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Abstract. Among the many eponymous formulae and laws met in textbooks in physics 
and chemistry, the Lorenz-Lorentz formula merits attention from a historical point of 
view. The somewhat curious name of this formula, which relates the refractive index 
of a substance to its density, reflects its dual origin in two areas of nineteenth-century 
physics, namely optics and electromagnetism. Although usually dated to 1880, the for-
mula was first established in 1869 by L. V. Lorenz (optics) and subsequently in 1878 
by H. A. Lorentz (electromagnetism). Apart from discussing the origin and priority of 
the Lorenz-Lorentz formula the paper outlines its early use in molecular physics and 
physical chemistry. During the late nineteenth century studies of molecular refractiv-
ity based on the formula proved important in a number of ways. For example, they led 
to estimates of the size of molecules and provided information about the structure of 
chemical compounds.

Keywords. L. Lorenz, H. A. Lorentz, optical refraction, Clausius-Mossotti formula, 
molecular refractivity.

1. INTRODUCTION

In 1902 the famous Dutch physicist Hendrik Antoon Lorentz (1853-1928) 
received the Nobel Prize in physics sharing it with his compatriot Pieter Zee-
man. In his Nobel lecture delivered in Stockholm on “The Theory of Elec-
trons and the Propagation of Light” he referred to the refraction of light 
and the recent insight that the phenomenon was due to vibrating electrical 
charges (electrons) in the refracting substance. Many years earlier he had 
succeeded in explaining on the basis of electromagnetic theory “the approxi-
mate change in the refractive index with the increasing or decreasing density 
of the body.” Lorentz continued: “When I drew up these formulae I did not 
know that Lorenz at Copenhagen had arrived at exactly the same result, even 
though he started from different viewpoints, independent of the electromag-
netic theory of light. The equation has therefore often been referred to as the 
formula of Lorenz and Lorentz.”1

It is the early history of this formula, variously called the Lorentz-Lorenz 
and the Lorenz-Lorentz formula or law, which is the subject of the present 
paper. In brief, the formula dates from 1869, when it was first proposed by 
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the relatively obscure Danish physicist Ludvig Valentin 
Lorenz (1829-1891) on the basis of experiments and opti-
cal theory. Nine years later it was independently derived 
on a very different basis by 25-year-old Lorentz in the 
Netherlands, his first major scientific work. The Lor-
enz-Lorentz formula, as I shall call it (and justify later), 
soon became accepted as an important law not only in 
optics and electromagnetic theory but also as an emi-
nently useful tool in the new field of physical chemistry. 
Indeed, chemists embraced the formula at an early date, 
applying it in various ways to determine the molecular 
refractivity of chemical compounds and thereby to gain 
information on their constitution. 

Ever since the 1880s the Lorenz-Lorentz formula 
has played a significant role in the physical sciences and 
it continues to do so. Still today, about 150 years after 
it was first proposed, it is an active research area in 
branches of physical chemistry, crystal chemistry and 
materials science.

The paper focuses on the period ca. 1870-1890 and 
in particular on the contributions of the little known 
Lorenz. A specialist in the mathematical theory of 
optics, contrary to Lorentz he never accepted Maxwell’s 
electromagnetic theory and preferred to represent opti-
cal phenomena in terms of abstract wave equations with 
no particular physical interpretation. Although Lorenz, 
independently of Maxwell, suggested an innovative elec-
trodynamic theory of light in 1867, he did not apply it 
to either the refraction or the dispersion of light (but see 
the end of Section 5).2

2. REFRACTIVITY AND DENSITY

The general idea that the refractivity index n of 
a transparent body is related to its density d was far 
from new at the time when Lorenz took up the subject. 
As early as in his revised edition of Opticks from 1718, 
Newton reported experiments on the refraction of light 
in a variety of substances ranging from air to olive oil 
and diamond (Figure 1).3 On the basis of these experi-
ments he discussed the possibility of a “refractive pow-
er” of the form (n2 – 1) that varied proportionally to the 
body’s density. About a century later Pierre Simon de 
Laplace, in his famous Mécanique Céleste, derived on 
the basis of the corpuscular theory of light what became 
known as the “Newton-Laplace rule.” According to this 
rule

n2 −1
d

 ≅  constant 

The Newton-Laplace rule was tested experimentally 
by J.-B. Biot and F. Arago in a work of 1806; the next 
year their investigations were continued by E. L. Malus. 
Although the formula agreed well with the experiments 
of the French scientists for gases, it failed miserably for 
liquid and solid bodies. Nonetheless it remained in use 
for many years, even after the corpuscular theory had 
been replaced by the wave theory of light. 

