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Abstract. The notion introduced by Ohanian that spin is a wave property is implement-
ed, both in Dirac and in Schrödinger quantum mechanics. We find that half-integer 
spin is the consequence of azimuthal dependence in two of the four spinor compo-
nents, relativistically and non-relativistically. In both cases the spinor components are 
free particle wavepackets; the total wavefunction is an eigenstate of the total angular 
momentum in the direction of net particle motion. In the non-relativistic case we 
make use of the Lévy-Leblond result that four coupled non-relativistic wave equations, 
equivalent to the Pauli-Schrödinger equation, represent particles of half-integer spin, 
with g-factor 2. An example of an exact Gaussian solution of the non-relativistic equa-
tions is illustrated.
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1. INTRODUCTION

In his article “What is spin” [1], Ohanian argues that ‘spin may be 
regarded as an angular momentum generated by a circulating flow of energy 
in the wave field of the electron’, and that ‘the spin of the electron has a close 
classical analog: It is an angular momentum of exactly the same kind as car-
ried by the wave field of a circularly polarized electromagnetic wave.’ Oha-
nian credits Belifante [2] for establishing that ‘this picture of spin is valid not 
only for electrons but also for photons, vector mesons, and gravitons.’ 

Dirac [3,4] regarded his four-by four matrices as ‘new dynamical vari-
ables…describing some internal motion of the electron, which for most 
purposes may be taken to be the spin of the electron postulated in previous 
theories’ [4]. This is how the concept of spin is presented in most texts, as 
intrinsically relativistic, a mysterious internal angular momentum for which 
there is no classical analogue. For example, in his “Introduction to quan-
tum mechanics” [5] Griffiths states ‘…the electron also carries another form 
of angular momentum, which has nothing to do with motion in space (and 
which is not, therefore, described by any function of the position variables 
r,θ,ϕ) but which is somewhat analogous to classical spin…’.  

We shall construct, for a general relativistic or non-relativistic wavepack-
et, an eigenstate of the component of total angular momentum in the net 

http://www.fupress.com/substantia
http://www.fupress.com/substantia
mailto:john.lekner@vuw.ac.nz


8 John Lekner

direction of propagation, with eigenvalue ℏ/2. Such 
eigenstates are four-component spinors, of which two 
components have eiϕ azimuthal dependence. In these 
formulations the phenomenon of spin is incorporated 
into ordinary space-time: the twist is in the azimuthal 
dependence of two of the wavefunctions. To the ques-
tion: what does a spinning electron look like? we answer, 
in brief, that spin in the spinor formulation, relativistic 
or nonrelativistic, resides in the azimuthal dependence 
of two of the spinor components. This contrasts with the 
usual spin-space formulation, and the decoupling of spin 
from space-time.

In Sections 2 we construct general relativistic 
wavepackets with spin half; these are four-component 
spinors. An important aspect of spin is that it is not 
purely a relativistic effect: Levy-Léblond [6] has proved 
that the Galileo group has irreducible representations 
with non-zero spin. A Reviewer has pointed out that 
Galindo and del Rio [7] show that Galilean fermions 
are possible, with a four-component spinor lineariza-
tion of the non-relativistic wave equation and a cor-
rect (to lowest order) g-factor. The Galindo and del Rio 
paper anticipates some of the work of Lévy-Leblond [6] 
and Gould [14]. 

Levy-Léblond’s four-component nonrelativistic 
spinors are implemented in Section 3, to construct gen-
eral angular momentum eigenstates with spin half. An 
explicit example of a non-relativistic spinning wavepack-
et is illustrated in Section 4. 

2. DIRAC SPINORS

The wavefunction Ψ(r,t) of an electron wavepacket in 
free space is to satisfy the Dirac equation

HΨ(r,t)=iℏ∂tΨ(r,t),    H=cα∙p+βmc2,    p=-iℏ∇ (2.1)

The 4×4 matrices α,β are written in terms of the 
Pauli spin matrices σx,σy,σz and the unit 2×2 matrix I as

 (2.2)

The wave equation (2.1) thus consists of four coupled 
first-order partial differential equations. 

