Irrigation strategies of sugarcane seedlings from micropropagation and biofactory methods

Authors

  • José Guilherme Victorelli Scanavini University of São Paulo/USP-ESALQ, Biosystems Engineering Department, C.P. 09, 13418-900 Piracicaba, SP, Brazil
  • Rubens Duarte Coelho University of São Paulo/USP-ESALQ, Biosystems Engineering Department, C.P. 09, 13418-900 Piracicaba, SP, Brazil
  • Timóteo Herculino da Silva Barros University of São Paulo/USP-CENA, Center of Nuclear Energy in Agriculture, 13416-000 Piracicaba, SP, Brazil
  • Jéfferson de Oliveira Costa Minas Gerais Agricultural Research Agency/EPAMIG, Experimental Field of Gorutuba, 39525-000 Nova Porteirinha, MG, Brazil
  • Sérgio Nascimento Duarte University of São Paulo/USP-ESALQ, Biosystems Engineering Department, C.P. 09, 13418-900 Piracicaba, SP, Brazil

DOI:

https://doi.org/10.36253/ijam-2447

Keywords:

Saccharum spp., soil moisture, volume of substrate, agricultural water management

Abstract

The sugarcane industry has been suffering from unstable productivity on commercial fields. The major factors causing this problem are mechanized harvesting damage to cane clumps in the field and the slow process of releasing and adopting new sugarcane cultivars. By utilizing new micropropagation processes involving the extraction of apical meristem from new cultivars and biofactory methods for multiplying the material, it is possible to produce an extraordinary number of sugarcane seedlings to provide nurseries rapidly with new cultivars for planting on commercial fields. The goal of this study was to evaluate several irrigation strategies (IS) to determine the best one for supplying the biofactory sugarcane seedlings water requirements, under conditions of different volumes of substrate (VS): 56, 73, 93 and 125 cm³. The irrigation management experiment comprised eight IS based on different periods of accumulated reference evapotranspiration (ETo). We found that the irrigation application must occur at intervals below 30 mm of accumulated ETo. IS1 (maintenance of soil moisture at field capacity) results in a larger number of tillers, longer extension of the primary stalks, and enhanced dry matter (DM) yield independent of VS. The VS factor accounted for statistical differences in sugarcane survival rate and morphological characteristics, but only for low initial soil moisture conditions. The intermediate VS of 73 cm3 was the best option for plants to thrive in the field; larger VS (93 and 125 cm3) produced young plants with many leaves, which transpire a lot in the field, increasing the chances of early death under water stress after planting; the smaller VS (56 cm3) resulted in young plants with small root systems and minimal water reservoirs, resulting in lower survival under drought conditions.

References

Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, D. 1998. Crop evaporation guidelines for computing crop water requirements. Rome, FAO. 300 p. (FAO Irrigation and Drainage Paper, 56).

Aquino, G.S.; Medina, C.C.; Silvestre, D.A.; Gomes, E.C.; Cunha, A.C.B.; Kussalva, D.A.O.; Almeida, L.F.; Shahab, M.; Santiago, A.D. 2018. Straw removal of sugarcane from soil and its impacts on yield and industrial quality ratoons. Scientia Agricola 75: 526-529. https://doi.org/10.1590/1678-992X-2017-0093

Barbosa, F.S.; Coelho, R.D.; Barros, T.H.S.; Lizcano, J.V.; Fraga Júnior, E.F.; Santos, L.C.; Leal, D.P.V.; Ribeiro, N.L.; Costa, J.O. 2024. Sugarcane Water Productivity for Bioethanol, Sugar and Biomass under Deficit Irrigation. AgriEngineering 6: 1117-1132. https://doi.org/10.3390/agriengineering6020064.

Castro, S.G.Q.; Rossi Neto, J.; Kölln, O.T.; Borges, B.M.M.N. 2019. Decision-making on the optimum timing for nitrogen fertilization on sugarcane ratoon. Scientia Agricola 76: 237-242. https://doi.org/10.1590/1678-992X-2017-0365

Chaves, S.W.P.; Coelho, R.D.; Costa, J.O.; Tapparo, S.A. 2021. Micrometeorological modeling and water consumption of tabasco pepper cultivated under greenhouse conditions. Italian Journal of Agrometeorology 1: 21-36.

Cherri, A.C.; Vianna, A.C.G.; Ramos, R.P.; Florentino, H.O. 2019. A methodology to determine size and shape of plots for sugarcane plantation. Scientia Agricola 76: 1-8. https://doi.org/10.1590/1678-992X-2017-0174

Costa, J.O.; Almeida, A.N.; Coelho, R.D.; Folegatti, M.V.; José, J.V. 2015. Estimation models of micrometeorological elements in a protected environment. Water Resources and Irrigation Management 4: 25-31.