A simpler and much better expression involving (n – 
1) instead of (n2 – 1) was proposed by an extensive series 
of experiments performed during the period 1858-1865 
by the leading British chemist John Hall Gladstone (Fig-
ure 2) and his collaborator Thomas Dale.4 The two scien-
tists established that for liquids, 

n−1( )v = n−1( )
d

= constant ,

where the quantity v = 1/d is known as the body’s spe-
cific volume. Gladstone and Dale referred to the quantity  
RGD = (n – 1)/d as the “specific refraction energy.”5

Figure 1. Newton’s measurements of the “refractive power” (col-
umn 5) relating the refractive index (column 2) to the density rela-
tive to water (column 4).
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The relation was widely used for analyses of solu-
tions, glasses and crystals, and determinations of the 
“Gladstone-Dale constant” are still part of modern 
mineralogy, geochemistry and materials science. How-
ever, the Gladstone-Dale constant is not a characteristic 
parameter of the refractive substance as it varies consid-
erably with its physical state. Moreover, the Gladstone-
Dale rule and other rules proposed in the mid-nine-
teenth century were basically empirical relations lacking 
a proper theoretical foundation. The rule was later pro-
vided with a theoretical justification, albeit this proved 
possible only by means of ad hoc hypotheses concerning 
the structure of the ether.6 It remained an empirical rule, 
practically useful but of limited scientific importance.

During the latter half of the nineteenth century sev-
eral other refractivity-density relations were proposed, 
but these had very restricted applicability and were lit-
tle more than extrapolations from a limited number of 
experiments. To mention but one example, in 1883, after 
the Lorenz-Lorentz law had been generally accepted, the 
German chemist W. Johst proposed that

n −1
d

= constant

The formula was discussed for a brief period of time 
after which it was forgotten.7

Ludvig V. Lorenz, a physics teacher at the Military 
High School in Copenhagen, was trained as a chemical 
engineer at the city’s Polytechnic College. In the early 
1860s he established a general, phenomenological theo-
ry of light from which he claimed that all optical phe-
nomena could be deduced.8 The basis of the theory was 
three partial differential equations for a so-called light 
vector propagating with a velocity equal to the velocity 
of light and satisfying the condition that the waves were 
only transversal, not longitudinal. Lorenz had originally 
suggested that something similar to the Newton-Laplace 
rule would follow from his equations, but in 1869 he 
arrived at a different result.9 In a memoir of that year 
published by the Royal Danish Academy of Sciences and 
Letters, of which Lorenz had become a member three 
years earlier, he reported for the first time the Lorenz-
Lorentz formula (Figure 3).

3. LORENZ’S OPTICAL ROUTE

From a series of elaborate experiments Lorenz estab-
lished in his 1869 memoir a number of empirical formu-

Figure 2. J. H. Gladstone (1827-1902). Source: https://en.wikipedia.
org/wiki/John_Hall_Gladstone.

Figure 3. Lorenz’s 1869 memoir on “Experimental and Theoretical 
Investigations on the Refractivity of Substances” published by the 
Royal Danish Academy of Sciences and Letters.
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lae, for example by measuring the refractive index for 
the yellow sodium light passing water at different tem-
peratures t. In the interval between 0 ˚C and 30 ˚C he 
found that

n t( )=n 0( )+ 0.076t − 2.803t 2 +0.002134t3⎡⎣ ⎤⎦10
−6

Thus, at a change in temperature of 10 ˚C the 
observed change in refractivity was found to be only of 
the order 0.01 per cent. Measurements of this kind had 
earlier been reported by the French physicist Jules Jamin 
in 1856, but Lorenz’s data were more precise and in bet-
ter agreement with later results.10