We consider wavepacket motion, predominantly 
along the z direction. In cylindrical polar coordinates 

 is the distance from the z-axis, ϕ is the 
azimuthal angle, and 

 (2.3)

The four time-dependent free-space equations for 
the spinor Ψ read, with mc/ℏ=K,

(∂ct+iK)ψ1+e-iϕ(∂ρ-iρ-1∂ϕ)ψ4+∂zψ3=0 (2.4a)

(∂ct+iK)ψ2+eiϕ(∂ρ+iρ-1∂ϕ)ψ3-∂zψ4=0 (2.4b)

(∂ct-iK)ψ3+e-iϕ(∂ρ-iρ-1∂ϕ)ψ2+∂zψ1=0 (2.4c)

(∂ct-iK)ψ4+eiϕ(∂ρ+iρ-1∂ϕ)ψ1-∂zψ2=0 (2.4d)

When the spinor components ψj are independent of 
ϕ, solutions exist only for the ψj also independent of ρ. 
These are the well-known plane wave solutions ψj=ajei(qz-

ωt), where the wavenumber q and the energy ℏω are con-
strained by (ω/c)2=K2+q2. To attain localized wavepacket 
solutions, we need to consider azimuthal dependence. 

The angular momentum operator L=r×p does not 
commute with the Hamiltonian, but the combination 
J=L+ Σ does, where Σ= . The z component of the 
total angular momentum operator is

 (2.5)

Let the spinor components ψj have azimuthal 
dependence eiνjϕ; the Jz eigenstate equations for ψ1,ψ2 read 

 (2.6)

This will be an eigenstate of Jz if ν1+1/2=ν2-1/2,    
ν2-ν1=1, with eigenvalue (ν1+1/2)ℏ. Similarly for ψ3,ψ4 we 
shall have an eigenstate of Jz if ν3+1/2=ν4-1/2,   ν4-ν3=1, 
with eigenvalue (ν3+1/2)ℏ. Hence the choice ν1,3=0,   ν2,4=1 
makes Ψ an eigenstate of Jz with eigenvalue ℏ/2. (The 
choice ν1,3=-1,   ν2,4=0 makes Ψ an eigenstate of Jz with 
eigenvalue -ℏ/2.) It is necessary to have integer νj, since 
the spinor components are in real space-time (not in some 
abstract spin space) so we must have ψj(ϕ+2π)=ψj(ϕ). The 
eigenvalues of Jz are thus ±ℏ/2,±3ℏ/2 etc. 

With spinor components ψ1,3=f1,3(ρ,z,t),ψ2,4=eiϕf2,4 
(ρ,z,t), the azimuthal dependence cancels out, and the 
equations (2.4) read

(∂ct+iK)f1+(∂ρ+ρ-1)f4+∂zf3=0 (2.7a)
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(∂ct+iK)f2+ ∂ρf3-∂zf4=0 (2.7b)

(∂ct-iK)f3+(∂ρ+ρ-1)f2+∂zf1=0 (2.7c)

(∂ct-iK)f4+ ∂ρf1-∂zf2=0 (2.7d)

The combination (∂ct-iK)(2.7a)-(∂ρ+ρ-1)(2.7d)-∂z(2.7c) 
gives 

(∂2
ct+K2-∂2

ρ-ρ-1∂ρ-∂2
z)f1(ρ,z,t)=0 (2.8)

Likewise (∂ct-iK)(2.7b)-∂ρ(2.7c)+∂z(2.7d) gives us

(∂2
ct+K2-∂2

ρ-ρ-1∂ρ+ρ-2-∂2
z)f2(ρ,z,t)=0 (2.9)

