Modeling the impact of climate change on the climatic suitability of some horticultural crops

Authors

DOI:

https://doi.org/10.36253/ijam-3064

Keywords:

Ecocrop Model, DIVA-GIS, Türkiye, Suitability, Sustainability

Abstract

Summer and winter vegetable cultivation is widely practiced in Türkiye. Therefore, when unexpected situations such as wars and epidemics occur with climate change, it is important to accurately determine how the cultivation areas of vegetables, which have an important place in the food sector and agriculture, will change due to climate change. This study aimed to estimate how climate change would affect the geographical distribution of tomato, watermelon, onion, and cucumber to be planted in Türkiye in the future by using a climatic suitability model. For this purpose, climatic suitability estimation was done using the EcoCrop module included in the DIVA-GIS program for tomato, watermelon, onion, and cucumber under the results of the HADGEM2_ES model RCP4.5 and RCP8.5 scenarios in the future period (2050s) and the reference period (1950-2000) in Türkiye. The results of the research were evaluated, and it was determined that the climatic suitability for watermelon would be positively affected, while the climatic suitability for tomato, onion, and cucumber would be negatively affected in Türkiye. It is estimated that in the 2050s, climatically suitable areas for tomato (13–16%), onion (3–7%), and cucumber (4–12%) cultivation will decrease, while suitable areas for watermelon (26–35%) cultivation will increase. While it is estimated that Türkiye will fall further behind in tomato and onion production in the world rankings in the 2050s, the rankings for watermelon and cucumber will not change. The changes in production due to the decrease in climatic suitability for tomatoes and cucumbers and the increase in climatic suitability for watermelon will impact the economy. It is recommended that production be based on these estimates to maintain the diversity of vegetables on our tables in the future and to ensure the sustainability of these products.

References

Akçakaya A., Eskioğlu O., Atay H., Demir Ö., 2013. Climate Change Projections for Türkiye With New Scenarios. Meteorology General Directorate Printing House, Türkiye. https://mgm.gov.tr/FILES/iklim/IKLIM_DEGISIKLIGI_PROJEKSIYONLARI.pdf

Akçakaya A., Sümer U.M., Demircan M., Demir Ö., Atay H., Eskioğlu O., Gürkan H., Yazıcı B., Kocatürk A., Şensoy S., Bölük E., Arabaci H., Açar Y., Eki̇ci̇ M., Yağan S., Çukurçayir F., 2015. Türkiye Climate Projections with New Scenarios and Climate Change TR2015-CC. https://www.mgm.gov.tr/FILES/iklim/iklim-degisikligi-projeksiyon2015.pdf

Aparna A.S., Pląder W., Pawełkowicz M., 2023. Impact of climate change on regulation of genes involved in sex determination and fruit production in cucumber. Plants, 12 (14): 2651. https://doi.org/https://doi.org/10.3390/plants12142651

Atalay İ., 1997. Geography of Türkiye. Ege University Publications, İzmir, Türkiye.

Aydın F., Sarptaş H., 2018. The impact of the climate change to crop cultivation: the case study with model crops for Turkey. Pamukkale University Journal of Engineering Sciences, 24 (3): 512-521. https://doi.org/10.5505/pajes.2017.37880

Biratu W., 2018. Review on the effect of climate change on tomato (Solanum Lycopersicon) production in Africa and mitigation strategies. Journal of Natural Sciences Research, 8 (5): 2225-0921.

Brewster J.L., 2018. Physiology of Crop Growth and Bulbing, Onions and Allied Crops, CRC press. pp. 53-88. https://doi.org/https://doi.org/10.1201/9781351075169-3

CCAFS 2023. GCM Downscaled Data Portal. Climate change agriculture and food security. https://www.ccafs-climate.org/

Cemek B., Apan M., Demir Y., Kara T., 2005. Effects of different irrigatin water applications on growth, development and yield of cucumber grown in greenhouse. Anadolu Journal of Agricultural Sciences, 20 (3): 27-33.