The refractive index depends on the wavelength and 
according to A.-L. Cauchy’s semi-empirical dispersion 
formula of 1836 the dependency can be represented as 

n λ( )=m+ a1
λ 2 +

a2
λ 4 +

a3
λ 6…,

where the symbols in the nominators are constants to be 
determined experimentally. The quantity m thus denotes 
the refractive index reduced to an infinite wavelength or 
zero frequency, n(λ) → m for λ → ∞. If only the two first 
terms on the right hand are used, we have

n λ( )=m+ a1
λ 2

Then m can be calculated from measurements of 
two values of n corresponding to two wavelengths λ1 and 
λ2 with the result that

m = λ1
2n1 −λ2

2n2

λ1
2 −λ2

2

Having discussed his own data and those report-
ed by other scientists, Lorenz concluded that m only 
depends on the density and that the temperature mere-
ly enters indirectly, namely by changing the volume 
and hence the density. He ended up with the following 
expression for water:

m t( )=1.3219+ 21.05t − 2.759t 2 +0.02134t3⎡⎣ ⎤⎦10
−6

Although Lorenz’s experimental work was of unsur-
passed precision (Figure 4), it did not differ essential-
ly from similar measurements made in German and 
French laboratories. What distinguished his work from 

investigations made elsewhere was its connection to the-
ory, which he covered in the second part of his treatise.

Proceeding from his fundamental wave equation 
Lorenz deduced in 1869 that the quantity (m2 – 1)v/ (m2 
+ 1) was given by a certain function that only depended 
on the distribution in space of the refractive substance. 
Since it was known from the Gladstone-Dale rule that  
(m – 1)v was approximately constant, Lorenz concluded 
that the correct law of refractivity was given by what he 
called the “refraction constant,” namely 

m2 −1
m2 + 2

v = constant  = RLL( )

This result was independent of the form of the mol-
ecule, he argued. However, for reasons of simplicity he 
assumed the refractive medium to be composed of opti-
cally homogeneous spherical molecules with mi being 
their internal refractive index. With vi being the specific 
proper volume of the molecules Lorenz could then write 
the law as

m2 −1
m2 + 2

v = mi
2 −1

mi
2 + 2

vi

Figure 4. Lorenz’s apparatus of 1869 for the determination of the 
refractivity-density relationship for liquids. In the tank C a thin 
tube with the liquid is enclosed between two mirror glasses l and l’. 
The two parts of the tank F and F’ and the two small containers h 
and h’ are filled with distilled water. The tank is mounted between 
two Jamin mirrors B and A formed as cubes. One of the light rays 
passes the tube while the other ray passes the water in the tank with 
the result that the interference lines are displaced. By measuring the 
number of displaced lines and the weight of the liquid Lorenz could 
relate the refractivity of the liquid to its density.
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He further argued that the reduced refractive index 
was approximately constant and for a mixture consisting 
of k non-interacting components could be expressed as

m2 −1
m2 + 2

v =
j=1

k

∑
mj

2 −1
mj

2 + 2
v j

The observation turned out to have significant con-
sequences for chemical investigations. For an isotropic 
substance consisting of only one kind of molecule he 
deduced the approximate relation

m2 −1
m2 + 2

v = P 1− k2

v2

⎛
⎝⎜

⎞
⎠⎟

Here P and k are two constants that depend on the 
molecular structure of the substance but not on its vol-
ume or temperature. For a gas, where v is large and m 
only slightly larger than 1, 

m2 −1≅ 2 m−1( )  and   m2 + 2≅ 3

Lorenz noted that the expression above approxi-
mates to

n−1( )v =   3
2
P

in agreement with the Gladstone-Dale formula. Moreo-
ver, the Lorenz expression also accommodates the New-
ton-Laplace rule since 

n2 −1
d

= RLL n2 + 2( )≅ 3RLL

Only after a period of six years did Lorenz return to 
his studies of refraction, this time in a predominantly 
experimental paper where he reported measurements on 
oxygen, hydrogen, water vapour, ethanol, ether and oth-
er volatile liquids.11 Lorenz’s law of refractivity, derived 
as a theoretical consequence of his theory of light, 
received solid confirmation in 1880, when the Danish 
physicist Peter K. Prytz published extensive measure-
ments on the refractive constants of a variety of liquids 
and vapours. The measurements showed convincingly 
that Lorenz’s law was superior to the Gladstone-Dale 
rule.12 

Prytz’s 1880 paper in Annalen der Physik und Che-
mie was preceded by a paper in which Lorenz presented 

a detailed summary of his two communications on opti-
cal refraction originally published in two sequels in the 
proceedings of the Royal Danish Academy.13 Using a 
new and simpler approach he derived the same expres-
sion for the relation between refractivity and density as 
in his earlier theory, namely a constant value of the ratio 
(n2 – 1)/d(n2 + 1). It was only on this occasion that the 
international community of physicists became aware of 
his extensive work on the refractivity-density law. Since 
his memoirs of 1869 and 1875 were written in Danish, 
they were known only by scientists in Scandinavia.

