Regulating leaf photosynthesis and soil microorganisms through controlled-release nitrogen fertilizer can effectively alleviate the stress of elevated ambient ozone on winter wheat

Authors

  • Nanyan Zhu College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
  • Yinsen Qian Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China
  • Lingqi Song College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
  • Qiaoqiao Yu Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China
  • Haijun Sheng College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
  • Xinkai Zhu Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 7 Jiangsu 225009, China

DOI:

https://doi.org/10.36253/ijam-3202

Keywords:

ozone, controlled-release nitrogen fertilizer, flowering period, flag leaf, soil microorganisms, nitrogen-cycling

Abstract

The mitigation mechanisms of a kind of controlled-release nitrogen fertilizer (sulfur-coated controlled-release nitrogen fertilizer, SCNF) in response to O3 stress on a winter wheat (Triticum aestivum L.) variety (Nongmai-88) were studied in crop physiology and soil biology through the ozone-free-air controlled enrichment (O3- FACE) simulation platform and soil microbial metagenomics. The results showed that SCNF could not delay the O3-induced leaf senescence of winter wheat, but could enhance the leaf size and photosynthetic function of flag leaves, increase the

 

accumulation of nutrient elements, and lay the foundation for yield by regulating the release rate of nitrogen (N). By regulating the soil environment, SCNF could maintain the diversity and stability of soil bacterial and archaeal communities, but there was no obvious interaction with the soil fungal community. By alleviating the inhibition effects of O3 on N-cycling-related genes (ko00910) of soil microorganisms, SCNF improved the activities of related enzymes, and might have great potential in improving soil N retention. The results demonstrated the ability of SCNF to improve leaf photosynthetic function and increase crop yield under O3-polluted conditions in the farmland ecosystem, which may become an effective nitrogen fertilizer management measure to cope with the elevated ambient O3 and achieve sustainable production.

References

Agathokleous, E., Feng, Z., Oksanen, E., Sicard, P., Wang, Q., Saitanis, C.J., Araminiene, V., Blande, J.D., Hayes, F., Calatayud, V., Domingos, M., Veresoglou, S.D., Penuelas, J., 2020. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6 (33), https://doi.org/10.1126/sciadv.abc1176.

Aguiar-Silva, C., Brandão, S.E., Domingos, M., Bulbovas, P., 2016. Antioxidant responses of Atlantic Forest native tree species as indicators of increasing tolerance to oxidative stress when they are exposed to air pollutants and seasonal tropical climate. Ecol. Indic. 63, 154–164. https://doi.org/10.1016/j.ecolind.2015.11.060.

Ai, C., Zhang, S., Zhang, X., Guo, D., Zhou, W., Huang, S., 2018. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geofis. Int. 319, 156–166. https://doi.org/10.1016/j.geoderma.2018.01.010.

Ainsworth, E. A., 2017. Understanding and improving global crop response to ozone pollution. Plant J. 90 (5), 886–897. https://doi.org/10.1111/tpj.13298.

Aller, J. Y., Kemp, P. F. 2008. Are Archaea inherently less diverse than Bacteria in the same environments? FEMS Microbiol. Ecol. 65(1), 74–87. https://doi.org/10.1111/j.1574-6941.2008.00498.x.

Andersen, C.P., 2003. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New phytol. 157 (2), 213–228.

https://doi.org/10.1046/j.1469-8137.2003.00674.x.

Araminienė, V., Sicard, P., Anav, A., Agathokleous, E., Stakėnas, V., DeMarco, A., Varnagirytė-Kabašinskienė, I., Paoletti, E., Girgždienė, R., 2019. Trends and interrelationships of ground-level ozone metrics and forest health in Lithuania. Sci. Total Environ. 658, 1265–1277. https://doi.org/10.1016/j.scitotenv.2018.12.092.

Ashmore, M., Emberson, L., Karlsson, P.E., Hakan, P., 2004. New Directions: A new generation of ozone critical levels for the protection of vegetation in Europe. Atmos. Environ. 38 (15), 2213–2214. https://doi.org/10.1016/j.atmosenv.2004.02.029.

Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses, economic damage, and implications for world hunger under two scenarios of O3 pollution. Atmos. Environ. 45 (13), 2297–2309. https://doi.org/10.1016/j.atmosenv.2011.01.002.

Baker, B.J., Anda, V.D., Seitz, K.W., Dombrowski, N., Santoro, A.E., Lloyd, K.G., 2020. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5 (7), 887-900. https://doi.org/10.1038/s41564-020-0741-x.

Bao, S., 2000. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press. Berg, I.A., Kockelkorn, D., Buckel, W., Fuchs, G. 2007. A 3- hydroxypropionate/4hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318 (5857), 1782–1786.

https://doi.org/10.1126/science.1149976

Biswas, D.K., Xu, H., Li, Y., Sun, J., Wang, X., Han, X., Jiang, G., 2008. Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biol. 14 (1), 46–59. https://doi.org/10.1111/j.1365-2486.2007.01477.