The equations (2.8) and (2.9) are solved respectively 
by

ei(qz-ωt)J0(kρ),   ei(qz-ωt)J1(kρ),   k2+q2+K2=(ω/c)2 (2.10)

The function f3 satisfies the same equation as f1, and 
f4 satisfies the same equation as f2. The transverse and 
longitudinal wavenumbers k and q are real, and ω≥cK, 
or ℏω≥mc2. The wavenumbers k≥0 and q≥0 are related to 
K=mc/ℏ and ω by k2+q2+K2=(ω/c)2; the maximum value 
of both k and q is Q= . Hence the general 
form of the spinor eigenstate of Jz with eigenvalue ℏ/2 is

0
ψ1,3(ρ,z,t)= dω dk A1,3(ω,k)ei(qz-ωt)J0(kρ) (2.11)

ψ2,4(ρ,ϕ,z,t)=eiϕ dω dk A2,4(ω,k)ei(qz-ωt)J1(kρ) (2.12)

These are analogues of the acoustic and electromag-
netic wavepackets, for which simple closed forms exist 
([8], Section 2.6). The author has not found amplitudes 
Aj(ω,k) which lead to closed forms for the relativistic 
spinor components. Bessel beam wavefunctions (not 
localized enough transversely to have finite energy per 
unit length) have been studied by Bliokh et al. [9]. 

3. NON-RELATIVISTIC SPINORS 

Lévy-Leblond [6] has shown that four coupled non-
relativistic wave equations, equivalent to the Schröding-
er equation, are spinors representing spin 1/2 particles, 
with g-factor 2 (see also Greiner [10]). We shall again 
construct a general eigenstate of Jz with eigenvalue ℏ/2: 
it is a four-component spinor. It is based on localized 
wavepacket solutions of the time-dependent Schrödinger 
equation, with no restriction on the wavepacket param-
eters. In Section 4 we shall explore some properties of 

exact Gaussian solutions of the equations satisfied by the 
spinor components. 

Let Ψ(r,t) be the four-component spinor, Ψ= ,  
with ψ,χ each having two components. The Lévy-Leb-
lond non-relativistic coupled spinor equations are, with 
E=iℏ∂t, p=-iℏ∇, 

Eψ+σ∙pχ=0,   σ∙pψ+2mχ=0 (3.1)

σ are, as before, the Pauli spin matrices defined in (2.2). 
Note that the ψ,χ in (3.1) have dimension differing 

by a speed; we could make them the same by inserting 
factors e2/ℏ or c in front of χ, but choose not to do so, in 
order keep the Lévy-Leblond formulation. Note also that 
the lower spinor component χ can be eliminated, giv-
ing the Pauli-Schrödinger equation Eψ= (σ∙p)2ψ, with 
Hamiltonian H= (σ∙p)2. 

For comparison, the Dirac equations (2.1), with ψu=
,   ψv= , may be written in the form

(E-mc2)ψu=cσ∙pψv,   cσ∙pψu=(E+mc2)ψv (3.2)

The non-relativistic limit is obtained from (3.2) by 
setting ψj(r,t)=e-imc2t/ℏ)Fj(r,t). Then Eψj=iℏ∂t ψj=e
(mc2+iℏ∂t)Fj, and the equations (3.2) have the dominant 
terms

EFu=cσ∙pFv,   cσ∙pFu=2mc2Fv (3.3)

These are the same as (3.1) if we identify Fu with ψ, 
and cFu with -χ. 

