The effect of deficit irrigation and fertilizer on quantitative and qualitative yield of quinoa (Chenopodium quinoa)

Authors

  • Hassan Fatemi Kiyan Department of Agronomy, Islamic Azad University, Shirvan Branch, Shirvan
  • Maryam Tatari Department of Agronomy, Islamic Azad University, Shirvan Branch, Shirvan
  • Mohammad Reza Tokalo Department of Agronomy, Islamic Azade University, Bojnourd Branch, Bojnourd
  • Masomeh Salehi National Saline Research Center Agricultural Education and Extension Research Organization, Yazd
  • Kamal Hajmohammadnia Ghalibaf Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad

DOI:

https://doi.org/10.36253/ijam-1136

Keywords:

Quinoa Seed Quality, Irrigation Management, Organic Fertilizer, Plant Pigment, Electrolyte Leakage

Abstract

In order to investigate the effect of deficit irrigation and chemical fertilizers on yield and some physiological traits of quinoa an experiment was conducted in 2019 as split plot based on a randomized complete block design in two locations (Mashhad and Neishabour). Irrigation included, I0: full irrigation, I1: no irrigation at emergence stage, I2: no irrigation at stem elongation stage, I3: no irrigation at flowering stage, I4: no irrigation at seed setting stage. Fertilizer treatments included control (no fertilizer application); chemical fertilizer application according to local practices; manure application of 10 tons; and manure application of 20 tons per hectare. In general, seed yield, percentage of protein and seed oil in Mashhad was higher than in Neishabour. I2 treatment had the least negative effect on relative leaf water content. Application of chemical fertilizers, 10 tons and 20 tons of animal manure increased the percent of seed protein by 1.43, 1.66 and 2.37 compared to the control, respectively. The highest percentage of seed oil (5.91%) was obtained for treatment I2 in Mashhad and the lowest percentage of seed oil (4.18%) was obtained for treatment I4 in Neishabour. The lowest seed yield due to I1 treatment was observed in Neishabour and the highest seed yield was related to I0 treatment with 20 tons of manure and was observed in Mashhad. The results showed that the yield and water stress tolerance potential of quinoa can be modified by irrigation, fertilizer source and location.

References

References

Adebayo, M. A., Menkir, A., Blay, E., Gracen, V., Danquah, E., & Hearne, S. (2014). Genetic analysis of drought tolerance in adapted× exotic crosses of maize inbred lines under managed stress conditions. Euphytica, 196(2), 261-270. https://doi.org/10.1007/s10681-013-1029-5.

Ahmadi, A., Emam, Y., & Pessarakli, M. (2010). Biochemical changes in maize seedlings exposed to drought stress conditions at different nitrogen levels. Journal of Plant Nutrition, 33(4), 541-556. https://doi.org/10.1080/01904160903506274.

Altuna, J. L., Silva, M., Alvarez, M., Quinteros, M. F., Morales, D., & Carrillo, W. (2018). Ecuadorian quinoa (Chenopodium quinoa Willd) fatty acids profile. Asian J Pharm Clin Res, 11, 209-211. 10.22159/ajpcr.2018.v11i11.24889

Anjum, S. A., Xie, X., Farooq, M., Wang, L., Xue, L. I., Shahbaz, M., & Salhab, J. (2011). Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. African Journal of Biotechnology, 10(47), 9647-9656. https://doi.org/10.5897/AJB10.2641.

Balla, K., Rakszegi, M., Li, Z., Bekes, F., Bencze, S., & Veisz, O. (2011). Quality of winter wheat in relation to heat and drought shock after anthesis. Czech Journal of Food Sciences, 29(2), 117-128. https://doi.org/10.17221/227/2010-CJFS.

Bänziger, M., Edmeades, G. O., Beck, D., & Bellon, M. (2000). Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. (CIMMYT, Mexico DF, Mexico). ISBN 970-648-46-3. https://repository.cimmyt.org/handle/10883/765.

Bascuñán-Godoy, L., Reguera, M., Abdel-Tawab, Y. M., & Blumwald, E. (2016). Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd. Planta, 243(3), 591-603. https://doi.org/10.1007/s00425-015-2424-z.