Booker, F., Muntifering, R., Mcgrath, M., Burkey, M., Decoteau, D., Fiscus, E., Manning, W., Krupa, S., Chappelka, A., Grantz, D., 2009. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 000

(004), 337–351. https://doi.org/10.1111/j.1744-7909.2008.00805.x.

Cai, F., Zhang, Y.S., Mi, N., Ming, H.Q., Zhang, S.J., Zhang, H., Zhao, X., 2020. Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree. Agr. Water Manage. 241, 106379. https://doi.org/10.1016/j.agwat.2020.106379.

Chelsea, C.J., Dove, N.C., Beman, J.M., Stephen, C.H., Emma, L.A., 2016. Meta- analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol. Biochem. 99, 158–166. https://doi.org/10.1016/j.soilbio.2016.05.014.

Chen, Y., Jiang, Y., Huang, H., Mou, L., Ru, J., Zhao, J., Xiao, S., 2018. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci. Total Environ. 637–638, 1400–1412. https://doi.org/10.1016/j.scitotenv.2018.05.109.

Chen, Z., Maltz, M.R., Cao, J., Yu, H., Shang, H., Aronson, E., 2019. Elevated O3 alters soil bacterial and fungal communities and the dynamics of carbon and nitrogen. Sci. Total Environ. 677, 272–280. https://doi.org/10.1016/j.scitotenv.2019.04.310.

Cuhel, J., Simek, M., Laughlin, R.J., Bru, D., Cheneby, D., Watson, C. J., Philippot, L., 2010. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl. Environ. Microb. 76 (6), 1870–1878. https://doi.org/10.1128/AEM.02484-09.

Feng, P., Wang, B., Liu, D., Xing, H., Ji, F., Macadam, I., Ruan, Hong., Yu, Q., 2018a. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Climatic Change 147,555–569. https://doi.org/10.1007/s10584- 018-2170-x.

Feng, Z., Büker, P., Pleijel, H., Emberson, L., Karlsson, P.E., Uddling, J., 2018b. A unifying explanation for variation in ozone sensitivity among woody plants. Glob. Change Biol. 24, 78–84. https://doi.org/10.1111/gcb.13824.

Gelang, J.,Sild, E.,Danielsson, H., Younis, S., Sellden, G., 2000. Rate and duration

of grain filling in relation to flag leaf senescence and grain yield in spring wheat

exposed to different concentrations of ozone. Physiol. Plantarum 110, 366–375. https://doi.org/10.1034/j.1399-3054.2000.1100311.x.

Guo, J., Wang, Y., Blaylock, A.D., Chen, X., 2017. Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (>15 Mg ha–1) maize. Field Crop. Res. 204, 23–30. https://doi.org/10.1016/j.fcr.2016.12.021.

He, Z., Huang, X., Fan, Y., Yang, M., Zhou, E. 2022. Metatranscriptomic analysis reveals rich mycoviral diversity in three major fungal pathogens of rice. Int. J. Mol. Sci. 23 (16), 91–92. https://doi.org/10.3390/ijms23169192.

Hu, T., Liu, S., Xu, Y., Feng, Z., Calatayud, V., 2020. Assessment of O3-induced yield and economic losses for wheat in the North China Plain from 2014 to 2017, China. Environ. Pollut. 258, 113828. https://doi.org/10.1016/j.envpol.2019.113828.

Huang, Q., Wang, J., Wang, C., Wang, Q., 2019. The 19-years inorganic fertilization increased bacterial diversity and altered bacterial community composition and potential functions in a paddy soil. Appl. Soil Ecol. 144, 60–67. https://doi.org/10.1016/j.apsoil.2019.07.009.

Joshi, B., Chaudhary, A., Varma, A., Tripathi, S., Bhatia, A., 2023. Elevated CO2, O3 and their interaction have differential impact on soil microbial diversity and functions in wheat agroecosystems. Rhizosphere 27, 100777. https://doi.org/10.1016/j.rhisph.2023.100777.

Lawson, C.E., Wu, S., Bhattacharjee, A.S., Hamilton, J.J., McMahon, K.D., Goel, R., Noguera, D.R., 2017. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 15416. https://doi.org/10.1038/ncomms15416.

Li, P., Yin, R., Zhou, H., Yuan, X., Feng, Z., 2021b. Soil pH drives poplar rhizosphere soil microbial community responses to ozone pollution and nitrogen addition. Eur.

J. Soil Sci. 73(1),13186. https://doi.org/10.1111/ejss.13186.

Li, R., Gao, Y., Chen, Q., Li, Z., Gao, F., Meng, Q., Li, T., Liu, A., Wang, Q., Wu, L.,

Wang, Y., Liu, Z., Zhang, M., 2021a. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil Till. Res. 212, 105045.

https://doi.org/10.1016/j.still.2021.105045.