Collins W.J., Bellouin N., Doutriaux-Boucher M., Gedney N., Halloran P., Hinton T., Hughes J., Jones C.D., Joshi M., Liddicoat S., Martin G., O’Connor F., Rae J., Senior C., Sitch S., Totterdell I., Wiltshire A., Woodward S., 2011. Development and evaluation of an Earth-System model – HadGEM2. Geoscientific Model Development, 4 (4): 1051-1075. https://doi.org/https://doi.org/10.5194/gmd-4-1051-2011

Çaltı N., Somuncu M., 2019. The impact of climate change on agriculture in Turkey and farmers’ ttitudes to climate change, 1st Istanbul International Geography Congress Proceedings Book, İstanbul, Türkiye. pp. 890-912. https://doi.org/https://doi.org/10.26650/PB/PS12.2019.002.084

Dalfes N., Karaca M., Şen Ö.L., Kindap T., Önol B., Turunçoğlu U., Bozkurt D., Fer I., Akın H.S., Çankur R., Ural D., Kılıç G., Coşkun M., Demir İ. (2008) Climate scenarios for Türkiye, TÜBİTAK. Proje No:105G015.

Deveci H., 2023. Estimation of the impact of climate change on spinach cultivation areas in Türkiye. Sustainability, 15 (21): 15395. https://doi.org/10.3390/su152115395

Deveci H., 2024. Modeling the impact of climate change on cotton cultivation. COMU Journal of Agriculture Faculty, 12 (1): 96-107. https://doi.org/10.33202/comuagri.1449471

Deveci H., 2025.Determination of the accuracy of average temperature values obtained from different climate models in TR21 Thrace Region. In: 9th International Conference on Global Practice of Multidisciplinary Scientific Studies, Havana, Cuba. https://www.izdas.org/_files/ugd/614b1f_c300ca6abbdf45db9aed0060cde06741.pdf

Deveci H., Önler B., Erdem T., 2025. Modeling the effects of climate change on the irrigation water requirements of wheat and canola in the TR21 Thrace Region using CROPWAT 8.0. Frontiers in Sustainable Food Systems, 9. https://doi.org/10.3389/fsufs.2025.1563048

Ding X., Jiang Y., He L., Zhou Q., Yu J., Hui D., Huang D., 2016. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Scientific reports, 6 (1): 35424. https://doi.org/https://doi.org/10.1038/srep35424

DIVAGIS 2023. DIVA-GIS. https://www.diva-gis.org/climate

Dokuyucu Ö., Eskioğlu O., Özgökçe M.S., Ülgentürk S., 2025. Predicting future distribution and generation number of mulberry scale, Pseudaulacapis pentagona under climate change scenarios in Turkiye. Phytoparasitica, 53 (3): 41. https://doi.org/10.1007/s12600-025-01261-y

Duvan A., Aktürk G., Yıldız O., 2025. Assessing spatiotemporal characteristics of meteorological droughts in the Marmara Basin using HadGEM2-ES global climate model data. Environmental Monitoring and Assessment, 197 (4): 436. https://doi.org/10.1007/s10661-025-13884-z

Egbebiyi T.S., Crespo O., Lennard C., 2019. Defining crop–climate departure in West Africa: improved understanding of the timing of future changes in crop cuitability. Climate, 7 (9): 101. https://doi.org/10.3390/cli7090101

Egbebiyi T.S., Crespo O., Lennard C., Zaroug M., Nikulin G., Harris I., Price J., Forstenhausler N., Warren R., 2020. Investigating the potential impact of 1.5, 2 and 3 degrees C global warming levels on crop suitability and planting season over West Africa. PeerJ, 8: e8851. https://doi.org/10.7717/peerj.8851

FAO 2023. Food and Agriculture Organization of the United Nations. Database of crop constraints and characteristics. https://gaez.fao.org/pages/ecocrop

Gardner A.S., Gaston K.J., Maclean I.M.D., Scheiter S., 2021. Accounting for inter‐annual variability alters long‐term estimates of climate suitability. Journal of Biogeography, 48 (8): 1960-1971. https://doi.org/10.1111/jbi.14125

GDSHW 2023. General Directorate of State Hydraulic Works. Türkiye’s Location. https://dsi.gov.tr/Sayfa/Detay/754

