !⇐.

Thus understood, the quantifiers of ordinary non-modal mathematics are devices for generalizing over
absolutely all objects, not only the ones available at some stage, but also any that we may go on to generate.
In our modal language, these generalizations are effected by the strings ∴⇐ and "≃. Although these strings
are strictly speaking composites of a modal operator and a quantifier proper, they behave logically just like
quantifiers ranging over all entities at all (future) worlds.

The proposal is thus that each quantifier of the non-modal language is translated as the corresponding
modalized quantifier. Each connective is translated as itself. Let us call this the potentialist translation, and let
∋! represent the translation of ∋ . We say that a formula is fully modalized just in case all of its quantifiers are
modalized. Clearly, the potentialist translation of any non-modal formula is fully modalized.

Say that a formula ∋ is stable if the necessitations of the universal closures of the following two conditionals
hold:

∋ ↘∴∋ ¬∋ ↘∴¬∋

This sets the stage for two key results, which answer the question about the correct logic for those kinds of
potentiality that enjoy the above convergence property.

For the first, let ∀ be the relation of classical deducibility in a non-modal first-order language L . Let L !

be the corresponding modal language, and let ∀! be deducibility in the modal system consisting of classical ∀,
S4.2, and axioms asserting the stability of all atomic predicates of L .

Classical potentialist mirroring. For any formulas ∋1, . . . ,∋n,& of L , we have:

∋1, . . . ,∋n ∀ & if and only if ∋!
1 , . . . ,∋!

n ∀! &!.

(See Linnebo, 2013, for a proof.)

The theorem has a simple moral. Suppose we are interested in logical relations between formulas in the
range of the potentialist translation, in a classical, first-order modal theory that includes S4.2 and the stability
axioms. Then we may delete all the modal operators and proceed by the ordinary non-modal logic underlying
∀. In particular, under the stated assumptions, the modalized quantifiers ∴⇐ and "≃ behave logically just as
ordinary quantifiers, except that they generalize across all (accessible) possible worlds rather than a single
world.9

9 Note the restriction to first-order languages. The result will apply to higher-order languages if the modal translations of the instances of the
comprehension scheme are deducible in the modal language.
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As noted above, however, Linnebo and Shapiro (2019) argue that a stricter form of potentialism pushes in
the direction of intuitionistic logic. There is a second mirroring theorem. In a system governed by intuitionistic
logic, a formula ∋ is said to be decidable if the universal closure of ∋ ↗¬∋ is deducible in that theory. Let
∀int be the relation of intuitionistic deducibility in a first-order language L , together with axioms stating the
decidability of all atomic formulas, and let ∀!

int be deducibility in the modal language corresponding to L , by
∀int, S4.2 and the stability axioms for all atomic predicates of L .10 The conclusion is then the same as above:

Intuitionistic potentialist mirroring For any formulas ∋1, . . . ,∋n,& of L , we have:

∋1, . . . ,∋n ∀int & if and only if ∋!
1 , . . . ,∋!

n ∀!
int &!.

(See Linnebo and Shapiro, 2019, for a proof.)

Our interest won’t always be limited to formulas in the range of the potentialist translation. One can often
use the extra expressive resources afforded by the modal language to engage in reasoning that takes us outside
of this range. The modal language allows us to look at the subject matter under a finer resolution, which can be
turned on and off, according to our needs.

The final order of business for this section is a case in point. We state an axiom that enforces the Aristotelian
thesis that—to invoke the heuristic—all worlds are finite. Our choice is that it is necessary that for any Fregean
concept X and for any relation R on X that is a one-to-one function on X , R is a surjection on X (i.e., if Xx then
x has an R predecessor):

!⇐R⇐X [⇐x(((Xx ↘≃y⇐z(Xz∝Rxz)∋ y = z))∝⇐x1⇐x2⇐y((Rx1y∝Rx2y)↘ x1 = x2))

↘⇐y(Xy ↘≃x(Xx∝Rxy)))] (Aristotle)

This entails that all worlds are at least Dedekind finite.

Intuitively, a Fregean concept, or a possible world, is finite if its cardinality is a natural number. To be
sure, it would be premature to invoke that here, since we have not yet defined the natural numbers. But we
can express a statement that a concept or world is actually finite (and not just Dedekind finite). Let R be any
binary relation, Frege (1879) defined the (weak) ancestral R→ of R.11 Using a more contemporary framework
the definition is as follows:

R→xy ∋def [⇐X(Xx∝ (⇐z⇐w((Xz∝Rzw)↘ Xw)))↘ Xy] (Ancestral)

In words, R→xy holds if y has every Fregean concept that holds of x and is closed under R. In effect, R→xy holds
just in case either x = y or there is a finite sequence a1 . . .an+1 such that a1 = x,an+1 = y and for each m such
that 1 ⇑ m < n, Ramam+1 .

We can state a principle that asserts, in effect, that all worlds are finite as follows:

!≃R(⇐x⇐y1⇐y2((Rxy1 ∝Rxy2)↘ y1 = y2)∝≃x⇐zR→(x,z)∝≃y⇐z(¬R(y,z))) (finite)

In words, (finite) says that necessarily (i.e., in every world) there is one-to-one relation R such that (i) there
something x such that everything (in that world) is an R-ancestor of x, and (ii) there is something z that does not
bear R to anything (in that world). Intuitively, it follows that in every world, every concept is actually finite
in that world. This principle is probably closer to Fregean concerns, and it allows many of the proofs to be
constructive.

Nevertheless, we shall stick with the weaker (Aristotle) here. After some other axioms are added, we
can derive (finite), showing that all worlds and thus all Fregean concepts are actually finite. It follows that,
necessarily (i.e., in every world w), there could be a natural number (possibly in an accessible world w⇒) that is
the number of objects (in w).

10 A referee points out that identity is not decidable in intuitionistic analysis (or in smooth infinitesimal analysis) and membership is not
decidable in some intuitionistic set theories. The relevant moral is that this mirroring theorem does not hold for those theories.

11 From here on, when we speak of the ancestral or an ancestor, we mean the weak ancestral and a weak ancestor.
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3. A sketch of Frege’s Theorem

Recall the ill-named Hume’s Principle:

⇐F⇐G(#F = #G ∋ F D G), (HP)

where F D G is an abbreviation of the second-order statement that there is a one-to-one relation mapping the
F’s onto the G’s. That is:

F D G ∋def ≃R[⇐x(Fx ↘≃!y(Gy∝Rxy))∝⇐y(Gy ↘≃!x(Xx∝Rxy))]

A central component of (this phase of) the abstractionist program is to establish Frege’s Theorem: a
derivation of the Dedekind-Peano axioms from (HP) and reasonable definitions of the primitive arithmetical
vocabulary. This, it is argued, provides a logical and epistemological foundation for arithmetic. The purpose of
this section is to provide a sketch of Frege’s Theorem, or at least of some key steps along the way. Then we
turn to a potentialist version of the result.

The abstractionist does not presuppose, at the outset, just as a matter of syntax and semantics, that every
Fregean concept F has a (unique) number #F . So the proper background would be a free logic. Their practice
is to start with a concept F , note the trivial consequence that F D F , and then conclude that F has a number.
So perhaps the proper background is a negative free logic in which identity statements, or perhaps atomic
statements, entail existence, so that a = b entails that a and b denote something.

Frege defines zero to be the number of the Fregean concept of being not self-identical, the concept
characterized by the open formula x ↔= x. The next item is the successor relation. Frege (1893, §76) writes:12

I now propose to define the relation in which every two adjacent members of the series of [cardinal]
numbers stand to each other. The proposition:

“there exists a concept G, and an object falling under it x, such that the Number which
belongs to the concept G is n and the Number which belongs to the concept ‘falling
under G but not identical with x’ is m”

is to mean the same as

“n follows in the series of . . . numbers directly after m”.

Frege’s definition, then, is that n follows directly after m just in case

≃F≃G((m = #F ∝n = #G)∝≃x(Gx∝⇐y(Fy ∋ (y ↔= x∝Gy)))) (Frege-successor)

The same definition is employed in Frege (1893) as well as in Wright (1983, p. 37).

The following is equivalent (via classical logic): the number n follows directly after the number m just in
case:

≃F≃G
(
m = #F ∝n = #G∝≃x(¬Fx∝⇐y(Gy ∋ (y = x↗Fy)))) (Successor)

To put it in Fregean words, n follows directly after m if and only if:

There exists a concept F , and an object x not falling under F , such that the Number which belongs
to the concept F is m and the Number which belongs to the concept ‘either falling under F or
identical with x’ is n.

12 The notation is tweaked slightly.
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Let us write S(x,y) for “y bears (Successor) to x”, or, in Fregean terms, “y follows directly after x”.

In (Frege, 1893, §76), Frege immediately notes that he does not use the expression “the Number following
next after m”, since he had not yet shown that each number has exactly one successor. Of course, one can, and
Frege does, prove uniqueness—using classical logic. Finally, Frege defines a natural number to be an ancestor
of zero under (Frege-successor):

Nx ∋def S
→(0,x)

With these definitions, the usual Dedekind-Peano axioms follow. Every natural number has a unique
successor, and so the successor relation is a function; this function is one-to-one; zero has no successor, and
full, second-order induction holds:

⇐X [(X0∝⇐x⇐y((Xx∝S(x,y))↘ Xy))↘⇐x(Nx ↘ Xx)]

Induction is a straightforward consequence of the use of the ancestral in the definition of N.

Where in the above, more or less standard development of this instance of abstractionism, do we run
afoul of the Aristotelian dictum to reject any and all actual infinities, any completed infinite totalities? From
the background actualism, we have that there are infinitely many natural numbers. That follows from the
Dedekind-Peano principles established by Frege’s Theorem(s). So the Fregean concept expressed by the
formula S

→(0,x) holds of infinitely many things, all of the natural numbers. Moreover, an application of the
‘#’ operator to N would give us the existence of an infinite number, one that Frege called “endlos”. In modern
terms, that is the cardinal number (0.

The ancestral relation is an essential part of the development and, in particular, the proof that the natural
numbers satisfy the induction principle. Recall that for any binary relation R, R→xy holds if every concept that
holds of x and is closed under R also holds of y. But every concept that holds of 0 and is closed under S holds
of infinitely many things. So, for our Aristotelian, there are no such concepts and so N vacuously holds of
everything! This motivates the development of a potentialist, account of arithmetic, along Aristotelian and
Fregean lines.13

4. Potentialist arithmetic

Linnebo (2013) and Chapter 3 of (Linnebo, 2018) presents a (consistent) account of set theory based on a
potentialist version of Frege’s Basic Law V. Instead of saying that every Fregean concept has an extension
(which is inconsistent, given the usual comprehension principles of higher-order logic), we say that at least
some Fregean concepts X could have an extension.

"≃x(x = .(X))

To invoke the heuristic of possible worlds, if all of the objects that X holds of are in a single world w, then there
is an accessible world that contains an extension whose members are all and only the objects that X holds of in
w.

To formulate this, Linnebo uses the language of plural logic. It is stipulated that, like sets, pluralities are
rigid: the same objects are among a given plurality xx in all worlds in which xx exists.14 As Linnebo (2013,
2018) shows, this rigidity can be expressed in the underlying modal and plural language.

The set-existence principle is
!⇐xx"≃y⇐z(z △ y ∋ z ∈ xx). (set exists)

13 As is well-known, there are issues concerning how the underlying higher-order logic is to be developed in the framework. One issue is the
analogue of impredicative comprehension. Sean Walsh (2012) (Corollary 92) shows that full first-order Dedekind-Peano arithmetic PA
cannot be interpreted in predicative Frege arithmetic—regardless of our definitions of the arithmetical primitives. It follows from (Walsh,
2012), Corollary 92 and Proposition 6, that the interpretability strength of the system of second-order arithmetic known as ACA0 is strictly
above that of (HP) with ∋1

1-comprehension, and hence also strictly above that of (HP) with predicative comprehension. These issues are not
broached here.

14 Clearly, if something is rigid then it is stable, but the converse typically fails.
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In words, for any objects, there could be a set whose members are just those objects. On pain of Russell’s
paradox, there is no plurality of all possible sets, no plurality of all possible von Neumann ordinals, and the like.

We do not adopt (set exists) here since we are not (yet) interested in a potentialist set theory (but see §7
below). The present framework has both higher-order variables (ranging over Fregean concepts) and plural
variables (ranging over rigid pluralities). Concerning Fregean concepts, the framework has full, unrestricted
comprehension: each instance of the universal closure of the following holds:

!≃R!⇐x1 . . .⇐xn(Rx1 . . .xn ∋ #),

where # is any formula that does not have R free. That is, every formula in the language defines a Fregean
concept.15

Note that a Fregean concept can have different extensions in different worlds. For example, the concept of
being self-identical (defined by “x = x”) holds of different things in different worlds. The concept of being the
largest number also holds of different numbers in different worlds. The same goes for a concept like being a
living dog—dogs come and, alas, go. In short, unlike pluralities, concepts are not rigid.

There also is a comprehension principle for pluralities. Each instance of the universal closure of the
following holds:

!(≃x# ↘≃xx⇐x(x ∈ xx ∋ #)),

where # is a formula that does not contain xx free. That is, every formula in the language that holds of
something defines a (rigid) plurality in each world. So if ≃x# holds in a world w, then the instance of plural
comprehension defines a plurality of all objects that satisfy # in w. Of course, those objects need not satisfy #
in a different world.

To avoid a free logic, we replace the abstractionist number-of operator with a relation. So for a Fregean
concept F , ‘#(F,n)’ can be read as “n is a number of F”. And similarly ‘#(mm,n)’ can be read as “n is a
number of mm”.16

As noted, for simplicity (and to keep the logic unfree), we also assume that objects are never destroyed—if
an object exists in a given world, it exists in all accessible worlds. So the accessibility relation will be at least
that of S4, and we adopt the above policy and take the accessibility relation to be convergent (if not linear).

4.1. Numbers of pluralities

In §2 we formulated and adopted a principle (Aristotle) that entails that, in effect, all worlds are Dedekind finite.
It follows that all pluralities are Dedekind finite. We thus adapt (set exists) to numbers and adopt:

!⇐xx"≃y#(xx,y). (Num Exists)

In words, every plurality could have a number.

Define equinumerosity on pluralities as follows:

xx D yy ∋def ≃R(⇐x(x ∈ xx ↘≃!y(Rxy∝ y ∈ yy))∝⇐y(y ∈ yy ↘≃!x(Rxy∝ x ∈ xx))).

We do not have that every plurality has a number (see below for more details on this). The relevant version of
Hume’s Principle is that if two pluralities each have a number, then these numbers are identical just in case the
pluralities are equinumerous:

⇐xx⇐yy⇐x⇐y((#(xx,x)∝#(yy,y))↘ (x = y ∋ xx D yy)). (HP)

15 Since there are no restrictions on the formula #, the system allows impredicative definitions. The same goes for plural comprehension. This
is taken to be of-a-piece with a liberal view of potentialism. In any case the goal here is to sanction full induction on the natural numbers,
and thus an analogue of full second-order arithmetic. Full impredicative comprehension facilitates that.

16 Some readers (and one referee) find it awkward or annoying or infelicitous to use the same symbol (‘#’) for both numbers of pluralities and
numbers of Fregean concepts, even though context always settles which is meant. It is, of course, simple and straightforward to use two
different symbols instead.
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It follows that each plurality has at most one number:

!⇐xx⇐y⇐z((#(xx,y)∝#(xx,z))↘ y = z).

We add an axiom that if two pluralities are equinumerous and one of them has a number, then so does the other:

⇐xx⇐yy⇐x((xx D yy∝#(xx,x))↘≃y#(yy,y)). (HP⇒)

Of course, it follows from this and (HP) that these two numbers are identical: if two pluralities are equinumerous
and one has a number, then the other has the same number.17

It seems reasonable to add a principle that if a certain number exists (in a given world) then so do all smaller
numbers:

!⇐xx⇐yy⇐x((#(xx,x)∝⇐z(z ∈ yy ↘ z ∈ xx))↘≃w#(yy,w)). (Closure Down)

The idea is that the numbers are generated one at a time, in their natural order.

One does not have to think of the numbers as generated this way. One might instead allow a given plurality
to get a number before some of the its sub-pluralities have numbers. In that case, the relevant principle would
be that if a plurality has a number, then it could be that all of its sub-pluralities have numbers:

!⇐xx⇐x(#(xx,x)↘"⇐yy(⇐z(z ∈ yy ↘ z ∈ xx)↘≃w#(yy,w))). (potential closure down)

The principle (potential closure down) is a kind of generalization on the (G) axiom. From (G) and (Num Exists)
we have that for any given finite list of pluralities in a given world, there is an accessible world that contains
numbers for all of them. But, it seems, one cannot prove this generalization, at least as it is stated. Moreover,
our (Aristotle) principle only entails that all worlds are Dedekind finite. And we certainly have no guarantee
(yet) that the reasoning extends to Dedekind finite collections of pluralities.18

So far, we have the possibility of a world that contains only numbers, and which has a number for every
plurality in that world. Consider, for example, a world whose domain is the first five numbers, starting with one.
But we have such a world (or such a possibility) only because we have not yet introduced zero as a number.
Following standard practice, there is no “empty” plurality, and so there is no plurality whose number is zero.

4.2. Numbers of Fregean concepts

One reason that we treat numbers of Fregean concepts here is to explicate Frege’s account of how arithmetic
is applied. Frege (1893, §§45-46) asks what is it that (cardinal) numbers are numbers of? What is it that we
count? What do we apply number words to? His answer is that we apply numbers to concepts:

While looking at one and the same external phenomenon, I can say with equal truth both “It is a
copse” and “It is five trees”, or both “Here are four companies” and “Here are 500 men”. Now
what changes here from one judgment to the other is neither any individual object, nor the whole,
the agglomeration of them, but rather my terminology. But that is itself only a sign that one
concept has been substituted for another. This suggests as the answer [to the question is] that the
content of a statement of number is an assertion about a concept. This is perhaps clearest with the
number 0. (§46)

This account is also adopted by the abstractionists.

We introduce zero as the number of a Fregean concept. One option is to add a constant “0” to the language,
along with the axiom:

!⇐F(#(F,0)∋ ¬≃xFx).

17 There is no need for an analogous axiom Linnebo’s (2013, 2018) treatment of set theory. If two pluralities are coextensive, then they are the
same plurality.

18 Thanks to Øystein Linnebo for these observations.
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This entails that zero exists in every world or, in other words, zero necessarily exists. Since we are not
presupposing a free logic, we have that every constant denotes something—the same thing—in every world.

To be sure, having numbers—any numbers—that exist of necessity is contrary to the spirit of potentialism.
But perhaps the necessary existence of zero is at least relatively harmless: zero is the only number that exists
necessarily.

We opt to avoid even this. Instead, we define a concept Z that, necessarily, holds of nothing. Following
Frege, say that Z is defined by the formula x ↔= x:

!(⇐x(Zx ∋ x ↔= x)).

Since we have comprehension, this concept constant is eliminable, but it is convenient to have it in the formal
language. We add an axiom that it is necessary that zero could exist:

!"≃x#(Z,x). (Zero)

Following an informal Hume’s Principle, we add an axiom stating that, necessarily, any number of Z is not the
number of a plurality:

!⇐x⇐xx¬(#(Z,x)∝#(xx,x). (Zero Not Plural)

And we extend (Closure Down) to a statement that if any number exists, then zero does:19

!(≃xx≃y#(xx,y)↘≃x#(Z,x)). (Closure Down+)

Let E be a concept constant defined by the formula “x = x”. It is the concept of being self-identical. Like Z,
this concept constant is eliminable. It is straightforward to see that E cannot have a number in any world that
is actually finite. Suppose that a given world w has exactly n elements in its domain. If n exists in w then by
(Closure Down) and (Closure Down+), every number smaller than n is also in w. There are thus n+1 numbers
in W , which is a contradiction. Moreover, the plurality of all objects in this world w also has no number.

Consider an interpretation in which every world is actually finite. Then E cannot have a number in any
world in that interpretation. So this interpretation satisfies:

!¬≃x#(E,x),

or, in other words:
!⇐xx(⇐x(x ∈ xx)↘ ¬≃x#(xx,x)).

Recall our principle (Num Exists) stating that every plurality could have a number:

!⇐xx"≃y#(xx,y).

The concept-analogue of this would be:
!⇐X"≃y#(X ,y).

As we have just seen, this is false at least in interpretations in which every world is actually finite. Our identity
concept E is a counterexample to this principle in any such interpretation.

It might prove instructive to dwell on this. The problem that, unlike pluralities (as conceived here), at least
some Fregean concepts are not rigid—and some are not stable. Let X be a concept, and focus on a particular
world w. The above formula says that there is a world w⇒, accessible from w that contains a number a number
of X . What we would get, if the principle were correct, is the existence of a number of X in w⇒, and that number
may be different from the number of X in w. Let’s apply this to our concept E. Suppose that a given world w

19 It is straightforward to modify (potential closure down) in an analogous way.
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has n members. The above principle would tell us that there is a world w⇒ in which E has a number. But this
would be the number of elements in w⇒, not the number of elements of w. Again, there is no such number in w⇒.

We add the following, connecting the numbers of non-empty Fregean concepts (in a given world) to
pluralities in that world, the number of the objects that the concept holds of in that world:

!⇐X⇐xx⇐y(#(xx,y)∝ (⇐z(Xz ∋ z ∈ xx))↘ #(X ,y))

In words, and invoking the heuristic, if xx consists of the objects that X holds of in a given world, and if the
number of xx is y, then the number of X is y in that world. Of course, the concept X may not have that same
number (or any number) in a different world.

We add a converse:

⇐X⇐y(#(X ,y)↘⇐xx(⇐z(Xz ∋ z ∈ xx)↘ #(xx,y)))

This says that if a given Fregean concept has a number (in a world) and a given plurality is co-extensive with
the concept (in that world) then the plurality has the same number as the concept.

Define equinumerosity on Fregean concepts as follows:

F D G ∋def ≃R(⇐x(Fx ↘≃!y(Rxy∝Gy))∝⇐y(Gy ↘≃!x(Rxy∝Fx))).

then (HP), plus the usual properties of identity, entails:

⇐X⇐Y⇐x⇐y((#(X ,x)∝#(Y,y))↘ (x = y ∋ X D Y )).

In words, if two Fregean concepts have the same number (in a given world) then they are equinumerous (in
that world). This, of course, is a concept version of (HP). This and (HP⇒) entails that if two concepts are
equinumerous and one of them has a number, then the other one has the same number:

⇐X⇐Y⇐z(((X D Y ∝#(X ,z))↘⇐w((#(Y,w)))∋ z = w)).

5. Frege’s Theorem potentialized
5.1. The Dedekind-Peano axioms

A typical articulation of the (second-order) Dedekind-Peano axioms uses a language with a predicate N for
being a natural number, a constant 0 for zero, and a successor function s. The axioms are that zero is a number,
that the successor of a number is a number, that there is no number whose successor is zero, that the successor
function is one to one on the numbers, and an axiom of induction—for any Fregean concept X , if X holds of
zero and if X is closed under the successor function, then X holds of every number:

1. N(0)

2. ⇐x(N(x)↘ N(sx))

3. ¬≃x(N(x)∝ sx = 0)

4. ⇐x⇐y((N(x)∝N(y)∝ sx = sy)↘ x = y)

5. ⇐X((X0∝ (⇐x((N(x)∝Xx)↘ Xsx)))↘ (⇐x(N(x)↘ Xx)))

Recall that, in the present modal potentialist setting, we avoid a free logic. Since we do not want any
individual constants or any closed terms in the formal language, we follow Frege and employ a successor
relation: S(x,y) says that y is a successor of x. We use the following as our basic (non-modal) Dedekind-Peano
axioms:

1. ≃y(N(y)∝⇐x¬(N(x)∝S(x,y)))

2. ⇐x(N(x)↘≃y⇐z((N(z)∝S(x,z))∋ y = z))

3. ⇐x⇐y⇐z((N(x)∝N(y)∝N(z)∝S(x,z)∝S(y,z))↘ x = y)

4. ⇐X(⇐x((N(x)∝⇐y¬(N(y)∝S(y,x))↘ Xx)∝ (⇐x((N(x)∝Xx∝S(x,y))↘ Xy)))↘ (⇐x(N(x)↘ Xx)))

The first axiom says that there is a number that is not a successor of anything; the second says that the successor
relation is a function on numbers; the third says that this function is one to one; and the fourth is induction.
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5.2. Definitions

Our next chore is to say what it is to be a natural number, in the potentialist setting, and to define the successor
relation and some related items. Then we give potentialist versions of the Dedekind-Peano axioms, and establish
those, along the lines of Frege’s Theorem.

As noted, Frege defines a natural number to be an ancestor of zero under the successor relation. So, for
Frege, a natural number is a finite cardinal number. Recall our axiom (Aristotle) designed to entail that, to
invoke the heuristic, all worlds are Dedekind finite. There are no Dedekind infinite pluralities nor are there any
Fregean concepts that apply to Dedekind infinitely many things (in any world). So here we take all (cardinal)
numbers to be natural numbers. So define an object to be a natural number if it is the number of a Fregean
concept:

NN(x)∋def ≃F#(F,x)

It is straightforward to show that x is a natural number just in case either it is the number of the concept Z of
being not self-identical or it is the number of a plurality:

NN(x)∋ (#(Z,x)↗≃xx#(xx,x)).

Let O be the concept of being the number of a plurality of just one thing:

O(x)∋def ≃xx((#(xx,x)∝⇐y⇐z((y ∈ xx∝ z ∈ xx)↘ y = z)))

By (HP), if O(x) and O(y), then x = y. In effect, O is the concept of being the number one.