Carrillo, W., Carpio, C., Morales, D., Vilcacundo, E., & Alvarez, M. (2017). Fatty acids composition in macadamia seed oil (Macadamia integrifolia) from Ecuador. Asian Journal of Pharmaceutical and Clinical Research, 10, 303-306. http://orcid.org/0000-0002-7609-2939.

Dadkhah, A. (2014). Effect of some plant growth promoting rhizobacteria and chemical fertilizer on growth parameters, yield and essential oil of fennel (Foeniculum vulgare Mill). Zeitschrift für Arznei-& Gewürzpflanzen, 19(3), 118-122.

http://www.zag-info.com/journalarchive.php?subid=3866

Dawood, M. G. (2018). Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal, 19(5), 245-254. https://doi.org/10.33472/AFJBS.2.1.2020.39-46.

Devi, K. N., Singh, T. B., Athokpam, H. S., Singh, N. B., & Shamurailatpam, D. (2013). Influence of inorganic, biological and organic manures on nodulation and yield of soybean ('Glycine max Merril'L.) and soil properties. Australian journal of crop science, 7(9), 1407. http://www.cropj.com/nadini_7_9_2013_1407_1415.pdf.

El Gendy, A. G., El Gohary, A. E., Omer, E. A., Hendawy, S. F., Hussein, M. S., Petrova, V., & Stancheva, I. (2015). Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products, 69, 167-174. https://doi.org/10.1016/j.indcrop.2015.02.023.

El Youssfi, L., Choukr-Allah, R., Zaafrani, M., Mediouni, T., & Hirich, A. (2012). Effect of domestic treated wastewater use on three varieties of Quinoa (Chenopodium quinoa) under semi arid conditions. International Journal of Environmental and Ecological Engineering, 6(8), 562-565. https://doi.org/10.5281/zenodo.1071758.

Esmaeilian, Y., Sirousmehr, A., Asgripour, M., & Amiri, E. (2012). Comparison of sole and combined nutrient application on yield and biochemical composition of sunflower under water stress. Intern J App, 2, 214-220. https://www.academia.edu/RegisterToDownload?ssrv=ss#BulkDownload.

FAOSTAT, (2020). http://www.fao.org/faostat/en/#compare.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_12.

Flint, H. L., Boyce, B. R., & Beattie, D. J. (1967). Index of injury—a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Canadian Journal of Plant Science, 47(2), 229-230. https://doi.org/10.4141/cjps67-043.

Fu, J., Fry, J., & Huang, B. (2004). Minimum water requirements of four turfgrasses in the transition zone. HortScience, 39(7), 1740-1744. https://doi.org/10.21273/HORTSCI.39.7.1740.

Fu, J., Fry, J., & Huang, B. (2004). Minimum water requirements of four turfgrasses in the transition zone. HortScience, 39(7), 1740-1744. https://doi.org/10.21273/HORTSCI.39.7.1740.

Gámez, A. L., Soba, D., Zamarreño, Á. M., García-Mina, J. M., Aranjuelo, I., & Morales, F. (2019). Effect of water stress during grain filling on yield, quality and physiological traits of Illpa and Rainbow quinoa (Chenopodium quinoa Willd.) cultivars. Plants, 8(6), 173. https://doi.org/10.3390/plants8060173

.

Garcia, M., Condori, B., & Castillo, C. D. (2015). Agroecological and agronomic cultural practices of quinoa in South America. Quinoa: Improvement and Sustainable Production, 25-46. https://doi.org/10.1002/9781118628041.ch3.

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (2017). Physiology of crop plants (No. Ed. 2). Scientific Publishers. http://www.scientificpub.com/book-details/Physiology-of-Crop-Plants-108.html.

Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., ... & Taboada, C. (2008). Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European journal of agronomy, 28(3), 427-436. https://doi.org/10.1016/j.eja.2007.11.008.

Geren, H. (2015). Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions. Turkish Journal of Field Crops, 20(1), 59-64. https://doi.org/10.17557/.39586.

