Impact of climate change effects on grapevine through a multi-year analysis in the Chianti Classico Area (Italy)

Authors

  • Marco Ammoniaci CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita, 80, 52100 Arezzo, Italy https://orcid.org/0000-0003-0658-6981
  • Matteo Voltarelli CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita, 80, 52100 Arezzo, Italy https://orcid.org/0009-0006-0623-0300
  • Massimiliano Biagi Barone Ricasoli S.p.A. Società Agricola, Piazza Goldoni, 2 – 50123 Firenze, Italy
  • Fabio Cascella Barone Ricasoli S.p.A. Società Agricola, Piazza Goldoni, 2 – 50123 Firenze, Italy
  • Claudio Carapelli Barone Ricasoli S.p.A. Società Agricola, Piazza Goldoni, 2 – 50123 Firenze, Italy
  • Alessandra Zombardo CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita, 80, 52100 Arezzo, Italy https://orcid.org/0000-0003-1613-9667
  • Sergio Puccioni CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita, 80, 52100 Arezzo, Italy https://orcid.org/0000-0002-8653-7620
  • Paolo Storchi CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita, 80, 52100 Arezzo, Italy https://orcid.org/0000-0001-7534-5634
  • Rita Perria CREA—Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita, 80, 52100 Arezzo, Italy https://orcid.org/0000-0002-4591-4370

DOI:

https://doi.org/10.36253/ijam-3493

Keywords:

Grape quality, Time series analysis, Ripening trends, Growing Degree Days (GDDs), Sangiovese

Abstract

Recent years have been increasingly characterized by the prevalence of extreme weather events due to climate change. Among these events, record-high temperatures and extended periods of drought are challenging the conventional viticulture techniques across many traditional grapevine-producing districts worldwide. The present study analyzes the data recorded over 16 years (2008-2023) in Chianti Classico, a renowned area in Tuscany (Italy) whose economy is based not only on the wine trade but also on the induced effects generated, such as wine tourism. The analysis correlated the historical climate patterns with the analytical profiles of the grapes at harvest. The results highlighted how increasing temperatures lead to an anticipation of the harvest date and, accordingly, a significant variation in grape chemical characteristics. This advance is linked mainly to achieving specific sugar concentrations in relation to the winery’s oenological objectives. As a result, organic acids and the phenolic fraction, along with their extractability, play a less decisive role and remain uncontrolled, potentially making the transformation process more challenging to manage.

References

Al-Ghussain, L. (2019). Global warming: review on driving forces and mitigation. Environmental Progress and Sustainable Energy, 38(1), 13–21). John Wiley and Sons Inc. https://doi.org/10.1002/ep.13041

Arrizabalaga, M., Morales, F., Oyarzun, M., Delrot, S., Gomès, E., Irigoyen, J. J., Hilbert, G. & Pascual, I. (2018). Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Plant Science, 267, 74–83. https://doi.org/10.1016/j.plantsci.2017.11.009

Aydinalp, C. & Cresser, M. S. (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(5), 672–676.

Bergqvist, J., Dokoozlian, N. & Ebisuda, N. (2001). Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. American Journal of Enology and Viticulture, 52(1), 1–7. https://doi.org/10.5344/ajev.2001.52.1.1

Cameron, W., Petrie, P. R. & Barlow, E. W. R. (2022). The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agricultural and Forest Meteorology, 315, 108841. https://doi.org/10.1016/j.agrformet.2022.108841

Castellarin, S. D., Matthews, M. A., Di Gaspero, G. & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227, 101–112. https://doi.org/10.1007/s00425-007-0598-8

Castellarin, S. D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E. & Di Gaspero, G. (2007). Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell & Environment, 30(11), 1381–1399. https://doi.org/10.1111/j.1365-3040.2007.01716.x

Cataldo, E., Eichmeier, A. & Mattii, G. B. (2023). Effects of Global Warming on Grapevine Berries Phenolic Compounds—A Review. Agronomy, 13(9), 2192.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Costantini E.A.C. (ed), 2013. Oltre la zonazione. Beyond zoning. Tre anni di studio al Castello di Brolio / A three years study at Castello di Brolio. Firenze: Edizioni Polistampa.

Dai, Z. W., Vivin, P., Robert, T., Milin, S., Li, S. H. & Génard, M. (2009). Model-based analysis of sugar accumulation in response to source–sink ratio and water supply in grape (Vitis vinifera) berries. Functional Plant Biology, 36(6), 527–540. https://doi.org/10.1071/FP08284

Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G. & Orlandini, S. (2010). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal of Agricultural Science, 148(6), 657–666. https://doi.org/10.1017/S0021859610000432

de Cortazar Atauri, I. G., Duchêne, E., Destrac, A., Barbeau, G., De Rességuier, L., Lacombe, T., Parker, A. K., Saurin, N. & Van Leeuwen, C. (2017). Grapevine phenology in France: from past observations to future evolutions in the context of climate change. Oeno One, 51(2), 115–126. https://doi.org/10.20870/oeno-one.2017.51.2.1622

De Orduna, R. M. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 1844–1855.