Frege and the abstractionist neo-logicists define the number one to be the number of the concept of being
identical to zero. This can be captured here. Recall our concept Z of being not self identical. The following
follows:

⇐x⇐y⇐xx((#(Z,x)∝⇐z(z ∈ xx ∋ z = x)∝#(xx,y))↘ O(y)).

In words, if y is the number of a plurality of only a number of Z, then O(y).

The next thing to be defined is the successor relation on numbers. Above, we gave a Fregean version of a
successor relation, plus another one that is classically equivalent but perhaps more natural. Number n follows
directly after number m just in case:

≃F≃G((m = #F ∝n = #G)∝≃x(Gx∝⇐y(Fy ∋ (y ↔= x∝Gy)))) (Frege-successor)

≃F≃G
(
m = #F ∝n = #G∝≃x(¬Fx∝⇐y(Gy ∋ (y = x↗Fy)))) (Successor)

Those can be captured here. We use a version of the latter:

S(m,n)∋def ≃F≃G(#(F,m)∝#(G,n)∝≃x(¬Fx∝⇐y(Gy ∋ (y = x↗Fy))))

It can be shown that S is stable, since the concepts F and G can themselves be chosen to be stable, say as either
the concept Z of being not self identical or the concept of being one of a given plurality. The following can be
shown:

S(m,n)∋ (#(Z,m)∝O(n))↗
≃xx≃yy(#(xx,m)∝#(yy,n)∝≃x(x ↔∈ xx∝⇐y(y ∈ yy ∋ (y = x↗ y ∈ xx)))).

In words, n is a successor of m just in case either m is a number of the concept of being not self identical and n
is a number of a plurality of just one thing, or m is a number of a plurality xx and n is a number of a plurality of
the xx and one more thing.

It will prove convenient to define the inequality relations on natural numbers:

x ⇑ y ∋def ≃F≃G(#(F,x)∝#(G,x)∝⇐z(Fx ↘ Gx))

x < y ∋def (x ⇑ y∝ x ↔= y)

Again, we can see that these relations are stable since one can choose stable Fregean concepts F and G, either
our empty concept Z or the concept of being one of a given plurality.
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5.3. Targets

Recall that the potentialist translation of a non-modal formula is the result of replacing each universal quantifier
⇐ with !⇐ and each existential quantifier ≃ with "≃, and translating the connectives homophonically.

Our first three targets are the necessitations of the potentialist translations of the first three Dedekind-Peano
axioms:

1. !"≃y(NN(y)∝!⇐x¬(NN(x)∝S(x,y)))

2. !⇐x(NN(x)↘"≃y!⇐z((NN(z)∝S(x,z))∋ y = z))

3. !⇐x!⇐y!⇐z((NN(x)∝NN(y)∝NN(z)∝S(x,z)∝S(y,z))↘ x = y)

We establish those here, and turn to induction in the next subsection. The first axiom is straightforward:

Theorem 1: !"≃y(NN(y)∝!⇐x¬(NN(x)∝S(x,y)))

Proof: Recall our axiom (Zero):
!"≃x#(Z,x),

and our definition of the “empty” concept Z:

!(⇐x(Zx ∋ x ↔= x)).

It follows immediately from the definition of S that no number of Z can be a successor of another
number.

We turn next to the second axiom. We break it up into two parts, first showing that successors are unique:

Theorem 2 (Frege): !⇐x⇐y1⇐y2((S(x,y1)∝S(x,y2))↘ y1 = y2)

Proof: Suppose that S(x,y1) and S(x,y2) both hold (in a given world). Then

≃G1≃F1(#(G1,x)∝#(F1,y1)∝≃w1(¬G1w1 ∝⇐w⇒(F1w⇒ ∋ (w⇒ = w1 ↗G1w⇒))))

and
≃G2≃F2(#(G2,x)∝#(F2,y2)∝≃w2(¬G2w2 ∝⇐w⇒(F2w⇒ ∋ (w⇒ = w2 ↗G2w⇒))))

We have to show that y1 = y2. Suppose that F1,G1,w1,F2,G2, and w2 have the relevant features.
Then we have #(G1,x) and #(G2,x). By (HP), G1 D G2. So there is a relation R such that
⇐u(G1u ↘≃!v(Ruv∝G2v)) and ⇐v(G2v ↘≃!u(Ruv∝G1u)). Using comprehension, let R⇒uv hold
if and only either Ruv or else u = w1 and v = w2. It follows that F1 D F2. By (HP), y1 = y2.

We turn next to the third axiom, that if two numbers have a common successor, then they are identical:

Theorem 3 (Frege): !⇐x!⇐y!⇐z((NN(x)∝NN(y)∝NN(z)∝S(x,z)∝S(y,z))↘ x = y)

Proof (sketch): Suppose that S(x,z) and S(y,z) both hold (in a given world). Then

≃F1≃G1(#(F1,x)∝#(G1,z)∝≃w1(¬F1w1 ∝⇐w⇒(G1w⇒ ∋ (w⇒ = w1 ↗F1w⇒))))

and
≃F2≃G2(#(F2,y)∝#(G2,z)∝≃w2(¬F2w2 ∝⇐w⇒(G2w⇒ ∋ (w⇒ = w2 ↗F2w⇒))))

We have to show that x = y. Suppose that F1,G1,w1,F2,G2, and w2 have the relevant features.
Then we have #(G1,z) and #(G2,z). By (HP), G1 D G2. Our theorem follows from what may be
called the Equinumerosity Lemma:

Lemma: Suppose that X D Y , Xx, and Y y. Let X ⇒ be the Fregean concept defined by ⇐z(X ⇒z ∋
(Xz∝ z ↔= x)), and let Y ⇒ be the Fregean concept defined by ⇐z(Y ⇒z ∋ (Y z∝ z ↔= y)). Then X ⇒ D Y ⇒.

For a proof, see https://plato.stanford.edu/entries/frege-theorem/proof5.htm.
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Notice that in the proofs of Theorems 1-3, we have not invoked the axiom (Aristotle) that all worlds are
Dedekind finite (so to speak). We do so now.

Theorem 4: No plurality is equinumerous with a proper sub-plurality:

!⇐xx⇐yy((⇐x(x ∈ xx ↘ x ∈ yy)∝≃y(y ∈ yy∝ y ↔∈ xx))↘ xx ↔D yy).

Proof: Suppose that ⇐xx⇐yy(⇐x(x ∈ xx ↘ x ∈ yy)∝ y ∈ yy∝ y ↔∈ xx). And suppose that xx D yy.
Then there is a relation F that maps xx one-to-one onto yy, and a relation G that maps yy one-to-one
onto xx. By first applying G and then F , we obtain a relation that maps yy one-to-one onto a
proper subset of yy. This contradicts (Aristotle).

This result, together with (HP), sanctions (in this context) Euclid’s Common Notion: a whole is
greater than its (proper) parts.

Corollary: !⇐n(NN(n)↘ ¬S(n,n)); no number is its own successor.

Proof: Suppose that S(x,x). That is,

≃F≃G(#(F,n)∝#(G,n)∝≃x(¬Fx∝⇐y(Gy ∋ (y = x↗Fy))))

Let F , G, and x be given as in the formula:

#(F,n)∝#(G,n)∝¬Fx∝⇐y(Gy ∋ (y = x↗Fy)).

By (HP), F D G:

≃R[⇐z(Fz ↘≃!y(Gw∝Rzw))∝⇐w(Gw ↘≃!z(Xz∝Rzw))]

But since ⇐x(Gx ↘ Fx), R is a one-to-one function on G which is not a surjection: x is not in its
range. This contradicts (Aristotle).20

Next is a common result in the abstractionist program. It does not depend on the (Aristotle) axiom.

Theorem 5: (Frege) Suppose that 0 is a (or the) number of our “empty” concept Z (in a given
world w). Consider the concept NF of being an ancestor of 0 (in w) under the successor relation:

⇐x(NF(x)∋ S
→(0,x))

Suppose N
F(n). Then n is either 0 or is the number of the plurality of all numbers (in w) that are

less then n.

Proof: Let A(x) be the Fregean concept of being either 0 or the number of numbers less than x.
Of course A(0). Suppose that A(n) and that S(n,n⇒), i.e., that n⇒ is a successor of h and thus, from
Theorem 2, n⇒ is the successor of n. From the definition of the ancestral, we have to show that
A(n⇒). We have that n is the number of numbers less than n, that n ⇑ n⇒, and, by the Corollary to
Theorem 4, n ↔= n⇒. By the definition of successor, n⇒ is the number of numbers less than n⇒.

We now return to the other half of the second Dedekind-Peano axiom. We show that, necessarily, for every
number n, it is possible that n has a successor:

20 Suppose we are working in a system like ours but without the (Aristotle) axiom. Let aa be Dedekind infinite, and assume #(aa,n). Then it
is straightforward to show that S(n,n); n is its own successor.
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Theorem 6: (Frege) !⇐x(NN(x)↘"≃yS(x,y))

Proof: We have that for every number x, either x is a number of Z (the Fregean concept of being
not self identical), or there is a plurality xx such that x is a number of xx.

Suppose that 0 is a (or by (HP), the) number of Z. Consider the plurality aa of just 0. Recall our
axiom (Num Exists):

!⇐xx"≃y#(xx,y).

This entails that aa could have a number. It is straightforward that this number is a successor of 0
(namely the number one).

So now let n be the number of a plurality aa (so that #(aa,n)). To invoke the heuristic, suppose
that aa exists in a world w. We have to show that n could have a successor.

Case 1: There is an object c in w such that c ↔∈ aa. Consider the plurality aa⇒ consisting of the aa
and c. By (Num Exists), aa⇒ could have a number. So there is a world w⇒ accessible from w and a
number n⇒ of aa. It is straightforward that n⇒ is a successor of n.

Case 2: There is no object c in w such that c ↔∈ aa. In other words, aa is the plurality of all objects
in w. We show that this is impossible. Recall our axioms (Closure Down) and (Closure Down+),
that if a number exists in a world then so do all smaller numbers. So w contains the number n
of our “universal” plurality aa and all smaller numbers. By (Closure Down+), it contains 0, the
number of our “empty” concept Z. Let aa be any plurality of objects in w. Then any number of
aa is less than our equal to n, So that number is also in w. So w contains the number of every
plurality of objects in w.

Let nn be the plurality of all ancestors of 0 in w. That is

⇐x(x ∈ nn ∋ S
→(0,x)).

Now if every nn had a successor in nn, then the successor relation S would be a one-to-one
function on nn that is not a surjection (since 0 has no predecessor). This contradicts (Aristotle).

So there is a number m in nn that has no successor in nn. By Theorem 5, m is the number of all
numbers less than m. But nn is a plurality of objects in w and so the number m⇒ of nn is in the
world w. But m⇒ is the successor of m, and so m has a successor in w after all. This, of course, is a
contradiction.

Theorem 7: !⇐x((NN(x)∝¬≃yS(y,x)) ↘ #(Z,x)). The only number that does not have a
predecessor is zero.

Proof: Suppose not, that

"≃x(NN(x)∝¬≃yS(y,x)∝¬#(Z,x)).

Invoking the heuristic, there is a world w which contains a number a which is not a number
of Z and which as no predecessor (in w). It follows that a is the number of a plurality (in w):
≃xx#(xx,a). Let aa be one such plurality (in w). So #(aa,a).

Recall our axioms (Closure Down) and (Closure Down+) that if a number exists (in a world) then
so do all smaller numbers. Let A be the Fregean concept of being a number (in w) that is strictly
smaller than a:

⇐z(Az ∋ (#(Z,z)↗≃zz(#(zz,z)∝⇐y((y ∈ zz ↘ y ∈ aa)∝ zz ↔D aa))))

Lemma: A is closed under successor (in w): ⇐u(A(u)↘≃v(S(u,v)∝A(v))).
Proof: Suppose A(e). So either e is a number of Z or e is the number of a plurality ee
that maps one to one, but not onto aa.

Case 1: #(Z,e), or, in words, e is a number of Z. Since pluralities are not “empty”,
let c ∈ aa. Then consider the plurality cc of just c: ⇐x(x ∈ cc ∋ x = c). Clearly, this
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plurality maps one to one into aa. Moreover, there is another element d ↔= c such that
d ∈ aa. Otherwise a would have a predecessor, namely e). So cc has a number (in w).
That number is a successor of e.

Case 2: e is not a number of Z. Then there is a plurality ee such that #(ee,e) and ee is
a sub-plurality of aa, but is not all of aa:

⇐(x ∈ ee ↘ x ∈ aa),

≃x(x ∈ aa∝ x ↔∈ ee).

So let d ∈ aa and d ↔∈ ee. Then consider the plurality gg where ⇐x(x ∈ gg ∋ (x ∈
ee↗ x = d)). Then, by (Closure Down) we have gg has a number g (in w) and so
S(e,g). Moreover, gg is not all of aa. If it were, then we would have S(g,a), and so a
would have a predecessor. So A(g).

So we have that A holds only of numbers, and each such number has a successor that A holds of.
And successors are unique. So, by (Aristotle), it follows that every member of A has a predecessor.
But we also have that A holds of a number of Z, and we know that no such number can have a
predecessor.

5.4. Induction

We turn to induction. Recall that Frege defines a natural number to be an ancestor of zero under the successor
relation. There is what we may call a local version of induction:21

Theorem 8: !⇐x(NN(x)∋≃z(#(Z,z)∝S
→(z,x))

In words, x is a number (in a world w) just in case x is an ancestor of a number of Z under S.

Proof: Suppose that our theorem is false. To invoke our heuristic, suppose that the theorem fails
in world w. Let a be an object in w. Suppose ≃z(#((Z,z)∝S

→(z,a))). Then NN(x), since the relata
of S are all numbers. So the right-to-left direction of the biconditional holds in w (trivially). So in
w, there is a number 0 of Z and a number n which is not an ancestor of 0 under S. By our axioms
(Closure Down) and (Closure Down+), every number less than or equal to n exists in w.

Let A be the Fregean concept of being a number less than our equal to n which is not an ancestor
of 0 under S:

⇐x(A(x)∋ (x ⇑ n∝¬S→(0,n))).

Notice that ¬A(0) since, of course, S→(0,0). So if A(m) then m ↔= 0. So, by Theorem 8, m has
a predecessor m⇒. And we have A(m⇒), since m⇒ < m ⇑ n and m⇒ is not an ancestor of 0 under S
(since otherwise m would be).

Let nn be the plurality of all objects of which A holds. We have that the predecessor relation is
a one-to-one function on nn. So, by (Aristotle) the predecessor relation is onto nn. So n has a
successor n⇒ such that A(n⇒). But this is absurd, since n⇒ is not less than or equal to n.

Recall our principle (finite) that states that, in effect, all worlds are finite:

!≃R(⇐x⇐y1⇐y2((Rxy1 ∝Rxy2)↘ y1 = y2)∝≃x⇐zR→(x,z)∝≃y⇐z(¬R(y,z))) (finite)

We did not adopt (finite) as an axiom, opting for the ostensibly weaker (Aristotle), which only states that, in
effect, all worlds are Dedekind finite.

We can now prove that all worlds are actually finite.

21 Thanks to Øystein Linnebo for suggesting this.
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Corollary: (finite)

Proof: Suppose w is any world that is Dedekind finite but not finite, and let aa be the plurality
of being a object in w. Let n be a number of aa, presumably in a different, accessible world. By
Theorem 8, n is an ancestor of zero under s.

So we see that (Closure Down) is a powerful axiom, as is (potential closure down). If we have a number
n of a Dedekind finite, but not finite Fregean concept A (or plurality aa), in a given world, then by (Closure
Down) (or (potential closure down)), there is (or could be) a Dedekind infinite sequence of numbers below n,
contradicting (Aristotle). In short, all worlds are actually finite.22

Recall the formulation of induction in a non-modal language that has no constants and successor is
chararized as a relation:

⇐X(⇐x((N(x)∝⇐y¬(N(y)∝S(x,y))↘ Xx)∝ (⇐x⇐y((N(x)∝Xx∝S(y,x))↘ Xy)))↘
(⇐x(N(x)↘ Xx))).

We can simplify this a little, using present notation:

⇐X(((⇐x#(Z,x)↘ Xx)∝ (⇐x⇐y((NN(x)∝Xx∝S(y,x))↘ Xy)))↘ (⇐x(NN(x)↘ Xx))).

The potentialist translation of this is:

!⇐X(((!⇐x(#(Z,x)↘ Xx)∝ (!⇐x⇐y((NN(x)∝Xx∝S(y,x))↘ Xy)))

↘ (!⇐x(NN(x)↘ Xx))). (Ind!)

In words, and using the heuristic of possible worlds, (Ind!) says that IF in any world w1, if w1 contains a
number of Z, then X holds of that number (in w1), and IF for any world w2, if X holds of a number n in w2 and
a successor of n exists in w2, then X holds of that successor (in w2), THEN for any world w3, X holds of all of
the numbers in w3. The consequent says that whenever a number is generated, X necessarily holds of it.

Theorem 9: (Ind!)

Proof: Suppose not. So there is world w and a Fregean concept A such that necessarily, if there is
number of Z then A holds of that number and, necessarily, if A holds of a number n in w and that
number has a successor in w, then A holds of that successor in w, and there is a number m in w
and A does not hold of m in w.

By (Closure Down) and (Closure Down+), w contains all numbers smaller than m. Define a
Fregean concept B as follows:

⇐x(Bx ∋ (x ⇑ m∝¬Ax))

Of course, we have Bm and if n is a number of Z (i.e., #(Z,n)), then ¬Bn, since A necessarily
holds of any number of Z. Suppose that Bq and that q is predecessor of r, so that S(q,r). Then Br,
since otherwise we would have Aq. So every number that B applies to has a predecessor that B
applies to. By (Aristotle), m must have a successor that B applies to. But, by definition, everything
that has B is less than or equal to m. This is a contradiction.

22 The usual proof, in set theory, that if a set is Dedekind finite then it is finite uses the axiom of choice. Various choice principles can be
formulated in pure higher-order logic (see Siskind, Mancosu and Shapiro, 2023). Our (Aristotle) and (finite) can be shown equivalent in a
third-order language that has a sort for relations between pluralities and objects, and a sort for functions from pluralities to objects, plus the
following choice principle:

⇐R(⇐xx≃yR(xx,y)↘≃F⇐xxRxx,F(xx)).
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5.5. Mirroring?

Recall the potentialist translation of our non-modal language: replace all quantifiers of the form ⇐x and ⇐X with
!⇐x and !⇐X respectively, and replace all quantifiers of the form ≃x and ≃X with "⇐x and "⇐X respectively.
If ∋ is a formula in the non-modal language, let ∋! be its translation.

Recall also the classical potentialist mirroring theorem (from Linnebo, 2013 and 2018): Let ∀ be the
relation of classical deducibility in a non-modal first-order language L . Let L ! be the corresponding modal
language, and let ∀! be deducibility in this language corresponding by ∀, S4.2, and axioms asserting the
stability of all atomic predicates of L . Then for any formulas ∋1, . . . ,∋n,& of L , we have:

∋1, . . . ,∋n ∀ & if and only if ∋!
1 , . . . ,∋!

n ∀! &!.

The present non-modal language is, of course, second-order. For present purposes, we consider it to be a
multi-sorted first-order language (with one sort for each kind of relation variable). There are two options for the
target modal theory. One is to take the potentialist translations of the comprehension axioms as part of modal
system ∀!, and the other is to include any use of comprehension as among the (non-logical) premises (the ∋i’s)
on the left hand side of the biconditional. Each of these follows in our modal theory (noting Lemma 5.3 of
Linnebo, 2013).

Unfortunately, we cannot make direct use of the classical potentialist mirroring theorem here, for at least
two reasons. First, the mirroring theorem requires all atomic formulas (in the modal language) to be stable, but
our predication relation (between, say, monadic Fregean concepts and individual objects) is not stable. Consider
the Fregean concept of being the largest number (in a given world):

Lx ∋ (NN(x)∝⇐y(NN(y)↘ y ⇑ x))

Consider a world w that has a number n for Z, and no other numbers. Then Ln holds at w but not at any
accessible world that contains more numbers. A second example is the concept of being the number of numbers
(in a given world): #(NN,x). A world with, say, exactly four numbers has access to a world with exactly five. A
second reason why the mirroring theorem does not (directly) apply is that the present modal theory has axioms
(such as (Aristotle)) that are not in the range of the potentialist translation.23

We can, however, make some use of the mirroring theorem. Let PA! be the modal theory consisting of
S4.2, axioms stating the stability of all atomic predicates of the above Dedekind-Peano theory, including the
stability of predication, as well as the potentialist translations of the instances of the comprehension scheme of
the non-modal theory. Note that we do not have full comprehension in PA!. Let ∀! be deducibility in PA!.

The mirroring theorem thus applies to PA!, with respect to our non-modal Dedekind-Peano arithmetic: For
any formulas ∋1, . . . ,∋n,& of the non-modal Dedekind-Peano arithmetic, we have:

∋1, . . . ,∋n ∀ & in the non-modal theory if and only if ∋!
1 , . . . ,∋!

n ∀! &!.

It is possible to interpret PA! in our present modal (and plural) theory (which does have full modal and
plural comprehension, along with axioms that are not in the range of the potentialist translation). First, if X is a
concept variable, then let SX be an abbreviation of the statement that X is stable:

SX ∋def (⇐x(Xx ↘ !Xx)∝⇐x(¬Xx ↘ !¬Xx))

and similarly for relation variables. Let 3 be any formula of our modal and plural theory, and let 3 S be the result
of restricting all higher-order variables in 3 to S. That is, replace each ⇐X& with ⇐X(SX ↘ &) and replace
each ≃X& with ≃X(SX ∝&). It is straightforward (but tedious) to verify that if

∋!
1 , . . . ,∋!

n ∀! &!,

then &!S can be derived from ∋!S
1 , . . . ,∋!S

n in the present modal system.

We can do a lot better, however, since we only need one direction of the mirroring theorem.

23 There also may be an issue with the fact that the modal language has plural terminology, but that does not seem to be problematic.
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Theorem 10: let ∀ be deducibility in our original non-modal second-order theory of arithmetic,
and let ∀P be deducibility in our modal theory above. Then for any formulas ∋1, . . . ,∋n,& of the
non-modal language:

if ∋1, . . . ,∋n ∀ & then ∋!
1 , . . . ,∋!

n ∀P &!.

Proof: This is a straightforward (if tedious) induction on the length of a derivation in the non-
modal theory of arithmetic (as in the proof of the mirroring theorem in Linnebo, 2013 and
2018).

Recall that in our modal theory, we have the potentialist translations of the instances of comprehension as
well as the potentialist translations of all of the Dedekind-Peano axioms. So we also have potentialist translations
of every theorem of second-order Dedekind-Peano arithmetic. Putting aside the obvious anachronism, we thus
have a verification of an arithmetic counterpart to one of Aristotle’s claim’s about actual infinity. To repeat:

Our account does not rob the mathematicians of their study, by disproving the actual existence of
the infinite in the direction of increase, in the sense of the untraversable. In point of fact they do
not need the <actual> infinite . . . (207b27-30)

Of course, this applies to the mathematics of Aristotle’s day, not the contemporary scene. Present focus is only
on contemporary Dedekind-Peano arithmetic.

For the record, note that the following is a model for our modal theory: for each natural number n, there
is a world whose domain is {m|m ⇑ n}, and accessibility is inclusion. So our modal theory is consistent if
arithmetic is.

6. Doing without (Aristotle) and doing without (finite)

Recall our axiom (Aristotle) stating (in effect) that all worlds are Dedekind finite:

!⇐R⇐X [⇐x(((Xx ↘≃y⇐z(Xz∝Rxz)∋ y = z))∝⇐x1⇐x2⇐y((Rx1y∝Rx2y)↘ x1 = x2))

↘⇐y(Xy ↘≃x(Xx∝Rxy)))].

The plan here is to drop this. We do not want to assert, in the theory itself, the possible existence of, say, a
plurality of all natural numbers, but we also don’t want to rule out the possible existence of such a plurality. So
we do not assert (here) the negation of (Aristotle), which would entail the existence of a world with a Dedekind
infinite domain. Of course, we also do not wish to assert, here, the stronger principle (finite), that all worlds are
actually finite, nor do we assert its negation.

Recall that, assuming (Aristotle) we defined a natural number to be the number of a Fregean concept or,
equivalently, either a number of Z or the number of a plurality:

NN(x)∋def ≃F#(F,x),

NN(x)∋ (#(Z,x)↗≃xx#(xx,x))

We do not want to say that here, of course. Instead, we take the formula(s) just above to be a definition of
number:

N(x)∋def ≃F#(F,x),

or, equivalently:
N(x)∋ (#(Z,x)↗≃xx#(xx,x)).

Now we need a definition of natural number, noting that there may be numbers that are not natural numbers.
Recall that Frege’s definition of the ancestral can be invoked in the potentialist context, provided it is formulated
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in terms of relations instead of functions, and does not invoke any singular terms. To deploy the heuristic, the
definition works as advertised within each world. To remind the gentle reader, let R be a two place relation:

R→xy ∋def ⇐X [(Xx∝ (⇐z⇐w((Xz∝Rzw)↘ Xw)))↘ Xy]

Recall also that Theorem 8 is what might be called a local version of induction:

!⇐x(NN(x)∋≃z(#((Z,z)∝S
→(z,x))))

This assumed our prior definition of a natural number as the number of any plurality or Fregean concept, and
the proof invoked our (Aristotle) axiom. Here we follow Frege and just take this formula to be a definition of
natural number:

NN(x)∋def ≃z(#((Z,z)∝S
→(z,x))) (Frege)

It is straightforward to verify that NN is stable, and that all natural numbers are numbers:

!⇐n(NN(n)↘ N(x))

Recall our result that each ancestor of zero under successor is the number of all smaller numbers:

Theorem 5: Suppose that 0 is a (or the) number of our “empty” concept Z (in a given world w).
Consider the concept NF of being an ancestor of 0 (in w) under the successor relation:

⇐x(NF(x)∋ S
→(0,x))

Suppose N
F(n). Then n is either 0 or is the number of the plurality of all numbers (in w) that are

less then n.

