Quinoa response to different transplanting dates and nitrogen fertilization levels in an arid environment

Authors

  • Ibrahim Mubarak Atomic Energy Commission of Syria
  • Mussaddak Janat Atomic Energy Commission of Syria

DOI:

https://doi.org/10.13128/ijam-962

Keywords:

Agro-meteorology, Water productivity, Irrigation water use efficiency, Quinoa seed yield potentials, Arid Mediterranean area

Abstract

Quinoa is recognized as a water-stress tolerant crop. Nevertheless, few findings are presently available on fully-irrigated quinoa growth and productivity grown in arid Mediterranean area. Field experiments conducted in Syria for two growing seasons (2017/18 and 2018/19) determined the response of quinoa crop (ICBA-Q5 cultivar) to five different transplanting dates (TD) (December, January, February, March, and April) and four nitrogen fertilizer levels (0, 90, 180 and 270 kg N ha-1). Main findings showed that quinoa had a good adaptation (up to 5.30 and 15.9 t ha-1 of seed and dry matter yields, respectively) to very low N-inputs, with a high capacity to evapotranspirate (ETc), resulting in high crop coefficient (kc). ETc and kc varied in the range of 590-1136 mm and 0.37-2.05 among the TDs, respectively. Moreover, quinoa growth and productivity were highly affected by TDs, and varied from year to year, influenced mainly by temperature. Emphasis in future experiments should probably be given to TD in December, which exhibited a high degree of consistency over years with high crop performance, and to TDs in January and February, which performed extremely well in the first year.

References

Ahmadi S.H., Solgi S., Sepaskhah A.R., 2019. Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agric. Water Manag. 225, https://doi.org/10.1016/j.agwat.2019.105784

Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper No. 56. FAO.

Al-Naggar A.M., Abd El-Salam R.M., Badran A., El-Moghazi M., 2017. Genotype and drought effects on morphological, physiological and yield traits of quinoa (Chenopodium quinoa Willd.). Asian J. Adv. Agric. Res. 3, 1–15.

Alvar-Beltran J., Saturnin C., Dao A., Dalla Marta A., Sanou J., Orlandini S., 2019. Effect of drought and nitrogen fertilisation on quinoa (Chenopodium quinoa Willd.) under field conditions in Burkina Faso. Ital. J. Agrometeorol. 1, 33–43.

Bazile D., Jacobsen S. E., Verniau A., 2016. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 7, 622.

Becker V.I., Goessling J.W., Duarte B., Caçador I., Liu, F., Rosenqvist E., Jacobsen S.-E., 2017. Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Funct. Plant Biol. 44, 665–678.

Breidy J., 2015. In final report on quinoa evaluation trials in Lebanon. (Rome: FAO)

Centre National de Recherche Agronomique et de Developpement Agricole (CNRADA), 2015. In Mauritania final evaluation report on quinoa. Rome: FAO

Choukr-Allah R., Rao N.K., Hirich A., Shahid M., Alshankiti A., Toderich K., Gill S., Butt K., 2016. Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions. Front. Plant Sci. 7, 346. doi: 10.3389/fpls.2016.00346

Djamal S., 2015. In technical assistance for the introduction of quinoa and appropriation/ institutionalization of its production in Algeria-Second Evaluation Report. Rome: FAO

Dost M., 2015. Field evaluation results across locations and identification of suitable QUINOA varieties, in Wrap up Workshop of Regional Quinoa Project (TCP/RAB/3403–FAO). Rome: FAO.

Eisa S.S., Eid M.A., Abd E.S., Hussin S.A., Abdel-Ati A.A., El-Bordeny N.E., Ali S.H., Al-Sayed H.M. A., Lotfy M.E., Masoud A.M., et al., 2017. Chenopodium quinoa Willd. A new cash crop halophyte for saline regions of Egypt. Aust. J. Crop Sci. 11, 343–351.

FAO and CIRAD, 2015. State of the art report of quinoa in the world in 2013, by D. Bazile, D. Bertero and C. Nieto, eds. Rome.

Garcia M., Raes D., Jacobsen S.E., 2003. Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agric. Water Manag. 60, 119–134.

Geerts S., Raes D., Garcia M., Vacher J., Mamani R., Mendoza J., Huanca R., Morales B., Miranda R., Cusicanqui J., Taboada C., 2008a. Introducing deficit irrigation to stablize yields of quinoa (Chenopodium quinoa Willd.). Eur. J. Agron. 28, 427–436.

Geerts S., Raes D., Garcia M., Condori O., Mamani J., Miranda R., Cusicanqui J., Taboada C., Vacher J., 2008b. Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano? Agric. Water Manag. 95, 909–917.

Gomez K.A., Gomez A.A., 1984. Statistical Procedures for Agricultural Research, second ed. John Wiley & Sons, New York. 680 pp.