Returning to solutions of the Lévy-Leblond equa-
tions (3.10), we write ψ= ,   χ= , and consider 
wavepacket motion, predominantly along the  direc-
tion, but of course converging onto or diverging from 
the focal region, which we shall centre at the space-time 
origin.  Again in cylindrical polar coordinates ρ,ϕ, and 
with use of (2.3), the four time-dependent free-space 
equations (3.1) for the spinor Ψ read 

-∂tψ1+e-iϕ(∂ρ-iρ-1∂ϕ)ψ4+∂zψ3=0 (3.4a)

-∂tψ2+eiϕ(∂ρ-iρ-1∂ϕ)ψ3+∂zψ4=0 (3.4b)

ψ3+e-iϕ(∂ρ-iρ-1∂ϕ)ψ2+∂zψ1=0 (3.4c)

ψ4+eiϕ(∂ρ-iρ-1∂ϕ)ψ1+∂zψ2=0 (3.4d)

When the spinor components ψj are independent of 
ϕ, solutions exist only for the ψj also independent of ρ. 
These are the plane wave solutions ψj=ajei(qz-ωt), where 
the wavenumber k and the energy ℏω are constrained by 
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ℏω=ℏ2q2/2m. To attain localized wavepacket solutions, 
we need to consider azimuthal dependence.

The angular momentum operator L=r×p does not 
commute with the free-particle Hamiltonian H= (σ∙p)2, 
but the combination J=L+ Σ,  Σ=  does, as may be 
verified from the commutators σ×σ=2iσ,  [L,σ∙p]=iℏσ×p,  
[σ,σ∙p]=-2iσ×p. J satisfies the angular momentum com-
mutation relations J×J=iℏJ. The z component of the total 
angular momentum operator is again

Jz=Lz+ =-iℏ diag(1,1,1,1)∂ϕ+  diag(1,-1,1,-1) (3.5)

We shall now construct the non-relativistic spinor 
eigenstates of Jz. 

Let the spinor components ψj have azimuthal 
dependence eiνjϕ; the Jz eigenstate equations for ψ1,ψ2 are 
the same as in (2.6): 

 (3.6)

The equations (3.5) and (3.6) have the same form as 
in the relativistic case, equations (2.5) and (2.6). Hence 
as before the choice ν1,3=0,  ν2,4=1 makes Ψ an eigenstate 
of Jz with eigenvalue ℏ/2 and the choice ν1,3=-1,  ν2,4=0 
makes Ψ an eigenstate of Jz with eigenvalue -ℏ/2. With 
spinor components ψ1,3=f1,3(ρ,z,t),  ψ2,4=eiϕf2,4(ρ,z,t), the 
equations (3.4) read

-∂tf1+(∂ρ+ρ-1)f4+∂zf3=0 (3.7a)

-∂tf2+∂ρf3-∂zf4=0 (3.7b)

f3+(∂ρ+ρ-1)f2+∂zf1=0 (3.7c)

f4+∂ρf1-∂zf2=0 (3.7d)

The last two equations give f3,4 in terms of deriv-
atives of f1,2, which in turn satisfy the free-space 
Schrödinger equation for azimuthal orbital quantum 
number 0 and 1:

(iℏ∂t+ [∂2
ρ+ρ-1∂ρ+∂2

z])f1(ρ,z,t)=0 (3.8)

(iℏ∂t+ [∂2
ρ+ρ-1∂ρ-ρ-2+∂2

z])f2(ρ,z,t)=0 (3.9)

Equations(3.8) and (3.9) are satisfied by Jn(κρ)einϕeiqz 

e-iℏk2t/2m, with n=0,1 respectively, and κ2+q2=k2; Jn are the 
regular Bessel functions of order n. Hence spinor com-
ponents of forward-propagating wavepackets have the 
form

einϕ dk e-iℏk2t/2m dq Fn(k,q)eiqzJn(κρ)   (κ2+q2=k2) (3.10)

The amplitudes Fn(k,q) are complex functions, sub-
ject only to the existence of the norm and of the expec-
tation values of energy and momentum of the wave 
packet.  A similar expression gives the wavefunctions of 
scalar and of electromagnetic pulses [8].

To sum up this Section: a general non-relativistic 
eigenstate of Jz with eigenvalue ℏ/2 has been found: it is 
a four-component spinor, of which two components have 
‘twist’, with eiϕ azimuthal dependence. In this formula-
tion the spin resides in the azimuthal dependence of two 
of the wavefunctions, in real space-time.  