Since this is (or could have been) established without invoking (Aristotle), it holds here: every natural number
is the number of all smaller numbers.

In the above treatment (assuming (Aristotle)), our first three targets were the necessitations of the potentialist
translations of the first three Dedekind-Peano axioms:

1. !"≃x(NN(x)∝⇐y¬(NN(y)∝S(x,y)))

2. !⇐x(NN(x)↘"≃y!⇐z((NN(z)∝S(x,z))∋ y = z))

3. !⇐x!⇐y!⇐z((NN(x)∝NN(y)∝NN(z)∝S(z,x)∝S(z,y))↘ x = y)

In words, (1) there is a number that is not a successor of anything, (2) every number has a unique successor
(i.e., the successor relation is a function), (3) successor is one to one.

In the previous section, Theorem 1 established the first of these, Theorem 2 established “half” of the second,
that successors are one to one, and Theorem 3 established the third. The proofs of these did not invoke the
(Aristotle) axiom, and they relied on the definition of a natural number as the number of a Fregean concept. So
they hold here for numbers, and not just natural numbers. We have:

1. !"≃x(N(x)∝⇐y¬(N(y)∝S(x,y)))

2. !⇐x⇐y1⇐y2((S(x,y1)∝S(x,y2))↘ y1 = y2)

3. !⇐x!⇐y!⇐z((N(x)∝N(y)∝N(z)∝S(z,x)∝S(z,y))↘ x = y)

A fortiori, since all natural numbers are numbers, these hold for natural numbers as well.

Without (Aristotle) and (finite), we would not expect Theorem 4 above, that no plurality is equinumerous
with a proper sub-plurality to hold. Consider the Corollary to Theorem 4:
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!⇐n(NN(n)↘ ¬S(n,n)); no number is its own successor.

This, too, relied on (Aristotle).

As indicated by the gloss, there are two statements to be pondered here. The first, taking the gloss literally
(and out of its original context), is that no number is its own successor. Of course, we should not expect that
to hold here, since we are not ruling out worlds with infinitely many members. As pointed out in note 20, if
an interpretation has a Dedekind-infinite plurality aa in a given world, then the number of aa will be its own
successor.

The other reading of Theorem 5 is that no natural number is its own successor. That follows from (Frege)
and the definition of the ancestral:

Theorem 11: !⇐x(NN(x)↘ ¬S(x,x)).
Proof: Let B be the Fregean concept which holds of something just in case it is a natural number
that is not its own successor:

B(x)∋ (NN(n)∝¬S(n,n))

Let 0 be a (or, better, the) number of Z (the Fregean concept of being not self-identical). Since 0
has no predecessor, it is not a predecessor of itself, and so it is not a successor of itself. So B(0).
Now suppose that B(x) and S(x,y). Then NN(y) and y has a predecessor, namely x. So B(y). So
we have S

→(a,y) So by (Frege) NN(y). Thus, B holds of all natural numbers.

Now we can easily establish the other “half” of the second Dedekind-Peano axiom, that every natural
number could have a successor:

Theorem 12: (Frege) !⇐x(NN(x)↘"≃yS(x,y)).

Proof: Suppose NN(n). By closure down, all numbers smaller then n exist. By Theorem 5, n
is the number of the plurality of all numbers smaller than n. Let nn be the plurality of n and all
numbers smaller than n. By (Num Exists) nn could have a number. This number is a successor of
n.

The final axiom is induction. Recall that the potentialist translation of this is:

!⇐X(((!⇐x(#(Z,x)↘ Xx)∝ (!⇐x⇐y((NN(x)∝Xx∝S(x,y))↘ Xy)))

↘ (!⇐x(NN(x)↘ Xx))). (Ind!)

Here the proof of this is straightforward.

Theorem 13: (Ind!)

Proof: Let X be a Fregean concept and suppose that, necessarily, X holds of every number of
Z, and that, necessarily, X is closed under successors. Let w be a world. Then if w contains a
number of Z, then X holds of that number, and we have that X is closed under successor in w. So,
by (Frege), X holds of all numbers in w.

So, as with the previous theory based on (Aristotle), the present theory has the potentialist translations of
all theorems of second-order Dedekind-Peano arithmetic.

Recall that most of the proofs in the previous section that relied on (Aristotle) used a reductio, sometimes
called classical reductio or negation introduction. Here all of the relevant proofs are constructive. So if the
background logic is intuitionistic, the theory proves all theorems of full second-order Heyting arithmetic.

Finally, here is a model of the present theory, one that does satisfy the negation of (Aristotle) and thus the
negation of (finite). There is one world that contains every natural number and also (0 (i.e., the number that
Frege calls endlos), and for each natural number n, there is a world which contains all numbers less than or
equal to n. Accessibility is inclusion.

150



Aristotle meets Frege: from Potentialism to Frege Arithmetic

7. Aristotelian set theory

The final project here is an Aristotelian set theory. Its intended interpretation is the hereditarily finite sets.
As noted, Linnebo (2013, 2018) develop a potentialist set theory, based in a version of Frege’s Basic Law V.
The main idea is that, necessarily, for every plurality aa, there could be set whose members are the aa. There
are axioms that make the theory equi-consistent with ZFC. The analogue of the axiom of infinity is an axiom
stating that there is an transfinite stage or world, one that contains the set of all finite von Neumann ordinals, for
example.

A natural attempt here would be a theory like Linnebo’s, but with the aforementioned “infinity” axiom
replaced with its negation, perhaps a set-theoretic analogue of our (Aristotle) axiom. Unfortunately, this will
not do. It is “folklore” that ZFC↓—ZFC with the axiom of infinity replaced by its negation—is equivalent, in
some sense, to Dedekind-Peano arithmetic. The fact is that the theories are mutually interpretable, but they are
not definitionally equivalent. Moreover, Kaye and Wong (2007) point out that ZFC↓ does not prove induction
for membership, nor does it prove that every set has a transitive closure. Indeed, ZFC↓ does not prove that
every set is a subset of a transitive set, a principle sometimes called “transitive containment”. ZFC↓ is a rather
bizarre and unnatural theory.

Because of the Mirroring theorem, the same goes for a potentialist set theory like the envisioned one by
Linnebo, but with the “infinity” axiom replaced by its negation. The plan here is to start with the non-modal
“Small Set Theory” (SST) of McCarty, Shapiro, and Rathjen (2024). The only non-logical symbol is that for
membership. There are four axioms:

1. Extensionality: ⇐x⇐y(⇐z(z △ x ∋ z △ y)↘ x = y).

2. Empty Set: ≃x⇐y.y ↔△ x.

We use “0” as a symbol for the empty set.

3. Adjunction ⇐x⇐y≃z⇐u(u △ z ∋ (u △ x↗u = y)).

Our unofficial (and eliminable) notation the adjunction of x and y is

xℑ{y}.

Note that, when writing xℑ{y} here we do not presume thereby that an operation of binary union exists
over the class of all sets. This is a theorem.

4. Induction on Adjunction: For any formula 3(x) in the language of set theory—featuring perhaps set
parameters—if 3(0) and if

⇐x⇐y((y ↔△ x∝3(x)∝3(y))↘ 3(xℑ{y})),

then ⇐x3(x).

The background logic for this theory is intuitionistic. All of the axioms of ZFC, except, of course, Infinity,
follow from these axioms, as well as induction for membership, a theorem that every set has a transitive closure,
and a theorem that every set is finite. SST is definitionally equivalent to Heyting arithmetic. If the background
logic is classical, then the theory is definitionally equivalent to first-order Dedekind-Peano arithmetic.

Note that SST is first-order, with no variables or symbols for either pluralities or Fregean concepts. The
plan is to develop a potentialist version SST! of SST. We start with axioms assuring that sets are rigid, that
they have the same members in all worlds. We add the potentialist translations of the four axioms of SST.
Extensionality is:

!⇐x⇐y(!⇐z(z △ x ∋ z △ y)↘ x = y).

Empty Set is
"≃x!⇐y.y ↔△ x.
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As with the Aristotelian arithmetic(s), we do not introduce any individual constants, since we do not wish to
presuppose that any particular things exist. We introduce E(x) as an abbreviation of !⇐y.y ↔△ x. So our axiom is
"≃xE(x). Adjunction is

!⇐x⇐y"≃z!⇐u(u △ z ∋ (u △ x↗u = y)).

We introduce A(z,x,y) for z is an adjunction of x and y: !⇐u(u △ z ∋ (u △ x↗u = y)).

Finally, induction on Adjunction: Necessarily, for any formula 3(x) in the language of the modal set theory
featuring perhaps set parameters) if !⇐x(E(x)↘ 3(x)) and if

!⇐x⇐y⇐z((y ↔△ x∝3(x)∝3(y)∝A(z,x,y))↘ 3(z))),

then !⇐x3(x).

That’s it. Since the language is first-order and membership is stable (indeed rigid), then the mirroring
theorem entails that the potentialist translations of all of the axioms of ZFC, except, of course, Infinity, follow
from these axioms, as well as induction for membership. We have that for every set x, there could be a transitive
closure of x, and, crucially, it is necessary that every set is finite, and thus that every set is hereditarily finite.
Our theory SST! is definitionally equivalent to modalized Dedekind-Peano arithmetic.24
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Why be a Height Potentialist?

Zeynep Soysal

Abstract: According to height potentialism, the height of the universe of sets is “potential” or
“indefinitely extensible,” and this is something that a (formal) theory of sets should capture. Height
actualism is the rejection of height potentialism: the height of the universe of sets isn’t potential or
indefinitely extensible, and our standard non-modal theories of sets don’t need to be supplemented
with or reinterpreted in a modal language. In this paper, I examine and (mostly) criticize arguments for
height potentialism. I first argue that arguments for height potentialism that appeal to its explanatory
powers are unsuccessful. I then argue that the most promising argument for height potentialism
involves the claim that height potentialism follows from our intuitive conception of sets. But, as I
explain, on the most plausible way of developing this argument from an intuitive conception of sets, it
turns out that whether height potentialism or height actualism is true is a verbal dispute, i.e., a matter
of what meanings we choose to assign to our set-theoretic expressions. I explain that only pragmatic
considerations can settle such a dispute and that these weigh in favor of actualism over potentialism.
My discussion is also intended to serve two broader aims: to develop what I take to be the most
promising line of argument for height potentialism, and to elaborate the height actualist position in
greater detail than is standardly done.

Keywords: Actualism and potentialism in set theory, Analytic explanations, Analytic truths, The
iterative conception of sets, The universe of sets

1. Introduction
According to height potentialism (henceforth simply ‘potentialism’), the height of the universe of (pure) sets
is “potential” or “indefinitely extensible.” This is commonly taken to imply that a (formal or informal) theory
that accurately describes the universe of sets should include modal statements that capture its potential or
indefinitely extensible nature.1 For example, potentialists usually claim that a theory that accurately describes
the universe of sets should include the statement that any things can form a set (usually formalized in plural
logic).2 As I will understand it in this paper, height actualism (henceforth ‘actualism’) is the rejection of
potentialism: according to actualism, the height of the universe of sets isn’t potential or indefinitely extensible,
and our standard non-modal theories of sets (which usually include at least part of Zermelo–Fraenkel set theory
with the Axiom of Choice (henceforth ‘ZFC’)) don’t need to be either supplemented with or reinterpreted in a
modal language. Actualism, thus understood, is the default view that is at least implicit in the standard practice
of set theory. Actualists can opt to go beyond rejecting potentialism and further characterize the universe of
sets; one standard option for them is to characterize the universe of sets as a proper class, and another is to
characterize it as a plurality that isn’t singularized into an object (such as a set or a proper class).3
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In this paper, I will examine and (mostly) criticize arguments for potentialism. My main contentions will
be that the dispute between actualism and potentialism is best understood as verbal, that because of this, only
pragmatic considerations can adjudicate between potentialism and actualism, and, finally, that such pragmatic
considerations seem to favor actualism over potentialism. My discussion will also serve two broader aims,
which are to develop what I take to be the most promising line of argument for potentialism and to elaborate the
actualist position in greater detail than is standardly done.

There are two types of arguments standardly given for potentialism. The first, and most common type,
are arguments that appeal to explanatory power. The idea is that potentialism is true because actualism leaves
certain facts unexplained or arbitrary—such as the fact that there is no set of all sets, or that there can’t be more
sets than there actually are—whereas potentialism doesn’t. I will argue that arguments from explanatory power
for potentialism are unsuccessful. In particular, I will explain that either the potentialist’s explanations of the
relevant facts are no better than the actualist’s, or there are only unexplained facts if potentialism is true to begin
with.4

The second type of argument for potentialism appeals to what is part of our intuitive conception of sets.
The idea is that our intuitive conception of sets has modal elements: for instance, as Cantor seems to have
thought, there are multiplicities that are not “finished” or that “cannot exist together” (Cantor, 1899), or, as
Zermelo seems to have thought, the universe of sets is “open-ended” (Zermelo, 1930). The argument from an
intuitive conception of sets, then, is that the universe of sets is potential because this is part of the intuitive
conception of sets that we are working with. Since an accurate (formal) theory of sets is supposed to capture
our intuitive conception of sets, it should thus include modal statements. As I will explain, this second type of
argument for potentialism is much more promising: if our intuitive conception of sets really has modal elements,
then whatever story one has for thinking that an intuitive conception of sets is true can also be used to justify
these modal elements. I will argue that on the most plausible story for thinking that an intuitive conception
of sets is true, the intuitive conception of sets is meaning-determining, that is, the intuitive conception of sets
implicitly defines the meanings of the primitive set-theoretic expressions in it. But then, since there are also
clearly non-modal intuitive conceptions of sets (such as the actualist conception), the argument from an intuitive
conception of sets, if sound, will entail that whether potentialism or actualism is true is a verbal dispute, that
is, a matter of what meanings we choose to assign to our set-theoretic expressions. I will explain that only
pragmatic considerations can settle such a dispute. And I will suggest that these pragmatic considerations weigh
in favor of actualism over potentialism.

I will discuss arguments from explanatory power first (§2) and then turn to arguments from intuitive
conception (§3).

2. Arguments from explanatory power
It is very common for potentialists to motivate potentialism by claiming that it has some kind of explanatory
superiority over actualism. More specifically, potentialists argue that their view can explain facts that actualism
leaves unexplained or arbitrary. I will set aside the question of why (and whether) having explanatory superiority
is evidence for the truth of a mathematical theory until §3; here in §2, I will examine the claim that potentialism
has explanatory superiority over actualism.

Potentialists have described three different (though related) facts that are purportedly unexplained or
arbitrary on the actualist view: the first is that the universe of sets (just as certain other collections of sets)
doesn’t actually form a set, the second is that the universe of sets (just as certain other collections of sets)
doesn’t possibly form a set, and the third is that the universe of sets (just as certain other collections of sets)
isn’t possibly “higher” than it actually is. I will discuss each in turn.

2.1. Unexplained actual non-existence

As is well-known, standard set theory precludes the existence of the sets of all and only the sets to which
certain conditions apply, such as the condition of being non-self-membered, being an ordinal number, or being

4 Some of these arguments expand upon my work in (Soysal, 2017a, 2017b).
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a cardinal number. Potentialists commonly remark that the actualist view leaves it unexplained why these sets
don’t exist; or, as James Studd puts it, it leaves unanswered the question: “What is it about the world that allows
some sets to form a set, whilst prohibiting others from doing the same?” (Studd, 2013, 699). See, for instance,
Øystein Linnebo:

According to the actualist conception, the set-theoretic quantifers range over a definite totality of
all sets. Why should the objects that make up this totality not themselves form a set? Since a set is
completely specified by its elements, we can give a precise and complete specification of the set
that these objects would form if they did form a set. What more could be needed for such a set to
exist? (Linnebo, 2013, 206)5

Potentialists usually go on to present potentialism as filling this explanatory gap and thus as having an
explanatory advantage over actualism.6 The first argument from explanatory power for potentialism, then, is
that actualism leaves it unexplained why there is no set of all non-self-membered sets (or ordinals, or cardinals,
and so on), while potentialism doesn’t.

Consider, first, the claim that actualism leaves these non-existence facts unexplained. An obvious reply
for the actualist is to say that what explains that there is no set of all non-self-membered sets (or ordinals,
or cardinals, and so on) is that it is contradictory to assume that it exists. After all, the standard textbook
explanations for why there are no such sets involve mathematical arguments that show that their existence is
contradictory. Take, for instance, the condition of being non-self-membered. The following reasoning, known
as ‘Russell’s Paradox’, shows that there is no set that contains all and only the non-self-membered sets: Assume
that there is such a set. Call it ‘r’. Since r contains all and only the sets that are non-self-membered, r contains
r if and only if r is non-self-membered. That is, r contains r if and only if r doesn’t contain r. This is a
contradiction. Similarly, the Burali–Forti Paradox and Cantor’s Paradox yield arguments against the existence
of the set of all and only the ordinals and cardinals, respectively. I will call the explanations given by these
mathematical arguments ‘textbook explanations’.

Potentialists commonly remark that these textbook explanations that are available to the actualists don’t
explain the non-existence of the relevant sets. See, for instance, James Studd:

The derivation of Russell’s paradox in Naïve Set Theory demonstrates the logical falsity of the
instance of the Naïve Comprehension schema [. . . ]. This provides—I am happy to grant—as good
an explanation as we should expect for why this theory is inconsistent. However, the question
of real interest is not why this instance of Naïve Comprehension yields a contradiction, but why
certain sets—in this case, those that lack themselves as elements—are unable to form a set. And
this cannot be explained merely by appeal to logical truths. (Studd, 2013, 700)

Or see Michael Dummett in this often-quoted passage:

A mere prohibition leaves the matter a mystery. [. . . ] And merely to say, “If you persist in talking
about the number of all cardinal numbers, you will run into contradiction,” is to wield the big
stick, but not to offer an explanation. (Dummett, 1991, 315f.)7

It is difficult to see what the problem with the textbook explanations is. It would be very implausible to
deny that mathematical arguments (that is, proofs) in general can explain mathematical facts. It would be
similarly implausible to deny that proofs by contradiction can explain mathematical facts; even constructivist

5 See also, e.g., “[. . . ] why does the hierarchy itself fail to be completed so as to constitute a set? [. . . ] Why do all the urelements and sets
that there actually are fail to constitute a further level that kicks off yet another series of iterations?” (Menzel, 2018, 298).

6 See, e.g., (Parsons, 1977, 345f.), (Linnebo, 2013, 206), (Yablo, 2006, 146, 152–155), or (Barton, 2023, 9f.).
7 See also Yablo (2006, 149). Scambler also seems to think that there is something unexplained or paradoxical about the fact that certain

collections don’t (actually) form a set: “we are left with some things that, potentially ‘paradoxically’, are not and cannot in principle be
collected together into a set” (Scambler 2021, 1081, my emphasis).. Or see also Glanzberg: “But of course, to the extent that our notion of
set is well-defined, V looks like a perfectly good set. We can insist it is not, but we lack a good explanation of why not” (Glanzberg, 2021,
1493).
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mathematicians accept proofs by contradiction that establish the negation of some mathematical claim, including
the negation of an existential claim. In a sense, the fact that the existence of a set of all non-self-membered sets
is contradictory is the best explanation we could expect for why there is no such set; what more could we hope
for as an explanation for why something doesn’t exist than a proof that its existence is logically impossible?

As I will explain in §3.2, my view is that the textbook explanations are perfectly good explanations because
they are analytic explanations, that is, they are arguments that show that the explanandum is entailed by analytic
truths, or truths that follow from the implicit definitions of some relevant expressions. More specifically, my
view is that the existence of the set of all sets (or ordinals, or cardinals, and so on) contradicts principles that
follow from the implicit definitions of our set-theoretic expressions. As I see it, then, the textbook explanations
only appear problematic if one doesn’t realize why the principles that contradict the existence of the sets in
question are true to begin with; in these cases, the textbook explanations appear to not be “deep” enough as
explanations. Once one realizes that the principles in question are analytic, however, the textbook explanations
become perfectly satisfactory.8 As I will explain in §3.2, these (analytic) textbook explanations are available
to both potentialists and actualists. But potentialists don’t (currently) share my views about the textbook
explanations. So, what are their complaints about the actualist’s use of textbook explanations?

One can find an articulation of the potentialist’s worry about the textbook explanations in (Linnebo, 2018,
56f.).9 Linnebo seems to grant that proofs (by contradiction) can explain mathematical facts—even the fact
that there is no set of all non-self-membered sets (or all ordinals, cardinals, and so on). However, according to
him, such explanations only go through on an “intensional” specification of the sets in question, and not on an
“extensional” one:

Consider the collection of objects that are not elements of themselves. Can we form a set whose
elements are the members of this collection? [. . . ] [T]he answer depends on how the target
collection is specified. Suppose the target is specified intensionally, say, by means of the condition
x /△ x. Then the characterization of the desired set is logically incoherent. We want a set r such
that ⇐x(x △ r ∋ x /△ x), but a simple theorem of first-order logic tell us that there is no such thing.
Suppose instead that the target collection is specified in a purely extensional way, say, as a (perhaps
infinite) list that includes each and every non-self-membered set in our domain. Then there is no
logical or conceptual obstacle to the formation of a set whose elements are precisely the items on
this list. All that the paradoxical reasoning shows is that the set cannot itself be on the list and in
this sense has to be “new”. But this conclusion is unproblematic. There is no logical or conceptual
obstacle to the formation of “new” objects beyond those that figure on some given list. (Linnebo,
2018, 56f.)

According to Linnebo, a domain can be “extensionally specificed” when it can be “specified as a plurality of
objects”; and if a domain can only be specified “intensionally” then it “doesn’t admit of a specification as a
plurality” (Linnebo, 2018, 53) Linnebo further specifies what an “extensional specification” is by saying that
a list of the members of a collection is an extensional specification of the collection, but the order of the list
doesn’t matter:

The linear order of the list is immaterial. Suppose we wish to keep track of some web pages to
which a new web page is intended to link. Suppose we write each of the target URLs on a separate
piece of paper. It does not matter if the pieces are rearranged. Together, the pieces still provide a
purely extensional specification of the target collection. (Linnebo, 2018, 57)

On this reading, then, the argument from explanatory power is that the actualist can’t explain why the collection
of all sets when it is specified extensionally doesn’t form a set, while the potentialist can.

Consider once again the claim that the actualist leaves some non-existence fact unexplained. Whenever
some collection of sets is “extensionally specified” via a list (either ordered or not), the actualist should say
that this collection already (actually) forms a set. Indeed, any list of sets (certainly any finite list, but also any
list of some cardinality) will already provably form a set for the actualist, for instance, via applications of the
Axiom of Replacement.10 Now, if lists (ordered or not) are the only way to specify a collection “extensionally,”

8 I have also argued for this in (Soysal, 2017a, 2017b).
9 See also (Linnebo and Shapiro, 2017, 179).
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then the actualist should say that there is no extensional specification of the collection or domain of all sets
on the actualist conception; the only way to specify or refer to the totality of all actually existing sets is by
using expressions such as “all sets,” or “the totality of all actually existing sets,” or “everything to which my
expression ‘set’ applies,” and so on. The actualist can then invoke a textbook explanation to explain why these
sets thus specified don’t form a set. For instance, the actualist can say that no actually existing set in the totality
of “all sets” is self-membered (a consequence of the Axiom of Foundation and the Axiom of Separation);
therefore, there is no set that contains “all sets” in this totality of “all sets,” since otherwise it would have to
be self-membered. (This is my favorite version of the textbook explanation, which I will flesh out further in
§3.2.) Linnebo should find this explanation satisfactory, given that he grants that textbook explanations are
explanatory when they concern intensionally specified collections.

Can a collection of sets be specified extensionally in a way other than via a list (ordered or not)? Linnebo
seems to claim that, more generally, if one specifies a collection as a plurality, then one has specified it
extensionally (Linnebo, 2018, 57).11 If that is the case, then one option for the actualist would be to reply that
the totality of all sets can be specified extensionally because it is a (mere) plurality; as I mentioned in §1, it is
common for actualists who want to further specify the universe of sets to specify it as a plurality that doesn’t
form a set. The actualist can then run the same textbook explanation as above, but applied to the plurality of
all sets: there is no set of the plurality of all sets because such a set would have to be self-membered, which
contradicts the fact (which follows from the Axiom of Foundation and the Axiom of Separation) that no set
in the plurality of all sets is self-membered. The actualist thus doesn’t leave it unexplained why there is no
set of all the actually existing sets—whether specified extensionally or intensionally. Moreover, her textbook
explanation is, on the face of it, just as explanatory in either case (I will defend that they are explanatory further
in §3.2).

Potentialists might take issue with this last textbook explanation, because they usually deny that the totality
of all sets forms a plurality (at any world).12 On the potentialist view, whenever there are some sets, there “can”
be a set of these things. So, whenever there are some sets at a world, that isn’t the “totality” of all sets, since
there are still sets that can be formed from the ones in that world. For the potentialist, the “totality” of all sets
in question is thus the totality of all actual and merely possible sets. But these potentialist claims don’t give
the actualist reason to reject that the collection of all sets is a mere plurality, for the actualist simply rejects
the potentialist’s claim that there are merely possible sets. These potentialist claims thus also don’t raise any
new explanatory problem for the actualist: The potentialist hasn’t pointed to a fact that is unexplained on
the actualist view by denying that the totality of all actual and possible sets forms a plurality. At best, the
potentialist could object that the actualist leaves it unexplained why there aren’t merely possible sets, which is
the explanatory challenge I consider in §2.2.