Hassan L., 2015. Iraq final evaluation report on quinoa. Rome: FAO

Hatfield J.L., Prueger J.H., 2015. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extremes. 10, 4–10.

Hinojosa L., González J., Barrios-Masias F., Fuentes F., Murphy K., 2018. Quinoa abiotic stress responses: a review. Plants 7(4), 106, https://doi.org/10.3390/plants7040106

Hinojosa L., Matanguihan J.B., Murphy K.M., 2019a. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 205, 33–45.

Hinojosa L., Kumar N., Gill K.S., Murphy K.M., 2019b. Spectral reflectance indices and physiological parameters in quinoa under contrasting irrigation regimes. Crop Sci. 59, 1927–1944.

Hirich A., 2014. Effects of Deficit Irrigation using Treated Waste water and Irrigation with Saline Wateron Legumes, Corn and Quinoa Crops. Ph.D., thesis, Hassan II Institue of Agronomy and Veterinary Medicine, Morocco.

Hirich A., Choukr-Allah R., Jacobsen S.E., 2014. Quinoa in Morocco- Effect of sowing dates on development and yield. J. Agron. Crop Sci. 200, 371–377.

Hirich A., 2016. Phenotyping the combined effect of heat and water stress on quinoa introduction, in International Quinoa Conference: Quinoa for Future Food and Nutrition Security in Marginal Environments. Dubai, United Arab Emirates. pp. 6–8.

Jacobsen S.E., 2003. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 19, 167–177. doi:10.1081/FRI-120018883

Jacobsen S.E., Mujica A., Jensen C.R., 2003. The resistance of Quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19, 99–109. doi:10.1081/FRI-120018872

Kaushal N., Bhandari K., Siddique K.H.M., Nayyar H., 2016. Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric. 2, 1–42.

Lavini A., Pulvento C., D’Andria R., Riccardi M., Choukr-Allah R., Belhabib O., et al., 2014. Quinoa’s potential in the Mediterranean region. J. Agron. Crop Sci. 200, 344-360. doi:10.1111/jac.12069

Moreale A., 1993. In The quinoa project: Wageningen University. http://edepot.wur.nl/354101 (accessed 06 February 2020).

Onofri A., 2007. Routine statistical analyses of field experiments by using an Excel extension. National Conference Italian Biometric Society. Proc. 6th (Pisa). In: "La statistica nelle scienze della vita e dell’ambiente"; 20-22, 93–96.

Pulvento C., Riccardi M., Lavini A., Iafelice G., Marconi E., d’Andria R., 2012. Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J. Agron. Crop Sci. 198, 254–263.

Rao N.K., 2016. Quinoa: a future-proof crop for climate smart agriculture, in Global Forum for Innovations in Agriculture, Choukr-Allah, R., (Ed) (Abu Dhabi).

Rao N.K., Shahid M., 2012. Quinoa– a promising new crop for the Arabian Peninsula. American-Eurasian J. Agric. Environ. Sci. 12, 1350–1355.

Razzaghi F., Ahmadi S.H., Adolf V.I., Jensen C.R., Jacobsen S.E., Andersen M.N., 2011. Water relations and transpiration of Quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J. Agron. Crop Sci. 197, 348–360.

Razzaghi F., Plauborg F., Jacobsen S.E., Jensen C.R., Andersen M.N., 2012. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric. Water Manag. 109, 20–29.

Repo-Carrasco R., Espinoza C., Jacobsen S.E., 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev. Int. 19, 179–189. doi:10.1081/FRI-120018884

Saeed A.L., 2015. In Yemen progress report on quinoa. Rome: FAO

Sells J.E., 1989. Combimble alternative crops. AFRC Institute of Engineering Research, Bedford, UK.

Shams A., 2017. Response of quinoa to nitrogen fertilizer rates under Egyptian soils conditions. Proc. 13th international Conf. Agron., Fac. of Agic., Benha Univ., Egypt, 9–10.

Shoman H.A., 2018. Effect of Sowing Dates and Nitrogen on Productivity of Quinoa (Chenopodium quinoa Willd.) at Desert Areas. J. Plant Production, Mansoura Univ. 9(4), 327–332.

Stolen O., Hansen G., 1993. Introduction of New Crops in Denmark, in: Anthony, K.RM., Meadley, J., Robbelen, G. (Eds.), New Crops for Temperate Regions. Chapman and Hall, London, pp. 45–53.

Yang A., Akhtar S.S., Amjad M., Iqbal S., Jacobsen S.E., 2016. Growth and physiological responses of quinoa to drought and temperature stress. J. Agron. Crop Sci. 202, 445–453.

Downloads

Published

2021-01-25

How to Cite

Mubarak, I., & Janat, M. (2021). Quinoa response to different transplanting dates and nitrogen fertilization levels in an arid environment. Italian Journal of Agrometeorology, (2), 77–89. https://doi.org/10.13128/ijam-962

Issue

Section

RESEARCH ARTICLES