4. OPTICAL REFRACTION AND MOLECULAR 
PHYSICS

Lorenz was convinced that optical research provided 
a method to obtain information about the size of mol-
ecules and their number in a volume or mass unit of a 
substance (Figure 5). In his 1875 paper he derived that 
for a substance composed of spherical and optical homo-
geneous molecules,

n2 −1
n2 + 2

v = ni
2 −1

ni
2 + 2

vi 1+δ( ),

With β being a measure of the molecular radius, he 
stated the δ quantity as

δ = 16
5
π 2 ni

2 −1
ni
2 + 2

β 2

λ 2

According to Lorenz, it followed from experiments 
that for λ = 589.3 nm (sodium light) the value of δ was 
approximately 0.22. 

Lorenz used this result for two purposes. First, he 
pointed out that since δ = δ(λ-2) the expression explained 
dispersion, if only qualitatively, without relying on spe-
cial assumptions about molecular forces or the structure 
of the ether. This contrasted with Cauchy’s earlier theory 
of dispersion which relied on such assumptions and also 
was unable to explain why dispersion does not take place 
in void space. In Lorenz’s very different theory, disper-
sion was a property of the heterogeneity of a substance 
and thus excluded dispersion in a vacuum. Importantly 
and contrary to other optical theories at the time, Lor-
enz’s theory did not assume the existence of an ethereal 
medium.

The second use he made of his result was to estimate 
a lower limit to the size of molecules. In Lorenz’s theo-
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ry the quantity β was not literally the molecular radius 
but what he cautiously called “the radius of the molecu-
lar sphere of action, meaning the sphere surrounding a 
molecule within which there is an appreciable effect of 
the molecule’s influence on the velocity of light propaga-
tion.” This quantity is greater than the actual or material 
radius of the molecule. Since 

ni
2 −1

ni
2 + 2

<1

and with δ known, Lorenz was able to conclude that

β >1.5×10−8  m

He was pleased to note that the German physicist 
Georg Hermann Quincke from recent measurements 
of viscosity and capillarity had found molecular radii 
agreeing with the limit inferred from the optical meth-
od.14 

Using a different optical method based on the scat-
tering of light on a small sphere, in an important mem-
oir of 1890 Lorenz refined his value of β. He also esti-
mated a value for the number of molecules in one mil-
lilitre of a gas, a quantity known as Loschmidt’s number 
(NL) and named after the Austrian physicist and chemist 
Josef Loschmidt.16 The better known Avogadro number 
NA is given by

NA = 6.022 mole−1 ≅ 22.4103 ×NL

Lorenz reported NL = 1.63×1019 while the modern 
value is NL = 2.688×1019.

5. LORENTZ’S ELECTROMAGNETIC ROUTE

Lorenz’s law of refractivity is today referred to as 
the Lorenz-Lorentz law, or more commonly the Lorentz-
Lorenz law, because H. A. Lorentz (Figure 6) derived the 
same result in 1878.17 Just the year before, he had been 
appointed professor of theoretical physics at the Uni-
versity of Leiden, at the tender age of 24. In his doctoral 
dissertation of 1875 Lorentz referred to the refractive 
index of various substances as given by their dielectric 
constants.18 He briefly discussed the Newton-Laplace 
formula relating the refractive index to the density but at 
the time without suggesting an improved law based on 
the electromagnetic theory.

Contrary to the Danish physicist, in his memoir of 
1878 Lorentz obtained the improved law by combin-
ing the Clausius-Mossotti formula (see below) with the 
electromagnetic theory of light. However, he did not rely 
primarily on Maxwell’s theory but rather on an alterna-
tive action-at-a-distance theory proposed by Hermann 
von Helmholtz.19 At the time Maxwell’s field theory 
was generally considered to be very difficult, almost 
impenetrable. Although Lorentz appreciated the theory, 
he thought that it depended too much on unconfirmed 
hypotheses. 