To conclude my discussion of the first argument from explanatory power, let me turn to its second claim,
namely, that potentialism can explain the actual non-existence claims purportedly left unexplained on the
actualist view. Here, some care is needed to specify what exactly is the explanandum that the potentialist is
concerned with; as Sam Roberts (2023, fn. 20) has also pointed out, potentialists seem to subtly shift the
question at issue. Recall that the actualist is accused of leaving unexplained why there is no set of all sets on
her actualist picture. For the actualist, there are no merely possible sets, so the “universe” or “totality” of all
sets refers to all the actually existing sets. The corresponding question that the potentialist should be answering,
then, is: Why is there actually no set of all actually existing set on the potentialist picture?13 For the potentialist,
the set of all actually existing sets isn’t actual but merely possible. So, to understand why, on the potentialist

10 Presumably, a specification of all sets using some formula 3(x1, ...,xn) of the language of set theory wouldn’t count as “extensional” for
Linnebo, but otherwise the actualist could say that again provably by an instance of the (first-order) Reflection Principle, any collection thus
specified already forms a set.

11 More specifically, (Linnebo, 2018, 57) says that a “simple but useful way to talk about extensionally specified collections is provided by
the logic of plurals.” Arguably, this doesn’t give an account of when a collection can be specified extensionally, but only entails that we
can refer to extensionally specified collections using plural language. But I consider this option here because it seems plausible that there
should be an alternative to the account of extensionally specified collections as lists (ordered or unordered), and I take the account that says
that extensionally specified collections are pluralities to be a plausible alternative that is also in the spirit of the text.

12 See, e.g., (Linnebo, 2010, 156–158), (Linnebo, 2013, 219f.).
13 Roberts (2023, fn. 20) calls this ‘the problem of actuality’, and argues that potentialists don’t have a clear response to it. This problem also

seems implicit in Berry’s (2022, ch. 5) critical discussion of Parsonsian potentialism and is related to a criticism of potentialism raised by
Menzel (2018, 303f.). As I explain next, I think that the potentialist does have an explanation, but it is a bad one.
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view, such a set is merely possible and not actual, we need to get a fix on the notion of “possibility” that the
potentialist employs.

Potentialists have proposed different interpretations of their modality: one on which the modality is
primitive and idiosyncratic to mathematics or set theory;14 a second, “constructivist” interpretation on which
sets don’t exist timelessly and metaphysically necessarily, but rather come into existence via some kind of
social process;15 and a third, broadly “linguistic” interpretation on which the extensions of our expressions
become more inclusive.16

It is clear that the potentialist doesn’t have a satisfactory explanation on the first interpretive option: saying
that the universe of sets doesn’t actually form a set because it merely possibly forms one on a primitive sense
of ‘possibly’ isn’t an illuminating explanation, and certainly not for those who reject potentialism to begin
with. But this point will become clearer in §3.1 where I explain the most plausible way of making sense of a
primitive notion of modality for the potentialist, so I won’t say more about it here.

On the constructivist interpretation, the existence of (pure) sets is metaphysically contingent; some type
of social process brings about their existence at a point in time. On this interpretation, then, the potentialist’s
explanation for why there is no set of all actually existing sets is that this set hasn’t yet been constructed or
brought into existence by the relevant social process. The problem with this explanation is that it is extremely
controversial to deny that abstract mathematical objects exist timelessly and necessarily (if they exist); even
potentialists usually don’t want to deny this.17 It is arguably part of our intuitive notion of metaphysical
possibility and of abstract mathematical objects that they exist timelessly and necessarily. Denying this is, at
the very least, an important intuitive cost. Moreover, the view that sets are constructed by a social process
in time is standardly taken to entail a weaker mathematical theory than ZFC.18 For these reasons, and for
anyone who endorses the standard view that mathematical objects exist timelessly and necessarily if they
exist—and, certainly, for the actualist—the potentialist explanation on the constructivist interpretation will be
highly unsatisfactory.

On the linguistic interpretation, the potentialist points out that we can (in the sense that it is physically
possible for us to) change the extensions of our set-theoretic expressions (perhaps together with the range of the
quantifiers) so that they apply to more things than they did before the change. As Timothy Williamson puts it:

For given any reasonable assignment of meaning to the word ‘set’ we can assign it a more inclusive
meaning while feeling that we are going on in the same way. (Williamson, 1998, 20)

Similarly, Linnebo (2018) explains that the modal operators “describe how the interpretation of the language
can be shifted—and the domain expanded—as a result of abstraction,” where “the intended meaning of ‘!∋’ is
‘no matter how we abstract and thereby shift the meaning of the language, ∋’.” (Linnebo, 2018, 205). On this
third interpretation, then, the potentialist’s explanation for why there is no set of all actually existing sets seems
to be that this plurality isn’t a set because we haven’t yet shifted the meaning of our set-theoretic expressions
(for instance, via abstraction) so as to call this mere plurality a ‘set’. The problem with this explanation is that it
doesn’t address why there is no set of all actually existing sets on the actual usage of ‘set’. The actualist can
certainly grant the potentialist that we can change the meaning of ‘set’ so that it also applies to what the actualist
calls ‘proper classes’ or ‘mere pluralities’. But this doesn’t address why those things the actualist calls ‘proper
classes’ or ‘mere pluralities’ in the current, actual language don’t form sets on the current, actual meaning of
‘set’—which is precisely the why-question the potentialist was supposed to be answering. Like the actualist,
the potentialist could respond that the reason why such collections aren’t sets on the current, actual meaning
of ‘set’ is given by some textbook explanation: their being a set would be contradictory, or perhaps logically
incompatible with some basic facts about the application conditions of ‘set’, such as the fact that ‘set’ doesn’t

14 Those who propose an idiosyncratic modality include Parsons (1977) and Linnebo (2010).
15 E.g., Linnebo and Shapiro (2018, 285) and Berry (2022, 60) discuss that interpretation of the potentialist’s modality (though they don’t

endorse it).
16 See, e.g., Williamson (1998), Uzquiano (2015), Warren (2017), Linnebo (2018), Studd (2019).
17 See, e.g., (Parsons, 1977), (Linnebo, 2010, 158), (Studd, 2013, 706), (Linnebo and Shapiro, 2017, 167), (Linnebo and Shapiro, 2018, 288),

(Studd, 2019, 146), (Warren, 2017, 113).
18 For discussion, see, e.g., (Linnebo and Shapiro, 2018, 285). For development of the argument, see, e.g., (Incurvati, 2012).
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apply to anything that is self-membered (as I will further explain in §3.2). But the linguistic interpretation
doesn’t provide the potentialist with any alternative explanation for why there is no set of all actually existing
sets—holding fixed the current meaning of ‘set’.

I don’t see how else potentialists can explain the actual non-existence claims.19 Some potentialists are
explicit that potentialism doesn’t explain why there is no set of all non-self-membered sets (or of all actually
existing sets, ordinals, cardinals, and so on), and even seem to grant that textbook explanations are satisfactory
after all:

[A]lthough the Russell reasoning shows there necessarily are some things that aren’t the members
of a set, nevertheless any possible things can be the members of a set: there are no ’special’ things
(plural) that somehow by their very nature cannot be the members of a set. (Scambler, 2021, 1081)

Recall that RP [(Russell’s Paradox)] shows that, necessarily, the plurality of all sets does not
actually form a set. This leaves open, however, whether that plurality could form a set. [. . . ] In
response to RP, the modal strategy maintains that within any given set-theoretic structure certain
pluralities will not form sets, but every such plurality could form a set in some larger set-theoretic
structure. (Builes and Wilson, 2022, 12f.)20

When it comes to explaining the actual non-existence claims, then, the potentialist doesn’t have an advantage
over the actualist. At best, if the potentialist avails herself of some textbook explanation (as I argue in §3.2 that
she should), then the actualist and the potentialist explanations are on a par.

As I mentioned above, at times it seems that the potentialist is concerned with a subtly different explanandum,
namely, why the universe of sets understood in the potentialist’s sense doesn’t actually (or possibly) form a set.
Charles Parsons, for instance, motivates the explanatory advantage of potentialism by explaining that when
some multiplicity doesn’t determine a set, “this is due to the fact that in a certain sense the multiplicity does not
exist” (Parsons, 1977, 345):

I suggest interpreting Cantor by means of a modal language with quantifiers, where within a modal
operator a quantifier always ranges over a set [. . . ]. Then it is not possible that all elements of, say,
Russell’s class exist, although for any element, it is possible that it exists. (Parsons, 1977, 346)

Linnebo motivates potentialism’s explanatory advantage similarly in (Linnebo, 2013):

On [the potentialist’s] [. . . ] conception, the hierarchy is potential in character and thus intrinsically
different from sets, each of which is completed and thus actual rather than potential. This intrinsic
difference affords potentialists [. . . ] a reason to disallow the disputed set formation. (Linnebo,
2013, 206)

On one natural readings, Parsons and Linnebo here aren’t concerned with explaining why there is no set of
all actually existing sets, but, rather, with explaining why the totality of sets doesn’t (and couldn’t) form a
set, where the “totality” of sets is understood as consisting of all actual and merely possible sets. The latter
explanation, which we discussed earlier in §2.1, is that whenever there are some sets at a world, that isn’t “the

19 Perhaps potentialists could say that there is no set of all non-self-membered sets because the Axiom of Foundation is true (that is, every
nonempty set is disjoint from one of its elements) and that they can explain why the Axiom of Foundation is true better than competitors;
Linnebo (2013, 216f.), e.g., gives an argument for the Axiom of Foundation from a potentialist perspective. The problem with this argument
is that there is no reason to think the potentialist’s explanation of the Axiom of Foundation is any better than the actualist’s, since the
actualist can appeal to the iterative conception of sets, and it is well-known that the latter motivates the Axiom of Foundation perfectly well
(the Axiom of Foundation is even considered essential to the iterative conception of sets). See also discussion in §3.

20 Menzel says something similar: ‘Note the question is not: Why is there no universal set, that is, no set containing all the urelements and all
the sets? As we’ve just seen, the iterative conception of set provides a cogent answer to that question: only those pluralities that “run out”
by some level of the cumulative hierarchy constitute sets at the next level and, obviously, the entire hierarchy is not such a plurality; there is
no level at which the members of all the levels form a set’ (Menzel, 2018, 298). After the quote I gave above, Studd says: “The derivation
of a contradiction from the relevant instance of Naïve Comprehension shows that these sets do not form a set, but fails to explain why they
cannot” (Studd, 2013, 700), which suggests that it might be better to interpret him also as granting that Russell’s Paradox explains why
there is no set of all sets, but as failing to explain why there couldn’t be a set of all sets, as I discuss in §2.2.
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totality of sets,” because there are still sets that can be formed from the ones in that world; since the totality of
sets doesn’t exist at any given world, it also can’t determine a set at any given world.

As I already explained, on this reading, the potentialist isn’t raising an explanatory problem for the actualist.
The actualist can explain why the universe of sets isn’t actually a set, where “the universe of sets” is understood
as the totality of all actually existing sets. Given that she doesn’t recognize the need to introduce modal notions
into set theory, she doesn’t need to explain why “the universe of sets” understood as consisting of actual and
merely possible sets doesn’t form a set. In other words, the fact that the actualist doesn’t explain why there
is no set of all actual and possible sets doesn’t show that there is something unexplained or arbitrary on the
actualist view of the universe of sets, and thus it doesn’t show that potentialism has an explanatory advantage.
To take a somewhat facetious analogy, this would be like arguing for the existence of God by saying that it best
explains why angels can transcend physical boundaries; an atheist isn’t going to accept that there are angels to
begin with. That being said, and again as I mentioned earlier, the potentialist could object that the actualist
leaves it unexplained why there are no merely possible sets (why are there no angels?). This is the explanatory
challenge to which I turn next.

2.2. Unexplained impossible existence

On the face of it, actualists reject that there can be more sets than there actually are. On a second reading,
the argument from explanatory power for potentialism is that this is an unexplained fact on the actualist view:
actualism leaves it unexplained why the universe of sets (as well as some other collections) can’t form a set.
This argument is implicit in the penultimate set of quotes from §2.1 that grant that standard mathematical
arguments can explain why the problematic collections don’t actually form a set, but point out that these
arguments don’t explain why these collections couldn’t form sets. See, also, for instance:

[W]ith the combinatorial/iterative conception in mind, why can’t we “collect together” or “lasso”
all the sets in the ZF hierarchy, and form the collection of them all? (Simmons, 2000, 111, my
emphasis)

[T]he Actualist takes there to be some plurality of objects (the sets) forming an iterative hierarchy
structure [. . . ]. But the following modal intuition seems appealing: for any plurality of objects
satisfying the conception of an iterative hierarchy [. . . ] it would be in some sense (e.g., conceptually,
logically or combinatorically if not metaphysically) possible for there to be a strictly larger model
of [a full-width iterative hierarchy] [. . . ] which, in effect, adds a new stage above all the ordinals
within the original structure together with a corresponding layer of classes. (Berry, 2022, 15, my
emphasis)21

On the potentialist view, in contrast, these collections and pluralities can form sets; on the face of it, then, the
potentialist view doesn’t have unexplained facts about impossible set existence.

The key question for this second reading of the potentialist argument from explanatory power is: Does the
actualist need to recognize that there are such modal facts in need of explanation? Once again, for the actualist,
the universe of sets doesn’t have a potential or modal nature. She follows the standard mathematical practice
of interpreting ‘can’-statements in terms of (actual) existence.22 So, for instance, the actualist will say that
on her view, there “can’t” be a set of all sets in the sense that there isn’t one, and there isn’t one because the
assumption that there is one entails a contradiction.

What the potentialist needs is to point to certain modal facts that the actualist needs to recognize, and
ask why these facts don’t hold on the actualist picture (if they don’t). To do this, the potentialist needs to

21 See also, e.g., Uzquiano who claims that we need “some independent reason to doubt that we can collect the non-self-membered sets in the
totality into a set” (Uzquiano, 2015, 147, my emphasis).

22 Linnebo and Shapiro (2018, 282) discuss (and concede) this standard practice to interpret ‘can’-statements in mathematics non-modally.
An alternative interpretation of ‘can’ is as epistemic possibility, i.e., there can’t be a set of all non-self-membered sets in the sense that we
know that there isn’t one (because, e.g., we have a proof).
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give an interpretation of her modality—and thus of the sense in which sets “can” or “can’t” form sets—that is
comprehensible to the actualist. Consider again the three standard potentialist interpretations of their modality.

It should seem clear that the actualist doesn’t need to accept or explain that their universe of sets “can’t”
form a set in a primitive sense proper to the potentialist’s explication of their potential hierarchy. But this point
will become clearer after my discussion in §3.3, so I won’t say more about it for now.

Recall that on the constructive interpretation, there “can” be more sets than there actually are in the sense
that it is metaphysically possible for these (actually non-existing) sets to exist, as a result of some kind of
social process of set construction. The challenge here, then, is that the actualist leaves it unexplained why
it isn’t metaphysically possible for there to be more sets than there actually are as a result of some process
of social construction. The actualist can accept that there can’t be more sets than there actually are in this
sense, and she can give the standard explanation of that fact: there can’t be more sets than there actually are in
the constructivist sense because abstract mathematical objects exist timelessly and necessarily (if they exist),
as is almost universally accepted (as we discussed in §2.1). On this second interpretation, there is as little
unexplained on the actualist view as there is on any view which entails that abstract mathematical objects exist
timelessly and necessarily, if they exist.

On the linguistic interpretation, the potentialist’s challenge to actualism is that the actualist view leaves
it unexplained why we (physically) can’t assign more inclusive meanings or extensions to our set-theoretic
expressions or quantifiers. The problem with this challenge is that the actualist can simply accept that we can
assign more inclusive meanings and extensions to our set-theoretic expressions and quantifiers; she can even
give the metasemantic explanation of that fact as the potentialists do.23 So, it isn’t an unexplained fact (or even
a fact) on the actualist view that we can’t assign more inclusive meanings or extensions to our set-theoretic
expressions and quantifiers. The actualist can accept that we can assign more inclusive meanings, but she will
just refuse to do so: For the actualist, ‘set’ refers to all and only the things that appear at some stage of the
iterative hierarchy (which is given by the familiar intuitive story, perhaps together with the axioms of ZFC).
If she wants, the actualist can further say that the “totality” of all sets, called ‘V ’, is a proper class or a mere
plurality. Either way, V isn’t a set, on pain of contradiction. The actualist can grant that one could decide to use
‘set’ in a new and different way so as to call everything the actualist calls ‘sets’ and V a ‘set’. But that term
‘set’ has a different extension (and thus also a different meaning), than the actualist’s word ‘set’; and this is
something that the potentialist accepts. So, the actualist can agree that ‘V can be a set’ is true in the sense that,
if we were to change the meaning of ‘set’ to refer to both sets and to V , then V would be a set. But the actualist
doesn’t want to change the meanings of her expression ‘set’. For her, it would be best to disambiguate and use,
for instance, ‘shmet’, to refer to the more inclusive extension. Then, when the potentialist asks: “But why can’t
the plurality you call ‘V ’ form a set?” the actualist will say that V is a shmet, proper class, or mere plurality,
but that it isn’t a set given what she means by ‘set’. Shmets, proper classes, and mere pluralities are similar to
sets in some respects, but they aren’t sets. And whoever adopts the more inclusive meaning of ‘set’ herself
agrees with this: she agrees that there are distinct meanings to ‘set’ before and after the shift in meaning, and so
that “new sets” and “old sets” aren’t the same things.24 The potentialist just insists on using ‘set’ with a new
meaning instead of using ‘shmet’ or ‘proper class’ or ‘mere plurality’. On this third interpretation, then, is no
fact—let along an unexplained fact—that V can’t form a set on the actualist picture; there are just different
decisions about how to use set-theoretic expressions. In §3.4, I will explain that there are pragmatic reasons to
prefer the actualist’s use of ‘set’. My point here is simply that there is no unexplained fact that sets can’t form
more sets on the actualist picture.25

2.3. Arbitrary height

Finally, potentialists also commonly object that the actualist is committed to a theory on which the “height” of
the universe of sets is arbitrary. See, for instance:

23 As will become clear in §3.4.2, actualists and potentialists actually accept a similar metasemantic theory; they just disagree on the actual
use of the set-theoretic expressions and quantifiers (see footnote 39).

24 See, e.g., the way Linnebo (2018, 55–59) explains this view.
25 Linnebo (2018, 214–216) and Studd (2013, 711) argue that the potentialist can also explain which collections or pluralities can form sets

and which cannot. From my arguments in this section (§2.2), it follows that, depending on the interpretation of the modality at issue, the
actualist should either reject that these collections or pluralities can form sets or give the same explanation as the potentialist for why these
(and only these) can form sets.
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Why is the hierarchy only as “high” as it is? Why do all the urelements and sets that there actually
are fail to constitute a further level that kicks off yet another series of iterations? (Menzel, 2018,
298)

The main challenge will be to motivate and defend the threshold cardinality beginning at which
pluralities are too large to form sets. Why should this particular cardinality mark the threshold?
Why not some other cardinality? (Linnebo, 2010, 152)26

There is a reading of these quotes on which the challenge for the actualist is to explain why it isn’t possible
for there to be more sets, leading back to the argument discussed in §2.2.27 I take the challenge that is more
specifically about the “height” of the universe of sets to go as follows. The actualist (just like the potentialist) is
committed to the universe of sets being in some sense “as high as possible”: this idea is standardly included as
part of the intuitive iterative conception of sets—for instance, in the Cantorian idea of “absolute infinity” (Cantor,
1899)—and in set theorists’ practice of accepting the existence of larger and larger cardinals.28 Standard set
theory entails that x isn’t a set if it can be put in one-to-one correspondence with V or the ordinals ∗.29 But this
suggests that there is some “threshold height”—the “height” of V or ∗—beyond which collections don’t form
sets. According to the potentialist, this doesn’t fit with the intuitive idea that the universe of sets is as high as
possible; see, for instance, Linnebo in the passage following the above:

Wherever it has been possible to go on to define larger sets, set theorists have in fact done so. So it
remains arbitrary that there should be no sets of this [threshold] cardinality or some even larger
one. (Linnebo, 2010, 153)

The third explanatory challenge for the actualist, then, is to explain why the universe of sets has this threshold
height given that it should be as high as possible.

As I have previously argued (Soysal, 2017a, 2017b), I think the actualist can straightforwardly maintain
both that the collection of all sets (or of all ordinals, or all cardinals) has a threshold “height” and that it is as
“high” as possible.30 Consider, first, that there is a specific notion of “height” (or “size”) given in set theory
by the notion of an ordinal (or cardinal): In set theory, ordinals (and cardinals) are defined as sets of a certain
type.31 On the standard definition, an ordinal # is larger than an ordinal ∀ just in case ∀ △ # . With these
specific explications of the informal notion of “height,” “size,” and “larger than,” the actualist can then note
that standard set theory entails that for every ordinal (cardinal) there is a larger one. Furthermore, the actualist
can adopt the set-theoretic practice of accepting the existence of stronger and stronger theories that postulate
the existence of larger and larger cardinals in this sense.32 For the actualist, these facts suffice to capture the
intuitive idea that the universe of sets is as “high” as possible.

The actualist will then think of the “height” or “size” of V differently. For one, the “height” or “size” of
V isn’t an ordinal or a cardinal (on pain of contradiction). The actualist could define a notion of “size” that
applies to V ; for instance, by saying that two classes have the same shardinality if and only if they can be put
in one-to-one correspondence. Shardinality and cardinality are then both “sizes” in an informal sense, but
they aren’t the same type of “size,” on pain of contradiction. For the actualist, not every type of “size” is a
cardinality, again on pain of contradiction.

26 See also, e.g., Yablo (2006, 152f., 155), Fine (2006, 23), Linnebo (2010, 152f.), Linnebo (2013, 206), Studd (2013, 700), Berry (2022,
14–17), Bacon (2023, 6f.).

27 For instance, this is a natural reading of the way Berry (2022, 14–17) puts the challenge about height: “ [T]he Actualist takes there to be
some plurality of objects (the sets) forming an iterative hierarchy structure [. . . ]. But the following modal intuition seems appealing: for
any plurality of objects satisfying the conception of an iterative hierarchy [. . . ] it would be in some sense (e.g., conceptually, logically or
combinatorically if not metaphysically) possible for there to be a strictly larger model of [a full-width iterative hierarchy]” Berry (2022, 15).

28 See, e.g., (Incurvati, 2017) for discussion of the role of such “maximality principles” in set theory.
29 This is the Limitation of Size Principle, usually proved in a set theory with classes such as Neumann–Bernays–Gödel set theory (NBG).

Linnebo (2010, 162) also derives it in set theory with pluralities.
30 Burgess (2022) also briefly makes similar points against the potentialist’s arbitrary height argument.
31 Specifically, ordinals are sets that are transitive and well-ordered by △, and cardinals are ordinals that aren’t in one-to-one correspondence

with any smaller ordinal.
32 The practice described, e.g., in (Koellner, 2011).
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These claims nicely parallel what the actualist says about “collections,” as we saw at the end of §2.2:
The universe V isn’t a set (on pain of contradiction). The actualist can define a notion of “collection” that
applies to it, for instance, by calling it a ‘proper class’ and defining these in some standard way. Then proper
classes and sets are both “collections” in a loose sense, but they aren’t the same type of “collection,” on pain of
contradiction. For the actualist, not every type of “collection” is a set, again on pain of contradiction.33

The actualist thus maintains both that the universe of sets is a “high” as possible (that is, more specifically,
there is no largest cardinal/ordinal) and that there is a threshold “height” (that is, more specifically, a shardinal,
or shordinal) above which “collections” (that is, more specifically, proper classes and sets, or mere pluralities
and sets) don’t form sets. This threshold isn’t arbitrary: it is the first “height” at which the assumption that x
has that height entails that x isn’t a set. If she wants, the actualist could also accept that just as there are larger
and larger ordinals and cardinals there are shlarger and shlarger shardinals and shordinals, by accepting the
existence of collections that are neither sets nor proper classes, such as Super-Classes, Super-Super-Classes,
and so on.34 This would allow her to maintain the intuitive idea that there is no largest “size” in the loose
sense, either. But, importantly, the idea that the universe of sets is as “large” as possible is captured by a more
specific notion of “size” that applies to sets and that is defined in set theory. And once again, not all things that
intuitively or informally count as “sizes” or “collections” are set-theoretic entities, on pain of contradiction; this
is simply one of the fundamental commitments of the actualist view.

I will flesh out the actualist position and specifically the textbook “on pain of contradiction” explanation
further in §3.2. But we can already conclude that the actualist can coherently maintain both that there is no
arbitrary “stopping point” of the universe of sets and that there is a “size” in the loose sense above which
collections are too “large” (in the loose sense) to form sets.

In the end, I don’t think there is any hope for arguing for potentialism on the basis of its explanatory powers
or advantages. This undermines a lot of what is standardly said in motivating potentialism. I do think that there
is an alternative and more promising way to argue for potentialism. But, as we will see, this will also reveal that
the debate over potentialism versus actualism isn’t as substantial as one might have thought.

3. Arguments from an intuitive conception of sets

As I see it, a much more promising argument for potentialism starts from the observation that our intuitive
conception of sets has some modal component. For some, the intuitive conception in question is the “iterative”
conception of sets, which is sometimes taken to be implicit in the writings of Cantor and Zermelo. For instance,
in the quote we saw earlier, Parsons suggests “interpreting Cantor by means of a modal language” (Parsons,
1977, 346), and, as the title of that paper suggests, he takes himself to be answering the question “What is the
iterative conception of sets?” So, Parsons seems to think that the iterative conception of sets, implicit in the
writings of Cantor, is best understood as having some modal component. Similarly, Linnebo (2013) starts by
explaining that on the “familiar iterative conception” there “seems to be something inherently potential about
the set theoretic hierarchy” (Linnebo, 2013, 205). Along the same lines, in their papers on potential infinity,
Linnebo and Stewart Shapiro discuss how Cantor and Zermelo left room in their writings for some “limited
form” of potential infinity (Linnebo and Shapiro, 2018, 286). It is also common for potentialists to focus on
the naïve conception of sets and to suggest, for instance, that the modal statement that any sets can form a set
“retains the intuitive plausibility of Naive Comprehension” (Builes and Wilson, 2022, 12).35 The idea here
seems to be that our intuitive conception of sets includes something like the claim that the extension of every
predicate is a set, and that this is best understood as having a modal component. In both cases, potentialism is
then introduced as a theory that makes these modal conceptions of sets precise.

