Definiteness in Early Set Theory
DOI:
https://doi.org/10.36253/jpm-2933Keywords:
Intensional definiteness, Extensional definiteness, concept of set, potentialism, Cantor, Zermelo, WeylAbstract
The notion of definiteness has played a fundamental role in the early developments of set theory. We consider its role in work of Cantor, Zermelo and Weyl. We distinguish two very different forms of definiteness. First, a condition can be definite in the sense that, given any object, either the condition applies to that object or it does not. We call this intensional definiteness. Second, a condition or collection can be definite in the sense that, loosely speaking, a totality of its instances or members has been circumscribed. We call this extensional definiteness. Whereas intensional definiteness concerns whether an intension applies to objects considered one by one, extensional definiteness concerns the totality of objects to which the intension applies. We discuss how these two forms of definiteness admit of precise mathematical analyses. We argue that two main types of explication of extensional definiteness are available. One is in terms of completability and coexistence (Cantor), the other is based on a novel idea due to Hermann Weyl and can be roughly expressed in terms of proper demarcation. We submit that the two notions of extensional definiteness that emerges from our investigation enable us to identify and understand some of the most important fault lines in the philosophy and foundations of mathematics.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Laura Crosilla, Øystein Linnebo
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Copyright on any open access article in JPM published by FUP is retained by the author(s).
- Authors grant FUP a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles.
- In accordance with our Open Data policy, the Creative Commons CC0 1.0 Public Domain Dedication waiver applies to all published data in JPM open access articles.