Use of microlysimeters to determine soil water evaporation as a function of drainage

Authors

  • Diego Fernando Daniel State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT http://orcid.org/0000-0003-1743-5089
  • Rivanildo Dallacort State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT http://orcid.org/0000-0002-7634-8973
  • João Danilo Barbieri State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT http://orcid.org/0000-0002-8251-1255
  • Marco Antonio Camillo de Carvalho State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT http://orcid.org/0000-0003-4966-1013
  • Paulo Sérgio Lourenço de Freitas State University of Maringá/UEM, Department of Agronomy, Graduate Program in Agronomy/PGA, Colombo Avenue, 5790 - Zona 7, 87020-900, Maringá, PR http://orcid.org/0000-0001-6663-2797
  • Rafael Cesar Tieppo State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT http://orcid.org/0000-0001-8132-4813
  • William Fenner State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT http://orcid.org/0000-0002-3463-9457

DOI:

https://doi.org/10.36253/ijam-1538

Keywords:

irrigation, lysimeters, mini-lysimeters, water balance, water management

Abstract

The aim of this study was to test two models and two sizes of microlysimeters to determine soil water evaporation as a function of the removal of water by drainage at the bottom of the units. The experiment was conducted at the experimental field of the State University of Mato Grosso (UNEMAT) in Tangará da Serra, Mato Grosso, Brazil. Soil water evaporation was determined using microlysimeters constructed from rigid PVC tubes, of which two models and two sizes were tested. The four microlysimeter treatments were: 100 mm diameter without drainage (ML100WD), 100 mm diameter with drainage (ML100D), 150 mm diameter without drainage (ML150WD), and 150 mm diameter with drainage (ML150D). The microlysimeters were fitted to an irrigation blade of 60 mm and compared to applications with four irrigation blade sizes (15, 30, 45, and 60 mm). Water evaporation from the soil was obtained from the mass variation of the microlysimeters, and was then compared to the soil water evaporation determined using weighing lysimeters. The obtained data were analyzed using descriptive statistical techniques, tests of means, and regression analysis. The soil water evaporation values present significant differences between the two microlysimeter sizes (100 and 150 mm diameter) and the two models (with and without water drainage). Soil water evaporation is affected by the water drainage that occurs at the bottom of the microlysimeters. There was no difference in soil water evaporation between irrigation rates within the same microlysimeter size and model. The two models and the two microlysimeter sizes tested can be used for the quantification of soil water evaporation, due to the high determination coefficients observed when compared to the evaporation observed with the weighing lysimeters.

Author Biographies

Diego Fernando Daniel, State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT

Researcher, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems (PPGASP)

Rivanildo Dallacort, State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT

PhD, Researcher, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP

João Danilo Barbieri, State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT

PhD, Researcher, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP

Marco Antonio Camillo de Carvalho, State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT

PhD, Researcher, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP

Paulo Sérgio Lourenço de Freitas, State University of Maringá/UEM, Department of Agronomy, Graduate Program in Agronomy/PGA, Colombo Avenue, 5790 - Zona 7, 87020-900, Maringá, PR

PhD, Researcher, Department of Agronomy, Graduate Program in Agronomy/PGA

Rafael Cesar Tieppo, State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT

PhD, Researcher, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP

William Fenner, State University of Mato Grosso/UNEMAT, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP, Highway MT-358, km 7 - Jardim Aeroporto, 78300-000, Tangará da Serra, MT

PhD, Researcher, Department of Agronomy, Graduate Program in Environment and Agricultural Production Systems/PPGASP

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome, 300: D05109.

Allen, S.J. 1990. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria. Agricultural and Forest Meteorology 49: 291-309. http://doi.org/10.1016/0168-1923(90)90003-O.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

Andrea, M.C.da.S., Vieira, F.F., Dallacort, R., Barbieri, J.D., Freitas, P.S.L.de., Tieppo, R.C., Zolin, C.A., Krause, W., Daniel, D.F. 2019. Effect of soil coverage on dual crop coefficient of maize in a region of Mato Grosso, Brazil. Journal of Agricultural Science 11: 143-155. http://doi.org/10.5539/jas.v11n13p143.

Aydin, M., Yang, S.L., Kurt, N., Yano, T. 2005. Test of a simple model for estimating evaporation from bare soils in different environments. Ecological Modelling 182: 91-105. http://doi.org/10.1016/j.ecolmodel.2004.07.013.

Barbieri, J.D., Dallacort, R., Daniel, D.F., Dalchiavon, F.C., Freitas, P.S.L.de. 2020. Soil coverage, evapotranspiration and productivity of off-season corn. Cultura Agronômica 29: 76-91. http://dx.doi.org/10.32929/2446-8355.2020v29n1p76-91.

Barcelos, A.A., Cassol, E.A., Denardin, J.E. 1999. Oxisol water infiltration in different soil tillage systems under high intense rainfall. Revista Brasileira de Ciência do Solo 23: 35-43.