As I see it, this approach can yield a strong argument for potentialism, provided that the intuitive conception
of sets in question is itself true: potentialism is true because it is entailed by our intuitive conception of sets,
which is itself true. This is the general form of what I call the ‘argument from an intuitive conception’ for

33 Of note is that the potentialist who accepts classes as intensional entities can also accepts this (see footnote 3).
34 These types of collections are discussed, e.g., in (Lévy, 1976).
35 See, e.g., Warren (2017, 82f.), or references in (Incurvati, 2020, 71f.), and perhaps Linnebo (2010, 150). Berry (2022, 15) in the quote

above also suggests that the modal version of the Axiom of Naïve Comprehension has strong intuitive appeal.
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potentialism. To be successful, the argument from an intuitive conception thus has to be supplemented with an
argument for why the relevant intuitive conception of sets is true.

An “intuitive conception of sets” is standardly understood to consist of basic or even axiomatic statements
about sets couched in an at least partly informal language. For instance, the iterative conception of sets is
usually taken to include the statements that sets are formed in stages, that at the first stage, there is an empty
set, that whenever there are two sets the set that contains them is formed at the next stage, and so on. These
basic statements about sets usually can’t be justified inferentially or proved from other basic statements. This
leaves broadly two options for arguing for their truth: via abductive arguments, on which an implicit conception
of sets is true because it best serves certain theoretical and explanatory roles in mathematics or the broader
sciences,36 or via arguments from implicit definitions, on which an implicit conception of sets is true because it
implicitly defines the primitive mathematical expressions in it (such as ‘set’ and ‘membership’).37

In my view, potentialists and actualists alike should opt for the latter option. Firstly, abductive arguments
for the truth of an intuitive conception of sets often invoke the conception’s ability to explain set-theoretic
paradoxes;38 but this would reduce the argument from an intuitive conception of sets to the argument from
explanatory power, which, as I argued in §2, is unsuccessful (though, as I will explain in §3.4, explanatory
considerations can still be relevant to the argument from an intuitive conception via an argument from implicit
definitions). Secondly, potentialists and actualists alike need a metasemantic theory; that is, they need an account
of what determines the meanings or extensions of their set-theoretic expressions. But it is widely accepted
that something like an implicit definition theory is the only viable metasemantic theory for the language of
mathematics.39 Thirdly, as I will explain in §3.2, an argument from implicit definitions can help potentialists
and actualists further motivate and develop the textbook explanations for the non-existence of contradictory
sets that I have been invoking in §2 by revealing that they are analytic explanations. Finally, as I will explain in
§3.1, an argument from implicit definitions can help potentialists explain their interpretations of their modality,
and, in particular, it can help potentialists who want to use a primitive notion of modality defend and explain
their interpretation. In sum, I think the potentialist’s argument from an intuitive conception of sets is strongest
and most fruitful when supplemented with an argument from implicit definitions for the truth of the intuitive
conception in question. In the following §3.1, I will flesh out one such argument from implicit conception and
explain its consequences for the debate between potentialism and actualism (in §§3.2–3.4). But note that even
if one rejects the implicit definitions strategy in favor of the abductive strategy, my conclusion that the debate
over actualism and potentialism can only be settled on the basis of pragmatic considerations will still stand.
Indeed, if we set aside the virtue of explaining set-theoretic paradoxes (because of the arguments from §2), an
abductive argument for one conception over another will invoke pragmatic virtues of simplicity, mathematical
strength, usefulness, and so on, which are precisely the types of considerations I take to bear on the question of
which meanings to assign to our set-theoretic expressions, as I will explain in §3.4.40

3.1. A descriptivist metasemantics

An argument from implicit definitions for the truth of some intuitive conception of sets says that this intuitive
conception of sets is true because it is “intrinsically justified,” or “analytically” true, or “implicitly defines” the
primitive set-theoretic expressions (that is, the expressions that aren’t explicitly defined). The details of the
argument from implicit definitions won’t make a difference to my overall claims about the debate between
actualism and potentialism, but, for concreteness, let me outline a specific (and my preferred) way to run this
argument. We start with a metasemantic view of how set-theoretic expressions get their meanings and extensions
from their use, known variously as ‘descriptivism’, ‘the method of implicit definitions’, ‘the Hilbertian Strategy’,
or ‘the Ramsey–Carnap–Lewis method’.41 On this metasemantic view, speakers use certain sentences in a

36 See, e.g., (Maddy, 1988, 2011), and more recently (Incurvati, 2020). The “anti-exceptionalist” views about logic and mathematics
originating in (Williamson, 2013; Williamson and Armour-Garb, 2017) could be included in category.

37 See, e.g., recently (Warren, 2020) or (Soysal, 2020; Soysal, forthcoming).
38 E.g., Incurvati (2020, 64–69) does this.
39 See also my arguments in (Soysal, 2024a). Potentialists also generally accept this type of metasemantics; see, e.g., (Warren, 2017),

(Linnebo, 2018, 33ff., 135ff.), or (Berry, 2022, 155ff.).
40 See again, e.g., (Incurvati, 2020, 44–69), (Maddy, 1988, 2011), (Williamson and Armour-Garb, 2017).
41 This is also a version of inferentialism, as explained in (Soysal, forthcoming) and (Warren, 2022).
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privileged way, and their privileged use determines that these sentences are true (or, perhaps, that they are true
if the use is consistent). The sentences that are used in this privileged way are thus in some sense “analytic”
or “true in virtue of meaning.” So, if the sentences that are part of some intuitive conception are used in the
relevant privileged way, they are also thereby true in virtue of meaning.

Here is one way to spell out this kind of metasemantic view in a bit more detail.42 On a descriptivist
metasemantics, speakers associate primitive set-theoretic expressions with a certain theory or description,
and these set-theoretic expressions thereby have meanings or extensions that make this associated theory
true (if the theory is consistent).43 The “speaker associations” here are intended to capture the speakers’ use
of the expressions: to associate some expressions E1, . . . ,En with a theory T (E1, . . . ,En) is, roughly, to be
disposed to accept sentences in T (E1, . . . ,En) “come what may,” that is, no matter what evidence one were
to have.44 “Accepting” some 3 △ T (E1, . . . ,En) can manifest itself in various ways; for instance, one can
be disposed to utter 3 , to say ‘Sentence 3 is true’, to base one’s reasoning on the truth of 3 , and so on.45

Two further clarifications will be relevant for the discussion that follows. Firstly, associated theories don’t
need to be in a formal, uninterpreted language; they can have meaningful expressions of ordinary language.46

Expressions that occur in an associated theory but that aren’t implicitly defined by that particular associated
theory are what Lewis (1970) calls the ‘old’ terms of an associated theory or what I like to call ‘anchors’
(Soysal, 2020). So, in other words, a theory associated with our set-theoretic expressions can be “anchored” in
ordinary language. (Moreover, the primitive set-theoretic expressions themselves don’t need to be restricted
to the formal symbol ‘△’; they can be, say, ‘set’ and ‘membership’.) Secondly, the descriptivist view leaves
open that not all set theorists associate the same theory with set-theoretic expressions. Distinct associated
theories T1(‘set’, ‘membership’) ↔= T2(‘set’, ‘membership’) could yield the same meanings and extensions for
the primitive set-theoretic expressions in case these theories are “equivalent” in some strong sense (call this
‘translational equivalence’). For instance, we would like to say in general for this type of metasemantic view that
expressions that have mere typographical or grammatical differences can still have the same “privileged use,”
and, thus, the same meaning.47 In such cases, we would thus like the respective associated theories to come
out as translationally equivalent.48 But, of course, distinct associated theories don’t need to be translationally
equivalent. Descriptivism thus also leaves open that different set theorists use the primitive set-theoretic
expressions with different meanings (as well as, perhaps, different extensions).

With this descriptivist metasemantic view on the table, potentialists can say that among the statements that
are part of the theory we associate with our set-theoretic expressions are modal statements, such as the statement
that any things can form a set. These modal statements—and potentialism itself—are thus true because they are
part of the theory we associate with our set-theoretic expressions. In other words, the potentialist can argue
that their modal intuitive conception of sets is part of the theory associated with set-theoretic expressions, and,
thus, that it is true (in virtue of meaning). This is the argument for potentialism from an intuitive conception
of sets via the implicit definitions strategy. I think this type of argument is at least implicit in the remarks
that potentialism uncovers something that is part of our intuitive conception of sets or that it captures our
naïve intuitions about sets. And I think that this type of argument is very strong, because something like this
metasemantic story must be correct for mathematical expressions.49

The key premise potentialists need to defend is that modal statements really are part of the theory we
associate with our set-theoretic expressions. As I see it, potentialists have two options for making this case.

42 This is my preferred view, which I develop in (Soysal, 2020, 2021, 2024a, forthcoming; Kipper and Soysal, 2022).
43 For (Warren, 2020), for instance, consistency isn’t even a requirement, Clarke-Doane (2020) discusses that %1-soundness might be needed;

see (Soysal, forthcoming) and (Picollo and Waxman, 2024) for discussion. It is standardly thought that the sentences in the theory
conditionalized on the existence of entities that satisfy the theory are themselves automatically true (see, e.g., Lewis, 1970, and Soysal,
forthcoming).

44 More precisely, it is to be disposed to accept them conditional on the existence of E1, . . . ,En. For more discussion and explanation of the
descriptivist view, see, e.g., (Soysal, 2020, forthcoming).

45 As explained in, e.g., (Soysal, forthcoming) or (Warren, 2020, 33ff.).
46 This is unlike on the “formalist” Hilbertian or Carnapian readings of the descriptivist metasemantics, which is very common; see, e.g.,

(Warren, 2020). As I argue in (Soysal, 2020, forthcoming), realizing that associated theories needn’t be in a formal language where only the
logical expressions are assumed to have meanings resolves numerous philosophical puzzles about mathematics.

47 See, e.g., the notion of “stylistic variance” discussed by (Warren, 2020, 139ff.), or notions of notational variance discussed by, e.g., (French,
2019; Button, 2021).

48 See (Soysal, 2024b) for the development of such a notion of translational equivalence.
49 As potentialists themselves agree, see footnote 39.
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First, they can say that ordinary modal expressions such as ‘can’, ‘possible’, or ‘necessary’, occur in the theory
we associate with our primitive set-theoretic expressions and they retain their standard meanings; in other
words, the potentialist can say that the theory associated with set-theoretic expressions has modal anchors. The
second option is to say that modal expressions are part of the primitive expressions implicitly defined by the
theory associated with set-theoretic expressions; in other words, the potentialist can say that we associate a
theory T(‘set’, ‘△’, ‘can’) with our set-theoretic expressions together with an expression of set-theoretic or
mathematical modality, ‘can’. Here, the word ‘can’ thus gets a new set-theoretic or mathematical sense in virtue
of this association. As I see it, this second option yields the best way to understand the potentialist’s claim that
her modality is primitive or idiosyncratic to set theory or mathematics, or the claim that the potentialist can only
specify “structural features” that any interpretation of the modality should have (Linnebo and Shapiro, 2017,
171): for, on this option, the story of the potential hierarchy of sets itself determines the (structural features of)
the sense of ‘can’ at issue. The first option, in turn, can capture the other interpretations of the modality: for
instance, one can anchor one’s associated theory in the constructive interpretation of ‘can’ on which a sentence
such as “there can be more sets” in the associated theory is assumed to mean that there is a metaphysically
possible world in which some social process has yielded further sets than there are in the actual world. (As I
will argue in §3.4, the linguistic interpretation of ‘can’ is harder to make sense of on this picture and this counts
against it.)

On either option, the potentialist needs to argue that certain modal statements about sets are part of the
theory we associate with set-theoretic expressions, that is, that we hold certain modal statements about sets true
come what may, that certain modal statements about sets are part of the basic story of the hierarchy of sets we
accept non-inferentially and intuitively. But the problem is that some people—and, in particular, actualists—will
reject that modal statements are part of the theory that they associate with their set-theoretic expressions. For
actualists, any modal talk in the description of the iterative hierarchy of sets is metaphorical, and it is eliminated
in the ultimate story that is held true come what may; after all, actualism as I understand it here is precisely the
rejection of potentialism (§1). Whatever intuitive conception actualists associate with set-theoretic expressions,
modal expressions are neither going to be anchors nor further primitives in their associated theory. On a more
positive characterization, the theory actualists associate with sets could simply be any standard non-modal
formulation of the iterative conception of sets.50 It would likely include statements such as ‘There is an empty
set’, ‘Every set is well-founded’, and so on—so, statements that can be formalized or formulated as axioms of
set theory.51 As I mentioned in §1, actualists can also further specify the universe of sets as either a proper
class or a mere plurality. So, actualists’s associated theory might include statements such as ‘the universe of
sets is a mere plurality’; it could thus have the notion of a plurality as either an anchor or a primitive in their
associated theory. Then, the statement ‘the plurality of all sets isn’t a set’ would be entailed by the theory that
the actualist associates with her set-theoretic expressions. Alternatively, actualists could invoke the notion of a
proper class—and perhaps even super-classes, and super-super classes, and so on—and hold true come what
may statements such as ‘The totality of all sets forms a proper-class’, ‘Proper classes aren’t sets’, ‘Super-classes
are neither sets nor proper classes’, and so on. Either way, there is no modal language in the theory that the
actualist associates with her set-theoretic expressions; from the current metasemantic perspective, we can even
say that not having modal statements in the theory one associates with set-theoretic expressions is just what it is
to be an actualist.

Actualists and potentialists thus associate different theories with their set-theoretic expressions. Unless
their theories end up being translationally equivalent, this entails that actualists and potentialists mean different
things by their set-theoretic expressions, and, thus, that the dispute between actualists and potentialists is merely

50 Some options include part of the conception outlined by Boolos (1971), or even a stage theory, e.g., articulated by Button (2021), or
Incurvati’s (2020, 61–64) “minimal” conception of sets.

51 Note that axioms themselves can be part of (or be entailed by) intuitive conceptions. In that case, an intuitive conception can “justify” an
axiom if the intuitive conception is part of an associated theory: this would show that the axiom (or something that entails the axiom) is
itself analytic. If axioms aren’t themselves part of or entailed by some intuitive conception, then it is harder to account for how an intuitive
conception can justify the truth of the axiom from the current perspective: if some intuitive conception C is part of an associated theory, and
C+A is a distinct, translationally non-equivalent theory, then strictly speaking the primitive set-theoretic expressions in C and in C+A
have distinct meanings; facts about C-sets won’t justify facts about C+A-sets, and axiom A isn’t true of C-sets. (This is the familiar point
that Carnapian explications “change the subject.”) As I will explain in §3.4, an alternative would be that the intuitive conception gives
pragmatic motivation for an axiom A: one pragmatic reason to accept C+A rather than C+¬A might be that the former is more similar to
or captures the spirit of C. For further discussion, see, e.g., (Soysal, 2024a).
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verbal. If the potentialist and actualist theories are translationally equivalent, then there is no disagreement
between the actualist and potentialist, for they are merely choosing different words to express the same things;
for instance, the potentialist uses ‘there can be’ for what the actualist expresses as ‘there is’. There is a current
debate over whether the potentialist and actualist theories are translationally (or “notationally”) equivalent; for
instance, Linnebo and Shapiro (2017, §7) argue that their theories aren’t mere notational variants of actualist
ones if higher-order resources are involved, while Tim Button (2021) d discusses this and the “near-synonymy”
of many versions of the potentialist theories and actualist theories, suggesting that near-synonymy might suffice
for translational equivalence and thus for sameness of meaning. I won’t take a stand on this debate here.52

I will only note that if potentialists are right, then this would entail, from the current perspective, that they
mean something different with their set-theoretic expressions than the actualists, because the potentialist and
actualist theories in question are associated, meaning-determining theories. Indeed, the argument from an
intuitive conception for potentialism works precisely because the potentialist theory is (or is entailed by, or
is a precisification of) an associated, meaning-determining theory. So, in either case, the dispute between the
actualist and the potentialist isn’t as substantial as one might have thought. I will explain how the debate over
potentialism and actualism can move forward from here in §3.4. But first, since we now have the actualist view
supplemented with the implicit definitions strategy, let me clarify two things left open in our discussion in §2.

3.2. Textbook explanations as analytic explanations

First, we can illuminate the actualist’s textbook explanation for why there is no set of all non-self-membered
sets (or of all cardinals, ordinals, and so on). The actualist can say that the fact that there is no such set follows
from at least one principle that is part of the theory she associates with her set-theoretic expressions. For
instance, surely, statements such as the Axiom of Foundation and the Axiom of Separation—or some other
statements that entail ‘No set is a member of itself’—are going to be part of the theory actualists associate
with their set-theoretic expressions. But this means that, whatever ‘set’ and ’membership’ mean, they mean
something such that ‘No set is self-membered’ is (analytically) true. But then, it is a logical consequence
of analytic truths that there is no set of all non-self-membered sets. This analytic explanation is as good an
explanation as we can hope to get for why there is no set of all non-self-membered sets.53

To take an analogy, say (plausibly) that we associate the term ‘bachelor’ with some theory that includes
‘every bachelor is unmarried’, that is, we hold ‘every bachelor is unmarried’ to be true come what may. Then, if
someone asks “But why isn’t there a happily married bachelor?” the explanation we should give is: “There
isn’t a happily married bachelor because it is analytically true that every bachelor is unmarried, and it is a
simply consequence of this analytic truth that there isn’t a happily unmarried bachelor.” This is as good as
explanations ever get. And I contend that the actualist has just as good an explanation for why there is no
set of all non-self-membered sets: there is no set of all non-self-membered sets because it is an analytic truth
that no set is self-membered (given what we associate with our set-theoretic expressions), and it is a simple
consequence of this that there is no set of all non-self-membered sets. This is as good as explanations get; it
would be just as absurd to keep asking “Ok, but why is there no set of all sets?” as it would to keep asking “Ok,
but why is there no happily married bachelor?”

The lingering worry articulated by Linnebo that we discussed in §2.1 should no longer have force. Consider
the plurality of all sets. It follows from how we define ‘set’ that everything in that plurality is something that
isn’t self-membered. That is, there are no self-membered sets in this plurality, and thus there is also no set of all
the sets in this plurality. The same thing could be said about bachelors: Consider the plurality of all bachelors.
There is no married person in this plurality, simply because of how we define ‘bachelor’.

It can be hard to dispel the idea that there is still something unexplained on the picture that I am proposing.
Here is an attempt to capture this idea. Say we consider the plurality of all sets; but now we imagine that they
are all “laid out” in front of us. On the face of it, one can then imagine that it is perfectly possible for there to

52 Although I argue that neither near-synonymy nor synonymy (or definitional equivalence) suffice for translational equivalence on a
descriptivist metasemantics (Soysal, 2024b).

53 This cashes out the proposal I make in (Soysal, 2017a, 2017b) to understand conception-based explanations as analytic or conceptual
explanations.
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be one more set that contains all of these sets, laid out in front of us; we imagine “lassoing” all the sets laid out
in front of us. But that is an illusion. If what is laid out in front of us really is the plurality of all sets, then all
the sets are already out there in front of us. If one imagines, say, a (finite) list of sets, then one can genuinely
imagine the set that contains all of the sets on this finite list. But that is very different from imagining all sets
laid out in front of us. Think of another analogy. One can imagine the set of all natural numbers, “laid out” in
front of us. On the face of it, one can then imagine that there is a natural number that is larger than any number
in this set. But of course, there can’t be. If what we are really imagining is the infinite series of the natural
numbers, then there are no more natural numbers to be added to the series! On the actualist perspective, these
are both instances of how our intuitions about infinities can be radically misleading.

Finally, note that potentialists have the same type of explanation available to them, using their own
associated theory. In fact, the (non-modal) Axiom of Foundation itself is usually accepted as part of the
potentialist conception of sets,54 so the exact same explanation just discussed is also available to the potentialist.
So, when it comes to explaining why there is no set of all non-self-membered sets—or no set of all ordinals, or
all cardinals, and so on—actualists and potentialists can be exactly on a par.

3.3. Unexplained impossible existence on a primitive modality

The second point that we can now clarify is why actualists don’t need to explain why there can’t be a set of all
sets on a sense of ‘can’ that is primitive to the potentialist. As I explained in §3.1, the best way to make sense
of a primitive potentialist modality is to say that ‘can’ gets its meaning together with primitive set-theoretic
expressions by being associated with a theory that involves them all. What this means is that the word ‘can’
has this primitive meaning only for speakers who are disposed to accept the potentialist theory come what
may. Actualists aren’t such speakers. This doesn’t necessarily mean that the potentialist’s sense of ‘can’ can’t
be translated into the actualist’s language. But to avoid ambiguity, when the potentialist asks ‘Why can’t
the plurality of all sets form a set?’, the actualist should first read this as something like: ‘Why shcan’t the
plurality of all shmets form a shmet?’ One answer the actualist can then give to this question is that shmets are
simply outside the scope of her theory. And if there is a translation of the potentialist’s expressions into the
actualist’s, then the sentence ‘The plurality of all shmactually existing shmets shcan form a shmet’, which is
(presumably) entailed by the potentialist’s associated theory, should be translated into a sentence that is true
given the actualist’s associated theory, since an adequate translation should at least preserve analytic truths or
truths entailed by the associated (meaning-giving) theory. But then, the actualist would also be able to explain
why this fact holds about sets, given her associated theory. So, once again, the potentialist hasn’t shown that
there is an unexplained fact on the actualist picture.

3.4. A cost–benefit comparison of actualism and potentialism

Let us take stock. I argued that the best way to argue for potentialism is to say that it follows from an implicit
definition of set-theoretic expressions. But then, given that there are other ways to implicitly define set-theoretic
expressions—such as, in particular, the actualist’s—the dispute between potentialism and actualism should
be understood as merely verbal: Actualists and potentialists (plausibly) mean different things with their set-
theoretic expressions, and, thus, they don’t really disagree with each other over whether the universe of sets
is potential. Rather, the universe of sets is potential on the potentialist’s sense of ‘set’, while it isn’t on the
actualist’s sense of ‘set’. As with all verbal disputes, the natural next question is whether there is any reason to
pick one meaning assignment over another. That is, is there reason to associate the potentialist theory with ‘set’
and ‘membership’ as opposed to the actualist theory? Or, if we disambiguate and associate, say, ‘p-set’ and
‘p-membership’ with the potentialist’s associated theory and ‘a-set’ and ‘a-membership’ with the actualist’s
associated theory, is there reason to speak a language with ‘p-set’ and ‘p-membership’ as opposed to a language
with ‘a-set’ and ‘a-membership’? These kinds of questions can only be resolved by considering pragmatic (or
perhaps normative) reasons. Indeed, there is no question of which choice gets at the truth, since both options
will yield their respective (analytic) truths; that is, these aren’t pragmatic reasons for or against the truth of

54 See, e.g., (Linnebo, 2013, 216f.).

170



Why be a Height Potentialist?

potentialism or actualism. For simplicity (and without loss of generality), let me only consider the question of
which theory to associate with (and thus which meaning to assign to) the expressions ‘set’ and ‘membership’. I
will conclude by considering some pragmatic reasons that bear on this question and suggest that these weigh
against associating the potentialist theory with the primitive set-theoretic expressions; or, as I will say, “against
being a potentialist.” As I explained in §§2.1–2.2, I take the most plausible versions of potentialism to be the
ones with the primitive and the linguistic interpretations of the modality. I will thus only consider these two
options in my cost–benefit comparison.

There are many different types of pragmatic reasons one can give for or against using certain mathematical
expressions with certain meanings. I won’t aim to be exhaustive here, and my discussion can thus also be
seen as an invitation to consider further pragmatic costs and benefits on behalf of potentialism and actualism.
But here are what I take to be the broad categories of pragmatic criteria to consider: simplicity and ease of
use, fruitfulness (mathematical, scientific, or perhaps even philosophical), faithfulness to some historical or
pre-theoretical conception, and explanatory power (mathematical or otherwise). The arguments in §2 support
that the potentialist language doesn’t have any explanatory advantage over the actualist language. As far as
I know, no version of the potentialist theory promises to have useful consequences for the natural sciences,
so I will set considerations of scientific fruitfulness aside. Most versions of the potentialist formal theories
are at least mutually interpretable with standard ZFC (as I mentioned in §3.1, Button (2021) argues that many
are even near-synonymous), and thus arguably don’t provide any new mathematical results (including ease
of proof) over ZFC.55 This suggests that actualism and potentialism are on a par in terms of mathematical
fruitfulness (though simplicity and ease of expression can also help mathematically, and, as I will explain, those
considerations favor actualism). The fact that non-modal ZFC is still the standard choice in the mathematical
community might also suggest that potentialism isn’t more fruitful mathematically than actualism. In any case,
the standard motivations for potentialism are philosophical, so more would need to be said to motivate the
mathematical fruitfulness of potentialism. I thus also set considerations of mathematical fruitfulness aside here.

3.4.1. Pragmatic comparison of actualism vs. potentialism with a primitive modality

Consider, first, the option where the potentialist’s modality is primitive. I think one can make the case that
it is a pragmatic cost to have one more primitive expression in one’s associated theory, especially if that
expression already has a standard meaning in the background language. Having an extra such primitive adds
some complication to the associated theory and ambiguity in the overall language, both of which constitute at
least some pragmatic cost.

