Validation of the leaf area index estimated using the extinction coefficient of photosynthetically active radiation in soybean

Authors

  • Marcelo Crestani Mota Researcher, Agronomy Course Coordination, Faculdade Marechal Rondon (FARON), Vilhena, RO, Brazil https://orcid.org/0000-0002-3872-9679
  • Luiz Antonio Candido Researcher, Climate and Water Resources Coordination, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil https://orcid.org/0000-0002-4840-5379
  • Santiago Vianna Cuadra Researcher, Brazilian Agricultural Research Corporation (EMBRAPA Agricultura Digital), Campinas, SP, Brazil https://orcid.org/0000-0003-1759-7272
  • Ricardo Antonio Marenco Researcher, Environmental Dynamics Coordination, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil https://orcid.org/0000-0002-9490-2624
  • Adriano Maito Tomé Undergraduate student, Agronomy Course, Faculdade Marechal Rondon (FARON), Vilhena, RO, Brazil https://orcid.org/0009-0007-5552-2032
  • Andressa Back de Andrade Lopes Undergraduate student, Agronomy Course, Faculdade Marechal Rondon (FARON), Vilhena, RO, Brazil
  • Francinei Lopes de Lima Undergraduate student, Agronomy Course, Faculdade Marechal Rondon (FARON), Vilhena, RO, Brazil
  • Juliana Reis Undergraduate student, Agronomy Course, Faculdade Marechal Rondon (FARON), Vilhena, RO, Brazil
  • Rafael Morbeque Brizolla Undergraduate student, Agronomy Course, Faculdade Marechal Rondon (FARON), Vilhena, RO, Brazil

DOI:

https://doi.org/10.36253/ijam-2770

Keywords:

shortwave radiation, leaf area index, radiation interception, photosynthesis, yield improvement

Abstract

Techniques to monitor vegetation cover have been used to track the biomass and yield of agricultural crops. Quantifying the leaf area index (LAI) and its variation throughout the production cycle of soybean is important because this data can be used as an input variable in growth and productivity models. Field experiments were carried out during the 2017/2018 and 2018/2019 growing season in soybean crops at the Faculdade Marechal Rondon (FARON) in Vilhena, RO, Brazil, to measure the LAI of cultivar 75I77 RSF IPRO from the estimated extinction coefficient of photosynthetically active radiation (PAR). LAI measurements were performed weekly in the 2018/2019 crop season. The PAR data were collected using the PAR Apogee® SQ-316-S linear sensor. The light extinction coefficient (Kc) was calculated using LAI and solar radiation interception data. A Kc value of 0.687 was found for this crop, indicating that more than 68% of the light was intercepted by the plant structure. In addition, the LAI data estimated via Kc were compared with LAI values estimated with the CROPGRO-Soybean model. The first method estimated the LAI values better than the second, as the r² increased from 0.738 to 0.882, the difference was reduced from 19.9 to 13.3%, and the d-value changed from 0.815 to 0.952. Thus, the extinction coefficient method of PAR can efficiently estimate the LAI parameter in soybean.

References

Adeboye, O.B., Schultz, B., Adekalu, K.O., Prasad, K. (2016). Impact of water stress on radiation interception and radiation use efficiency of Soybeans (Glycine max L. Merr.) in Nigeria. Brazilian Journal of Science and Technology, 3(15), 2-21.

Allen, R.G., Pereira, L.S. (2009). Estimating crop coefficients from fraction of ground cover and height. Irrigation Science, 28(1), 17-34.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G. (2013). Köppen climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728

Boote, K.J., Jones, J.W., Hoogenboom, G., Wilkerson, G.G. (1997). Evaluation of the CROPGRO-Soybean model over a wide range of experiments. In: Kropff M.J. et al. (eds) Applications of systems approaches at the field level. Systems Approaches for Sustainable Agricultural Development, vol 6. Springer, Dordrecht.

Boote, K.J., Jones, J.W., Pickering, N.B. (1996). Potential uses and limitations of crop models. Agronomy Journal, 88(5), 704-716.

Borrás, L., Slafer, G.A., Otegui, M.E. (2004). Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86(2-3), 131-146.

Bréda, N.J.J. (2003). Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417.