Bernardo, S., Soares, A.A., Mantovani, E.C. 2006. Manual de irrigação. 8th ed. Viçosa: Federal University of Viçosa. 625p.

Boast, C.W., Robertson, T.M. 1982. A “micro-lysimeter” method for determining evaporation from bare soil: description and laboratory evaluation. Soil Science Society of America Journal 46: 689-696. http://doi.org/10.2136/sssaj1982.03615995004600040005x.

Camargo, O.A., Moniz, A.C., Jorge, J.A., Valadares, J.M.A.S. 2009. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Campinas: IAC. 77p. (Boletim Técnico, 106).

Carvalho, J.R.P.de., Silveira, P.M.da., Vieira, S.R. 2002. Geostatistics to determine spatial variability of soil chemical properties using different preparation systems. Pesquisa Agropecuária Brasileira 37: 1151-1159. http://doi.org/10.1590/S0100-204X2002000800013.

Coners, H., Babel, W., Willinghöfer, S., Biermann, T., Köhler, L., Seeber, E., Foken, T., Ma, Y., Yang, Y., Miehe, G., Leuschner, C. 2016. Evapotranspiration and water balance of high-elevation grassland on the Tibetan Plateau. Journal of Hydrology 533: 557-566. http://doi.org/10.1016/j.jhydrol.2015.12.021.

Daamen, C.C., Simmonds, L.P., Wallace, J.S., Laryea, K.B., Sivakumar, M.V.K. 1993. Use of microlysimeters to measure evaporation from sandy soils. Agricultural and Forest Meteorology 65: 159-173. http://doi.org/10.1016/0168-1923(93)90002-Y.

Dallacort, R., Martins, J.A., Inoue, M.H., Freitas, P.S.L.de., Coletti, A.J. 2011. Rain distribution in Tangará da Serra, mid-northern Mato Grosso state, Brazil. Acta Scientiarum. Agronomy 33: 193-200. http://doi.org/10.4025/actasciagron.v33i2.5838.

Dalmago, G.A., Bergamaschi, H. 2017. Evaporation of the soil water in response to the amount of straw and evaporative demand. Agrometeoros 25: 361-371.

Dalmago, G.A., Bergamaschi, H., Krüger, C.A.M.B., Bergonci, J.I., Comiran, F., Heckler, B.M.M. 2010. Soil surface water evaporation under no-tillage and conventional tillage systems. Pesquisa Agropecuária Brasileira 45: 780-790.

Facchi, A., Masseroni, D., Miniotti, E.F. 2017. Self-made microlysimeters to measure soil evaporation: a test on aerobic rice in northern Italy. Paddy and Water Environment 15: 669-680. http://doi.org/10.1007/s10333-016-0566-7.

Fenner, W., Dallacort, R., Faria Junior, C.A., Freitas, P.S.L.de., Queiroz, T.M.de., Santi, A. 2019. Development, calibration and validation of weighing lysimeters for measurement of evapotranspiration of crops. Revista Brasileira de Engenharia Agrícola e Ambiental 23: 297-302. http://doi.org/10.1590/1807-1929/agriambi.v23n4p297-302.

Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042. http://doi.org/10.1590/S1413-70542011000600001.

Fietz, C.R., Comunello, É., Cremon, C., Dallacort, R. 2008. Estimativa da precipitação provável para o Estado de Mato Grosso. Dourados: Brazilian Agricultural Research Corporation - Embrapa Agropecuária Oeste. 237p.

Fietz, C.R., Comunello, É., Cremon, C., Dallacort, R., Pereira, S.B. 2011. Chuvas intensas no Estado de Mato Grosso. 2nd ed. Dourados: Brazilian Agricultural Research Corporation - Embrapa Agropecuária Oeste. 117p.

Flumignan, D.L., Faria, R.T.de., Lena, B.P. 2012. Test of a microlysimeter for measurement of soil evaporation. Engenharia Agrícola 32: 80-90. http://doi.org/10.1590/S0100-69162012000100009.

Flumignan, D.L., Faria, R.T.de., Prete, C.E.C. 2011. Evapotranspiration components and dual crop coefficients of coffee trees during crop production. Agricultural Water Management 98: 791-800. http://doi.org/10.1016/j.agwat.2010.12.002.

Gupta, B., Shah, D.O., Mishra, B., Joshi, P.A., Gandhi, V.G., Fougat, R.S. 2015. Effect of top soil wettability on water evaporation and plant growth. Journal of Colloid and Interface Science 449: 506-513. http://doi.org/10.1016/j.jcis.2015.02.018.

Howell, T.A., Schneider, A.D., Jensen, M.E. 1991. History of lysimeter design and use for evapotranspiration measurements. In: Lysimeters for evapotranspiration and environmental measurements. Honolulu, Hawaii: ASCE, pp. 1-9.

Lemon, E.R. 1956. The potentialities for decreasing soil moisture evaporation loss. Soil Science Society of America Journal 20: 120?125. http://doi.org/10.2136/sssaj1956.03615995002000010031x.