Gomaa, E. F. (2013). Effect of nitrogen, phosphorus and biofertilizers on quinoa plant. Journal of applied sciences research, 9(8), 5210-5222. https://doi.org/10.17557/.39586.

González, J. A., Gallardo, M., Hilal, M. B., Rosa, M. D., & Prado, F. E. (2009). Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: dry matter partitioning. https://doi.org/10.1007/s42106-020-00094-5.

Gopinath, K. A., Saha, S., Mina, B. L., Pande, H., Kundu, S., & Gupta, H. S. (2008). Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutrient Cycling in Agroecosystems, 82(1), 51-60. https://doi.org/10.1007/s10705-008-9168-0.

Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193. https://doi.org/10.1093/jxb/erq257.

Hartley, I. P., Hopkins, D. W., Sommerkorn, M., & Wookey, P. A. (2010). The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biology and Biochemistry, 42(1), 92-100. https://doi.org/10.1016/j.soilbio.2009.10.004.

Helvich, K. (1990). Official methods of analysis (No. 630.24 A88 1990). Association of Official Analytical Chemists. https://doi.org/10.1007/BF02670789.

Heuberger, H., & Pfeiffer, T. (2013). Herbs cultivation in the land of milk and honey, as long as there is water-a travel report. Zeitschrift für Arznei-& Gewürzpflanzen, 18(4), 181-184. http://www.zag-info.com/journalarchive.php?subid=3758

Hirich, A., & Choukr-Allah, R. (2014). Faba bean (Vicia faba L.) production under deficit irrigation with treated wastewater applied during vegetative stage. Desalination and Water Treatment, 52(10-12), 2214-2219. https://doi.org/10.1080/19443994.2013.804452.

Hirich, A., Allah, R. C., Jacobsen, S. E., El Youssfi, L., & El Homaria, H. (2012). Using deficit irrigation with treated wastewater in the production of quinoa (Chenopodium quinoa Willd.) in Morocco. Revista Científica UDO Agrícola, 12(3), 570-583. https://doi.org/10.1002/ird.2116.

Hirich, A., Choukr‐Allah, R., & Jacobsen, S. E. (2014). Deficit irrigation and organic compost improve growth and yield of quinoa and pea. Journal of Agronomy and Crop Science, 200(5), 390-398. https://doi.org/10.1111/jac.12073.

Hirich, A., Choukr-Allah, R., & Jacobsen, S. E. (2014). The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity. Desalination and Water Treatment, 52(10-12), 2208-2213. https://doi.org/10.1080/19443994.2013.777944.

Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in plant science, 6(9), 431-438. https://doi.org/10.1016/S1360-1385(01)02052-0.

http://www.zag-info.com/journalarchive.php?subid=3866

Ibrahim, M., Hassan, A., Iqbal, M., & Valeem, E. E. (2008). Response of wheat growth and yield to various levels of compost and organic manure. Pak. J. Bot, 40(5), 2135-2141. https://doi.org/10.21271/zjpas.v28i5.453.

Iqbal, S. M. B. S., & Afzal, I. (2014). Evaluating the response of nitrogen application on growth development and yield of quinoa genotypes. International Journal of Agriculture and Biology, 16(5). https://doi.org/10.17557/.39586.

Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia plantarum, 84(1), 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x.

Jacobsen, S. E., Liu, F., & Jensen, C. R. (2009). Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122(2), 281-287. https://doi.org/10.1016/j.scienta.2009.05.019.

Jacobsen, S. E., Monteros, C., Christiansen, J. L., Bravo, L. A., Corcuera, L. J., & Mujica, A. (2005). Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 22(2), 131-139. https://doi.org/10.1016/j.eja.2004.01.003.

James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in food and nutrition research, 58, 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1.

Jancurová, M., Minarovičová, L., & Dandar, A. (2009). Quinoa–a rewiev. Czech Journal of Food Sciences, 27(2), 71-79. 0.15666/aeer/1704_1010510117.

Johari-Pireivatlou, M. (2010). Effect of soil water stress on yield and proline content of four wheat lines. African Journal of Biotechnology, 9(1). https://doi.org/10.5897/AJB09.521.

