The frequency distribution and stochastic analysis of the hydrological drought in northern Algeria

Authors

  • Brahim Habibi Faculty of Natural and Life Sciences, Hassiba Benbouali University of Chlef and GEE Laboratory, Blida
  • Mohamed Meddi National School of Hydraulics and GEE Laboratory, Blida
  • Mohamed Abdelkader Department of Civil, Environmental, and Ocean Engineering (CEOE), Stevens Institute of Technology, Hoboken, NJ

DOI:

https://doi.org/10.36253/ijam-1730

Keywords:

monthly stream flow, hydrological drought, frequency, Markov chain, North of Algeria

Abstract

The objective of this study was to examine drought using the Streamflow Drought Index (SDI) at various time scales and its temporal evolution using monthly streamflow data from 1973 to 2009. Streamflow records were collected from a network of 14 hydrometric stations distributed throughout the study area. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were used to assess the quality of the adjustment. According to these criteria, the gamma law better suited the time scales of 3, 6, and 12 months, whereas the log-normal law was better suited to the scale of 9 months. The analysis of the Streamflow Drought Index in the three study basins (Middle and Upper Cheliff, Lower Cheliff, and the Mina) revealed that different classes of drought among 3, 6, 9, and 12-month time scales in the period of 1973 to 2009 had occurred, notably beginning in 1980. The frequency of 19 to 54% was found at all stations and in years marked by a mild drought. The moderate years had a frequency of 6 to 19%, while the severe and extreme years had a lower percentage (about 3 to 6%) in the study area. Two consecutive years of drought (D-D) were more likely in the Middle and Upper Cheliff basins (> 60%) for the 6, 9, and 12-month time scales, according to the transition of probability of first-order non-stationary Markov chain. On a three-month time scale, the transition probabilities (D-D) were greater than 50% in the Coastal basin and Lower Cheliff basin, as well as the Mina basin, and less than 50% in the Middle and Upper Cheliff basins.

References

Agence du Bassin Hydrographique Cheliff-Zahrez (ABH CZ)., 2004. Cadastre hydraulique du bassin hydrographie du Cheliff—Aval du barrage de Boughzoul. Première partie: Haut et Moyen Cheliff. (p. 62).

Akbari H., Rakhshandehroo G. R., Sharifloo A. H., Ostadzadeh E., 2015. Drought Analysis Based on Standardized Precipitation Index (SPI) and Streamflow Drought Index (SDI) in Chenar Rahdar River Basin, Southern Iran. Watershed Management, Conference: EWRI Watershed Management Symposium 2015At: ASCE Headquarter, Reston, VA, USA.

Akkurt Eroğluer T., Apaydin H., 2020. Estimation of Drought by Streamflow Drought Index (SDI) and Artificial Neural Networks (ANNs) in Ankara-Nallihan Region. Turkish Journal of Agriculture - Food Science and Technology, 8(2), 348. https://doi.org/10.24925/turjaf.v8i2.348-357.3045.

Atallah M., Djellouli F., Bouanani A., Hasan K., 2022. Assessment of Catchment Behavior of the Wadi Louza in NW-Algeria Under Hydrological Drought Conditions. Earth Systems and Environment. DOI:10.1007/s41748-022-00325-x.

Bendjema L., Baba-Hamed K., Bouanani A., 2019. Characterization of the climatic drought indices application to the Mellah catchment, North-East of Algeria. Journal of Water and Land Development, 43(1), 28-40. https://doi.org/10.2478/jwld-2019-0060.

Benlabiod D., Medjerab A., Mega N., 2020. Characterization of Drought Events in South Oran and South Algiers Steppes in Algeria. International Journal of Ecology & Development, 35(1).

Bergaoui M., Alouini A., 2001. Caractérisation de la sécheresse météorologique et hydrologique: Cas du bassin versant de Siliana en Tunisie. Sécheresse, 12, 215-213.

Boudad B., Sahbi H., Mansouri I., 2018. Analysis of meteorological and hydrological drought based in SPI and SDI index in the Inaouen Basin (Northern Morocco). Journal of Materials and Environmental Sciences, 9(1), 219-227. https://doi.org/10.26872/jmes.2018.9.1.25.