Pereira, A.R., Angelocci, L.R., Sentelhas, P.C. 2002. Agrometeorologia: fundamentos e aplicações práticas. Guaíba: Agropecuária. 478p.

Ritchie, J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 8: 1204-1212. http://doi.org/10.1029/WR008i005p01204.

Rodrigues, T.R., Batista, H.S., Carvalho, J.M.de., Gonçalves, A.O., Matsura, E.E. 2001. Uniformity of water distribution in a central pivot with the use of the Time Domain Reflectometry technique on surface and soil. Revista Brasileira de Engenharia Agrícola e Ambiental 5: 187-191.

Rowshon, M.K., Amin, M.S.M., Mojid, M.A., Yaji, M. 2014. Estimated evapotranspiration of rice based on pan evaporation as a surrogate to lysimeter measurement. Paddy and Water Environment 12: 35-41. http://doi.org/10.1007/s10333-013-0356-4.

Santos, H.G.dos., Jacomine, P.K.T., Anjos, L.H.C.dos., Oliveira, V.Á., Lumbreras, J.F., Coelho, M.R., Almeida, J.A.de., Araujo Filho, J.C.de., Oliveira, J.B.de., Cunha, T.J.F. 2018. Brazilian Soil Classification System. 5th ed. Brasília: Brazilian Agricultural Research Corporation.

Soil Survey Staff. 2014. Keys To Soil Taxonomy. 12th ed. Washington DC: Natural Resources Conservation Service, United States Department of Agriculture. 372p.

Souza, A.P., Mota, L.L.da., Zamadei, T., Martim, C.C., Almeida, F.T.de., Paulino, J. 2013. Climate classification and climatic water balance in Mato Grosso State, Brazil. Nativa 1: 34-43. http://doi.org/10.31413/nativa.v1i1.1334.

Stolf, R., Murakami, J.H., Maniero, M.A., Soares, M.R., Silva, L.C.F. 2012. Integration of ruler to measure depth in the design of a Stolf impact penetrometer. Revista Brasileira de Ciência do Solo 36: 1476-1482. http://doi.org/10.1590/S0100-06832012000500011.

Sun, H.Y., Liu, C.M., Zhang, Y.Q., Zhang, X.Y. 2004. Study on soil evaporation by using micro-lysimeter. Journal of Hydraulic Engineering 8: 114-118.

Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G. 2017. Manual de métodos de análise de solo. 3rd ed. Brasília: Brazilian Agricultural Research Corporation. 574p.

Tesfuhuney, W.A., Van Rensburg, L.D., Walker, S., Allemann, J. 2015. Quantifying and prediction soil water evaporation as influenced by runoff strip lengths and mulch cover. Agricultural Water Management 152: 7-16. http://doi.org/10.1016/j.agwat.2014.11.018.

Vieira, P.V.D., Freitas, P.S.L.de., Silva, A.L.B.R.da., Hashiguti, H.T., Rezende, R., Faria Junior, C.A. 2016. Determination of wheat crop coefficient (Kc) and soil water evaporation (Ke) in Maringa, PR, Brazil. African Journal of Agricultural Research 11: 4551-4558. http://doi.org/10.5897/AJAR2016.11377.

Waggoner, P.E., Turner, N.C. 1972. Comparison of simulated and actual evaporation from maize and soil in a lysimeter. Agricultural Meteorology 10: 113-123. http://doi.org/10.1016/0002-1571(72)90012-X.

Wang, Y., Li, S., Qin, S., Guo, H., Yang, D., Lam, H.M. 2020. How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China. Agricultural Water Management 239: 106256. http://doi.org/10.1016/j.agwat.2020.106256.

Wei, Z., Paredes, P., Liu, Y., Chi, W.W., Pereira, L.S. 2015. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agricultural Water Management 147: 43-53. http://doi.org/10.1016/j.agwat.2014.05.004.

Yuan, C., Lei, T., Mao, L., Liu, H., Wu, Y. 2009. Soil surface evaporation processes under mulches of different sized gravel. Catena 78: 117?121. https://doi.org/10.1016/j.catena.2009.03.002.

Zhao, N., Liu, Y., Cai, J., Paredes, P., Rosa, R.D., Pereira, L.S. 2013. Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agricultural Water Management 117: 93-105. http://doi.org/10.1016/j.agwat.2012.11.008.

Zribi, W., Aragüés, R., Medina, E., Faci, J.M. 2015. Efficiency of inorganic and organic mulching material for soil evaporation control. Soil & Tillage Research 148: 40-45. http://doi.org/10.1016/j.still.2014.12.003.

Downloads

Published

2023-01-29

How to Cite

Daniel, D. F., Dallacort, R., Barbieri, J. D., Carvalho, M. A. C. de, Freitas, P. S. L. de, Tieppo, R. C., & Fenner, W. (2023). Use of microlysimeters to determine soil water evaporation as a function of drainage. Italian Journal of Agrometeorology, (2), 31–48. https://doi.org/10.36253/ijam-1538

Issue

Section

RESEARCH ARTICLES