The phenological soil water balance: a proposed model for estimating water resources for an entire watershed using crop coefficients

Authors

DOI:

https://doi.org/10.36253/ijam-2334

Keywords:

water resources management, watershed deficit, soil water balance, actual evapotranspiration, deep percolation

Abstract

The aim of the research was to develop a model that would allow the application, at a watershed scale, of the hydrological soil water balance model proposed by the FAO for the dosing of irrigation water in agriculture, which uses crop coefficients (Kc) for the calculation of potential crop evapotranspiration (ETc). To be able to assess the water resources of a territory in which there are land uses other than agricultural ones, the application of the proposed model has made it necessary to determine the crop coefficients of the latter. Since crop coefficients vary according to phenological stage, this model was termed ‘phenological soil water balance’. A correction factor for precipitation and potential evapotranspiration, using an acclivity coefficient (i.e., the ratio between the actual area and the projected area), has also been proposed to obtain accurate results even in non-flat areas, which allowed us to consider the actual area of the territory instead of the projected one. The model was applied daily for 7 consecutive years (from 2013 to 2019) in the Santa Maria degli Angeli watershed (Urbino, central Italy) whose area is about 14 km2. The calibration and validation of the model were conducted by comparing the deep percolation computed by the model with baseflow values of the Santa Maria degli Angeli stream obtained by flow measurements made at the closing section of the sample watershed. The results of the model showed that the total values of deep percolation and measured baseflow only differed by 3% in the whole period considered; thus the phenological soil water balance model can be used to accurately estimate water resources and can be applied at different time intervals (daily, monthly, annual, etc.). The structure of the model makes it suitable for application in both small and large watersheds and territories.

References

Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy, pp 300.

AA.VV., 2006. Suoli e Paesaggi delle Marche. ASSAM (Agency for Agro-food Sector Services of the Marche Region), Errebi Grafiche Ripesi, Falconara Marittima (Ancona, Italy), pp. 304.

Barrera Jr. W.B., Ferrise R., Dalla Marta A. (2023) Understanding trends and gaps in global research of crop evapotranspiration: a bibliometric and thematic review. Italian Journal of Agrometeorology (1): 13-35. https://doi.org/10.36253/ijam-2175

Becker A., Pfützner B., 1986. Identification and modelling of river flow reductions caused by evapotranspiration losses from shallow groundwater areas. 2nd Scientific Assembly of the IAHS, Symp. 52, Budapest, July 1986. IAHS Publ. No. 156, pp. 301–311.

Brirhet H., Benaabidate L., 2016. Comparison of two hydrological models (lumped and distributed) over a pilot area of the Issen watershed in the Souss Basin, Morocco. Eur. Sci. J. 12(18): 347-358. https://doi.org/10.19044/esj.2016.v12n18p347.

Budyko M.I., 1974.Climate and Life. Academic Press, New York, 508 pp.

Corbari C., Ravazzani G., Galvagno M., Cremonese E., Mancini M., 2017. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors (Basel). Nov 18;17(11): 2664. https://doi.org/10.3390/s17112664. PMID: 29156568; PMCID: PMC5713072.

Costello L.R., Jones K.S., 2014.WUCOLS IV: Water Use Classification of Landscape Species. California Center for Urban Horticulture, University of California, Davis. http://ucanr.edu/sites/WUCOLS/

Dripps W.R., Bradbury K.R., 2007. A simple daily soil–water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas. Hydrogeol. J. 15: 433–444. https://doi.org/10.1007/s10040-007-0160-6.

Eccel E., Toller G., Ghielmi L., Salvadori C., La Porta N., 2007. Valutazione del bilancio idrico in una foresta decidua alpina. Ital. J. Agrometeorol. 12(1): 32-43.

Farmer W.H., Vogel R.M., 2016. On the deterministic and stochastic use of hydrologic models, Water Resour. Res., 52: 5619-5633. https://doi.org/10.1002/2016WR019129.

