

Citation: Lekner J. (2022) The spinning electron. *Substantia* 6(2): 7-13. doi: 10.36253/Substantia-1630

Received: Apr 16, 2022

Revised: May 23, 2022

Just Accepted Online: May 24, 2022

Published: September 1, 2022

Copyright: © Lekner J. This is an open access, peer-reviewed article published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

The Spinning Electron

John Lekner

School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand E-mail: john.lekner@vuw.ac.nz

Abstract. The notion introduced by Ohanian that *spin is a wave property* is implemented, both in Dirac and in Schrödinger quantum mechanics. We find that half-integer spin is the consequence of azimuthal dependence in two of the four spinor components, relativistically and non-relativistically. In both cases the spinor components are free particle wavepackets; the total wavefunction is an eigenstate of the total angular momentum in the direction of net particle motion. In the non-relativistic case we make use of the Lévy-Leblond result that four coupled non-relativistic wave equations, equivalent to the Pauli-Schrödinger equation, represent particles of half-integer spin, with g-factor 2. An example of an exact Gaussian solution of the non-relativistic equations is illustrated.

Keywords: electron, spin, spinor.

The correct form of equations (3.4) is:

$$-\partial_t \psi_1 + e^{-i\phi} (\partial_{\phi} - i\rho^{-1}\partial_{\phi}) \psi_4 + \partial_z \psi_3 = 0$$
(3.4a)

$$-\partial_t \psi_2 + e^{i\phi} (\partial_{\phi} + i\rho^{-1}\partial_{\phi})\psi_3 - \partial_z \psi_4 = 0$$
(3.4b)

$$\frac{2im}{\hbar}\psi_3 + e^{-i\phi}(\partial_\rho - i\rho^{-1}\partial_\phi)\psi_2 + \partial_z\psi_1 = 0$$
(3.4c)

$$\frac{2im}{\hbar}\psi_4 + e^{i\phi}(\partial_\rho + i\rho^{-1}\partial_\phi)\psi_1 - \partial_z\psi_2 = 0$$
(3.4d)