GDWM 2016. General Directorate of Water Management. Impact of climate change on water resources project project final report. ttps://www.tarimorman.gov.tr/SYGM/Belgeler/iklim%20de%C4%9Fi%C5%9Fikli%C4%9Finin%20su%20kaynaklar%C4%B1na%20etkisi/Iklim_NihaiRapor.pdf

Gündoğan A.C., Aydın C.İ., Voyvoda E., Turhan E., Özen İ.C., 2017. The Price of Inertia: An Assessment of the Costs to Turkey of Failing to Achieve Climate Change Targets through Common Socioeconomic Pathways. Earth Association Publications, Ankara, Türkiye. https://wwftr.awsassets.panda.org/downloads/ataletin_bedeli_rapor___yeryuzu_dernegi___ab.pdf?7180/ataletinbedeli

Hancı F., Cebeci E., 2015. The effects of salinity and drought on onion production. Bahçe, 44 (1): 23-29.

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25 (15): 1965-1978. https://doi.org/https://doi.org/10.1002/joc.1276

Hijmans R.J., Guarino L., Cruz M., Rojas E., 2001. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant genetic resources newsletter, 127: 15-19.

Jarvis A., Ramirez-Villegas J., Herrera Campo B.V., Navarro-Racines C., 2012. Is cassava the answer to African climate change adaptation? Tropical Plant Biology, 5 (1): 9-29. https://doi.org/10.1007/s12042-012-9096-7

Joshi N., 2021. Future crop suitability assessment and the integration of Orphan crops into Kenya’s food systems. MSc. Thesis. University of Cape Town, South Africa.

Khazaei M.R., 2025. Projected changes to drought characteristics in Tehran under CMIP6 SSP-RCP climate change scenarios. Heliyon, 11 (2). https://doi.org/10.1016/j.heliyon.2025.e41811

Kumar R., Reddy K.M., 2021. Impact of Climate Change on Cucurbitaceous Vegetables in Relation to Increasing Temperature and Drought, in: S. S. Solankey, et al. (Eds.), Advances in Research on Vegetable Production Under a Changing Climate Vol. 1, Springer International Publishing, Cham. pp. 175-195. https://doi.org/https://doi.org/10.1007/978-3-030-63497-1_9

Labaioui A., Bouchoufi K., 2021. Assessing the impact of climate change on land suitability for crops in El Hajeb province Morocco. African and Mediterranean Agricultural Journal Al Awamia, 132: 65-90.

Li H., Liu S.S., Yi C.Y., Wang F., Zhou J., Xia X.J., Shi K., Zhou Y.H., Yu J.Q., 2014. Hydrogen peroxide mediates abscisic acid‐induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environment, 37 (12): 2768-2780. https://doi.org/https://doi.org/10.1111/pce.12360

Litskas V.D., Migeon A., Navajas M., Tixier M.-S., Stavrinides M.C., 2019. Impacts of climate change on tomato, a notorious pest and its natural enemy: small scale agriculture at higher risk. Environmental Research Letters, 14 (8): 084041. https://doi.org/https://doi.org/10.1088/1748-9326/ab3313

Martin G.M., Bellouin N., Collins W.J., Culverwell I.D., Halloran P.R., Hardiman S.C., Hinton T.J., Jones C.D., McDonald R.E., McLaren A.J., O’Connor F.M., Roberts M.J., Rodriguez J.M., Woodward S., Best M.J., Brooks M.E., Brown A.R., Butchart N., Dearden C., Derbyshire S.H., Dharssi I., Doutriaux-Boucher M., Edwards J.M., Falloon P.D., Gedney N., Gray L.J., Hewitt H.T., Hobson M., Huddleston M.R., Hughes J., Ineson S., Ingram W.J., James P.M., Johns T.C., Johnson C.E., Jones A., Jones C.P., Joshi M.M., Keen A.B., Liddicoat S., Lock A.P., Maidens A.V., Manners J.C., Milton S.F., Rae J.G.L., Ridley J.K., Sellar A., Senior C.A., Totterdell I.J., Verhoef A., Vidale P.L., Wiltshire A., 2011. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4 (3): 723-757. https://doi.org/https://doi.org/10.5194/gmd-4-723-2011

