Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects
DOI:
https://doi.org/10.13128/cayologia-249Keywords:
Green synthesis, nanoparticle, algae, antimicrobial, Desmodesmus sp.Abstract
In this study aim was to perform green synthesis of synthesis silver nanoparticles (LAC-AgNPs, RAE-AgNPs and BAE-AgNPs) by using Desmodesmus sp., intracellular and extracellular synthesis methods and to compare the obtained products with physicochemical characterization techniques. The structural, morphological and optical properties of the synthesized nanoparticles were characterized using UV-Vis spectroscopy, TEM, SEM-EDS, FTIR, DLS and zeta potential. These results clearly show that silver nanoparticles (AgNPs) could be synthesized in different sizes and stabilities with various biological materials obtained from Desmodesmus sp. LAC-AgNPs had size of 10-30 nm, RAE-AgNPs had size of 4-8 nm and BAE-AgNPs had size of 3-6 nm. Also, the antibacterial activity of silver nanoparticles synthesized as intracellular and extracellular showed a strong antibacterial effect against pathogens such as Salmonella sp. and Listeria monocytogenes. Additionally, they have effective antifungal activity against Candida parapsilosis. The broth microdilution method was used for examining antibacterial antifungal effect of synthesis AgNPs. The minimum inhibitory concentration against Salmonella sp., Listeria monocytogenesis and Candida parapsilosis were recorded as 3,125 ?l, 1,5625 µl and 0,78125 µl synthesis AgNPs, respectively. As a result, it has thought that different sizes of synthesis AgNPs may have a great potential for biomedical applications.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
- Copyright on any open access article in a journal published byCaryologia is retained by the author(s).
- Authors grant Caryologia a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles.
- In accordance with our Open Data policy, the Creative Commons CC0 1.0 Public Domain Dedication waiver applies to all published data in Caryologia open access articles.