Li, X., Deng, Y., Li, Q., Lu, C., Wang, J., Zhang, H., Zhu, J., Zhou, J., He, Z., 2013.

Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone. ISME J. 7 (3), 660–671. https://doi.org/10.1038/ismej.2012.120.

Li, X., Song, X., Zhao, J., Lu, H., Qian, C., Zhao, X., 2021c. Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow. Ecol. Evol. 11, 14042–14055. https://doi.org/10.1002/ece3.8113.

Liu, J., Song, M., Wei, X., Zhang, H., Bai, Z., Zhuang, X., 2022. Responses of phyllosphere microbiome to ozone stress: Abundance, community compositions and functions. Microorganisms 10 (4), 680.

https://doi.org/10.3390/microorganisms10040680.

Liu, P., Huang, J.J., Cai, Z.Y., Chen, H.T., Huang, X., Yang, S.N., Su, Z.X., Azam, M., Chen, H.B., Shen, J.Y., 2022. Influence of girdling on growth of litchi (Litchi chinensis) roots during cold-dependent floral induction. Sci. Hortic-Amsterdam 297, 110928. https://doi.org/10.1016/j.scienta.2022.110928.

Lu, X., Hong, J., Zhang, L., Cooper, O., Schultz, M., Xu, X., Wang, T., Gao, M., Zhao, Y., 2018. Severe surface ozone pollution in China: A global perspective. Environ. Sci. Technol. 5, 487–494. https://doi.org/10.1021/acs.estlett.8b00366.

Ma, Q., Qian, Y., Yu, Q., Cao, Y., Tao, R., Zhu, M., Ding, J., Li, C., Guo, W., Zhu, X.,

Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agr. Ecosyst. Environ. 349, 108445. https://doi.org/10.1016/j.agee.2023.108445.

Manning, W.J., Paoletti, E., Sandermann, H., Ernst, D., 2011. Ethylenediurea (EDU): A research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ. Pollut. 159 (12), 3283–3293. https://doi.org/10.1016/j.envpol.2011.07.005.

Manuel, D.B., Giaramida, L., Reich, P.B., Khachane, A.N., Hamonts, K., Edwards, C., Lawton, L.A., Singh, B.K., 2016. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J. Ecol. 104

(4). 936–946. https://doi.org/10.1111/1365-2745.12585.

Mccrady, J.K., Andersen, C.P., 2000. The effect of ozone on below-ground carbon allocation in wheat. Environ. Pollut. 107 (3), 465–472. https://doi.org/10.1016/s0269-7491(99)00122-0.

Miao, S., Qiao, Y., Jin, J., Wang, Y., Tang, C., 2021. Greater variation of bacterial community structure in soybean- than maize-grown Mollisol soils in responses to seven-year elevated CO2 and temperature. Sci. Total Environ. 764, 142836. https://doi.org/10.1016/j.scitotenv.2020.142836.

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, W.J., Dentener, F., Van den Berg, M., Agrawal, M., Agrawal, S.B., Ainsworth, E.A., Buker, P., Emberson, L., Feng, Z.Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., Van Dingenen, R., 2018. Ozone pollution will compromise efforts to increase global wheat production. Global Change Biol. 24

(8), 3560–3574. https://doi.org/10.1111/gcb.14157.

Miltner, A., Bombach, P., Schmidt-Brucken, B., Kastner, M., 2012. SOM genesis: Microbial biomass as a significant source. Biogeochemistry. 111, 41–55. https://doi.org/10.1007/s10533-011-9658-z.

Nacke, H.,Thürmer, A.,Wollherr, A., Will, C., Hodac, L., Herold, N., Schoning, L., Schrumpf, M., Daniel, R., 2011. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6 (2), e17000. https://doi.org/10.1371/journal.pone.0017000.

Pei, Y., Yu, Z., Ji, J., Khan, A., Li, X., 2018. Microbial community structure and function indicate the severity of chromium contamination of the Yellow River. Front. Microbiol 9, 38. https://doi.org/10.3389/fmicb.2018.00038.

Peng, J., Xu, Y., Shang, B., Qu, L., Feng, Z., 2020. Impact of ozone pollution on nitrogen fertilization management during maize (Zea mays L.) production. Environ. Pollut. 266, 115158. https://doi.org/10.1016/j.envpol.2020.115158.

Reji, L., Francis, C.A., 2020. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 14.

–2115. https://doi.org/10.1038/s41396-020-0675-6.

Ren, X., Shang, B., Feng, Z., Calatayud, V., 2020. Yield and economic losses of winter wheat and rice due to ozone in the Yangtze River Delta during 2014–2019. Sci. Total Environ. 745, 140847. https://doi.org/10.1016/j.scitotenv.2020.140847.