Juan, M., Rivero, R. M., Romero, L., & Ruiz, J. M. (2005). Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany, 54(3), 193-201. https://doi.org/10.1016/j.envexpbot.2004.07.004.

Kakabouki, I., Bilalis, D., Karkanis, A., Zervas, G., & Hela, D. (2014). Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa Willd.): An alternative forage crop. Emirates Journal of Food and Agriculture, 18-24. 10.9755/ejfa.v26i1.16831.

Kaul, H. P., Kruse, M., & Aufhammer, W. (2005). Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy, 22(1), 95-100. https://doi.org/10.1016/j.eja.2003.11.002.

Khan, N., Jan, A., Khan, I. A., & Khan, N. (2002). Response of canola to nitrogen and sulphur nutrition. Asian Journal of Plant Sciences. http://dx.doi.org/10.3923/ajps.2002.516.518.

Labuschagne, M. T., Elago, O., & Koen, E. (2009). The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. Journal of Cereal Science, 49(2), 184-189. https://doi.org/10.1016/j.jcs.2008.09.001.

Limon-Ortega, A., Govaerts, B., & Sayre, K. D. (2008). Straw management, crop rotation, and nitrogen source effect on wheat grain yield and nitrogen use efficiency. European Journal of Agronomy, 29(1), 21-28. https://doi.org/10.1016/j.eja.2008.01.008.

Ma, Q. Q., Wang, W., Li, Y. H., Li, D. Q., & Zou, Q. (2006). Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. Journal of Plant Physiology, 163(2), 165-175. https://doi.org/10.1016/j.jplph.2005.04.023.

Mahmood, S., Iram, S., & Athar, H. R. (2003). Intra-specific variability in sesame (Sesamun indicum l.) for various quantitative and qualitative attributes under differential salt regimes. Journal of Research (Science), 14(2), 177. https://inis.iaea.org/search/search.aspx?orig_q=RN:35036964.

Mirzakhani, M., Ardakani, M. R., Band, A. A., Rejali, F., & Rad, A. S. (2009). Response of spring safflower to co-inoculation with Azotobacter chroococum and Glomus intraradices under different levels of nitrogen and phosphorus. American Journal of Agricultural and Biological Sciences, 4(3), 255-261. http://www.scipub.org/fulltext/AJAB/AJAB43255-261.pdf.

Muscolo, A., Panuccio, M. R., Gioffrè, A. M., & Jacobsen, S. E. (2016). Drought and salinity differently affect growth and secondary metabolites of “Chenopodium quinoa Willd” seedlings. In Halophytes for Food Security in Dry Lands (pp. 259-275). Academic Press. https://doi.org/10.1016/B978-0-12-801854-5.00016-9.

Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food chemistry, 193, 47-54. https://doi.org/10.1016/j.foodchem.2015.02.111.

Pandey, H. C., Baig, M. J., & Bhatt, R. K. (2012). Effect of moisture stress on chlorophyll accumulation and nitrate reductase activity at vegetative and flowering stage in Avena species. http://krishi.icar.gov.in/jspui/handle/123456789/20845

.

Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis research, 73(1-3), 149-156. https://doi.org/10.1023/A:1020470224740.

Qureshi, F., Wani, J. A., Bashir, U., Malik, M. A., & Mir, S. A. (2014). Response of farmyard manure and inorganic nitrogen on vegetative growth, leaf yield and quality of kale (Brassica oleracea var acephala) in temperate region of Kashmir valley. Biolife, 2(3), 786-791. https://doi.org/10.5897/AJPS2018.1639.

Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., & Andersen, M. N. (2011). Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. Journal of agronomy and crop science, 197(5), 348-360. https://doi.org/10.1111/j.1439-037X.2011.00473.x.

Razzaghi, F., Ahmadi, S. H., Jacobsen, S. E., Jensen, C. R., & Andersen, M. N. (2012). Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science, 198(3), 173-184. https://doi.org/10.1111/j.1439-037X.2011.00496.x.

Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., ... & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49(11), 1333-1341. https://doi.org/10.1016/j.plaphy.2011.08.005.