Take, next, the criteria of faithfulness to some historical or pre-theoretical notion. As I mentioned at the
beginning of §3, some potentialists motivate their potentialist conception by saying that it captures the intuitive
part of the naïve (and inconsistent) conception of sets, because the potentialist conception makes true the modal
version of Naïve Comprehension: for instance, on the version concerning pluralities, this is the statement that
every “plurality could form a set,” as Builes and Wilson (2022, 12f.) put it. Even granting that it is desirable to
retain a version of Naïve Comprehension in a theory of sets,56 I don’t see how a primitive notion of “can” could
help capture any intuitive version of Naïve Comprehension. Arguably, ‘can’ in the potentialist’s associated
theory is a modality in name only: For one, it isn’t any of the intuitive notions involved in any characterization
of the intuitive idea of Naïve Comprehension. Moreover, as Andrew Bacon (2024) has argued in a slightly
different context (concerning “width” potentialism), the potentialist’s primitive mathematical “modality” seems
to flout some of the core orthodoxies about modality in general.57 Potentialists would thus have to argue that
there is nonetheless something of the intuitive idea that things “can” form sets that is retained in their statements
such as ‘every plurality can form a set’, which seems to be a major challenge.

To summarize, there are some pragmatic costs to potentialism with a primitive modality, and there are no
clear pragmatic benefits to it. The balance of pragmatic reasons seems to favor actualism.

55 See, e.g., (Linnebo, 2013) and (Studd, 2013).
56 I doubt this; indeed, it has also been argued that Cantor’s conception of sets is fundamentally different from the logicists’ “naïve” conception

(see, e.g., Ferreirós, 2023), and so one might argue that our concept of set should be faithful to Cantor’s notion rather than to the naïve
notion.

57 Bacon (2024) shows that this “modality” radically flouts Brouwer’s principle in that it is possible that there are truths that are possibly
impossible and Leibniz biconditionals (i.e., what is possible, in the broadest sense of possible, is what is true in some broadly possible
world) (Bacon, 2024, 132).
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3.4.2. Pragmatic comparison of actualism vs. potentialism with a linguistic modality

Second, consider the option of anchoring the potentialist’s associated theory with a linguistic kind of modality.
Some have argued that potentialists adopt some modal principles that conflict with the intuitive linguistic
understanding of the modality at issue.58 I think these concerns are serious, and, in our framework, they put
pressure on whether the potentialist’s modality really is anchored in a linguistic type of modality. A related
worry is that, on a natural understanding of the potentialist’s linguistic interpretation, the potentialist theory is
merely describing how one could use the non-logical expressions of the language of set theory (that is, ‘set’
and ‘△’, or just ‘△’) with different (more and more expansive) meanings, without actually (at least explicitly)
talking about sets.59 On this understanding, the argument from an intuitive conception for potentialism as I have
developed it wouldn’t apply: the potentialist isn’t implicitly defining a modal conception of sets, but, rather, she
is theorizing about different kinds of possible semantic changes involving ‘set’ (that is, their theory is about
‘set’, and not sets).60 On this interpretation, it is clear that actualists and potentialists are talking past each other:
As I discussed in §§2.1–2.2, the actualist can grant that one could change the meaning of ‘set’, but she doesn’t
want to use ‘set’ with different meanings. Instead, she is theorizing about sets on her (fixed) use of ‘set’. The
actualist can capture the more expansive meanings that the potentialist is concerned with, simply with different
words than ‘set’—for instance, ‘proper class’, ‘super class’, and so on. So, what would be the pragmatic benefit
of adopting a theory of semantic change as opposed to the actualist’s theory of sets?

Berry (2024, 12) argues that the potentialist theories on this linguistic interpretation don’t commit one
to the existence of sets (since they only theories about how one could use language), and thus they could
accommodate a nominalist metaphysics. Some might find this to be a philosophical advantage. But note that
actualism, too, is consistent with various ontological views about the nature of sets (structuralism, thin realism,
robust realism, and so on), depending on what else one decides to include in one’s associated theory. Actualism
could even be combined with the claim that sets don’t exist, if it is understood, for instance, that an associated
theory merely delineates analytic truths about sets that are conditional on the existence of sets (roughly such as
“Carnap-sentences” in Lewis, 1970).61

A second reason to adopt the potentialist theory on this linguistic understanding might be that it adequately
captures a real phenomenon of semantic change. But it is unclear whether anyone actually uses ‘set’ in this
ever-changing way, and there seem to be reasons against speaking in this way. In general, there is some
pragmatic cost to using a word with multiple different meanings, and to changing the meaning of a word
midway through some piece of reasoning. At the very least, this complicates the semantic theory for that
expression, and it can lead to miscommunication among speakers. But what the potentialist theory is capturing,
on this view, is precisely the practice of changing the meanings of one’s words, including right in the middle of
a reasoning process. For instance, the idea is that in running through the reasoning of Russell’s paradox, we
shift the extension of our quantifiers and/or set-theoretic expressions (Warren, 2017, 102–110), which is why it
is “possible” that there is a set of all those (actual) non-self-membered sets. If there is an alternative way of
speaking without switching the meanings of our expressions, there would be some pragmatic reason to prefer
it. But that is precisely what the actualist associated theory is giving us: we can use ‘proper class’ or ‘mere
plurality’ for the collections that are sets on the expanded understanding of ‘set’, without changing the meaning
of any of our expressions.62

Consider, finally, the criterion of faithfulness. Once again, I think it is unclear that potentialism here
captures the intuition that there can be more sets. Surely, the intuition wasn’t that one can have more sets

58 E.g., Berry (2022, 62f.) discusses how the “maximality” principle “[a]t every stage, all the entities that can be introduced are in fact
introduced” that Linnebo adopts conflicts with the intuitive understanding of his linguistic modality, since we don’t introduce all abstraction
principles at once (see also Berry’s similar points against Studd’s linguistic modality (Berry, 2022, 63–65). Similarly, Warren (2017,
114f.) argues that the intuitive linguistic understanding makes little sense of iterated modalities or quantifying into modal contexts.

59 See, e.g., the views of (Linnebo, 2018) and (Studd, 2019).
60 Warren (2017) might be giving an alternative view on which the meanings of the set-theoretic expressions don’t change but only the

meanings of the quantifiers do. On this view, then, we could say that sets are implicitly defined in terms of different quantifiers, e.g., that
Warren’s NC+: ≃+y⇐x(x △ y ∋ 3(x)) (or perhaps a version of it with a ‘set’ predicate) is part of the theory associated with set-theoretic
expressions (Warren, 2017, 104).

61 See (Soysal, forthcoming) for discussion of the related problem of existence for descriptivism about the language of set theory. See also
clarifications about this point in §3.1.

62 These are also reasons against adopting NC+ as part of our associated theory (see footnote 60).
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because we can change the meaning of ‘set’ (or of the quantifiers). Rather, the intuition was that there can be
more things like those things, the sets, so, more “collections” in some intuitive sense of ‘collection’ (and under
the standard sense of the quantifiers). In contrast, it is available to the actualist to say that, although there aren’t
more sets on pain of contradiction, there are indeed more “collections”: namely, proper classes, super-classes,
and so on. Logic tells us that for no collection of type X , there is an X of all Xs. But for any collection of some
type, there is some collection of some other type of all the collections of the former type. As I see it, this story
captures the original intuition even better than the potentialist story on the linguistic interpretation (or on the
interpretation with a primitive modality).

Once again, we saw some pragmatic costs to potentialism this time with a linguistic modality, and no clear
pragmatic benefits. The balance of pragmatic reasons seems once again to favor actualism over potentialism.

4. Conclusion

This paper examined arguments for being a potentialist. The most common type of argument given for
potentialism are arguments from explanatory power. I argued that these arguments are unsuccessful: either
the potentialist is on a par with the actualist when it comes to explaining facts about sets, or the facts that are
purportedly unexplained on the actualist picture should only be accepted if one is a potentialist to begin with.
I then outlined what I take to be the most promising line of argument for potentialism: potentialism is true
because it is part of the meaning-determining, analytic part of a theory of sets. The problem with this argument
is that not everyone adopts (nor should adopt) this potentialist conception of sets. Moreover, as I argued, there
are numerous pragmatic reasons against adopting the potentialist conception of sets over the default, actualist,
conception of sets that underlies our standard mathematical practice. Why not, then, simply be an actualist?
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On the Limits of Comparing Subset Sizes within N

Sylvia Wenmackers

Abstract: We review and compare five ways of assigning totally ordered sizes to subsets of the
natural numbers: cardinality, infinite lottery logic with mirror cardinalities, natural density, generalised
density, and ∀-numerosity. Generalised densities and ∀-numerosities lack uniqueness, which can be
traced to intangibles: objects that can be proven to exist in ZFC while no explicit example of them can
be given. As a sixth and final formalism, we consider a recent proposal by Trlifajová (2024), which
we call c-numerosity. It is fully constructive and uniquely determined, but assigns merely partially
ordered numerosity values. By relating all six formalisms to each other in terms of the underlying
limit operations, we get a better sense of the intrinsic limitations in determining the sizes of subsets of
N.

Keywords: Axiom of choice, Cardinality, Density, Infinity, Limit, Numerosity, Set size

1. Introduction
The size of subsets of natural numbers played a central role in historical debates on the vexing notion of infinity.
Already in the ninth century, Thabit ibn Qurra defended the existence of different sizes of infinite collections of
natural numbers (see, e.g., Mancosu, 2009, §2). Galilei (1638) famously compared the set of perfect squares to
the full set of natural numbers. The finding that the former is both a proper subset of the latter (which suggests
a smaller size) and can be put into one-to-one correspondence with it (which suggests equal size) is known as
Galileo’s paradox. Galileo concluded that sizes of infinite collections cannot be meaningfully compared.1

While many early mathematicians similarly rejected the idea that the infinite can be represented by an
extended number system,2 later mathematicians have found different ways of expressing sizes of infinite sets.
Here, we take ‘size’ to be a pretheoretical term, that can be formalized in different ways: not only as cardinality,
but also in terms of natural density and other approaches. In this article, we take the set of natural numbers
N

def
= {1,2,3, . . .} as the canonical example of a countably infinite set. We focus on its collection of subsets, the

power set P(N), to discuss and compare different notions of size.

We start by reviewing and comparing five formalisms for assigning totally ordered (also called linearly
ordered) sizes to subsets of N: cardinality, infinite lottery logic, natural density, generalised density, and
∀-numerosity.3 In all cases, the notion of ‘size’ is altered compared to its initial meaning that only applied to
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1 On the first day of the dialogue, Salviati says that “we cannot speak of infinite quantities as being the one greater or less than or equal to
another” (Galilei, 1638, p. 31); he argues for this based on a consideration of the ‘number’ of all (natural) numbers and of (perfect) squares
and their roots, from which he concludes that “the attributes ‘equal,’ ‘greater,’ and ‘less,’ are not applicable to infinite, but only to finite,
quantities” (Galilei, 1638, pp. 32–33).

2 But see, e.g., Mancosu (2009) for notable exceptions, such as Grosseteste, Maignan, and Bolzano. We review a recent construction of
Bolzano’s approach in section 3.

3 These five formalisms suffice for our present purposes, without constituting an exhaustive overview. Other methods for assigning sizes to
subsets of N exist. For instance, ideals and filters give a different notion of ‘small’ and ‘large’ sets (see, e.g., Schechter, 1997, p. 101).
Although we will encounter ideals and filters in relation to ∀-numerosities, and there may be interesting connections to other parts of this
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‘tame’ non-standard analysis.
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finite collections. This has been investigated before (see, e.g., Mancosu, 2009, Parker, 2013), but a new theory
proposed by Trlifajová (2024) invites us to examine it once again. This paper highlights the non-uniqueness and
non-constructive aspects of sizes assigned to infinite co-infinite sets on some accounts. In contrast, Trlifajová’s
(2024) theory is constructive but also requires us to drop yet another property of earlier notions of size.

The main goal of the present paper is not to defend a particular theory as providing us with the best notion
of size, but rather to study the connections between various formalisms and to figure out which insights they
give us collectively into size-related properties of subsets of N. To achieve this, we will reconstruct the six
theories in terms of an underlying limit operation that acts on the sequence of partial sums of the characteristic
sequence of a given subset of N or the corresponding density, relative to N.

We explore this issue in the context of standard set theory: Zermelo–Fraenkel set theory with the Axiom of
Choice (ZFC), which takes the notion of arbitrary subsets of N (and other infinite sets) for granted. Authors
like Feferman (1999, p. 102) objected to this approach, which raises a potential concern for our present project:
does it really make sense to assign sizes to arbitrary subsets of natural numbers? Cardinality does so without a
problem, which is unsurprising given that ZFC was designed with Cantor’s approach in mind. Natural density
fails to assign a size to some subsets of the set of natural numbers. Natural density can be extended to P(N),
but not in unique way: the underdetermination shows up for some infinite co-infinite sets. As we will see,
∀-numerosity is defined for all subsets of natural numbers but also lack uniqueness, which affects all infinite
co-infinite sets.

We discuss multiple ways of dealing with the underdetermination of ∀-numerosity. In particular, Trlifajová’s
(2024) formalism trades the non-uniqueness of totally ordered ∀-numerosity for a partially ordered notion of
numerosity.

Throughout this article, we will pay special attention to intangibles, in the terminology of Schechter (1997,
§14.77): objects that can be proven to exist in ZFC but for which it can also be proven that no explicit example
of them can be constructed, because their existence cannot be proven in ZF with a weaker choice principle,
such as dependent choice (DC). Schechter (1997, §6.2 and §14.77) describes ZF + DC as ‘quasiconstructive’,
in contrast to Bishop’s constructivism, which rejects the law of the excluded middle. In this article, we similarly
focus on the effects of invoking a nonconstructive choice axiom, without other constructivist considerations.4

Like Schechter (1997, §14.77), we assume the view that intangibles are “created by our acceptance of the
Axiom of Choice”.

Further on, it will be helpful to be able to compare how fine-grained different measures are. We say that
a measure m is more fine-grained than a measure M (or, equivalently, that M is more coarse-grained than m)
if m(S) = m(T ) implies M(S) = M(T ) for all S and T in the domain where both measures are defined, but
there exist S and T such that M(S) = M(T ) while m(S) ↔= m(T ). In other words, there can be no M-difference
without an m-difference, but the inverse does occur. This phrasing, familiar from the literature on emergence,
already suggests that M may be multiply realizable by various more fine-grained measures; this is indeed what
we shall find.

The paper is structured as follows. Section 2 reviews the five formalisms and compares them in terms
of fine-grainedness and underdetermination. All formalisms are consistent on their own and have specific
applications. Moreover, their results can be combined fruitfully, provided that we do not conflate their different
notions of ‘size’. If we violate this condition, we run into inconsistencies such as Galileo’s paradox. Section 3
introduces the sixth approach by Trlifajová (2024) and reconstructs all theories in terms of different limit
operations. Section 4 summarizes our findings.

2. Formalisms for assigning totally ordered sizes to subsets of N

Dedekind (1888) defined infinite sets as those sets that have a proper subset that can be put into one-to-one
correspondence with the full set.5 This shows that a version of Galileo’s paradox will arise for any infinite set
and thus complicates any assignment of size to such sets. Set sizes can be compared by the subset relation

4 See Maschio (2020) for a discussion of natural density in the context of Bishop’s constructivism.
5 Bolzano had given a similar characterization earlier; see, e.g., Mancosu (2009).

178



On the Limits of Comparing Subset Sizes within N

(between a set and another one contained in it) and by one-to-one correspondence (between the elements of two
sets of equal size). Both methods give compatible verdicts when comparing sizes of finite sets, but Galileo’s
paradox and Dedekind’s definition both show that this is not the case for infinite sets. This observation can be
reconstructed as a dilemma between these two comparison methods (Mancosu, 2009): to extend the notion of
size to infinite sets, one can either respect the ordering induced by the subset relation (called the part–whole
principle or the Euclidean principle6) or define equality based on the existence of a bijection (called Hume’s
principle7), not both.

Historically, the second horn of the dilemma was chosen first: Cantor (1895) used it to develop cardinality
theory. More recently, Benci and Di Nasso (2003) chose the first horn to develop ∀-numerosity theory. However,
Bolzano’s Paradoxes of the Infinite from 1848 can be regarded as a precursor to the latter idea: Trlifajová (2024)
has given a reconstruction, which we review in section 3.

As we will see, natural density retains neither: in number theory, it is usually interpreted as a probability
(see, e.g., Tenenbaum, 2015, Ch. III.1). If the measure does not express set size, then this classical dilemma
does not apply to it. In this paper, however, we do consider natural density as a notion of (relative) size, showing
that the paradox can be reconstructed as a trilemma instead.

Below, we review five formalisms that allow us to assign totally ordered sizes to subsets of N: cardinality
(§2.1), infinite lottery logic which includes mirror cardinalities (§2.2), natural density and generalised density
(§2.3), and ∀-numerosity (§2.4).

2.1. Cardinality

Cardinality theory starts from Hume’s principle, which takes the existence of a bijection between sets as
indicative of their equal ‘size’ expressed as a cardinal number. So, cardinality is defined via equivalence classes
on sets between which there exists a one-to-one mapping.8

The cardinality of a (well-orderable) set S is written as |S|. Assuming ZFC, all sets are well-orderable, so
all sets have a well-defined cardinality. In particular, since N is well-ordered by its standard canonical order,
cardinal numbers of subsets of N are fully determined: they are equal to the natural number of elements for
finite subsets and they are equal to the first infinite (or ‘transfinite,’ on Cantor’s terminology) cardinal number,
(0, for all infinite subsets of N. In other words, while they are sensitive to singleton differences between finite
sets (i.e., maximally fine-grained), they maximally coarse-grain the sizes of infinite sets by mapping co-finite as
well co-infinite infinite sets to the same value.

2.2. Mirror cardinality

Rather than applying Hume’s principle to sets themselves, one can apply it to their complements instead; doing
so requires a fixed superset, here N. This approach yields “mirror images of the cardinals” for co-finite sets, as
discussed by Mancosu (2015, p. 386).

A related proposal has been raised in the context of probability. Norton (2021) considered full label-
invariance on countable sets as a notion of uniformity stronger than mere singleton-uniformity: he required that
the measure assigned to a subset of a countable set should be invariant under permutations of the labels. Since
permutations are one-to-one mappings, we can expect the proposal to be close to cardinality.

Indeed, the approach of Norton (2021) distinguishes the probability of finite subsets by their finite cardinality
(maximally fine-grained) and similarly distinguishes the probability of co-finite subsets. All infinite co-infinite
sets get the same probability rank, so this remains coarse-grained. In particular, Norton (2021, §8) introduced
infinite lottery logic in terms of a chance function, Ch. To finite non-empty sets with n elements, Ch assigns
the valuation Vn, which may be read as ‘unlikely’. To co-finite sets that are complementary to sets with n

6 Named after the fifth and final ‘Common Notion’ in Book I of Euclid’s Elements, which says that the whole is greater than the part.
7 Named after Hume (1740, Book I, Part III, §I): “When two numbers [i.e., collections] are so combined, as that the one has always a unit

answering to every unit of the other, we pronounce them equal”, as quoted (in German) by Frege (1884, Ch. IV, §63).
8 For a brief contemporary presentation of cardinality theory, see, e.g., Jech (2003, Ch. 3).

179



Sylvia Wenmackers

elements, Ch assigns the valuation V↓n, which may be read as ‘likely’. The values of the empty set and the
full set are V0, read as ‘certain not to happen’ and V↓0, ‘certain to happen’, respectively. Finally, Ch maps
all infinite co-infinite sets to the same value, V!: this is read as ‘as likely as not’. The readings of the values
are informal interpretations, motivated by their ordering. This is given by an antisymmetric, transitive and
irreflexive relation, <, on them (Norton, 2021, p. S3866):

V0 <V1 <V2 <V3 < .. . <V! < .. . <V↓3 <V↓2 <V↓1 <V↓0.

Here, we observe that this approach could be considered as an alternative conception of size as well, not
based on the subset relation, but on the existence of bijections augmented with the relation of complements
(relative to N). Like cardinality, it is total on P(N) and uniquely determined, but it is more fine-grained. It still
coarse-grains all infinite co-infinite sets.

2.3. Natural density

Number theory offers natural density as a different notion of size that is able to make distinctions among infinite
co-infinite subsets of the natural numbers. While natural density is more fine-grained than approaches based on
bijection, we will review in this section that it remains coarse-grained to some extent and that the measure is
not total on P(N).

The natural density (or asymptotic density) d of a subset of natural numbers is defined as

d(S) def
= lim

n↘!

|(S⊥{1,2,3, . . . ,n})|
n

, (12)

with S △ P(N) such that this limit is indeed defined. In words, the natural density of a subset of N is the limit
(if it exist at all) of the (finite) cardinality of the intersection of this set with an initial segment of N, as this
initial segment goes to infinity.

The natural density can also be understood in terms of characteristic sequences. The characteristic sequence
of a set S △ P(N) is defined as follows, for all natural numbers n:9

(n(S)
def
= |S⊥{n}|.

This is a binary sequence that indicates whether or not n is in the set, respectively by value 1 or 0. Now we
define the sequence of partial sums of the characteristic sequence of S, which is a non-decreasing integer
sequence:

fn(S)
def
=

n

+
i=1

(i(S).

In what follows, it will be helpful to also define the non-decreasing sequence of finite intersections of a
given set, S B N, with initial segments of N of length n:

Sn
def
= (S⊥{1,2,3, . . . ,n}).

The sequence of finite sizes of Sn is equal to the aforementioned sequence of partial sums of the characteristic
sequence: fn(S) = |Sn|.

Using this notation, we may rewrite the natural density as:

d(S) = lim
n↘!

fn(S)/n,

where 1/n is a normalization factor.10

9 Throughout this article, we will indicate a sequence a : N↘ X by its value at a generic position n, an. (n is a first example of this gloss.
10 Observe that the natural density of a subset S can be regarded as the Césaro limit of its characteristic sequence:

C↓ lim (n(S)
def
= lim

n↘!
1
n

n

+
i=1

(i(S) = lim
n↘!

fn(S)
n

= d(S).
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For subsets of N, limn↘! fn(S) suffices to indicate the cardinality: it results in the finite cardinality for
finite sets and it diverges for sets of cardinality (0. Below, we will encounter the non-normalized sequence in
other approaches as well.

The above sequences all take the canonical order of N for granted. Observe that, if we considered a
sequence f ⇒n that maps n to the finite intersections in a different order, the resulting limit of f ⇒n(S)/n might be
different.

2.3.1. Examples of natural densities

The natural density is zero for all finite subsets and equal to one for all infinite co-finite subsets. Moreover,
the natural density is also zero for some infinite co-infinite sets, such as the set of perfect squares, cubes, and
higher powers, as well as the set of primes. So, the natural density coarse-grains finite sets and some infinite
co-infinite sets. Sets with the same natural density can be distinguished in terms of the rate of convergence.
For instance, the natural densities of the set of perfect squares and of the primes are both zero, but their rates
of convergence are well-studied, too: whereas the natural density of squares converges to zero as 1/

∞
n, the

prime number theorem implies that the natural density of primes converges to zero as 1/ln(n) (see, e.g., Fine
and Rosenberger, 2016, Ch. 4).

The complements of zero-density sets have natural density one. The natural density does distinguish
between other infinite co-infinite sets, such as the even numbers, the numbers divisible by three, four, etc., and
other arithmetic progressions (i.e., translations of the former). In general, for any set

Ma,i
def
= {n mod a = i | n △ N},

the natural density is:
d(Ma,i) = 1/a.

Throughout the paper, we pay special attention to the case of the set of even numbers, E def
= M2,0, and the set of

odd numbers, O def
= M2,1, both of which have natural density 1/2.

Like the cases with a natural density of zero or one, also all intermediate assignments are coarse-grained,
in the sense that there are infinitely many other sets with the same natural density. To see this, it suffices to
consider the countably infinite collection of sets that make a finite difference with the given set. Of course,
taking the union or intersection of a given set with an infinite set of zero density also illustrates this, provided
that the resulting set has a defined natural density. This is not guaranteed, since the sets for which d is defined
do not form a + -algebra (Kubilius, 1964, pp. 23–24).

2.3.2. Subsets without a natural density

An example of a set that does not have a well-defined natural density is the set of natural numbers whose
binary expansion has an odd length, for which the ‘lower density’ (corresponding to the lower limit in eq. 12)
is 1/3 and the upper density (upper limit thereof) is 2/3. In general, a limit point of fn(S)/n is the limit of a
converging subsequence (see, e.g. Tao, 2017), so the lower and upper density are the extremal values of the
collection of limit points of fn(S)/n. To illustrate that the interval spanned by the lower and upper density need
not be symmetric around 1/2, as the previous example might suggest, consider the natural numbers that start
with decimal 1, which has a lower density of 1/9 and an upper density of 5/9 (Tenenbaum, 2015, p. 415).

Moreover, it is possible to construct sets with lower density zero and upper density one. This can be
achieved by alternating between increasingly long intervals of natural numbers that are excluded or included,
such that there are subsequences of fn(S)/n, indexed by the ends of either the excluded or the included intervals,
that converge to zero or one, respectively.

Throughout this paper, we will focus on an example of this kind: the set S, with super-exponential stretches.
We define S recursively as follows: S1

def
= {} and for all n > 1, Sn

def
= Sn↓1 if k def

= Elog2(log2 n)F is even and
Sn

def
= Sn↓1 ℑ{n} if k is odd.11

11 E·F indicates the ceiling function. An initial fragment of the set is given explicitly by {3,4,17,18,19,20 . . .}.
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The extreme values of fn(S)/n occur at n = 2(2k). If k is odd, we have:

f o
n (S)/n =

k

+
l=0

(↓1)l+12(2
l↓2k).