Cera, J.C., Streck, N.A., Fensterseifer, C.A.J., Ferraz, S.E.T., Bexaira, K.P., Silveira, W.B., Cardoso, Â.P. (2017). Soybean yield in future climate scenarios for the state of Rio Grande do Sul, Brazil. Pesquisa Agropecuária Brasileira, 52(6), 380-392.

Chechi, L., Petry, M.T., Oliveira, Z.B., Dantas, M.K.L., Silva, C.M., Gonçalves, A.F. (2021). Estimativa do índice de área foliar e da fração de cobertura do solo nas culturas de milho e soja usando NDVI. Irriga, 26(3), 620-637.

Confalone, A., Vilatte, C., Lázaro, L., Roca, N., Mestelan, S., Aguas, L., Navarro, M., Sal, F. (2016). Parametrización del modelo CROPGRO-soybean su uso como herramienta para evaluar el impacto del cambio climático sobre el cultivo de soja. Revista de la Facultad de Ciencias Agrarias Uncuyo, 48(1), 49-64.

Confalone, A., Djumovich, M.N. (1999). Influência do déficit hídrico sobre a eficiência da radiação solar em soja. Revista Brasileira de Agrociência, 5(3), 195-198.

Costa, L.C., Confalone, A., Pereira, C.R. (1999). Effect of water stress on the efficiency of capture of water and radiation by soybean. Tropical Science, 39, 91-97.

Costa, L.C., Morison, J., Dennett, M. (1996). Carbon balance of growing faba bean and its effect on crop growth: experimental and modelling approaches. Revista Brasileira de Agrometeorologia, 4(2), 11-17.

Cox, W.J., Cherney, J.H. (2011). Growth and yield responses of soybean to row spacing and seeding rate. Agronomy Journal, 103(1), 123-128.

Crestani Mota, M., Candido, L.A., Cuadra, S.V., Marenco, R.A., Souza, R.V.A., Tomé, A.M., Lopes, A.B.A., Lima, F.L., Reis, J., Brizolla, R.M. (2024). CROPGRO-soybean model – Validation and application for the southern Amazon, Brazil. Computers and Electronics in Agriculture, 216, 108478.

Cuadra, S.V., Kimball, B.A., Boote, K.J., Suyker, A.E., Pickering, Nigel. (2021). Energy balance in the DSSAT-CSM-CROPGRO model. Agricultural and Forest Meteorology, 297, 108241.

Fehr, W.R., Caviness, C.E. (1977). Stages of soybean development. Ames: Iowa State University of Science and Technology. (Special Report, 80)

Fensterseifer, C.A., Streck, N.A., Baigorria, G.A., Timilsina, A.P., Zanon, A.J., Cera, J.C., Rocha, T.S.M. (2017). On the number of experiments required to calibrate a cultivar in a crop model: the case of CROPGRO-Soybean. Field Crop Research, 204, 146-152.

Ferreira, O.G.L., Rossi, F.D., Andrighetto, C. (2008). DDA – Determinador Digital de Áreas: software para determinação de área foliar, índice de área foliar e área de olho de lombo. Versão 2.0. Santo Augusto: IFFarroupilha.

Fontana, D.C., Alves, G.M., Roberti, D., Moraes, O.L.L., Gerhardt, A. (2012). Estimativa da radiação fotossinteticamente ativa absorvida pela cultura da soja através de dados do sensor Modis. Bragantia, 71(4), 563-571.

Foster, T., Brozovic, N., Butler, A.P., Neale, C.M.U., Raes, D., Steduto, P., Fereres, E., Hsiaog, T.C. (2017). AquaCrop-OS: An open source version of FAO’s crop water productivity model. Agricultural Water Management, 181, 18-22.

Goudriaan, J., Monteith, J.L. (1990). A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany, 66(6), 695-701.

Hoogenboom, G., Jones, J.W., Porter, C.H., Wilkens, P.W., Boote, K.J., Batchelor, W.D., Hunt, L.A., Tsuji, G.Y. (2003). Decision Suport System Agrotechnology Transfer (DSSAT) Version 4.0 [CD-ROM]. Honolulu, Hawaii: University of Hawaii.

Hoogenboom, G., Jones, J.W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, J.L., White, J.W., Uryasev, O., Royce, F.S., Ogoshi, R., Gijsman, A.J., Tsuji, G.Y., Koo, J. (2012). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM]. Honolulu, Hawaii: University of Hawaii.