Any spinor based on localized wavepacket solutions 
of the time-dependent Schrödinger equation, construct-
ed as above, will be an eigenstate of Jz with eigenvalue 
ℏ/2. The next Section gives an explicit example. Station-
ary states (energy eigenstates) of the hydrogen atom are 
briefly discussed in Appendix A. 

4. SPINNING GAUSSIAN WAVEPACKETS

A free-particle wavepacket solution of Schrödinger’s 
time-dependent equation dates back to the early days of 
quantum mechanics (Kennard [11], Darwin [12]).  This 
is the Gaussian wavepacket. It is a compact exact solu-
tion, but with a physical flaw, to be discussed below. For 
propagation along the  axis, and with cylindrical sym-
metry, it has the form

g(ρ,z,t)=b3/2[b+ivt]-3/2exp{iQ(z- )- } (4.1)

The Gaussian wavepacket (4.1) is normalized so that 
g*g=1 at the space-time origin. In (4.1) the spatial origin 
ρ=0, z=0 is the position of maximal |g| a time t=0, Q is 
the dominant z component wavenumber, m is the mass 
of the particle, u=ℏQ/m is the group speed, and v=ℏ ⁄2mb 
is the spreading speed. The length b gives the spread of 
the wavepacket at t=0. Earlier and later the longitudinal 
and lateral spread of the packet is greater, proportional 
to [b2+(vt)2]1/2. Thus ρ=0, z=0 can be thought of as the 
centre of the focal region of the wavepacket, occupied 
at t=0. As t increases towards zero the wavepacket con-
verges to its most compact form, reaches it at t=0, and 
then expands as it continues to propagate in the positive 
z direction. The packet used by Ohanian [1] is equivalent 
to (4.1) evaluated at Q=0 (zero momentum expectation 
value) and t=0.

For the Gaussian wavepacket g the momentum oper-
ator has the expectation values (see for example [13])
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‹pz›=-iℏ‹∂z›=ℏQ,   ‹px›=0=‹py›,   ‹p2›= 

=‹-ℏ2∇2›=ℏ2
 (4.2)

The wavepacket g is neither an energy nor a momen-
tum eigenstate, but it is an eigenstate of the orbital 
angular momentum operator Lz=xpy-ypx=-iℏ(x∂y-y∂x)= 
-iℏ∂ϕ. The orbital angular momentum eigenvalue is 
zero, because g is independent of the azimuthal angle 
ϕ. Eigenstates of the z component of orbital angular 
momentum, with eigenvalues which are integer multi-
ples of ℏ, may be generated from any such g by differen-
tiation, as shown in [13]. 

The probability density of the scalar wavepacket is 
g*g: the probability that the particle described by g(r,t) 
is within the volume element d3r is d3r g*g. The norm 
N=∫d3r g*g (integration over all of space) is independent 
of time. The probability density flux, or the probability 
current density vector S, satisfies the conservation law 

∇.S+∂t(g*g)=0,   S(r,t)= Im(g*∇g) (4.3)

What are the corresponding relations for spinors? 
The conservation law is now (Lévy-Leblond [6], Section 
IIIe, and Appendix B)

∇.S+∂t(ψ+ψ)=0 (4.4)

S(r,t)=-ψ+σχ-χ+σψ= Im(ψ+ ∇ψ)+ ∇×(ψ+σψ) (4.5)

The first term in the second expression for S corre-
sponds to the Schrödinger current in (4.3), the second is 
a spin current. Ohanian [1] derived the relativistic ana-
logue of last term in (4.5). He showed that it leads, in 
the nonrelativistic limit, to an azimuthal current. In his 
words, “such a circulating flow of energy will give rise to 
an angular momentum. This angular momentum is the 
spin of the electron.” 