BrouziyneY., Abouabdillah A., Chehbouni A., Hanich L., Bergaoui K., McDonnell R., Benaabidate L., 2020 Assessing Hydrological Vulnerability to Future Droughts in a Mediterranean Watershed: Combined Indices-Based and Distributed Modeling Approaches. Water, 12(9), 2333. https://doi.org/10.3390/w12092333

Dabanli I., 2018. Drought hazard, vulnerability, and risk assessment in Turkey. Arabian Journal of Geosciences, 11(18), 538. https://doi.org/10.1007/s12517-018-3867-x.

Elbeltagi A., Kumar M., Kushwaha N. L., Pande C. B., Ditthakit P., Vishwakarma D. K., Subeesh A., 2023. Drought indicator analysis and forecasting using data driven models: Case study in Jaisalmer, India. Stochastic Environmental Research and Risk Assessment, 37(1), 113‑131. https://doi.org/10.1007/s00477-022-02277-0.

Faye C., Sow A. A., Ndong J. B., 2015. Étude des sècheresses pluviométriques et hydrologiques en Afrique tropicale: Caractérisation et cartographie de la sècheresse par indices dans le haut bassin du fleuve Sénégal. Physio-Géo, 9, 17-35. https://doi.org/10.4000/physio-geo.4388.

Filali B. A., 2004. Enjeux stratégiques et défis majeurs de l’irrigation dans les pays du Maghreb. H.T.E, 129, 2-7.

Ghenim A. N., Megnounif A., 2011. CARACTÉRİSATİON DE LA SÉCHERESSE PAR LES İNDİCES SPI ET SSFI (NORD-OUEST DE L’ALGÉRİE). LJEE, 18.

Ghenim A. N., Megnounif A., 2013. Ampleur de la sécheresse dans le bassin d’alimentation du barrage Meffrouche (Nord-Ouest de l’Algérie). Physio-Géo, 7, 35-49. https://doi.org/10.4000/physio-geo.3173

Ghenim A. N. e, Megnounif A., i Seddini A., Terfous A., 2010. Fluctuations hydropluviométriques du bassin-versant de l’oued Tafna à Béni Bahdel (Nord-Ouest algérien). Sécheresse, 21(2).

González-López, N., Carvajal-Escobar, Y., & Universidad del Valle, Cali, Colombia. (2020). Caracterización de sequías hidrológicas en el río Cauca en su valle alto. Tecnología y ciencias del agua, 11(1), 235-265. https://doi.org/10.24850/j-tyca-2020-01-06.

Habibi B., Meddi M., 2021. Meteorological drought hazard analysis of wheat production in the semi-arid basin of Cheliff–Zahrez Nord, Algeria. Arabian Journal of Geosciences, 14(11), 1045. https://doi.org/10.1007/s12517-021-07401-y.

Habibi B., Meddi M., Torfs P. J. J. F., Remaoun M., Van Lanen H. A. J., 2018. Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). Journal of Hydrology: Regional Studies, 16, 15-31. https://doi.org/10.1016/j.ejrh.2018.02.005.

Hasan H. H., Mohd Razali S. F., Muhammad N. S., Asmadi A., 2021. Hydrological Drought across Peninsular Malaysia: Implication of Drought Index. Natural Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-2021-249.

Hong X., Guo S., Zhou Y., Xiong L., 2015. Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stochastic Environmental Research and Risk Assessment, 29(4), 1235-1247. https://doi.org/10.1007/s00477-014-0949-5.

Hosseinzadeh Talaee P., Tabari H., Sobhan Ardakani S., 2014. Hydrological drought in the west of Iran and possible association with large-scale atmospheric circulation patterns: hydrological drought in the west of Iran. Hydrological Processes, 28(3), 764-773. https://doi.org/10.1002/hyp.9586.

Jahangir M. H., Yarahmadi Y., 2020. Hydrological drought analyzing and monitoring by using Streamflow Drought Index (SDI) (case study: Lorestan, Iran). Arabian Journal of Geosciences, 13(3), 110. https://doi.org/10.1007/s12517-020-5059-8.

Jiang H., Khan M. A., Li Z., Ali Z., Ali F., Gul, S., 2020. Regional drought assessment using improved precipitation records under auxiliary information. Tellus A: Dynamic Meteorology and Oceanography, 72(1), 1-26. https://doi.org/10.1080/16000870.2020.1773699.