Each term is smaller than the next and the signs alternate. The largest term, which occurs for l = k, equals +1;
the second largest term, for l = k↓1, is ↓ 1

n1/2 ; and the third largest, for l = k↓2, is + 1
n3/4 . Hence we see that:

1↓ 1
n1/2 < f o

n (S)/n < 1↓ 1
n1/2 +

1
n3/4 .

Since 1
n1/2 and 1

n3/4 tend to zero in the limit of n to infinity, this shows that the limit of fn(S)/n tends to 1 for the

subsequence where n = 2(2k) and k is odd.12 So, the upper density of S is 1.

If n = 2(2k) and k is even, we have:

f e
n (S)/n =

k↓1

+
l=0

(↓1)l+12(2
l↓2k).

There is one fewer term than in the odd case: this corresponds to the fact that now we are considering an initial
fragment that ends on a segment of which the elements are not included. As before, each term is smaller than
the next and the signs alternate. This time, the largest term, for l = k↓1, equals 1

n1/2 , while the second largest,
for l = k↓2, is ↓ 1

n3/4 . Hence, we obtain:

1
n1/2 ↓ 1

n3/4 < f e
n (S)/n <

1
n1/2 .

This shows that the limit of fn(S)/n tends to 0 for the subsequence where n = 2(2k) and k is even. So, the lower
density of S is 0. Since it differs from the upper density, this proves that S has no natural density. We will return
to this set below, in the context of numerosity theory.

Natural density is ideally suited for sets with a characteristic sequence that is periodic eventually: for those,
it equals the relative fraction of included elements within the period. The natural density may be undefined for
other sets, even if they are recursively enumerable (i.e., Turing-recognizable), as the above examples show.

2.3.3. Extension to N and relation to probability

As already mentioned, the domain of d does not exhaust P(N) and it is not an algebra.13 However, it is
possible to extend the natural density to a measure that is total on P(N) (as discussed, e.g., in Wenmackers and
Horsten, 2013, §3.2). This is achieved by replacing the standard limit in the definition (eq. 12) by a generalised
limit, which is a different algebra homeomorphism: a real-valued, free ultrafilter limit. For sets for which the
standard natural density is undefined, this extension yields a non-unique result in the interval spanned by the
lower and upper density(for details, see Schurz and Leitgeb, 2008). Its construction crucially relies on the
Hahn–Banach theorem, which requires the Boolean prime ideal theorem (see, e.g., Schechter, 1997, Ch. 12).
So, although the full Axiom of Choice is not required, this extension does require a non-constructive axiom,
which is the source of its non-uniqueness.14 For S, this means that its generalized limit could be 0, 1, or some
intermediate number, depending on the free ultrafilter used for the limit.

Remark that the underdetermination that shows up in the generalised density for infinite co-infinite sets
such as S does not indicate a pathology of these sets. Also, there is nothing arbitrary or underdetermined about

12 Numerical values of f o
n (S) at n = 2(2

k) with k odd can be found in the OEIS as the odd-numbered values of sequence A325912 (Manyama,
2019).

13 Kerkvliet and Meester (2016) made a proposal to extend natural density uniquely to a larger subset of P(N). While we do not consider it
here, for our purposes it is important that their extension is not total.

14 The Hahn–Banach theorem is sufficient to prove the Banach–Tarski decomposition of a three-dimensional sphere, which is widely regarded
as pathological (Pawlikowski, 1991).
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these subsets in themselves. What is arbitrary is to choose one limit point above all others, a choice that is
achieved by a non-constructive object, such that all such assignments become arbitrary but fixed at once.

Generalised density is related to the standard notion of probability (without countable additivity; see, e.g.,
Kubilius, 1964, p. 24): it is real-valued, non-negative, finitely additive, and normalized on N. Indeed, it is
an instance of the general notion of a limiting relative frequency, which has become a textbook definition of
probability. As such, it can be considered as a finitely additive probability measure that is singleton-uniform on
N (i.e., d(F) = 0 for all finite F B N).

Like all other merely finitely additive probability measures on infinite domains, generalised density is an
intangible. In section 2.4, we will encounter more intangibles: free ultrafilters and the ∀-numerosities that
depend on them.

At this point, despite the explicit example of S, perhaps it could be speculated that other sets that fail to
have a natural density are random in some sense and thereby connected to intangibles. The next section shows
that this speculation is misguided.

2.3.4. Almost all subsets of N are intangibles with density 1/2

Despite the previous focus on extending the measure via a generalised limit that lacks uniqueness, almost
all subsets of N do have a unique natural density. To see this, first observe that almost all binary sequences
are algorithmically random (Martin-Löf, 1966), where ‘almost all’ means that they have measure one in the
Lebesgue measure on the Cantor space {0,1}N (i.e., the fair Bernoulli measure on the set of infinite binary
sequences).15 Let us call subsets of N with a characteristic sequence that is algorithmically random ‘random
subsets’ (cf. Axon, 2010, §3.1). Then, almost all subsets of N are random sets. Algorithmically random
sequences are normal, which implies in the case of binary sequences that they have a limiting relative frequency
of 1/2. Hence, random sets have a natural density of 1/2. This proves our initial statement: almost all subsets
of N have a unique natural density, namely 1/2.

When defining randomness in terms of Kollektivs, von Mises’s (1928) guiding concept was precisely that no
admissible place selection rule should pick out a subsequence with a lower or higher limiting relative frequency
than 1/2. If those existed, then it would be possible to bet on random outcomes with a higher than 1/2 probability
of winning, which goes against the pretheoretical concept of random outcomes. Place selection rules have later
been replaced by more precise conditions on randomness, including algorithmic randomness (also known as
Martin-Löf randomness; Martin-Löf, 1966).

Looking at the definition of natural density (eq. 12), however, it may appear strange that random subsets
have a well-defined natural density. How would one compute it without an algorithmic description of the set?
Indeed, an explicit computation is not possible, because random subsets are intangibles: we can demonstrate
that random subsets exist in ZFC, in abundance, without being able to give a single explicit example.16 In this
sense, the problem of determining the natural density of a fully specified random subset cannot arise. If we
consider R to be a random set, then (n(R) is not computable, so the limit in equation 12 for the natural density
cannot be computed explicitly either, yet it must be 1/2 because (n(R) of a random set R is normal.

Moreover, it may appear strange that natural density is measured on a continuous scale ([0,1]), yet almost
all sets have the same value (1/2). This may be understood as follows. First consider a finite set, F , with a
number of elements, |F |= n, that we assume to be even for simplicity. For each subset X of F , we can define its
F-density as: dF(X) = |X |/n, which takes values in V = {0,1/n, . . . ,1/2↓1/n,1/2,1/2+1/n, . . . ,1↓1/n,1}.
Now consider the distribution that expresses how many subsets of F have an F-density equal to each of
these values, which can be visualized as a histogram: see Figure 1 for some numerical examples. For each
n, the distribution has a maximum that occurs at dF(X) = 1/2, corresponding to the collection of subsets
with n/2 elements. Their number is given by the central binomial coefficient, n!/((n/2)!)2, while the total
number of subsets of F is 2n and the number of bins equals |V |= n+1. So, their relative frequency evolves

15 By this canonical measure, every element of P(N) has measure zero: it treats each subset of N on a par (unlike d, for instance), regardless
of its properties, so it is not an alternative measure of size.

16 This may be another reason for rejecting the notion of arbitrary subsets of N, as Feferman (1999) did.

183



Sylvia Wenmackers

as n!/((n/2)!)2 ↑ (n+1)/2n, which diverges in the limit of n to infinity. In the limit of n to infinity, the full
distribution goes to a delta function with peak at density 1/2 (cf. Figure 1). The limiting case shows once more
that almost all subsets of N, with infinitely long characteristic sequences, have a natural density of 1/2. These
include E and O, but almost all others are random sets.

Figure 1. Histogram of the number of subsets of a set F with a given fraction of the total number of elements,
|F |= n, for n equal to 10, 100, and 1000. This shows that the subsets, X B F , with |X |/n = 1/2 dominate in the

limit of n to infinity.

2.4. ∀-Numerosity

If we return to the initial trilemma, cardinality chose the Humean principle and natural density retained
neither the Humean nor the Euclidean principle. So, we have yet to explore a theory that chooses the latter.
∀-Numerosity theory indeed takes the Euclidean principle as its starting point. ∀-Numerosities of subsets of N
(canonically ordered) can be defined axiomatically as a function num from P(N) to some set of values N GN

on which the total order relation < and the operation + are defined, as follows:17

Unit ⇐n △ N, num({n}) = 1.

Additivity ⇐S,T △ P(N), if S⊥T = Ø then num(SℑT ) = num(S)+num(T ).

Finite approximation ⇐S,T △ P(N), if fn(S)⇑ fn(T ) for all n △ N then num(S)⇑ num(T ).

Euclidean principle ⇐S,T △ P(N), if S B T then num(S)< num(T ).

Agreement with finite cardinality follows from the first two axioms. They also ensure the Euclidean
principle for finite subsets. The third axiom implies that the order on the numerosities of sets agrees with that
of the finite cardinalities of their intersections with initial segments of N; this ensures a certain harmony with
natural density, as we will see below. The final axiom is needed to extend the Euclidean principle to infinite
sets. In doing so, Hume’s principle no longer holds, though a weaker statement applies to ∀-numerosities: if
num(S) = num(T ), then there exists a bijection between S and T (so |S|= |T |). The inverse direction is not
guaranteed; consider, for example, S = N and T any infinite strict subset. Then both have cardinality (0, yet
num(S)> num(T ). So, ∀-numerosity is more fine-grained than cardinality.18 Cardinality is compatible with

17 This definition is a simplified version of the more general definition of ∀-numerosity on a class of labelled sets presented by Benci and Di
Nasso (2019, Ch. 15); see also Benci and Di Nasso (2003) for an earlier version, as well as Benci et al. (2006) for a related approach, in
which the Euclidean principle follows from the axioms.
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infinitely many finer grained notions of size. Although one might have hoped that the axioms for ∀-numerosity
pick out one particular fine-graining, this turns out not to be the case, as we will see in section 2.4.2. Before
showing that, we first examine a model of the theory.

2.4.1. The numerosity of N and the non-Archimedean ∀-limit

It follows from the axioms that num(N) cannot be finite and that num(N) is the largest numerosity value among
all sets in P(N). It is customary to set

num(N)
def
= ∀;

hence the name ∀-numerosities. A model for these axioms is obtained by setting the codomain N equal to an
infinite hyperfinite set:

N∀
def
= {0,1,2, . . . ,∀ ↓2,∀ ↓1,∀}.

This is an infinite initial segment of a set of hypernatural numbers19 extended with zero, →Nℑ{0}, on which
the relation < (total order) and the operation + are defined by transfer from the corresponding operations on
N. The values in N∀ suffice to assign ∀-numerosities to all elements of P(N). For each finite subset, the
∀-numerosity is a finite number and, for each co-finite set, it is ∀ minus a finite number. The ∀-numerosity of
an infinite co-infinite set is an infinite number that is infinitely smaller than ∀ . For example, for the set of even
numbers, the ∀-numerosity is usually taken to be ∀/2 (although ∀/2↓1 is admissable, too, as we will discuss
below).

∀-Numerosity can be understood in terms of a non-Archimedean limit operation, called the ∀-limit (written
as limnH∀ ). The ∀-limit of a sequence can be thought of as follows: first, the sequence with indices in N is
extended to a hypersequence with indices in →

N; then, the extended sequence is evaluated at ∀ . Using this
notation, we can write (for any S △ P(N)):

num(S) = lim
nH∀

fn(S).

We return to this in section 3.1.

2.4.2. ∀-Numerosity is totally ordered and highly non-unique

In the preamble to their axioms, Benci and Di Nasso (2003) assumed that the order on N is total; this indeed
applies to ↙N∀ ,<⊤. We will investigate the effects of taking N to be a merely partially ordered set in section 3.

So, ∀-numerosities are elements of a hyperfinite set that is totally ordered. They are constrained by the
partial order of the subset relation on P(N) (via the final axiom: the Euclidean principle), as well as by
the other axioms, but these are not sufficient to specify a total order. Any partial order can be extended to a
total order (by the Szpilrajn extension theorem; also mentioned by Mancosu, 2009) but doing so requires a
non-constructive choice principle (namely, the axiom of finite choice, weaker than the Axiom of Choice but
also independent of ZF). For our case, this means that the axioms do not suffice to determine a total order on all
of P(N) uniquely.20

To bridge the gap from a partial to a total order, the construction of ∀-numerosities crucially relies on a
non-constructive object: a free ultrafilter on N, which is an intangible (Schechter, 1997, §6.33). There are
uncountably many free ultrafilters,21 so this completion of the order is highly non-unique. In fact, using the
reflections from section 2.3.4, we see that almost all members of a free ultrafilter on N are random subsets
of N (which are intangibles in their own right). They have density 1/2, as do their complements, which are

18 Lynch and Mackey (2023) recently proposed a similar formalism called ‘magnum theory’, which maps P(N) “to a subclass of the surreals,
the surnatural numbers Nn (the non-negative omnific integers)”. Their theory is also designed to adhere to the Euclidean principle and one
way to define the magnum is via the natural density.

19 A set of hypernatural numbers, →N, indicates a non-standard model of Peano arithmetic, first discovered by Skolem (1934).
20 In the context of probability theory, a similar point has been discussed by Easwaran (2014) and Hofweber (2014).
21 In fact, the set of free ultrafilters on N has the same cardinality as P(P(N)); see Schechter (1997, §6.33) for references to proofs.
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also random sets. Therefore, for almost every member of a free ultrafilter, it is indeed completely arbitrary to
include it rather than its complement.

The axioms of Benci and Di Nasso (2003) require a specific type of free ultrafilter, called a selective
ultrafilter, the existence of which is independent of ZFC, but we do not go into that here. For our purposes, it is
merely important to note that this restriction does not lead to a unique assignment.

To illustrate the non-uniqueness, let us return to the infinite co-finite set S that was recursively defined in
section 2.3.2. The ∀-numerosity of this set depends on the ultrafilter. In particular, the most extreme values
are obtained when ∀ is of the form 2(20 ). Here, 0 is an infinite hypernatural, infinitely smaller than ∀ . There
are two ways in which this can happen: either the set {2(2k) | k △ 2N↓1} is in the ultrafilter, such that 0 is
odd, or {2(2k) | k △ 2N} is in the ultrafilter and 0 is even. (Observe that these sets indicate the indices of the
subsequences corresponding with respectively the upper and lower density of S.)

If 0 is odd, then num(S) is maximal:

num(S) = lim
nH∀

fn(S) = lim
nH∀

k

+
l=0

(↓1)l+12(2
l).

The result of this is a hyperfinite sum with ∀ +1 terms.22 It equals a particular value in N∀ , but I am not aware
of a closed formula to express it with.23 Still, we can give an indication of the value by considering the three
largest terms of the sum: ∀ , ↓

∞
∀ , and

√∞
∀ . Hence,

∀ ↓
∞

∀ < num(S)< ∀ ↓
∞

∀ +
√∞

∀.

This shows that the largest possible ∀-numerosity that can be assigned to S is smaller than that of any co-finite
set, yet bigger than some other infinite co-infinite sets, such as that of non-squares (which can be chosen to
have numerosity ∀ ↓

∞
∀).

If ∀ is of the form 2(20 ) with even 0 , then num(S) is minimal:

num(S) = lim
nH∀

fn(S) = lim
nH∀

k↓1

+
l=0

(↓1)l+12(2
l).

The result is a hyperfinite sum with ∀ terms, the two largest of which are
∞

∀ and ↓
√∞

∀ . Hence, in this case:

∞
∀ ↓

√∞
∀ < num(S)<

∞
∀.

This shows that the smallest possible ∀-numerosity that can be assigned to S is larger than that of any finite set,
yet smaller than that of some infinite co-infinite sets, such as that of the perfect squares (which can be chosen to
have numerosity

∞
∀).

To recap, while the ∀-numerosity assignment to finite and co-finite sets is fully specified by the axioms,
∀-numerosities of infinite co-infinite sets depend on the properties of the free ultrafilter used to construct them.
This may result in infinite differences in the ∀-numerosity of infinite co-infinite sets that do not have a natural
density and finite differences for those that do (as shown in section 2.4.4).

2.4.3. Critical responses to ∀-numerosity

So far, we have seen that ∀-numerosity theory requires an intangible that cannot be proven to exist in ZFC.
Moreover, if this object exists, it is highly non-unique and particular assignments crucially depend on its
properties. These aspects play a major role in the critical reception of Euclidean theories of set size.

22 Hyperfinite sums generalize the standard notion of a finite sum to a sum with a hypernatural number of terms; for details see, e.g., Goldblatt
(1998, §12.7).

23 This is not due to the ∀-limit, but to the fact that a closed formula for +k
l=0(↓1)l+12(2

l ) is unlikely to be found; in any case, Manyama
(2019) reported none.
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Gödel (1947) argued that Cantor’s definition of cardinality is uniquely well-motivated and the only correct
notion of set size. For decades, this was the received view that nearly stopped the search for alternative
conceptions of set size in its tracks. However, Mancosu (2009) reviewed historical as well as contemporary
theories on which sizes of subsets of natural numbers can be compared meaningfully, thereby contesting Gödel’s
view that Cantor’s cardinality theory was inevitable. In particular, ∀-numerosity theory was developed by Benci
and Di Nasso (2003).

Parker (2013) admitted that the numerosity theory of Benci and Di Nasso (2003) is logically consistent
(provided that ZFC is), but he offered some new counterarguments. He argued that (total) Euclidean theories
of set size are too arbitrary, because they violate weak invariance principles (such as translation or rotation
invariance). This argument mainly relied on point sets in metric spaces, but for number sets (like the one under
consideration here) Parker (2013, §5) similarly concluded that they are epistemically not very useful, because
not all specific size assignments are uniquely well-motivated. As a result, Parker (2013) argued that numerosity
assignments are uninformative, and even misleading: since at least some of them could just as well be different,
they do not reveal a stable property intrinsic to those sets. This seems to violate a deeply rooted assumption
about our size conception, perhaps its very essence. So, this objection is closely linked to the non-uniqueness
of the free ultrafilter, and its consequences on ∀-numerosity assignments, which cannot even be fully specified
because free ultrafilters are intangibles.

So, while the preamble stipulates that the order must be total, the axioms do not fully determine which
infinite co-infinite sets are bigger than which. This depends on the particular selective ultrafilter.

The fact that selective ultrafilters are independent of ZFC should be flagged as a separate issue. Depending
on one’s philosophical views on mathematics, this may elicit different reactions, akin to those raised in response
to the Continuum Hypothesis, which has a similar status.24 Indeed, the existence of selective ultrafilters is
implied by the Continuum Hypothesis (as also remarked by Parker, 2013, §6). Mathematical pluralists might
take the independence of ZFC to mean that it is admissible to investigate the implications of ∀-numerosity theory,
while it is equally admissible to explore the consequences of the negation of this possibility. Mathematical
realists, on the other hand, might demand stronger, independently motivated axioms to settle the truth or
falsehood of the existence of selective ultrafilters and thus of the (in)correctness of the ∀-numerosity approach
to set sizes. So, it is unclear what a realist in the sense of Gödel (1947) should conclude: on the one hand, they
view Cantor’s cardinality as the ultimate theory of set size; yet, if they complete Gödel’s program and find
independently justified axioms that settle the Continuum Hypothesis—and if it is found true—that implies the
type of object that fuels an alternative theory of set size.

In section 3, we discuss a related approach by Trlifajová (2024) based on the Fréchet filter that may escape
these criticisms.

2.4.4. Relation to natural density and additional constraints

As mentioned, the third axiom of ∀-numerosity theory guarantees a certain agreement with natural density.
In particular, for any set S such that d(S) is defined, it holds that d(S) = st(num(S)/∀), where num(S)/∀ is a
hyperrational number (i.e., an element of →

Q) and st is the standard part function that maps a finite hyperrational
number to the unique nearest standard real number (for details, see Benci and Di Nasso, 2019, §16.9). This
implies that sets which have the same natural density, cannot have numerosities that differ by more than a
finite number.25 In particular, considering random subsets, there are ‘infinitely more’ subsets of N with an
∀-numerosity within a finite interval around ∀/2 than anywhere else in the hyperfinite set N∀ .26

In addition to the axioms, some further size comparisons can be motivated and achieved by restricting the
ultrafilter accordingly. For instance, the axioms do not fix whether various sets Ma,i for given a have exactly the

24 I am grateful to a reviewer, who suggested making this analogy.
25 This can be seen as follows. For any sets S and T such that d(S) = d(T ), it holds that st(num(S)/∀) = st(num(T )/∀), hence

st(num(S)/num(T )) = 1. If their ratio is infinitely close to 1, the numerosities cannot differ by more than a finite number.
26 Since this is a claim about subsets of N, the numerosity cannot be determined with the methods reviewed in this article, but see Benci et al.

(2006).
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same ∀-numerosity; they could also differ by a finite amount. However, one may further stipulate (cf. Benci
and Di Nasso, 2003, pp. 63–64):

⇐a △ N,⇐i △ {0, . . . ,a↓1} num(Ma,i) = ∀/a;

⇐p △ N num({np | n △ N}) = p∞∀.

We could add further stipulations to fix, for instance, the ∀-numerosity of the set of natural numbers whose
binary expansion has an odd length. Since this set does not have a natural density (recall that its lower and
upper natural density were resp. 1/3 and 2/3), its ∀-numerosity may differ by an infinite amount, depending
on the ultrafilter. Still, uncountably many ∀-numerosity assignments are left to the specific properties of the
(arbitrary but fixed) free ultrafilter.

We may call num(S)/∀ the ∀-density of S. Like natural density, ∀-density can be given a probabilistic
interpretation. Next, we comment on a related formalism.

2.4.5. Relation to probability

∀-Numerosity theory is closely related to non-Archimedean probability (NAP) theory, as discussed by Benci
et al. (2013, §5) and Benci et al. (2018, §3.6). The non-uniqueness of NAP functions has been discussed
by Benci et al. (2018, §6.1). For the present purposes, we limit ourselves to the case of a NAP function that
represents a singleton-uniform probability measure on N, which is equal to a ∀-numerosity assignment up to a
normalization factor 1/∀ . So, this leads to normalized measure of sizes of all elements of P(N).

The non-uniqueness of NAP assignments has been discussed in detail for the subset of even numbers, E,
and that of odd numbers, O, by Benci et al. (2013, pp. 141–142). In terms of ∀-numerosity, this boils down
to two possible assignments: either num(E) = ∀/2 = num(O), or num(E) = ∀/2↓1 < num(O) = ∀/2+1.
This difference depends on whether E is in the free ultrafilter used to generate the hypernatural numbers, or
O is; or, equivalently, whether ∀ is even or odd (Benci and Di Nasso, 2003, p. 63). The possibility of ending
up with num(E) < num(O), with a difference of 1, can be understood by considering that we defined N as
starting from 1, so the odd numbers are one step ahead at the odd positions in the canonical order on N; this
constant difference remains visible in the non-Archimedean limit at ∀ of fn(E) and fn(O) if ∀ is odd. Similar
considerations hold for other sets of the form Ma,i. We return to this at the end of section 2.5.

2.5. Composite picture

It is time to take stock, by giving an overview of the formalisms reviewed so far. To compare various size
assignments across the formalisms and their relation to the subset lattice on P(N), they are depicted in Figure 2.
Since ∀-numerosities are partially underdetermined by the axioms, this picture shows just one possibility
among many: one where ∀ is a multiple of two, three, four, etc., as well as a power of two, three, etc. We have
not included S in the figure, but observe that it could be placed nearly anywhere: from a point between the sets
of cubes and squares until a point between the sets of non-squares and non-cubes. We have also not included
random sets: they would be at the levels of E and its finite difference sets.

Let us now summarize the most relevant properties of the formalisms reviewed in this section in Table 1.
Of these alternatives, ∀-numerosity provides the most fine-grained measure of the sizes of subsets of natural
numbers: it is total on P(N), is maximally fine-grained on finite and co-finite subsets, and not only distinguishes
among infinite co-finite sets but makes similarly fine-grained distinctions among them as it does for (co-)finite
ones. However, unlike the other alternatives (except for generalised density), ∀-numerosity is not uniquely
determined by its axioms. The Euclidean principle requires that ∀-numerosity assignments respect the ordering
due to the subset relation on ↙P(N),B⊤. Although the third axiom restricts the possible assignments further
(by demanding a form of correspondence with natural density), this still only specifies a strict partial order,
while ∀-numerosity values are part of the totally ordered set of hypernatural numbers, ↙→N,B⊤. As before with
generalised density, totality is provided by an intangible.
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Table 1. Comparison of four formalisms.

Cardinality Infinite lottery
logic

∀-Numerosity Natural density

Total on P(N) Yes Yes Yes No, but can be
extended

Unique assignments Yes Yes No Yes, but not the
extension

Normalized
(size(N) = 1)

No, not
normalizable

No, not
normalizable

No, but
normalizable

Yes

Distinguishes
between:

Finite sets Yes Yes Yes No
Co-finite sets No Yes Yes No

Infinite co-infinite sets No No Yes Yes

As reviewed in section 2.4.3, in response to the results of ∀-theory, Parker (2013) concluded that (total)
Euclidean assignments of set size contain arbitrary aspects that are therefore misleading. He did see some
hope for a different Euclidean theory of size limited to partial assignments (e.g., “Even might be regarded as
neither smaller than Odd, nor larger, nor equal” Parker, 2013, p. 609), but we will see in section 3 that partially
ordered numerosity can do better than this (e.g., it excludes the possibility that E might be larger than O in a
non-arbitrary way).