We shall calculate the radial, azimuthal, and longi-
tudinal components of the probability current density, 
Sρ,Sϕ,Sz in the simplest case, in which the spinor com-
ponents are ψ1=f1(ρ,z,t), ψ2=0, ψ3~∂zψ1, ψ4~eiϕ∂ρψ1. From 
Appendix B, the components of the probability current 
density are given by

Sρ=Im{f*
1∂ρf1},   Sϕ=- ∂ρ|f1|2,   Sz=Im{f*

1∂zf1} (4.6)

With f1(ρ,z,t)=g(ρ,z,t) the probability density and 
current components are given by

g*g=b3[b2+(vt)2] exp  (4.7)

Sρ= g*g,   Sϕ= g*g,   Sz= g*g (4.8)

The components Sρ,Sz are the same for the scalar 
wavepacket, the azimuthal component Sϕ is zero in the 
scalar case based on g. The conservation law (4.4) is sat-
isfied. 

A problem with the Gaussian solution is appar-
ent in Sz: for positive z and negative t (or vice versa) the 
longitudinal component is negative if the magnitude of 
vtz exceeds that of 2Qb3. The probability current then 
flows backward. Far from the focal region (here centred 
on the space-time origin) there should be no backward 
flow for free-space propagation. Note that the Gaussian 
wavepacket cannot be put in the purely forward-propa-
gating form (3.10).

Nevertheless, the Gaussian packets demonstrate 
the azimuthal current component which arises in the 
spinor formulation. Figures 1 and 2 show the current 
components in the focal plane, and at a transverse 
plane cutting through the wavepacket center at a later 
time. The azimuthal part  gives the electron wavepacket 
its spin.

Figure 1. Focal plane section through a Gaussian spinor wavepack-
et, at t=0. The contours give the probability density, the arrows the 
transverse current density (the longitudinal current is not shown). 
The direction of motion is out of the page. The transverse current 
density is purely azimuthal at this instant.
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5. SUMMARY

The spinning electron may be described by a four-
component spinor, depending on space and time coor-
dinates, in both relativistic and non-relativistic quan-
tum theory. The non-relativistic quantum theory and its 
azimuthal dependence is similar to the relativistic Dirac 
spinor formulation of Section 2. In both cases the spin 
is contained in the azimuthal dependence of wavefunc-
tions in ordinary space-time. Gould [14] used the Ham-
iltonian H= (σ.p)2 to show that the magnetic moment 
follows (correct to lowest order), just as in the Lévy-
Leblond spinor formulation. There is thus an alternative 
formulation to the usual ‘spin degree of freedom’, and 
the total wavefunction being a product of space and spin 
parts, as is done in nonrelativistic quantum theory. Nev-
ertheless, the non-relativistic decoupling of space and 
spin is usually simpler, as is illustrated by the spinor ver-
sion of the Hydrogen atom, Appendix A.
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APPENDIX A. THE HYDROGEN ATOM IN SPINOR 
FORM

The equations (3.1) become, with E now an energy 
eigenvalue, no longer a time derivative,

(E+ )ψ+σ∙pχ=0,   σ∙pψ+2mχ=0 (A.1)

ψ=Eψ   or   [ ∇2-e ]ψ=Eψ (A.2)

Considering the non-degenerate ground state, with 
Jz eigenvalue , ψ1 and ψ2 must satisfy the same equation. 
This is not possible if we choose ψ2 to have azimuthal 
dependence eiϕ, as in Section 3, unless we also take ψ2 
to be zero. The ground state spinor now consists of ψ1, 
the hydrogenic ground state 1S, and ψ2=0, ψ3~∂zψ1, 
ψ4~eiϕ∂ρψ1. Because the Lévy-Leblond probability den-
sity is defined in terms of the first two spinor compo-
nents ψ1,ψ2, and the probability density current can 
be expressed in terms of ψ1,ψ2, the hydrogenic ground 
state is, at least in the probability density and the prob-
ability density current, equivalent to the scalar ground 
state. The azimuthal dependence is hidden in the fourth 
spinor component.