Khan S., Gabriel H. F. Rana T., 2008. Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas. Irrig Drainage Syst 22, 159-177.

Kavianpour M., Seyedabadi M., Moazami S., 2018. Spatial and temporal analysis of drought based on a combined index using copula. Environmental Earth Sciences, 77(22), 769. https://doi.org/10.1007/s12665-018-7942-0.

Koffi B., Kouadio Z. A., Kouassi K. H., Yao A. B., Sanchez M., Kouassi K. L., 2020. Impact of Meteorological Drought on Streamflows in the Lobo River Catchment at Nibéhibé, Côte d’Ivoire. Journal of Water Resource and Protection, 12(06), 495-511. https://doi.org/10.4236/jwarp.2020.126030.

Lakshmi G., Manoj J., 2020. Application of Markov Process for Prediction of Stock Market Performance. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 1516‑1519. https://doi.org/10.35940/ijrte.F7784.038620

Lazri M., Ameur S., Brucker J. M., Lahdir M., Sehad M., 2015. Analysis of drought areas in northern Algeria using Markov chains. Journal of Earth System Science, 124(1), 61-70. https://doi.org/10.1007/s12040-014-0500-6.

Manikandan M., Tamilmani D., 2015. Assessing Hydrological Drought Charactertics: A Case Study in a Sub Basin of Tamil Nadu, India. Scientific Journal Agricultural Engineering, 71-83.

McKee TB., Doesken NJ., Kleist J., 1993. The relationship of drought frequency and duration to time scales. Preprints Eighth Conf on Applied Climatology Anaheim CA. Amer Meteor Soc, pp. 179–184.

Meddi H., Meddi M., 2009a. Etude de la persistance de la secheresse au Niveau de sept plaines Algeriennes Par utilisation des chaines de Markov (1930-2003). Courrier du Savoir N°09, Mars 2009, 39-48.

Meddi H., Meddi M., 2009b. Variabilité des précipitations annuelles du Nord-Ouest de l’Algérie. Sécheresse, 20(1), 57-65. https://doi.org/10.1684/sec.2009.0169.

Meddi H., Meddi M., Assani A. A., 2014. Study of Drought in Seven Algerian Plains. Arabian Journal for Science and Engineering, 39(1), 339-359. https://doi.org/10.1007/s13369-013-0827-3.

Meddi M., Hubert P., 2003. Impact de la modification du régime pluviométrique sur les ressources en eau du nord-ouest de l’Algérie. Proceedings of an International Symposium «Hydrology of the Mediterranean and Semiarid Regions», Montpellier, Montpellie.

Meddi M., Toumi Samir., Mehaiguene M., 2013. Hydrological drought in Tafna Basin-northwest of Algeria. https://doi.org/10.13140/2.1.2598.2245.

Medhi J., 1994. Stochastic Processes. New Age International Publishers, New Delhi, India.

Melhaou M., Mezrhab A., Mimouni J., 2018. Evaluation et cartographie de la secheresse meteorologique dans les hauts plateaux de l’oriental du Maroc (zone du projet PDPEO). Rev. Microbiol. Ind. San et Environn. 12(19, 71-92.

Merabti A., Meddi M., 2016. Etude de la persistance de la secheresse au niveau de sept plaines dans le nord-est algerien. 4 eme Colloque International Terre & Eau 2016. Annaba 16, 17 & 18 Mai2016.

Minea I., Iosub M., Boicu D., 2022. Multi-scale approach for different type of drought in temperate climatic conditions. Natural Hazards, 110(2), 1153-1177. https://doi.org/10.1007/s11069-021-04985-2.

Modarres R., 2007. Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21(3), 223-233. https://doi.org/10.1007/s00477-006-0058-1.

Nalbantis I., 2008. Evaluation of a Hydrological Drought Index. European Water 23/24, 67-77.

Nalbantis I., Tsakiris G., 2009. Assessment of Hydrological Drought Revisited. Water Resources Management, 23(5), 881-897. https://doi.org/10.1007/s11269-008-9305-1.