De Rességuier, L., Pieri, P., Mary, S., Pons, R., Petitjean, T. & Van Leeuwen, C. (2023). Characterisation of the vertical temperature gradient in the canopy reveals increased trunk height to be a potential adaptation to climate change. Oeno One, 57(1), 41–53. https://doi.org/10.20870/oeno-one.2023.57.1.5365

Drappier, J., Thibon, C., Rabot, A. & Geny-Denis, L. (2019). Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming. Critical Reviews in Food Science and Nutrition, 59(1), 14–30. https://doi.org/10.1080/10408398.2017.1355776

Duchêne, E. (2016). How Can Grapevine Genetics Contribute to the Adaptation to Climate Change? OENO One, 50, 113-124. https://doi.org/10.20870/oeno-one.2016.50.3.98

Duchêne, Eric & Schneider, C. (2005). Grapevine and climatic changes: a glance at the situation in Alsace. Agronomy for Sustainable Development, 25(1), 93–99. https://doi.org/10.1051/agro:2004057

Flexas, J., Escalona, J. M. & Medrano, H. (1998). Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Functional Plant Biology, 25(8), 893–900. https://doi.org/10.1071/PP98054

Focus, O. I. V. (2017). Distribution of the world’s grapevine varieties. International Organisation of Vine and Wine, 54.

Gambetta, G. A., Herrera, J. C., Dayer, S., Feng, Q., Hochberg, U. & Castellarin, S. D. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658–4676. https://doi.org/10.1093/jxb/eraa245

Gambetta, G. A. & Kurtural, S. K. (2021). Global warming and wine quality: are we close to the tipping point? Oeno One, 55(3), 353–361. https://doi.org/10.20870/oeno-one.2021.55.3.4774

Hernández-Montes, E., Zhang, Y., Chang, B.-M., Shcherbatyuk, N. & Keller, M. (2021). Soft, sweet, and colorful: Stratified sampling reveals sequence of events at the onset of grape ripening. American Journal of Enology and Viticulture, 72(2), 137–151. https://doi.org/10.5344/ajev.2020.20050

Hewitt, S., Hernández-Montes, E., Dhingra, A. & Keller, M. (2023). Impact of heat stress, water stress, and their combined effects on the metabolism and transcriptome of grape berries. Scientific Reports, 13(1), 9907. https://doi.org/10.1038/s41598-023-36160-x

Intrigliolo, D. S. & Castel, J. R. (2010). Response of grapevine cv.‘Tempranillo’to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrigation Science, 28, 113–125. https://doi.org/10.1007/s00271-009-0164-1

Jackson, D. I. & Lombard, P. B. (1993). Environmental and management practices affecting grape composition and wine quality-a review. American Journal of Enology and Viticulture, 44(4), 409–430. https://doi.org/10.5344/ajev.1993.44.4.409

Keller, M. (2020). The science of grapevines. Academic press.

Keller, M., Romero, P., Gohil, H., Smithyman, R. P., Riley, W. R., Casassa, L. F. & Harbertson, J. F. (2016). Deficit irrigation alters grapevine growth, physiology, and fruit microclimate. American Journal of Enology and Viticulture, 67(4), 426–435. https://doi.org/10.5344/ajev.2016.16032

Kliewer, W. M. (1977). Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. American Journal of Enology and Viticulture, 28(4), 215–222. https://doi.org/10.5344/ajev.1977.28.4.215

Kliewer, W. M. & Lider, L. A. (1968). Influence of cluster exposure to the sun on the composition of Thompson Seedless fruit. American Journal of Enology and Viticulture, 19(3), 175–184. https://doi.org/10.5344/ajev.1968.19.3.175

Koch, B. & Oehl, F. (2018). Climate Change Favors Grapevine Production in Temperate Zones. Agricultural Sciences, 9(3), 247–263. https://doi.org/10.4236/as.2018.93019

Medrano, H., Escalona, J. M., Cifre, J., Bota, J. & Flexas, J. (2003). A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Functional Plant Biology, 30(6), 607–619. https://doi.org/10.1071/FP02110

Mori, K., Goto-Yamamoto, N., Kitayama, M. & Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58(8), 1935–1945. https://doi.org/10.1093/jxb/erm055

Nesto, B. & Di Savino, F. (2016). Chianti Classico: The Search for Tuscany’s Noblest Wine. (Univ of California Press, Ed.).