What is known as the Clausius-Mossotti formula 
was first proposed, if only implicitly, by the Italian phys-
icist Ottaviano Fabrizio Mossotti in 1847. Much later 
the formula was stated by Rudolf Clausius in 1879 in an 
attempt to explain the dielectric properties of insulators 
on an atomistic basis. From a historical point of view the 
order of names is perhaps unfortunate, but “Mossotti-
Clausius” is rarely used. With εr  the material’s dielectric 
constant (or relative permittivity ε /ε0  and α denoting 
the polarizability of the molecule, the Clausius-Mossotti 
formula for a unit volume with N molecules is 

Figure 5. Ludvig V. Lorenz. Royal Library, Copenhagen, Picture 
Collection.



13The Lorenz-Lorentz Formula: Origin and Early History

εr −1
εr + 2

= 4π
3
Nα

In modern literature this expression, which for  
N = NA is called the molar refractivity, is often used syn-
onymously for the Lorenz-Lorentz formula. In a paper of 
1910 on the theory of opalescence Einstein appropriately 
referred to it as the Clausius-Mossotti-Lorentz formula.20 
Modern physicists sometimes use the more cumbersome 
name Clausius-Mossotti-Lorenz-Lorentz (CMLL) formula.

The declared purpose of Lorentz’s work was to con-
struct a theory of the optical properties of matter, such 
as indicated by the title of his memoir, which in English 
reads “Concerning the Relation between the Velocity of 
Propagation of Light and the Density and Composition 
of Media.” Contrary to his Danish near-namesake, Lor-
entz considered a molecular or atomic model in connec-
tion with his theory, namely that a molecule consists of 
an electric charge harmonically bound to the rest of the 

molecule and characterised by its electric polarizability. 
He thought of the material molecule as being situated at 
the centre of a sphere or cavity, an idea which can also 
be found in Lorenz’s paper of 1875. 

Lorentz thus pictured the molecules as embedded 
in an all-pervading ether, which he, much like Maxwell, 
regarded as a dielectric substance. He emphasised the 
necessity of assuming inter-molecular space being filled 
with ether, a belief he stated was “not open to doubt.” 
Lorenz, on the other hand, had dismissed the ether as 
superfluous and even “unscientific” in his electrical the-
ory of light from 1867 and it played no role whatsoever 
in his optical theory two years later. 

After a series of complex calculations Lorentz ended 
up with the following expression:

n2 −1
n2 + 2( )d =

4π
3

ρ3 3+ 4πε0( )− 4πε0
ρ3

κ

M 3+8πε0( )ρ
3

κ
−8πε0

Here ε0 denotes the dielectric constant of the free 
ether, M is the mass of a molecule, d the density of the 
body, and κ is the ether’s specific resistance according 
to Helmholtz’s theory. The quantity on the right side of 
the equation is thus a constant for a particular transpar-
ent body. In the last part of his extensive 1878 memoir 
Lorentz compared his theoretical law of refraction with 
available experimental data from the literature. Unlike 
Lorenz, he did not perform experiments of his own.

In its modern formulation the Lorenz-Lorentz law is 
stated as a relation between the refractive index of a sub-
stance, a macroscopic quantity, and its polarizability α, a 
microscopic quantity:

n2 −1
n2 + 2

= 4π
3
Nα ,

When the polarizability is small, the equation 
reduces to

n2 −1≅ 4πNα     or    n−1≅ 2πNα

In agreement with the Gladstone-Dale formula, this 
expression is valid for gases at normal pressure. It fol-
lows from the Lorenz-Lorentz theory that the polariza-
tion of a molecule in a solid body under the influence 
of an external electric field is not only determined by 
the strength of the field and the number of molecules 
per volume. There is also an effect due to the polarized 

Figure 6. Hendrik A. Lorentz in 1927. Courtesy the Niels Bohr 
Archive, Copenhagen.
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neighbour molecules which produce an additional force. 
This force was in the earlier literature sometimes called 
the “Lorentz-Lorenz force,” a name which should not be 
confused with the well-known Lorentz force acting on 
an electrical charge moving in a magnetic field.21

Although Lorenz never referred to the electromag-
netic derivation of the Lorenz-Lorentz law in his pub-
lications, in an unpublished manuscript from 1887 
he used his own electrodynamic theory to derive the 
law.22 Based on his electrical theory of light from 1867 
he found an expression for the refractive index and its 
dependence on the molecular currents elements (Figure 
7). In this way he concluded wholly independently of 
Maxwell’s theory that the medium’s dielectric constant 
was given by the expression

ε r ≡ ε /ε0 =n
2

He thus arrived at the very same relationship as 
found by Lorentz.