Ngoc Quynh Tram V., Somura H., Moroizumi T., 2021. Evaluation of drought features in the Dakbla watershed, Central Highlands of Vietnam. Hydrological Research Letters, 15(3), 77-83. https://doi.org/10.3178/hrl.15.77.

Olivier K., Wilfrid V. E., Jean-Marie D., 2017. Caractérisation Des Risques Hydroclimatiques Dans Le Bassin Versant De L’Ouémé A L’exutoire De Bétérou Au Bénin (Afrique De L’ouest). European Scientific Journal, ESJ, 13(15), 101. https://doi.org/10.19044/esj.2017.v13n15p101.

Ozkaya A., Zerberg Y., 2019. A 40-Year Analysis of the Hydrological Drought Index for the Tigris Basin, Turkey. Water, 11(4), 657. https://doi.org/10.3390/w11040657.

Palmer, W.C. (1965). Meteorological Drought. Weather Bureau Research Paper No. 45. Washington, DC: US Department of Commerce.

Pathak A. A., Channaveerappa., Dodamani B. M., 2016. Comparison of two hydrological drought indices. Perspectives in Science, 8, 626‑628. https://doi.org/10.1016/j.pisc.2016.06.039.

Prajapati V. K., Khanna M., Singh M., Kaur R., Sahoo R. N., Singh D. K., 2022. PCA–based composite drought index for drought assessment in Marathwada region of Maharashtra state, India. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-022-04044-1.

Qi M., Zhang G. P., 2001. An investigation of model selection criteria for neural network time series forecasting. European Journal of Operational Research, 132(3), 666‑680. https://doi.org/10.1016/S0377-2217(00)00171-5.

Rahmouni A., Meddi M., Hamoudi Saaed A., 2022. Hydrological Drought Response to Meteorological Drought Propagation and Basin Characteristics (Case Study: Northwest of Algeria). Russian Meteorology and Hydrology 47, 708-717.

Rezaeianzadeh M., Tabari H., Arabi Yazdi A., Isik S., Kalin L., 2014. Flood flow forecasting using ANN, ANFIS and regression models. Neural Computing and Applications, 25(1), 25-37. https://doi.org/10.1007/s00521-013-1443-6.

Ross Sheldon M., 2014. “Chapter 4.2: Chapman−Kolmogorov Equations”. Introduction to Probability Models (11th ed.). p. 187.

Santos E. A. B. dos., Stosic, T., Barreto I. D. de C., Campos L., Silva A. S. A. da., 2019. Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 14(3), 1. https://doi.org/10.4136/ambi-agua.2311.

Sattar M. N., Jehanzaib M., Kim J. E., Kwon H.-H., Kim T.-W., 2020. Application of the Hidden Markov Bayesian Classifier and Propagation Concept for Probabilistic Assessment of Meteorological and Hydrological Droughts in South Korea. Atmosphere, 11(9), 1000. https://doi.org/10.3390/atmos11091000.

Shafer B. A., Dezman L. E., 1982. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Proceedings of the Western Snow Conference, 164-175.

Shukla S., Wood A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35(2008), L02405.

solaimani sardou, F, Bahramand A., 2014. Hydrological drought analysis using SDI index in Halilrud basin of Iran. Environmental Resources Research, 2(1). https://doi.org/10.22069/ijerr.2014.1678.

Soro T. D., Soro N., Oga Y. M.-S., Lasm T., Soro G., Ahoussi K. E., Biémi J., 2011. La variabilité climatique et son impact sur les ressources en eau dans le degré carré de Grand-Lahou (Sud-Ouest de la Côte d’Ivoire). Physio-Géo, 5, 55-73. https://doi.org/10.4000/physio-geo.1581.

Sun X., Wang M., Li G., Wang Y., 2020. Regional-scale drought monitor using synthesized index based on remote sensing in northeast China. Open Geosciences, 12(1), 163-173. https://doi.org/10.1515/geo-2020-0037.

Tabari H., Nikbakht J., Hosseinzadeh Talaee P., 2013. Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resources Management, 27(1), 137-151. https://doi.org/10.1007/s11269-012-0173-3.

Tabari H., Zamani R., Rahmati H.,Willems P., 2015. Markov Chains of Different Orders for Streamflow Drought Analysis. Water Resources Management 29(9): 3441-3457. https://doi.org/10.1007/s11269-015-1010-2.