Melo T.K., Sobrinho J.E., Medeiros J.F., Figueiredo B.V., Silva J.S., SÁ F.V.S., 2020. Impacts of cimate change scenarios in the Brazilian Semiarid Region on watermelon cultivars. Revista Caatinga, 33 (3): 794-802. https://doi.org/10.1590/1983-21252020v33n323rc

Møller A.B., Mulder V.L., Heuvelink G.B.M., Jacobsen N.M., Greve M.H., 2021. Can we use machine learning for agricultural land suitability assessment? Agronomy, 11 (4): 703. https://doi.org/10.3390/agronomy11040703

Moss R.H., Babiker M., Brinkman S., Calvo E., Carter T., Edmonds J.A., Elgizouli I., Emori S., Lin E., Hibbard K., 2008. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change.

Oyediran W.O., Omoare A.M., Alaka F.A., Shobowale A.A., Oladoyinbo O.B., 2018. Rural Farmers’ Coping Strategies to Effects of Climate Change on Watermelon Production in Igboora, Oyo State, Nigeria. International Journal of Sustainable Agricultural Research, 5 (2): 19-26. https://doi.org/10.18488/journal.70.2018.52.19.26

Ramirez-Villegas J., Jarvis A., Läderach P., 2013. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology, 170: 67-78. https://doi.org/10.1016/j.agrformet.2011.09.005

Rao N.K.S., 2016. Onion, in: N. K. S. Rao, et al. (Eds.), Abiotic Stress Physiology of Horticultural Crops, Springer India, New Delhi. pp. 133-149. https://doi.org/https://doi.org/10.1007/978-81-322-2725-0_8

Rhiney K., Eitzinger A., Farrell A.D., Prager S.D., 2018. Assessing the implications of a 1.5 °C temperature limit for the Jamaican agriculture sector. Regional Environmental Change, 18 (8): 2313-2327. https://doi.org/10.1007/s10113-018-1409-4

Saadi S., Todorovic M., Tanasijevic L., Pereira L.S., Pizzigalli C., Lionello P., 2015. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agricultural water management, 147: 103-115. https://doi.org/https://doi.org/10.1016/j.agwat.2014.05.008

Simões W.L., Angelotti F., Guimarães M.J.M., Silva J.S.d., Silva R.M., Barros J.R.A., 2022. Water-use efficiency and onion quality in future climate scenarios. Pesquisa Agropecuária Tropical, 52: e72212.

Singh M.C., Singh J.P., Pandey S.K., Mahay D., Srivastava V., 2017. Factors affecting the performance of greenhouse cucumber cultivation-a review. International Journal of Current Microbiology and Applied Sciences, 6 (10): 2304-2323. https://doi.org/https://doi.org/10.20546/ijcmas.2017.610.273

Stewart A.L., Ahmed S., 2020. Effects of climate change on fruit nutrition, in: A.K. Srivastava and Chengxiao Hu (Eds.), Fruit crops, Elsevier, Amsterdam, The Netherlands. pp. 77-93. https://doi.org/https://doi.org/10.1016/B978-0-12-818732-6.00007-1

Şalk A., Arın L., Deveci M., Polat S., 2008. Special Vegetables. Onur Graphics, Printing and Advertising, Tekirdağ, Türkiye.

Şen A.S., Deveci H., Konukcu F., 2024. Modelling the adaptation of some cultural plants produced in Thrace Region to climate change. Journal of Tekirdag Agricultural Faculty, 21 (2): 501-516. https://doi.org/10.33462/jotaf.1312707

Tatlıoglu T., 1993. Cucumber, in: G. Kalloo and B. O. Bergh (Eds.), Genetic Improvement of Vegetable Crops, Pergamon, Amsterdam. pp. 197-234. https://doi.org/10.1016/b978-0-08-040826-2.50017-5

Temur B., 2017. The impact of global warming on agricultural sector in Turkey: An application of the ARDL model. MSc. Thesis. Anadolu University, Türkiye.