6. LORENZ-LORENTZ OR LORENTZ-LORENZ?

Because H. A. Lorentz originally published his paper 
in Dutch, and L. V. Lorenz published his two papers 
of 1869 and 1875 in Danish, the Lorenz-Lorentz for-
mula became generally known only when abridged and 
revised versions of their papers appeared in German in 
1880. Both of the papers were published in Annalen der 
Physik und Chemie but in two different issues and with 
Lorentz’s as the first. Gustav Heinrich Wiedemann, the 
editor of Annalen, had originally planned to have the 
two papers published consecutively, but for some reason 
this did not happen.23 Apparently the two authors were 
at the time unaware of each other’s work. In the case of 

Lorenz, he summarised and discussed the two Danish 
articles whereas Lorentz’s German paper was a substan-
tially reduced and revised version of his 1878 memoir 
published in Dutch in the proceedings of the Amster-
dam Academy.24

In a series of lectures delivered at Columbia Univer-
sity, New York, in 1906, Lorentz called the double dis-
covery “a curious case of coincidence.”25 Referring to 
the Annalen papers of 1880, the British physicist Arthur 
Schuster wrote a few years later that “two authors of 
similar name, H. A. Lorentz of Leyden, and L. Lorenz of 
Kopenhagen [sic], have almost simultaneously published 
investigations leading to the result that (μ2 – 1)/(μ2 + 2)
D is constant.”26 Again, when awarding Lorentz the 
Rumford Medal in 1909, Lord Rayleigh said about the 
formula that it had been “reached simultaneously, along 
different special lines, by H. A. Lorentz originally from 
Helmholtz’s form of Maxwell’s electric theory, and by L. 
Lorenz, of Copenhagen, from a general idea of propaga-
tion after the manner of elastic solids.”27

However, given that Lorenz published his result as 
early as 1869 the curious coincidence does not constitute 
a proper case of simultaneous discovery. Robert Merton 
and other sociologists of science have long ago noted that 
discoveries in science are rarely made by a single scien-
tist or group of scientists. Discoveries are almost always 
“multiples,” meaning that the same or nearly the same 
discovery is made by two or more scientists (or groups of 
scientists) working independently of each other.28 Mul-
tiple discoveries may be more or less simultaneous, but 
the important thing is not so much the chronology as it 
is that they are made independently. Merton proposed, 
somewhat artificially, that even discoveries far removed 
from one another in time may be conceived as “simulta-
neous” in what he called “social and cultural time.”29

Applying the notion of simultaneity in its ordinary 
meaning there is no doubt that priority to the Lorenz-
Lorentz law belongs to L. Lorenz and, consequently, 
that it should not be referred to as the Lorentz-Lorenz 
law. On the other hand, the discovery was not Lorenz’s 
alone, what Merton called a “singleton.” It can be seen as 
a classic example of a multiple discovery, in this case a 
“doublet” separated in time by nine years.

The order Lorenz-Lorentz can be found in the lit-
erature in the 1890s, but with the rising fame of the 
Dutch physicist the order was soon reversed or Lorenz 
simply left out. In an obituary article on Lorentz, Max 
Planck referred to the formula relating refractivity and 
density, “which by accident had been established at the 
same time by his namesake, the Danish physicist Ludvig 
Valentin Lorenz, and for this reason has been assigned 
the curious double name Lorentz-Lorenz.”30 Much later 

Figure 7. Lorenz’s unpublished derivation of the relationship 
between the dielectric constant (D) and the specific refractivity (N).
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we find the same usage in the authoritative textbook 
on optics written by Max Born and Emil Wolf: “By a 
remarkable coincidence, the relation was discovered 
independently and practically at the same time by two 
scientists of almost identical names, Lorentz and Lorenz, 
and is accordingly called the Lorentz-Lorenz formula.”31

As an illustration of the popularity of the two terms, 
Google Scholar gives ca. 14,900 results for “Lorentz-Lor-
enz” and ca. 3,700 results for “Lorenz-Lorentz.” The pref-
erence for the first eponymous term can be seen as an 
example of a general tendency to associate a discovery 
with the name of a famous scientist even in cases where 
priority belongs to someone else.32 The Clausius-Mossot-
ti formula is another example. Google Scholar also lists 
the number of references to the two Annalen papers of 
1880, namely 192 references to Lorenz’s paper and 644 
references to Lorentz’s.