Tareke K.A., Awoke A.G., 2022. Hydrological drought analysis using streamflow drought index (SDI) in Ethiopia. Advances in Meteorology . 4/22/2022, p1-19. 19p. Volume 2022. https://doi.org/10.1155/2022/7067951.

Tettey M., Oduro F. T., Adedia D., Abaye D. A., 2017. Markov chain analysis of the rainfall patterns of five geographical locations in the south eastern coast of Ghana. Earth Perspectives, 4(1), 6. https://doi.org/10.1186/s40322-017-0042-6.

Thierry T. N., 2020. Evaluation et impact de la sécheresse sur une région agricole: Cas de la plaine irriguée de la Beqaa. Université d’Orléans.

Tokarczyk T., Szalińska W., 2014. Combined analysis of precipitation and water deficit for drought hazard assessment. Hydrological Sciences Journal, 59(9), 1675-1689. https://doi.org/10.1080/02626667.2013.862335.

Wilhite D., 2000. Drought as a natural hazard: Concepts and definitions. Environmental Science, 1-18.

World Meteorological Organization. (2012). Standardized Precipitation Index User Guide (WMO-No.1090), Geneva.http://www.droughtmanagement.info/literature/WMO_standardized_precipitation_index_user_guide_ en_2012.pdf.

World Meteorological Organization (WMO) and Global Water Partnership (GWP)., 2014: National Drought Management Policy Guidelines: A Template for Action (D.A. Wilhite). Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 1. WMO, Geneva, and GWP, Stockholm, http://www.droughtmanagement.info/literature/IDMP_NDMPG_en.pdf.

World Meteorological Organization (WMO),. Global Water Partnership (GWP)., 2017. Handbook of drought indicators and indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Program (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva. ISBN 978–92–63-11173-9.

Yuan D., Lu E., Dai W., Chao Q., Wang H., Li, S., 2022. The Ice-and-Snow Tourism in Harbin Met Its Waterloo: Analysis of the Causes of the Warm Winter with Reduced Snowfall in 2018/2019. Atmosphere, 13(7), 1091. https://doi.org/10.3390/atmos13071091.

Yeh C.-F., Wang J., Yeh H.-F., Lee C.-H., 2015. SDI and Markov Chains for Regional Drought Characteristics. Sustainability, 7(8), 10789-10808. https://doi.org/10.3390/su70810789.

Zaki N. A., 2020. The role of agriculture expansion in water resources depletion in central Iran. https://doi.org/10.13140/RG.2.2.31754.90566.

Zamani R., Tabari H., Willems P., 2015. Extreme streamflow drought in the Karkheh river basin (Iran): Probabilistic and regional analyses. Natural Hazards, 76(1), 327‑346. https://doi.org/10.1007/s11069-014-1492-x.

Zhang Q., Shi R., Xu C.-Y., Sun P., Yu H., Zhao, J., 2022. Multisource data-based integrated drought monitoring index: Model development and application. Journal of Hydrology, 615, 128644. https://doi.org/10.1016/j.jhydrol.2022.128644.

Zhao C., Brissette F., Chen J., Martel J.-L., 2020. Frequency change of future extreme summer meteorological and hydrological droughts over North America. Journal of Hydrology, 584, 124316. https://doi.org/10.1016/j.jhydrol.2019.124316.

Zhong F., Cheng Q., Wang P., 2020. Meteorological Drought, Hydrological Drought, and NDVI in the Heihe River Basin, Northwest China: Evolution and Propagation. Advances in Meteorology, 2020, 1‑26. https://doi.org/10.1155/2020/2409068.

Zulfiqar A., Ijaz H., Muhammad F., 2019. Annual Characterization of Regional Hydrological Drought using Auxiliary Information under Global Warming Scenario [Preprint]. Hydrological Hazards. https://doi.org/10.5194/nhess-2018-373.

Downloads

Published

2024-08-26

How to Cite

Habibi, B., Meddi, M., & Abdelkader, M. (2024). The frequency distribution and stochastic analysis of the hydrological drought in northern Algeria. Italian Journal of Agrometeorology, (1), 73–94. https://doi.org/10.36253/ijam-1730

Issue

Section

RESEARCH ARTICLES