TSMS 2023a. Türkiye State Meteorological Service. Türkiye maximum temperature average. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-maksimum-sicaklik.pdf

TSMS 2023b. Türkiye State Meteorological Service. Türkiye minimum temperature average. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-minimum-sicaklik.pdf

TSMS 2023c. Türkiye State Meteorological Service. Türkiye Average Temperature. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-sicaklik.pdf

TSMS 2023d. Türkiye State Meteorological Service. Annual total precipitation average in Türkiye. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-yagis.pdf

TSMS 2023e. Türkiye State Meteorological Service. Türkiye average humidity. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-nem.pdf

TurkStat 2024a. Turkish Statistical Institute. Statistical Tables of Agricultural Areas. https://data.tuik.gov.tr/Search/Search?text=tar%C4%B1m%20alanlar%C4%B1

TurkStat 2024b. Turkish Statistical Institute. World Population Day. https://data.tuik.gov.tr/Bulten/Index?p=Dunya-Nufus-Gunu-2024-53680#:~:text=T%C3%BCrkiye%2C%2085%20milyon%20372%20bin,1%2C1’ini%20olu%C5%9Fturdu.

Walters S.A., Abdelaziz M., Bouharroud R., 2021. Local melon and watermelon crop populations to moderate yield responses to climate change in North Africa. Climate, 9 (8): 129. https://doi.org/https://doi.org/10.3390/cli9080129

WBG 2022. World Bank. Group. Türkiye Country Climate and Development Report, CCDR Series; World Bank: Washington, DC, USA. https://openknowledge.worldbank.org/entities/publication/01826a0c-059f-5a0c-91b7-2a6b8ec5de2f

Wichern J., Descheemaeker K., Giller K.E., Ebanyat P., Taulya G., van Wijk M.T., 2019. Vulnerability and adaptation options to climate change for rural livelihoods – A country-wide analysis for Uganda. Agricultural Systems, 176: 102663. https://doi.org/https://doi.org/10.1016/j.agsy.2019.102663

WPR 2024a. World Population Review, Vegetable production by Country 2022. https://worldpopulationreview.com/country-rankings/vegetable-production-by-country

WPR 2024b. World Population Review, Tomato Production by Country 2022. https://worldpopulationreview.com/country-rankings/tomato-production-by-country

WPR 2024c. World Population Review, Watermelon Production by Country 2022. https://worldpopulationreview.com/country-rankings/watermelon-production-by-country

WPR 2024d. World Population Review, Onion Production by Country 2022. https://worldpopulationreview.com/country-rankings/onion-production-by-country

WPR 2024e. World Population Review, Cucumber Production by Country 2022. https://worldpopulationreview.com/country-rankings/cucumber-production-by-country

Wurr D.C.E., Hand D.W., Edmondson R.N., Fellows J.R., Hannah M.A., Cribb D.M., 1998. Climate change: a response surface study of the effects of CO2 and temperature on the growth of beetroot, carrots and onions. The Journal of Agricultural Science, 131 (2): 125-133. https://doi.org/https://doi.org/10.1017/S0021859698005681

Yokota A., Kawasaki S., Iwano M., Nakamura C., Miyake C., Akashi K., 2002. Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Annals of Botany, 89 (7): 825-32. https://doi.org/10.1093/aob/mcf074

Zagaria C., Schulp C.J.E., Malek Ž., Verburg P.H., 2023. Potential for land and water management adaptations in Mediterranean croplands under climate change. Agricultural Systems, 205: 103586. https://doi.org/10.1016/j.agsy.2022.103586

Zhang Y., Lv J., Wang T., Zhang K., Wu Y., 2025. Assessment of ecological risk under different SSP-RCP scenarios of the Xinjiang province in China. Scientific reports, 15 (1): 8345. https://doi.org/10.1038/s41598-024-81879-w

Downloads

Published

2025-08-27

How to Cite

Deveci, H. (2025). Modeling the impact of climate change on the climatic suitability of some horticultural crops. Italian Journal of Agrometeorology, (1), 3–17. https://doi.org/10.36253/ijam-3064

Issue

Section

RESEARCH ARTICLES

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.