A similar tension between totality and arbitrariness has been discussed in the context of probability theory
by Easwaran (2014). As summarized by Benci et al. (2018, p. 543): “Easwaran observes that real-valued
probability functions leave out part of the structure of the partial order, whereas hyperreal-valued probability
functions add structure in an arbitrary way.” Likewise, when assigning sizes to subsets of N, it seems that we
are forced to choose between options with too little or too much structure: whereas cardinality, infinite lottery
logic, and natural density do not preserve the partial order of the subset lattice, ∀-numerosity comes with excess
structure added by the specifics of some free ultrafilter.

Easwaran (2014) suggested using standard probability functions (which miss some structure on the partial
order of the events) together with the subset structure of the algebra of events: in the case of equal probabilities,
one may still treat the larger set as more probable (e.g., when deciding betting preferences). He argued that this
is better than accepting the arbitrary excess structure baked into a non-standard probability function. If we apply
Easwaran’s proposal to our current case, we should reject ∀-numerosity in favour of natural density, while
keeping an eye on the subset relation when ranking set sizes. For example, d(E\{2}) = d(E) but E\{2}B E,
so we may treat the former as ‘smaller’, in some sense. However, this proposal does not seem sufficient, since
d({1}) = d({2,3}), but {1} and {2,3} are not comparable by the subset relation, so they are still ‘equal’, in
the same sense of size.

An alternative approach has been suggested, but not developed, for non-Archimedean probabilities; Benci
et al. (2018, p. 544): “one can always consider the entire family of NAP functions modelling a given situation,
rather than an arbitrary representative of it (see also Wenmackers and Horsten, 2013). [. . . ] As a whole,
the family shows us how much the probabilities of a given event, and the order of probabilities of multiple
events, can vary (dependent on the choice of ultrafilter).” This proposal is related to imprecise or interval-based
probabilities. Likewise, we could consider the collection of ∀-numerosity functions ranging over all selective
ultrafilters.

In the next section, we review a very recent approach that manages to trace the contours of such a collection,
without listing its members.

3. Partially ordered c-numerosity of subsets of N

It is clear that all ∀-numerosity assignments agree on finite and co-finite subsets of N, and that they differ
amongst each other by at least 1 on infinite co-infinite sets. Now, one may wonder about the collection of
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subsets that all free ultrafilters have in common. This is the co-finite filter or Fréchet filter on N:

F
def
= {S ▽ N | N\S is finite}.

So, F consists of all co-finite sets of N; it is free but not an ultrafilter itself (see, e.g., Jech, 2003, p. 73). It can
be defined in ZF, so it does not require any non-constructive choice principle. This suggests the possibility of
developing a fully (quasi-)constructive theory akin to ∀-numerosity.27

Recently, Trlifajová (2024) has made a reconstruction of Bolzano’s work and indeed arrived at such a
formalism based on the co-finite filter rather than a free ultrafilter. Like ∀-numerosity theory, Trlifajová’s (2024)
theory applies to all countable sets, but we limit our review to its results for subsets of N. Again, elements of
such sets are only considered in their canonical order.

Trlifajová (2024) reconstructed the work of Bolzano as being about sequences of the form fn(S) (i.e., |Sn|;
+(S) in her notation), where S is a subset of natural numbers. First, she showed that the set { fn(S) | S △
P(N)} exhausts the set of non-decreasing sequences of natural numbers, which we call S . Then, she equipped
this set with addition (and multiplication, which we do not consider here) defined component-wise, and with
equality and ordering defined as equality or ordering (resp.) of terms eventually.

The notion of equality or ordering of terms ‘eventually’ means the relation holds between the terms for a
co-finite subset of indices of the sequences; i.e., such that the set of indices is an element of the co-finite filter
F . This can be viewed as a type of limit operation, along the co-finite filter. We will call it the F -limit (limF ).

With natural density, different sequences fn(S)/n may have the same limit: these sequences form an
equivalence class under the standard limit operation. Likewise, what really matters for size attributions in the
sense of c-numerosity is not an individual size sequence function, fn(S), either, but rather its equivalence class
under the Fréchet filter. Hence, it is convenient to quotient the Fréchet filter out of the space of non-decreasing
sequences: S /F .28 With addition, equality and order defined as before, Trlifajová (2024, p.96) showed
S /F to be a “partially ordered non-Archimedean commutative semiring”. This means that it contains infinite
elements (as before) and retains the same arithmetical properties as ↙N,+,↑⊤ (which is a totally ordered
Archimedean commutative semiring).

Now, equivalence classes of fn are elements of S /F . They play a role very similar to the ∀-numerosity
function, num, but with the co-finite filter, rather than a free (and selective) ultrafilter. Therefore, we will call
this the c-numerosity, where the ‘c’ stands for co-finite as well as for constructive:

⇐S △ P(N), c-num(S) def
= lim

F
fn(S)

def
= [ f (S)]F △ S /F .

Another precursor to this approach is found in Peano (1910):29 he proposed to associate with each sequence
an ‘end’ value (‘fine’ in Italian), which can be understood as a type of limit different from the standard one. In
general, Peano (1910, p. 780) took two sequences to have the same end value if they are equal from a certain
index onward. For a sequence that is constant eventually, its end value is defined to be equal to that constant.
(Hence, all real values are among the ends.) For sequences such as an = 1/n, however, Peano argued that
their ends are actual infinitesimals and, for sequences such as an = n, actual infinities. He defined the sum and
product of end values as the end value of the sum or product of the corresponding sequences. Peano (1910)
did not use his construction to discuss set sizes, but applying it to sequences of the form fn(S) yields results
equivalent to those of Trlifajová (2024).30

Observe that c-numerosities also provide a model for the simplified axioms for ∀-numerosities that we
presented in section 2.4, provided that we drop the requirement from the preamble that N is totally ordered.

27 The potential of developing non-standard analysis using the constructive co-finite filter instead of free ultrafilters has also been considered,
for instance, by Palmgren (1998).

28 See Trlifajová (2024, p. 112; emphasis added): “The codomain of + is the set of nondecreasing sequences of natural numbers modulo the
Fréchet filter which is just partially and not linearly ordered.”

29 I am grateful to a referee for providing me with a copy of this source.
30 To my knowledge, Peano’s (1910) paper has not been translated. Bottazzi and Katz (2021, pp. 477–478) described the gist of it, rephrased

in contemporary terms, as the construction of a “partially ordered non-Archimedean ring” consisting of the set of ends of real-valued
sequences “with zero divisors that extend R”.
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This amounts to setting the codomain of the new numerosity function to Nc
def
= S /F . In section section 2.4,

we used a totally ordered hyperfinite set as the codomain, N∀ = {0,1,2, . . . ,∀ ↓2,∀ ↓1,∀}, which results in
the core difference with merely partially ordered c-numerosities covered here.

C-numerosities agree with ∀-numerosities on finite sets. Choosing

c-num(N)
def
= ∀,

the assignments also agree on co-finite sets. In other words, if we restrict Nc to the values assigned to finite and
cofinite sets, that subset is totally ordered. So, what about infinite co-infinite sets? In general, their c-numerosity
(in Nc) cannot be mapped to a unique value in N∀ . Returning to the example of even and odd numbers,
Trlifajová (2024, p. 96) wrote: “While there are one fewer or as many even numbers as odd numbers, their sum
is equal to ∀ .” Adapted to our notation, she obtained:

c-num(E)⇑ c-num(O)⇑ c-num(E)+1;

c-num(O)+ c-num(E) = ∀.

Although E and O are comparable to each other on this approach, neither of these sets is comparable to the
infinite co-infinite set S that was recursively defined in section 2.3.2. This example shows that c-numerosities
are only partially ordered. Before we elaborate on this example, it is instructive to examine the limit operations
underlying the various approaches.

3.1. Comparing the limit operations

Any limit operation on sequences requires an equivalence relation that consists of two aspects: a notion of
tolerance and a notion of qualified index sets, given by a filter.31 For the standard limit operation on sequences,
limn↘!, the qualified index sets are those with a sufficiently large index and the tolerance is given by arbitrarily
small differences along those indices (e.g., |an ↓an↓1|< 1/n ‘eventually’, i.e., for all n > N for some N). In
this case, the qualified index sets are given by the co-finite sets in N. The family of such sets forms a filter: the
Fréchet filter, F , on N.

A non-Archimedean limit operation, such as the ∀-limit, differs from the standard limit on both accounts:
the qualified index sets are given by a different type of filter, a free ultrafilter on N (on which additional
conditions may be imposed), and the tolerance is given by exact equality (zero tolerance).

This presentation suggests two additional types of limit operations: one that combines a free ultrafilter with
arbitrarily small differences, which was the generalised ultrafilter limit we used to extend the natural density to
P(N) in section 2.3.3, and another one that combines the Fréchet filter with zero tolerance, which was limF

introduced in section 3.

Hence, natural density, generalised density, ∀-numerosity, and c-numerosity can all be understood as a type
of limit operation applied to fn(S) or fn(S)/n: Table 2 gives an overview.32

Table 2. Different formalisms in terms of the type of limit operation (rows) and sequence (columns).

tolerance filter fn fn/n

< .(n) F standard limit finite cardinality natural density
U∀ generalised limit or ! generalised density

= 0
F F -limit c-numerosity c-density
U∀ ∀-limit ∀-numerosity ∀-density

We could also introduce mirror cardinalities by considering fn(N\S) as well. Moreover, observe that finite
and co-finite sets give rise to sequences that are extremely well-behaved in the standard limit. As remarked in

31 For a helpful overview, see Tao (2017). For a comparison that focuses on the difference between the standard limit and the ∀-limit, see
Wenmackers (2019, §6.1).

32 Recall from section 2.3 that the standard limit of fn(S) is defined for all sets S, even when that of fn(S)/n is not.

191



Sylvia Wenmackers

footnote 10, the natural density of a set can be regarded as the Césaro limit of its characteristic function. But
for any finite set, F , limn↘! (n(F) = 0 and limn↘! (n(N\F) = 1, so the additional averaging provided by the
Césaro limit is not needed to get convergence in this case.

Table 2 helps us to understand the relations of fine-grainedness between the measures, as well as the source
of partial underdetermination present in some of them. The F -limit of sequences is more fine-grained than
the standard limit, because it requires exact equality of terms rather than equality up to an arbitrarily small
difference (while using the same notion of eventuality); and it is more coarse-grained than the ∀-limit because
it uses a smaller filter (while using the same notion of equivalence). In Figure 3, we depicted the partial order
on the formalisms induced by their fine-grainedness.

Both the standard limit and the F -limit are constructive, the other two are not. Hence, natural density and
c-numerosity are free of arbitrary structure introduced by intangibles, whereas both generalised density and
∀-numerosity show signs of them.

3.2. Another look at set S

Now that we have a better grasp of the connection between the different formalisms via the underlying limit
operations, let us illustrate it with the example the set S (as defined in section 2.3.2).

While the standard limit of fn(S) is well-defined (+!), that of fn(S)/n is not. In other words, the natural
density of S is undefined. As we discussed in section 2.3.2, the reason is that fn(S)/n has different subsequences,
each with a different limit (ranging from 0 to 1). The natural density is expressed by real numbers, which are
totally ordered, and the measure does not depend on arbitrary structure, but this is only possible by excluding
sets like S from its domain.

A generalised density does assign a limit-value to fn(S)/n, equal to that of some arbitrary but fixed
subsequence. So, this measure is total on P(N) and assigns values from a totally ordered range, but with a
partially arbitrary character.

Likewise, as we have seen in section 2.4.2, the ∀-numerosity of S, defined as the ∀-limit of fn(S), can
be any of a wide range of infinite numbers (depending on which subsequence is selected by the underlying
ultrafilter). The fact that all admissible ∀-numerosities are infinite corresponds with the divergence of the
standard limit. The fact that they differ by more than a finite amount reflects the lack of a unique natural density.
In particular, the ∀-limit of fn(S)/n varies from an infinitesimal less than 1/

∞
∀ (with standard part 0) to more

than 1↓1/
∞

∀ , which is infinitesimally close to 1 (i.e., has standard part 1). These two assignments correspond
to the two subsequences we considered before to argue that fn(S)/n has subsequences with limits of 0 and 1.
So, ∀-numerosity is similar to general density in terms of totality, arbitrary, and lack of uniqueness. Moreover,
its range is non-Archimedean to allow for the Euclidean principle.

Finally, the c-numerosity of S is comparable to some sets (for instance, it is larger than any finite set and
also larger than the set of cubes), but not to others (such as the set of squares, E, O—or any of the Ma,i, for that
matter). This measure is also non-Archimedean, to allow for the Euclidean principle. This time, the measure is
unique and total on P(N) but now the order is partial, again to allow for sets like S.

Recall that, if one accepts infinite co-infinite sets as unproblematic in general, there is nothing intrinsically
pathological or unknowable about S. It is not an intangible itself; its characteristic function just keeps alternating
over stretches that grow at a super-exponential rate. As a result, its growth rate ( fn(S)) does not stabilize relative
to that of initial fragments of N (of length n).

Most of the formalisms that we reviewed are dealing with this fact by leaving something undetermined:
either by not assigning a value to some sets at all or by not totally ordering the values (natural density and
c-numerosity, respectively), or by assigning them totally ordered values in some globally consistent but arbitrary
way (general density and ∀-numerosity). In all these cases, something has to go: totality (whether totality on
the domain or total ordering of the co-domain) or uniqueness of assignment, respectively. The cardinality-based
approaches do not face this dilemma, but they also leave unexpressed much non-arbitrary structure that the
other theories agree upon regarding the sizes of infinite co-finite sets.
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3.3. The relative strength of c-numerosity

Since the c-numerosity approach does not invoke intangibles, it escapes the criticism that Parker (2013) directed
at total Euclidean theories (reviewed in section 2.4.3). However, Parker (2013, §9) also anticipated Euclidean
theories with “partial size assignments”. While total theories were too arbitrary on his view, he expected partial
theories to be too weak and narrow: unable to decide the relative sizes of some simple sets. In particular, Parker
(2013, p. 609) expected that such theories would not make any comparison between the size of the sets of
even and odd numbers, E and O, ranking them as “neither smaller [. . . ], nor larger, nor equal”. However, we
have seen that c-numerosity is a partial Euclidean theory that does exclude that O could be larger than E. It
constrains the order as follows: c-num(E)⇑ c-num(O)⇑ c-num(E)+1 with c-num(E)+ c-num(O) = ∀ . So,
c-numerosity is much less weak than anticipated by the criticism of Parker (2013, §9). (See also the response in
Trlifajová, 2024, §6.)

The axioms of numerosity theory merely specify a partial order. For numerosity values to be totally
ordered, this has to be postulated separately, as Benci and Di Nasso (2003) did. Doing so comes at the cost of
introducing arbitrary and unknowable structure due to an intangible. C-numerosity theory, in contrast, honours
the Euclidean principle and the other axioms of numerosity theory, while remaining fully constructive. It is
as fine-grained as possible and as coarse-grained as needed. So, c-numerosity seems to hit the right balance
between expressiveness and leaving out comparisons that are not stable. This leads to a merely partially ordered
notion of size, which means that its assignments are further removed from the usual notion of number. Moreover,
the inequalities of c-numerosity assignments exactly trace the hull of all possible ∀-numerosity assignments.
We explore this departure from our familiar size concept and the relation between the two theories in the next
section.

3.4. Epistemicism or supervaluation

Taking our inspiration from formal methods for dealing with vagueness, we may consider a particular ∀-
numerosity function (generated by a specific free ultrafilter) as a ‘precisification’ of c-numerosity.33 Likewise,
we may consider each generalised density as a precisifation of the natural density. We could also say that a total
extension of c-numerosity (and natural density) is multiply realizable.

In analogy to epistemicists about vagueness (such as Williamson, 1994), we might assume that there is
one true Euclidean notion of size—given by one correct precisification, but which is unknowable to us. In
this case, it is not the Euclidean notion of size itself but our knowledge of it that is incomplete. In principle,
such a position should be acceptable to a mathematical realist. On the one hand, the fact that ∀-numerosity
functions—like the free ultrafilters that generate them—are intangible is congenial to this interpretation: the
unknowability is guaranteed. Yet, it seems hard to defend that any specific one could be privileged, since these
objects do indeed represent much arbitrary structure.

Alternatively, we may view the Euclidean notion of size embodied in the axioms reviewed at the start of
section 2.4 as partially underdetermined. Then, like supervaluationists, we may treat all precisifications on
a par and consider the set of such precisifications. In the study of vagueness, the notions of ‘supertrue’ and
‘superfalse’ are defined as truth values that agree on the set of all precisifications. Analogously, here, we may
consider subsets of N that have a ‘super-∀-numerosity’ as those that have the same ∀-numerosity on each
precisification:34 these are exactly the ones that have a unique c-numerosity, i.e., just the finite and co-finite
sets.

One complication, mentioned before, is that we may define the ∀-numerosity function to assign 1/a to
each subset Ma,0 etc.; so, we have to evaluate the issue relative to such potential additional constraints at hand.
Observe that, although Trlifajová (2024) did not suggest this (and, in fact, argued against doing so), additional
constraints may be added to partially ordered numerosities, too. (After all, adding, e.g., E to F and extending
it such that it forms a filter, does not turn it into a free ultrafilter.)

33 Both ∀- and c-numerosity quotient a filter out of the space of non-decreasing sequences: the Fréchet filter used in c-numerosity is contained
in any free ultrafilter used in ∀-numerosity, so the former assignments are compatible with the former, but not vice versa.

34 Equivalently, we may say that it is supertrue that a certain set has a particular ∀-numerosity. This suggestion has been made in the context
of NAP functions, by Benci et al. (2018, p. 544).
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All infinite co-infinite sets fail to have a super-∀-numerosity. We may wish to distinguish cases where
the ∀-numerosities of different precisifications only differ by a finite amount from those where they differ
by a larger margin; the former are the sets with a natural density. Mutatis mutandis, we may also consider
a dual approach with subvaluations: a sub-∀-numerosity is an ∀-numerosity that is assigned by at least one
precisification.

Admittedly, the terms ‘underdetermination’, ‘precisification’, and ‘subvaluation’ all take total measures
with totally ordered values as the standard. This is indeed a standard in the sense that earlier theories that assign
sizes to subsets of N adhere to it. Moreover, according to Forti (2022), general comparability is an essential
property of the classical notion of magnitude or size.

Forti (2022) motivated the assumption that Euclidean set sizes are totally ordered as follows: “Following
the ancient praxis of comparing magnitudes of homogeneous objects, a very general notion of size of sets,
whose essential property is general comparability of sizes, can be given through a total preordering ℵ of sets
according to their sizes [. . . ]” Here, ‘homogeneous’ means that the objects are of the same kind, with the same
dimensions, though this condition was relaxed by later mathematicians. For instance, the cardinality of N2 can
be compared to that of N (and they are equal). Although this concerns a preorder (or quasiorder: i.e., a binary
relation that is reflexive and transitive), rather than an order (which is additionally required to be antisymmetric),
it is a total preorder, on which any two elements are comparable (as Forti, 2022, specified in his footnote 3).

Nevertheless, once this classical assumption has been made explicit, it becomes possible to question and
perhaps abandon it. A possible lesson that we could draw from studying numerosity theories is exactly that
Euclidean set sizes are merely partially ordered. Our review shows that the notion of size has already undergone
drastic changes; this may be the next, comparatively conservative, extension of it. Reluctance to accept the
possibility of a merely partially ordered notion of set size may also resemble the epistemicist approach to
vagueness: by positing crisp thresholds, it replaces vagueness by unknowable and non-constructive elements
(cf. Sorensen, 2022, §3). In both cases, this trade is possible, but by no means necessary.

3.5. A final look at the size of E versus O

It may be instructive to return to our running example of E versus O one final time. Let us consider their even
and numbered subsequences of fn/n:

fn△E(E) = 1/2; fn△E(O) = 1/2;

fn△O(E) = 1/2↓1/(2n); fn△O(O) = 1/2+1/(2n).

These sequences have the same standard limit point, 1/2; hence, the natural density of E and O is equal. But
fn△O(E)< fn△O(O) for all n, so fn(E)/n has a strictly smaller ‘∀-limit point’ than fn(O)/n if and only if O is
in the ultrafilter. Hence, the ∀-density of E may be smaller than that of O, but since both E and O have natural
density 1/2, it seems arbitrary which one is in the ultrafilter to decide this matter. We might as well choose
neither, as in the Fréchet filter, which yields the inequalities of the c-density. Since the natural density for E and
O is defined, the generalised limit must equal this value, too.

Although the generalised limit involves a free ultrafilter, and thus the result may in general depend on
whether or not O is included, the difference is glossed over in this case due to the tolerance built into this limit
operation. Only for sets S such that fn(S)/n has multiple standard limit points, which thus lack a natural density,
the tolerance built into the generalised limit is not enough to absorb these differences.

Using the terminology of section 3.4, we may say that 1/2 and 1/2(1↓ 1/(2∀ ↓ 1)) are both sub-∀-
numerosities of E while the set lacks a super-∀-numerosity. Put differently, it is subtrue that the set of even
numbers has the same numerosity as the set of odd numbers, but this equality is not supertrue.

We have to admit that debating the ∀-numerosity values of infinite co-infinite sets may skirt dangerously
close to discussing how many angels can dance on the head of a pin. Mancosu (2009) quoted Descartes
(Principes de la Philosophie, I.26) on the issue at hand: “We will not bother to reply to those who ask if the
infinite number is even or odd or similar things since it is only those who deem that their mind is infinite who
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seem to have to tackle such difficulties.” Using sophisticated tools, it seems that the answer ‘it depends’ can be
refined to ‘it depends on which ultrafilter you use to investigate the matter,’ but these answers may reveal more
about the tools that were used (intangibles from P((P(N))) than about the objects under study (elements of
P(N)) themselves. In contrast, c-numerosity refuses in a Cartesian way to answer whether the size of N is
even or odd, or any other questions that go beyond the restrictions implied by its axioms.

4. Conclusion and outlook

We have reviewed six formalisms for assigning sizes to subsets of N: cardinality, infinite lottery logic with
mirror cardinalities, natural density, generalised density, ∀-numerosity and c-numerosity. By evaluating these
formalisms together and by studying the connections between them, we gained a better understanding of the
essential trade-offs between different approaches to assigning sizes to subsets of N.

We paid special attention to ∀-numerosity and c-numerosity, which both respect the Euclidean principle,
while providing a measure that is total on N and fine-graining the natural density. ∀-Numerosity is the most
fine-grained of the two and yields a total order of its values. However, this comes at the cost of arbitrary
structure associated with intangibles. C-numerosity does not rely on intangibles, and hence does not introduce
arbitrary structure in its notion of size. As such, it overcomes earlier criticisms raised against Euclidean theories
of size (in particular from Parker, 2013). However, it does require us to drop another long-held assumption about
set sizes, i.e., that they are totally ordered. This demand comes on top of dropping both the Humean principle
and the assumption that sizes are Archimedean quantities, which all Euclidean theories of size applicable to
infinite sets have to give up.

In other words, if we start from the classical dilemma between the Humean and the Euclidean principle
(previously discussed by Mancosu, 2009) and walk the Euclidean path, we encounter another fork down the
road. The additional dilemma asks us to choose between accepting the consequences of invoking an intangible
(∀-numerosity) or dropping the total order of sizes (c-numerosity). Rather than arguing for either of the options,
I suggest that ∀-numerosity and c-numerosity are best viewed as two sides of the same coin: the inequalities of
c-numerosity trace the intervals in which all possible ∀-numerosity values lie. Together, they show us that there
is an inherent limitation on how closely a Euclidean notion of size, applicable to all subsets of N, can resemble
its counterpart for finite sets.

Density-based approaches, which were intended to measure relative size, escape the first dilemma and
show a third path (retaining neither principle). Still, they similarly face the second dilemma: a choice between
invoking an intangible (generalised density) or dropping totality (natural density).

Moreover, we reconstructed the six theories as different types of limit operations on sequences of partial
sums of the characteristic sequence of a given set, fn(S), or the corresponding density, fn(S)/n. As a result, we
could trace the differences in fine-grainedness of these measures as well as the non-constructive aspects present
in two of them to the underlying limit operation.

Although the overview might suggest that all four combinations of two properties (considering two types
of filters on N and two tolerance principles) have now been fully developed, there is room for exploring new
variants. After all, natural density and c-numerosity are both based on the Fréchet filter with a different tolerance
principle (recall Table 2). The fact that natural density is an Archimedean measure, while c-numerosity is not, is
a direct consequence of the stricter tolerance principle of the latter theory. Yet, they also differ in the way they
give up totality: while natural density gives up totality on the domain, c-numerosity merely gives up totality of
the ordering on the co-domain.

This suggests two new approaches, which have not been developed (as far as I know). First, we could
consider a ‘gappy’ numerosity theory, that only assigns values to subsets of N that have a super-∀-numerosity
(i.e., only to finite and co-finite sets). This would be a constructive theory, weaker than c-numerosity. In fact, it
would be similar to infinite lottery logic, with V! removed by a big gap. Second, and more interestingly, we
could consider a constructive extension of natural density, which is total on P(N), by giving up the total order
on its values. Hence, this new measure cannot take real values, since they form a totally ordered field. Instead,
it takes values on a merely partially ordered field. However, this means that this field cannot be complete either
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(DeMarr, 1967), so we would have to give up the least upper bound property or one of the field axioms. To the
best of my knowledge, this avenue has not been explored as an alternative for measuring set size.

Finally, there is room for Euclidean theories that do not aim for correspondence with natural density.
Dropping the third axiom gives rise to a total, non-Archimedean, partially ordered measure, which does not
compare infinite co-infinite sets unless they are related by the subset relation. It is stronger than infinite lottery
logic but weaker than c-numerosity.
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Figure 3. Partial order of the distinctions in set sizes made by various formalisms: more fine-grained towards the
top. The dashed line indicates that intangibles occur above it.
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