7. A TOOL FOR PHYSICAL CHEMISTRY

After the refraction studies of Lorenz and Lorentz 
had become widely known they spurred a large number 
of experiments in molecular refractivity under various 
conditions. The overall result of this work was that the 
Lorenz-Lorentz law agreed far better with experimental 
data than competing formulae of an empirical nature. 
In a review paper of 1888 the British physicist Arthur 
William Rücker referred to the works of L. Lorenz and 
H. A. Lorentz as well as to Prytz’s experimental confir-
mation of the law named after them. Rücker found it of 
particular interest that the measurements of Lorenz and 
Prytz indicated that the value of (n2 – 1)/(n2 + 2) did 
not depend on whether the substance was in a liquid or 
a vaporous state (Table 1). Having reviewed the experi-
mental data Rücker concluded that “The results, on the 
whole, confirm the accuracy of the physical meaning of 
the expression (n2 – 1)/(n2 + 2) and tend to show that the 
diameter of the molecule is the same in the liquid and 
gaseous state.”33

This was also the conclusion of the Austrian physi-
cist Franz Exner, at the University of Vienna, who in 
1885 stated that the Lorenz-Lorentz law had been “com-
pletely confirmed.”34 As Exner pointed out, the law 
served as a key instrument for obtaining information 
about the size and constitution of molecules and the 
range of the unknown molecular forces. For the diam-
eter of gas molecules he suggested the formula

D =C n2 −1
n2 + 2

ℓ ,

where C is an empirical constant and ℓ the mean free 
path of the molecules. Combining refractivity and diffu-
sion measurements Exner found D = 10-10m for air mol-
ecules (N2, O2) and D = 2.7×10-10m for CS2 vapour.

The subject of molecular refractivity belonged as 
much to chemistry as to physics. Indeed, refractiv-
ity studies had been part of theoretical chemistry many 
years before the Lorenz-Lorentz formula. The new for-
mula further stimulated this kind of work which played 
a most important role in the new discipline of physical 
chemistry that emerged during the 1880s. When Lorenz 
and Lorentz figure in books on the history of chemis-
try, and not only in those on the history of physics, it is 
principally because of their role in the Lorenz-Lorentz 
formula.35 By the turn of the century the formula and 
related refractivity studies had become a staple part of 
textbooks in physical chemistry.36 

The leading Swiss chemist Hans Heinrich Landolt 
and his German colleagues Wilhelm Ostwald and Julius 
Wilhelm Brühl were among those who applied the Lor-
enz-Lorentz formula to calculate the so-called molecu-
lar refractivity (or refractive power) of a particular sub-
stance. They defined this quantity as the product of the 
specific refractivity RLL and the molecular weight M, 
that is, with n determined at a particular wavelength,

MRLL =
n2 −1
n2 + 2

⋅M
d
 

In cases where the Gladstone-Dale formula was 
used, the molecular refractivity was similarly given by

MRGD = n−1( )M
d

The monochromatic light used in most experiments 
was either the yellow sodium D line (λ = 589 nm) or the 
red Hα line in the spectrum of hydrogen (λ = 656 nm).

It turned out that in many cases the summation rule 
for mixtures could be carried over to chemical com-

Table 1. Data for the quantity (n2 – 1)/(n2 + 2) obtained by Lorenz 
and Prytz. Source: Rücker (1888).

Substance Formula Work Liquid Vapour

Ethyl ether (C2H5)2O Lorenz (1875) 0.30264 0.3068
Ethanol C2H5OH Lorenz (1875) 0.28042 0.2825
Water H2O Lorenz (1875) 0.20615 0.2068
Methanol CH3OH Prytz (1880) 0.2567 0.2559
Methyl acetate (CH3)2COO Prytz (1880) 0.2375 0.2399
Ethyl formate C2H5COOH Prytz (1880) 0.2437 0.2419
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pounds, such as suggested as early as 1863 in a paper by 
Gladstone and Dale.37 If a compound consists of q1, q1,… 
elements with atomic weights μ1, μ1,… then the molecu-
lar weight is

M = q1µ1 +q2µ2 +…

According to the summation rule the molecular 
refractivity r = RLL is simply the weighted sum of the 
individual atomic refractivities given by 

ri =
ni
2 −1

ni
2 + 2

⋅ µi

di

That is,

n2 −1
n2 + 2

⋅M
d

= q1µ1r1 +q2µ2r2 +…

Experiments showed that although the rule was 
approximately correct for many compounds it was not 
universally true. In several cases the molecular refractiv-
ity differed substantially from the sum of the constituent 
atomic refractivities or, differently phrased, a particular 
atomic refractivity did not always have the same value. 
It was soon recognised that the molecular refractivity 
is influenced also by the constitution of the molecule as 
given by the arrangement of atoms and the presence of 
double and triple bonds. 