Ruíz-Sánchez, M., Armada, E., Muñoz, Y., de Salamone, I. E. G., Aroca, R., Ruíz-Lozano, J. M., & Azcón, R. (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of plant physiology, 168(10), 1031-1037. https://doi.org/10.1016/j.jplph.2010.12.019.

Sadak, M. S. (2016). Mitigation of drought stress on fenugreek plant by foliar application of trehalose. Int J Chemtech Res, 9(2), 147-155. doi: 10.1111/j.1600-079X.2010.00817.x

Saeidi, M., Moradi, F., & Abdoli, M. (2017). Impact of drought stress on yield, photosynthesis rate, and sugar alcohols contents in wheat after anthesis in semiarid region of Iran. Arid Land Research and Management, 31(2), 204-218. https://doi.org/10.1080/15324982.2016.1260073

.

Saneoka, H., Moghaieb, R. E., Premachandra, G. S., & Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany, 52(2), 131-138. https://doi.org/10.1016/j.envexpbot.2004.01.011.

Schmidhalter, U., Bredemeier, C., Geesing, D., Mistele, B., Selige, T., & Jungert, S. (2006). Precision agriculture: Spatial and temporal variability of soil water nitrogen and plant crop response. Bibliotheca Fragmenta Agronomica, 11(3), 97-106. http://dx.doi.org/10.1016/j.fcr.2007.11.002.

Shams, A. S. (2012, September). Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proc. 13th International Conf. Agron., Fac. of Agric., Benha Univ., Egypt (pp. 9-10). http://dx.doi.org/10.3923/ajpp.2017.20.27.

Sheteawi, S. A., & Tawfik, K. M. (2007). Interaction effect of some biofertilizers and irrigation water regime on mung bean (Vigna radiata) growth and yield. J. Appl. Sci. Res, 3(3), 251-262. 10.5897/AJMR11.689.

Singh, S., & Sharma, R. (2018). Efficacy of farmyard manure for growth and yield of onion (Allium cepa L.) cv. N-53. Journal of Pharmacognosy and Phytochemistry, 7(4), 2771-2775. https://dx.doi.org/10.22161/ijhaf.4.3.1.

Sosa‐Zuniga, V., Brito, V., Fuentes, F., & Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology, 171(1), 117-124. https://doi.org/10.1111/aab.12358.

Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., ... & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of cereal science, 55(2), 132-138. https://doi.org/10.1016/j.jcs.2011.10.010.

Thanapornpoonpong, S. N. (2004). Effect of nitrogen fertilizer on nitrogen assimilation and seed quality of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd). Niedersächsische Staats-und Universitätsbibliothek. http://hdl.handle.net/11858/00-1735-0000-0006-AB4D-1.

Turner, N. C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of experimental botany, 69(13), 3223-3233. https://doi.org/10.1093/jxb/ery181.

Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547. https://doi.org/10.1002/jsfa.4158.

Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of experimental botany, 65(22), 6441-6456. https://doi.org/10.1093/jxb/eru362.

Wesseling, J. G., Stoof, C. R., Ritsema, C. J., Oostindie, K., & Dekker, L. W. (2009). The effect of soil texture and organic amendment on the hydrological behaviour of coarse‐textured soils. Soil use and management, 25(3), 274-283. https://doi.org/10.1111/j.1475-2743.2009.00224.x.

Zulkarami, B., Husni, O. M., Halimi, M. S., Mondal, M. M. A., Razi, I. M., & Kausar, H. (2016). Foliar application of polyamines to manage water stress for improved grain filling formation and yield in rice plants. In Plant, Soil and Microbes (pp. 353-366). https://doi.org/10.1007/978-3-319-27455-3_17.

Downloads

Published

2022-07-19

How to Cite

Fatemi Kiyan, H. ., Tatari, M., Tokalo, M. R., Salehi, M., & Hajmohammadnia Ghalibaf, K. (2022). The effect of deficit irrigation and fertilizer on quantitative and qualitative yield of quinoa (Chenopodium quinoa). Italian Journal of Agrometeorology, (1), 83-99. https://doi.org/10.36253/ijam-1136

Issue

Section

RESEARCH ARTICLES