Jones, H.G. (2014). Plants and microclimate – A quantitative approach to environmental plant physiology. Third Edition. Cambridge University Press.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T. (2003). The DSSAT cropping system model. European Journal Agronomy, 18, 235-265.

Kucharik, C.J., Twine, T.E. (2007). Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agricultural and Forest Meteorology, 146(3-4), 134-158.

Li, Y., Chen, D., Walker, C.N., Angus, J.F. (2010). Estimating the nitrogen status of crops using a digital camera. Field Crops Research, 118(3), 221-227.

Mayers, J.D., Lawn, R.J., Byth, D.E. (1991a). Agronomic studies on soybean (Glycine max L. Merrill) in the dry seasons of the tropics. I. Limits to yield imposed by phenology. Australian Journal of Agricultural Research, 42(7), 1075-1092.

Mayers, J.D., Lawn, R.J., Byth, D.E. (1991b). Agronomic studies on soybean (Glycine max L. Merrill) in the dry seasons of the tropics. II. Interaction of sowing date and sowing density. Australian Journal of Agricultural Research, 42(7), 1093-1107.

Monsi, M., Saeki, T. (1953). Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Japanese Journal of Botany, 14, 22-52.

Moreira, E.N., Vale, F.X.R., Paul, P.A., Rodrigues, F.A., Jesus Júnior, W.C. (2015). Temporal dynamics of soybean rust associated with leaf area index in soybean cultivars of different maturity groups. Plant Disease, 99(9), 1216-1226.

Moreira, V.S., Candido, L.A., Mota, M.C., Webler, G., Oliveira, E.P., Roberti, D.R. (2023). Impacts of climate change on water fluxes and soybean growth in southern Brazil. Revista Ciência Agronômica, 54, e20228398.

Moreira, V.S., Candido, L.A., Roberti, D.R., Webler, G., Diaz, M.B., Gonçalves, L.G.G., Pousa, R., Degrazia, G.A. (2018). Influence of soil properties in different management systems: Estimating soybean water changes in the Agro-IBIS model. Earth Interactions, 22(4), 1-19.

Mota, M.C. (2019). Análise de risco edafoclimático para a soja cultivada na região do Cone Sul de Rondônia: diagnóstico atual e em cenários futuros do clima. PhD Thesis, Instituto Nacional de Pesquisas da Amazônia (INPA), Brasil.

Muchow, R.C. (1985). An analysis of the effects of water deficits on grains legumes grown in a semi-arid tropical environment in terms of radiation interception and its efficiency of use. Field Crops Research, 11(4), 309-323.

Müller, A.G., Bergamaschi, H., Silva, M.I.G. (2001). Eficiências de interceptação, absorção e de uso da radiação fotossinteticamente ativa pelo milho (Zea mays L.), em diferentes disponibilidades hídricas. In: Congresso Brasileiro de Agrometeorologia, 12. e Reunião Latino-Americana de Agrometeorologia, 3. Fortaleza. Anais [...]. Fortaleza: Sociedade Brasileira de Agrometeorologia.

Mundstock, C.M., Thomas, A.L. (2005). Soja: fatores que afetam o crescimento e o rendimento de grãos. Porto Alegre: Departamento de plantas de lavoura da Universidade Federal do Rio Grande do Sul: Evangraf.

Nóia Júnior, R.S., Sentelhas, P.C. (2019). Soybean-maize sucession in Brazil: Impacts of sowing dates on climate variability, yields and economic profitability. European Journal of Agronomy, 103, 140-151.

Paredes, P., Rodrigues, G.C., Cameira, M.R., Torres, M.O., Pereira, L.S. (2017). Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agricultural Water Management, 179, 132-143.

Pengelly, B.C., Blamey, F.P.C., Muchow, R.C. (1999). Radiation interception and accumulation of biomass and nitrogen by soybean and three tropical annual forage legumes. Field Crops Research, 63(2), 99-112.

Petter, F.A. (2016). Elevada densidade de semeadura aumenta a produtividade da soja? Respostas da radiação fotossinteticamente ativa. Bragantia, 75(2), 173-183.

Plénet, D., Mollier, A., Pellerin, S. (2000). Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant and Soil, 224(2), 259-272.

Purcell, L.C., Ball, R.A., Reaper, J.D., Vories, E.D. (2002). Crop Science, 42(1), 172-177.

