Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects

  • Betül Yilmaz Öztürk
Keywords: Green synthesis, nanoparticle, algae, antimicrobial, Desmodesmus sp.

Abstract

In this study aim was to perform green synthesis of synthesis silver nanoparticles (LAC-AgNPs, RAE-AgNPs and BAE-AgNPs) by using Desmodesmus sp., intracellular and extracellular synthesis methods and to compare the obtained products with physicochemical characterization techniques. The structural, morphological and optical properties of the synthesized nanoparticles were characterized using UV-Vis spectroscopy, TEM, SEM-EDS, FTIR, DLS and zeta potential. These results clearly show that silver nanoparticles (AgNPs) could be synthesized in different sizes and stabilities with various biological materials obtained from Desmodesmus sp. LAC-AgNPs had size of 10-30 nm, RAE-AgNPs had size of 4-8 nm and BAE-AgNPs had size of 3-6 nm. Also, the antibacterial activity of silver nanoparticles synthesized as intracellular and extracellular showed a strong antibacterial effect against pathogens such as Salmonella sp. and Listeria monocytogenes. Additionally, they have effective antifungal activity against Candida parapsilosis. The broth microdilution method was used for examining antibacterial antifungal effect of synthesis AgNPs. The minimum inhibitory concentration against Salmonella sp., Listeria monocytogenesis and Candida parapsilosis  were recorded as 3,125 μl, 1,5625 µl and 0,78125 µl synthesis AgNPs, respectively. As a result, it has thought that different sizes of synthesis AgNPs may have a great potential for biomedical applications.

Author Biography

Betül Yilmaz Öztürk

Eskişehir Osmangazi University Central Research Laboratory Application And Research Center (ARUM), 26480 Eskişehir, Turkey

Published
2019-05-10
How to Cite
Öztürk, B. Y. (2019). Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects. Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics, 72(1), 29-43. https://doi.org/10.13128/cayologia-249
Section
Articles