Ortiz, A. M. D., Outhwaite, C. L., Dalin, C. & Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 4(1), 88–101. https://doi.org/10.1016/j.oneear.2020.12.008

Pastore, C., Dal Santo, S., Zenoni, S., Movahed, N., Allegro, G., Valentini, G., Filippetti, I. & Tornielli, G. B. (2017). Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries. Frontiers in Plant Science, 8, 929. https://doi.org/10.3389/fpls.2017.00929

Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. (2007). Hydrology and Earth System Sciences Updated world map of the Köppen-Geiger climate classification. In Hydrol. Earth Syst. Sci (Vol. 11). www.hydrol-earth-syst-sci.net/11/1633/2007/

Poni, S., Sabbatini, P. & Palliotti, A. (2022). Facing spring frost damage in grapevine: recent developments and the role of delayed winter pruning–a review. American Journal of Enology and Viticulture, 73(4), 211–226. https://doi.org/10.5344/ajev.2022.22011

Reidmiller, D. R., Avery, C. W., Easterling, D. R., Kunkel, K. E., Lewis, K. L. M., Maycock, T. K. & Stewart, B. C. (Eds.). (2018). Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II. https://doi.org/10.7930/NCA4.2018

Reynolds, A. G., Pool, R. M. & Matiick, L. R. (1986). Influence of cluster exposure on fruit composition and wine quality of Seyval blanc grapes. Vitis, 25, 85–95. https://doi.org/10.5073/vitis.1986.25.85-95

Ribéreau-Gayon, P., Glories, Y., Maujean, A. & Dubourdieu, D. (2021). Handbook of Enology, volume 2: The chemistry of wine stabilization and treatments. John Wiley & Sons.

Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., Walker, R. P., Famiani, F. & Castellarin, S. D. (2021). Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. In Frontiers in Plant Science (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fpls.2021.643258

Rustioni, L., Altomare, A., Shanshiashvili, G., Greco, F., Buccolieri, R., Blanco, I., Cola, G. & Fracassetti, D. (2023). Microclimate of grape bunch and sunburn of white grape berries: effect on wine quality. Foods, 12(3), 621.

Sadras, V. O. & Moran, M. A. (2012). Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18(2), 115–122. https://doi.org/10.1111/j.1755-0238.2012.00180.x

Scholasch, T. & Rienth, M. (2019). Review of water deficit mediated changes in vine and berry physiology: consequences for the optimization of irrigation strategies. Oeno One. https://doi.org/10.20870/oeno-one.2019.53.3.2407

Spayd, S. E., Tarara, J. M., Mee, D. L. & Ferguson, J. C. (2002). Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53(3), 171–182. https://doi.org/10.5344/ajev.2002.53.3.171

Sweetman, C., Deluc, L. G., Cramer, G. R., Ford, C. M. & Soole, K. L. (2009). Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 70(11–12), 1329–1344. https://doi.org/10.1016/j.phytochem.2009.08.006

Tomasi, D., Jones, G. V, Giust, M., Lovat, L. & Gaiotti, F. (2011). Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. American Journal of Enology and Viticulture, 62(3), 329–339. https://doi.org/10.5344/ajev.2011.10108

O.I.V. (2020). 2020 Wine production—OIV first estimates. International Organisation of Vine and Wine Paris.

Van Leeuwen, C., Barbe, J. C., Darriet, P., Destrac-Irvine, A., Gowdy, M., Lytra, G., Marchal, A., Marchand, S., Plantevin, M., Poitou, X., Pons, A. & Thibon, C. (2022). Aromatic maturity is a cornerstone of terroir expression in red wine. Oeno One, 56(2), 335–351. https://doi.org/10.20870/oeno-one.2022.56.2.5441

Van Leeuwen, C. & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150–167. https://doi.org/10.1017/jwe.2015.21

Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., De Resseguier, L. & Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514. https://doi.org/10.3390/agronomy9090514

Van Leeuwen, C., Sgubin, G., Bois, B., Ollat, N., Swingedouw, D., Zito, S. & Gambetta, G. A. (2024). Climate change impacts and adaptations of wine production. Nature Reviews Earth & Environment, 5(4), 258–275. https://doi.org/10.1038/s43017-024-00521-5

Van Leeuwen, C., Trégoat, O., Choné, X., Bois, B., Pernet, D. & Gaudillère, J.-P. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Oeno One, 43(3), 121–134. https://doi.org/10.20870/oeno-one.2009.43.3.798

Wickham, H. & Wickham, H. (2016). Data analysis. Springer.

Winkler, A. J. (1974). General viticulture. University of California Press.

Zapata, D., Salazar, M., Chaves, B., Keller, M. & Hoogenboom, G. (2015). Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. International Journal of Biometeorology, 59, 1771–1781. https://doi.org/10.1007/s00484-015-0985-y

Zarrouk, O., Brunetti, C., Egipto, R., Pinheiro, C., Genebra, T., Gori, A., Lopes, C. M., Tattini, M. & Chaves, M. M. (2016). Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Frontiers in Plant Science, 7, 1640. https://doi.org/10.3389/fpls.2016.01640

Downloads

Published

2025-12-31

How to Cite

Ammoniaci, M., Voltarelli, M., Biagi, M., Cascella, F., Carapelli, C., Zombardo, A., … Perria, R. (2025). Impact of climate change effects on grapevine through a multi-year analysis in the Chianti Classico Area (Italy). Italian Journal of Agrometeorology, (2), 95–105. https://doi.org/10.36253/ijam-3493

Issue

Section

RESEARCH ARTICLES

Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.