Sakamoto, T., Wardlow, B.D., Gitelson, A.A., Verma, S.B., Suyker, A.E., Arkebauer, T.A. (2010). Two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 114(10), 2146-2159.

Salvagiotti, F., Cassman, K.G., Specht, J.E., Walters, D.T., Weiss, A., Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1-13.

Santos, J.B., Procópio, S.O., Silva, A.A., Costa, L.C. (2003). Captação e aproveitamento da radiação solar pelas culturas da soja e do feijão e por plantas daninhas. Bragantia, 62(1), 147-153.

Schöffel, E.R., Volpe, C.A. (2001). Eficiência de conversão da radiação fotossinteticamente ativa interceptada pela soja para a produção de fitomassa. Revista Brasileira de Agrometeorologia, 9(2), 241-249.

Shibles, R.M., Weber, C.R. (1966). Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Science, 6(1), 55-59.

Shibles, R.M., Weber, C.R. (1965). Leaf area, solar radiation and dry matter production by soybeans. Crop Science, 5(6), 575-577.

Souza, P.J.O.P., Ribeiro, A., Rocha, E.J.P., Farias, J.R.B., Loureiro, R.S., Bispo, C.C., Sampaio, L. (2009). Solar radiation use efficiency by soybean under field conditions in the Amazon region. Pesquisa Agropecuária Brasileira, 44(10), 1211-1218.

Srinivasan, V., Kumar, P., Long, S.P. (2017). Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biology, 23(4), 1626-1635.

Steinmetz, S., Siqueira, O.J.W. (1995). Eficiência de conversão em biomassa da radiação solar interceptada pela cultura do arroz irrigado submetida a níveis diferenciados de adubação nitrogenada. In: Congresso Brasileiro de Agrometeorologia, 9. Campina Grande. Anais [...]. Campina Grande: Sociedade Brasileira de Agrometeorologia.

Steinmetz, S.; Siqueira, O.J.W. (2001). Eficiência de conversão em biomassa da radiação solar interceptada nas distintas fases do ciclo de três tipos de planta de arroz irrigado. in: Congresso Brasileiro de Agrometeorologia, 12. e Reunião Latino-Americana de Agrometeorologia, 3., 2001, Fortaleza. Anais [...]. Fortaleza: Sociedade Brasileira de Agrometeorologia.

Tagliapietra, E.L., Streck, N.A., Rocha, T.S.M., Richter, G.L., Silva, M.R., Cera, J.C., Guedes, J.V.C., Zanon, A.J. (2018). Optimum leaf area index to reach soybean yield potential in subtropical environment. Agronomy Journal, 110(3), 932-938.

Taiz, L., Zeiger, E. (2004). Fisiologia vegetal. 3.ed. Porto Alegre: Artmed.

Thimijan, R.W., Heins, R.D. (1983). Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience, 18(6), 818-822.

Webler, G., Cuadra, S.V., Moreira, V.S., Costa, M.H. (2012). Evaluation of a dynamic agroecosystem model (Agro-IBIS) for soybean in Southern Brazil. Earth Interactions, 16(12), 1-15.

Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of Meteorological Society, 63(11), 1309-1313

Yokoyama, A.H., Balbinot Junior, A.A., Zucareli, C., Ribeiro, R.H. (2018). Índice da área foliar e SPAD durante o ciclo da soja em função da densidade de plantas e sua relação com a produtividade de grãos. Revista de Ciências Agroveterinárias, 17(4), 531-538.

Zdziarski, A.D., Todeschini, M.H., Milioli, A.S., Woyann, L.G., Madureira, A., Stoco, M.G., Benin, G. (2018). Key soybean maturity groups to increase grain yield in Brazil. Crop Science, 58(3), 1155-1165.

Downloads

Published

2025-08-27

How to Cite

Crestani Mota, M., Candido, L. A., Vianna Cuadra, S., Marenco, R. A., Maito Tomé, A., Back de Andrade Lopes, A., … Morbeque Brizolla, R. (2025). Validation of the leaf area index estimated using the extinction coefficient of photosynthetically active radiation in soybean. Italian Journal of Agrometeorology, (1), 19–29. https://doi.org/10.36253/ijam-2770

Issue

Section

RESEARCH ARTICLES

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.