Shang, B., Fu, R., Agathokleous, E., Dai, L., Zhang, G., Wu, R., Feng, Z. 2022. Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. Sci. Total Environ. 806 (3), 151341. https://doi.org/10.1016/j.scitotenv.2021.151341.

Tahamolkonan, M., Ghahsareh, A.M., Ashtari, M.K., Honarjoo, N., 2022. Tomato (Solanum lycopersicum) growth and fruit quality affected by organic fertilization and ozonated water. Protoplasma 259 (2), 291–299. https://doi.org/10.1007/s00709-021-01657-7.

Wang, H., Boutton, T., Xu, W., Hu, G., Jiang, P., Bai, E. 2015. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Sci. Rep-UK. 5, 10102. https://doi.org/10.1038/srep10102.

Wang, M., Li, G., Feng, Z., Liu, Y., Yuan, X., Uscola, M., 2023a. A wider spectrum of avoidance and tolerance mechanisms explained ozone sensitivity of two white poplar ploidy levels. Ann. Bot-London. 131 (4), 655–666, https://doi.org/10.1093/aob/mcad019.

Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., Ding, A., 2019. Aggravating O3 pollution due to NOX emission control in eastern China. Sci. Total Environ. 677 (10), 732–744. https://doi.org/10.1016/j.scitotenv.2019.04.388.

Wang, Q., Wang, D., Agathokleous, E., Cheng, C., Shang, B., Feng, Z.Z., 2023b. Soil microbial community involved in nitrogen cycling in rice tields treated with antiozonant under ambient ozone. Appl. Environ. Microb. 89, 00180. https://doi.org/10.1128/aem.00180-23.

Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L., Xing, B., 2015a. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere. 138, 576–583. https://doi.org/10.1016/j.chemosphere.2015.06.084. Yang, H., Chen, R., Chen, Y., Li, H., Wei, T., Xie, W., Fan, G., 2022.Agronomic and

physiological traits associated with genetic improvement of phosphorus use efficiency of wheat grown in a purple lithomorphic soil. Crop J. 10 (4),1151–1164. https://doi.org/10.1016/j.cj.2021.11.010.

Yang, X., Chen, X., Ge, Q., Li, B., Tong, Y., Li, Z., Kuang, T., Lu, C., 2007.

Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. Plant Physiol. 164, 318–326. https://doi.org/10.1016/j. jplph.2006.01.007.

Zhang, X., Jia, H., Li, T., Wu, J., Nagarajan, R., Lei, L., Powers, C., Kan, C.C., Hua, W., Liu, Z., Chen, C., Carver, B., Yan, L., 2022b. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science. 376 (6589), 180. https://doi.org/10.1126/science.abm0717.

Zhang, Z., Yu, Z., Zhang, Y., Shi, Y., 2022a. Impacts of fertilization optimization on soil nitrogen cycling and wheat nitrogen utilization under water-saving irrigation. Front. Plant Sci. 13, 878424. https://doi.org/10.3389/fpls.2022.878424.

Zhong, Y., Yan, W., Shangguan, Z., 2015. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient- use efficiencies. Soil Biol. Biochem. 91, 151–159. https://doi.org/10.1016/j.soilbio.2015.08.030.

Zhou, J., Deng, Y., Shen, L., Wen, C., Yan.Q., Ning, D., Qin, Y., Xue, K., Wu, L., He, Z., 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083. https://doi.org/10.1038/ncomms12083.

Zhou, J., Guan, D., Zhou, B., Zhao, B., Ma, M., Qin, J., Jiang, X., Chen, S., Cao, F., Shen, D., Li, J., 2015. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 90, 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005.

Zhu, X, Feng, Z., Sun, T., Liu, X., Tang, H., Zhu, J., Guo, W., Kazuhiko, K., 2011. Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biol. 17 (8), 2697–2706. https://doi.org/10.1111/j.1365-2486.2011.02400.x.

Zou, Y., Lin, M., Xiong, W., Wang, M., Zhang, J., Wang, M, Sun, Y., 2018. Metagenomic insights into the effect of oxytetracycline on microbial structures, functions and functional genes in sediment denitrification. Ecotox. Environ. Safe. 161, 85–91. https://doi.org/10.1016/j.ecoenv.2018.05.045.

Published

2025-05-31

How to Cite

Zhu , N., Qian, Y., Song, L., Yu, Q., Sheng , H., & Zhu, X. (2025). Regulating leaf photosynthesis and soil microorganisms through controlled-release nitrogen fertilizer can effectively alleviate the stress of elevated ambient ozone on winter wheat. Italian Journal of Agrometeorology. https://doi.org/10.36253/ijam-3202

Issue

Section

RESEARCH ARTICLES