The pioneer in this branch of optical chemistry 
was J. W. Brühl, who employed the Lorenz-Lorentz for-
mula in a series of elaborate studies of inorganic as well 
as organic substances. By considering the refractivity 
values of compounds in homologous series he derived 
the corresponding values for double and triple bonds 
in molecules. He applied this method to the vexed and 
much-discussed question of the constitution of benzene, 
C6H6. On the assumption of Kekulé’s structural model 
with three single and three double bonds Brühl found 
a theoretical value for benzene’s molecular refractivity 
that only differed 0.6% from the measured value. On the 
other hand, he concluded that alternative formulae sug-
gested by H. Armstrong, A. von Baeyer, J. Thomsen and 
others did not agree with benzene’s molecular refractiv-
ity (Figure 8).38

While the Lorenz-Lorentz formula aroused great 
interest in the chemical community, none of the found-
ers of the formula took much interest in the chemical 
applications. This is perhaps understandable in the case 
of Lorentz, who had neither interest in nor knowledge 

of chemistry, but it is more surprising in the case of the 
chemically trained Lorenz. 

In fact, at the end of his 1880 paper Lorenz dealt 
with a number of chemical reactions during which the 
refractivity constant changed. From his own and oth-
ers’ experiments he suggested that the change in refrac-
tivity might constitute a measure of the chemical affin-
ity in the same way as the change in heat (Q) did in the 
thermochemical Thomsen-Berthelot theory.39 Lorenz 
suspected that exothermic processes were followed by a 
decrease in refractivity and endothermic processes by an 
increase. However, he admitted that the case of ammo-
nia

N2 +3H2 → 2NH3 +Q

was an exception to the rule. The molecular refractivity 
of NH3 was known to be 0.3266 and Lorenz’s measure-
ments of a mixture of N2 and H2 in the mass ratio μN : 
3μH = 14 : 3 resulted in 0.3116.

8. CONCLUSION

The Lorenz-Lorentz law is a general, non-trivial 
relationship between the refractive index of a sub-
stance and its density. The origin of the eponymous 
law – or perhaps better formula – is traditionally dated 
1880 and considered an example of a simultaneous dis-
covery made independently by the two physicists after 
which it is named. However, although Lorentz came to 
the law independently of Lorenz and the discovery was 
thus a “doublet,” it is not a simultaneous discovery since 

Figure 8. Based on thermochemical arguments the Danish chemist 
Julius Thomsen proposed in 1886 an octahedral model of benzene 
in which there were no double bonds. Thomsen’s structural mod-
el was among those which Brühl dismissed as incompatible with 
refractivity data based on the Lorenz-Lorentz formula.
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the Danish co-discoverer formulated the law already in 
1869, nine years before Lorentz. For this reason I pro-
pose that the law should properly be called the Lorenz-
Lorentz law although most physicists and chemists pre-
fer the other permutation.40

The routes of the two physicists to the refractivity-
density law were entirely different both as regards for-
malism and physical interpretation. And yet they arrived 
at exactly the same formula. In the physical sciences it is 
not unusual that the same result can be derived in dif-
ferent ways and therefore is not uniquely determined by 
the underlying theory. From a modern point of view the 
theory behind the Lorenz-Lorentz law is simply Max-
well’s theory of electromagnetism, but Lorenz’s original 
formulation had nothing to do with that theory. Aware of 
the dual origins of the law, Wilhelm Ostwald commented 
that “this agreement between two completely different 
approaches increases the probability that the result has a 
more general significance than if it were based on one or 
the other of the theoretical foundations.”41

Whatever its theoretical background and interpre-
tation, the Lorenz-Lorentz law was eminently successful 
and instantly applied to the study of molecular refractiv-
ity and related branches of chemistry, physics and mate-
rials science. By the early twentieth century it was pre-
dominantly a resource for the new generation of physi-
cal chemists rather than a topic belonging to theoretical 
physics.
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