Farias-Ramírez, A.J.; Duarte, S.N.; Moreno-Pizani, M.A.; de Oliveira Costa, J.; da Silva Barros, T.H.; Coelho, R.D. 2024. Combined effect of silicon and nitrogen doses applied to planting furrows on sugar, biomass and energy water productivity of sugarcane (Saccharum spp.). Agricultural Water Management 296: 108796. https://doi.org/10.1016/j.agwat.2024.108796

Hu, S.; Shi, L.; Zha, Y.; Huang, K. 2022. A new sugarcane yield model using SiPAS model. Agronomy Journal 114: 490-507. https://doi.org/10.1002/agj2.20949

Lal, M.; Tiwari, A.K.; Gupta Kavita, G.N. 2015. Commercial scale micropropagation of sugarcane: Constraints and remedies. Sugar Technology 17: 339-347. https://doi.org/10.1007/s12355-014-0345-y

Li, Y.; Mo, Y.Q.; Are, K.S., Huang, Z.; Guo, H.; Tang, C.; Wang, X. 2021. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation. Agriculture, Ecosystems & Environment 309: 107289. https://doi.org/10.1016/j.agee.2020.107289

Maldaner, L.F.; Molin, J.P. 2020. Data processing with rows for sugarcane yield mapping. Scientia Agricola 77: 1-8. https://doi.org/10.1590/1678-992X-2018-0391

Marchiori, P.E.R.; Machado, E.C.; Sales, C.R.G.; Espinoza-Núñez, E.; Magalhães Filho, J.R.; Souza, G.M.; Pires, R.C.M.; Ribeiro, R.V. 2017. Physiological plasticity is important for maintaining sugarcane growth under water deficit. Frontiers in Plant Science 8: 1-12. https://doi.org/10.3389/fpls.2017.02148

Matoso, G.C.; Reis, V.A.; Giacomini, S.J.; Silva, M.T.; Avancini, A.R.; Anjos e Silva, S.D. 2021. Diazotrophic bacteria and substrates in the growth and nitrogen accumulation of sugarcane seedlings. Scientia Agricola 78: 1-9. https://doi.org/10.1590/1678-992X-2019-0035

Otto, R.; Machado, B.A.; da Silva, A.C.M.; de Castro, S.G.Q.; Lisboa, I.P. 2022. Sugarcane pre-sprouted seedlings: A novel method for sugarcane establishment. Field Crops Research 275: 108336. https://doi.org/10.1016/j.fcr.2021.108336

Peloia, P.R.; Bocca, F.F.; Rodrigues, L.H.A. 2019. Identification of patterns for increasing production with decision trees in sugarcane mill data. Scientia Agricola 76: 281-289. https://doi.org/10.1590/1678-992X-2017-0239

Pooja, A.S.N.; Chand, M.; Pal, A.; Kumari, A.; Rani, B.; Goel, V.; Kulshreshtha, N. 2020. Soil moisture deficit induced changes in antioxidative defense mechanism of sugarcane (Saccharum officinarum) varieties differing in maturity. Indian Journal of Agricultural Sciences 90: 507–12. https://doi.org/10.56093/ijas.v90i3.101458

Poudial, C.; Costa, L.F.; Sandhu, H.; Ampatzdis, Y.; Odero, D.C.; Arbelo, O.C.; Cherry, R.H. 2022. Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning. Agronomy Journal 114: 2320-2333. https://doi.org/10.1002/agj2.21133

Rocha, B.M.; Fonseca, A.U.; Pedrini, H.; Soares, F. 2022. Automatic detection and evaluation of sugarcane planting rows in aerial images. Information Processing in Agriculture 10: 400-415. https://doi.org/10.1016/j.inpa.2022.04.003

Rocha, G.C.; Sparovek, G. 2021. Scientific and technical knowledge of sugarcane cover-management USLE/RUSLE factor. Scientia Agricola 78: e20200234. https://doi.org/10.1590/1678-992X-2020-0234

Sanches, G.M.; Paula, M.T.N.; Magalhães, P.S.G.; Duft, D.G.; Vitti, A.C.; Kolln, O.T.; Borges, B.M.M.N.; Franco, H.C.J. 2019. Precision production environments for sugarcane fields. Scientia Agricola 76: 10-17. https://doi.org/10.1590/1678-992X-2017-0128

Santos, L.C.; Coelho, R.D.; Barbosa, F.S.; Leal, D.P.; Fraga Júnior, E.F.; Barros, T.H.; Ribeiro, N.L. 2019. Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties. Agricultural Water Management 221: 322-333. https://doi.org/10.1016/j.agwat.2019.05.013.

Santos, A.K.B.; Popin, G.V.; Gmach, M.R.; Cherubin, M.R.; Siqueira Neto, M.; Cerri, C.E.P. 2022. Changes in soil temperature and moisture due to sugarcane straw removel in central-southern Brazil. Scientia Agricola 79: e202000309. https://doi.org/10.1590/1678992X.2020-0309

Silva, J.A.G.; Costa, P.M.A.; Marconi, T.G.; Barreto, E.J.S.; Solís-Garcia, N.; Park, J.; Glynn, N.C. 2018. Agronomic and molecular characterization of wild germplasm Saccharum spontaneum for sugarcane and energy cane breeding purposes. Scientia Agricola 75: 329-338. https://doi.org/10.1590/1678-992X-2017-0028

Tapparo, S.A., Coelho, R.D., Costa, J.O., Chaves, S.W.P. 2019. Growth and establishment of irrigated lawns under fixed management conditions. Scientia Horticulturae 256: 108580. https://doi.org/10.1016/j.scienta.2019.108580

Tavares, R.L.M.; Oliveira, S.R.M.; Barros, F.M.M.; Farhate, C.V.V.; Souza, Z.M.; La Scala Junior, N. 2018. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. Scientia Agricola 75: 281-287. https://doi.org/10.1590/1678-992X-2017-0095

van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Downloads

Published

2024-12-28

How to Cite

Scanavini, J. G. V., Coelho, R. D., Barros, T. H. da S., Costa, J. de O., & Duarte, S. N. (2024). Irrigation strategies of sugarcane seedlings from micropropagation and biofactory methods. Italian Journal of Agrometeorology, (2), 121–130. https://doi.org/10.36253/ijam-2447

Issue

Section

RESEARCH ARTICLES

Most read articles by the same author(s)