For the first excited states we have a choice of 2S and 
2P. The former is set up as above, the latter with ψ1=0, 
and ψ2 with e±iϕ dependence. Lévy-Leblond [15] and 
Mita [16] discuss the electron probability current of the 
‘stationary’ states.

APPENDIX B. PROBABILITY DENSITY AND FLUX

In the Dirac case (Section 2), Ψ+Ψ is the probabil-
ity density, and S=cΨ+αΨ, with α is defined in (2.2). In 
the nonrelativistic formulation of Lévy-Leblond we 
have a time derivative of ψ but not of χ: iℏ∂tψ+σ∙pχ=0, 
σ∙pψ+2mχ=0, or ∂tψ-σ∙∇χ=0,-iℏσ∙∇ψ+2mχ=0. To keep the 
norm time-independent Lévy-Leblond defines the prob-
ability density in terms of ψ only, as ψ+ψ. The conserva-
tion law is now (Lévy-Leblond [6], Section IIIe)

∇.S+∂t(ψ+ψ)=0 (B.1)

∂t(ψ+ψ)=ψ+(σ∙∇χ)+(∇χ+∙σ)ψ=∇∙(ψ+σχ+χ+σψ) (B.2)

Hence S(r,t)=-(ψ+σχ+χ+σψ). We may express this cur-
rent purely in terms of the top two spinor components ψ, 
since χ= σ∙∇ψ. This gives

S(r,t)= {ψ+σ(σ∙∇ψ)-(σ∙∇ψ)+σψ} (B.3)

On using the commutation relations of the Pau-
li matrices, σ×σ=2iσ, the probability density current 
becomes

S(r,t)= [ψ+∇ψ-(∇ψ+)ψ]+ ∇×(ψ+σψ) (B.4)

The first term in this expression for S corresponds 
to the Schrödinger current in (3.3), the second is a spin 
current, which gives the correct g factor at leading order 
[6]. The spin term is the curl of a vector, and so does not 
contribute to the conservation law (B.1). See also Landau 
and Lifshitz [17] Section 114, and Mita [16] for the spin 
current term.

We shall calculate the radial, azimuthal, and longi-
tudinal components of the probability current density, 
Sρ,Sϕ,Sz. The corresponding spin matrix components are

σρ=σ. = ,   σϕ=σ. = ,

σz=
 (B.5)

Let f1,f2 be solutions of (3.8) and (3.9), respectively, 
and ψ1=f1, ψ2=eiϕf2. We can set f2=a∂ρf1 [12]; a is a length 
parameter. We shall first calculate ψ+σψ; this has the 
cylindrical components (2aRe{ f*1∂ρf1}, 2aIm{(∂ρf*

1)f1}, 
|f1|2-a2|∂ρf1|2). Note that there is no ϕ dependence. The 
curl of this vector is

∇×(ψ+σψ)=(-2a∂zIm{(∂ρf*
1)f1}, 2a∂zRe{f*

1∂ρf1}-
-∂ρ[|f1|2-a2|∂ρf1|2], 2a∂ρIm{(∂ρf*

1)f1}+2aρ-1Im{(∂ρf*
1)f1})

 (B.6)

When the length a is zero, just the azimuthal com-
ponent remains, ∇×(ψ+σψ)a=0=(0,-∂ρ|f1|2,0). In that spe-
cial case the Schrödinger current is proportional to Im{
f*

1∇f1}=Im{ f*
1(∂ρf1,0,∂zf1)}, and the components of the 

probability current density are given by

Sρ=Im{f*
1∂ρf1},   Sϕ=- ∂ρ|f1|2,   Sz=Im{f*

1∂zf1} (B.7)

As in the hydrogen ground state, the a=0 spinor 
now consists of ψ1, and ψ2=0, ψ3~∂zψ1, ψ4~eiϕ∂ρψ1. The 
fourth component contributes to the azimuthal current, 
and to the angular momentum.