Friuli-Venezia Giulia Autonomous Region, 2018. Piano regionale di tutela delle acque. http://www.regione.fvg.it/rafvg/cms/RAFVG/ambiente-territorio/pianificazione-gestione-territorio/FOGLIA20/FOGLIA22/

Garofalo P., Vonella A.V., Maddaluno C., Rinaldi M., 2011. Verifica dei coefficienti colturali (kc) su colture erbacee in una pianura del Sud Italia. Proc. of the XIV National Congress of Agrometeorology “Agrometeorologia per l’azienda agraria”. 7-9 June 2011, Facoltà di Agraria, Bologna, 15-16.

Gayathri K. Devi, Ganasri B.P., Dwarakish G.S., 2015. A review on hydrological models. Aquat. Procedia, 4: 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126

Garavaglia F., Le Lay M., Gottardi F., Garçon R., Gailhard J., Paquet E., Mathevet T., 2017. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach, Hydrol. Earth Syst. Sci., 21: 3937–3952, https://doi.org/10.5194/hess-21-3937-2017

Gori S., 2004. Valutazione della pericolosità di frana attraverso l’analisi di foto aeree e in relazione alle condizioni di innesco in un’area nel comune di Urbino. Degree Diss., Università di Urbino, Italy.

Gupta H. V., Kling H., Yilmaz K. K., Martinez G. F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377(1-2): 80–91, doi:10.1016/j.jhydrol.2009.08.003

Hunink J.E., Eekhout J.P.C., De Vente J., Contreras S., Droogers P., Baille A., 2017. Hydrological Modelling Using Satellite-Based Crop Coefficients: A Comparison of Methods at the Basin Scale. Remote Sens. 9(2): 174. https://doi.org/10.3390/rs9020174

Jiménez Cisneros B.E., Oki T., Arnell N.W., Benito G., Cogley J.G., Döll P., Jiang T., Mwakalila S.S., 2014. Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269.

Kannan N., Santhi C., Williams J.R., Arnold J.G., 2008. Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods. Hydrol. Process. 22(13): 2114‐2121. https://doi.org/10.1002/hyp.6811.

Khakbaz B., Imam B., Hsu K., Sorooshian S., 2012. From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models. Journal of Hydrology, 418–419: 61-77. https://doi.org/10.1016/j.jhydrol.2009.02.021

Knoben W.J.M., Freer J.E., Woods R.A., 2019. Technical note: Inherent benchmark or not? Comparing NashSutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-2019-327

Mishra S.K., Singh V.P., 2003. Soil Conservation Service Curve Number (SCS-CN) Methodology. Water Sci. Technol. Library, vol 42. Springer, Dordrecht, The Netherlands, pp. 516. https://doi.org/10.1007/978-94-017-0147-1

Mockus V., 1972. Chapter 10: Estimation of Direct Runoff from Storm Rainfall. US Department of Agriculture (Ed.), Hydraulics and Hydrology — Technical References NRCS National Engineering Handbook, Part 630 Hydrology, Washington DC.

Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R., 2011. Soil and Water Assessment Tool Theoretical documentation version 2009. Texas Water Resources Institute Technical Report No. 406, Texas A&M University System College Station, Texas 77843-2118

Pereira L.S., Paredes P., Hunsaker D.J., López-Urrea R., Mohammadi Shad Z., 2021. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agricultural Water Management, Volume 243: 106466. https://doi.org/10.1016/j.agwat.2020.106466.

Rosa, R.D., Paredes, P., 2011. The SIMdualKc model. Software application for water balance computation and irrigation scheduling using the dual crop coefficient approach. CEER-Biosystems Engineering. Institute of Agronomy, Technical University of Lisbon.

Rosa, R.D., Paredes, P., Rodrigues, G.C., Alves, I, Fernando, R.M., Pereira, L.S., Allen, R.G., 2012. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2011.10.013

Schewe J., Heinke J., Gerten D., Haddeland I., Arnell N.W., Clark D.B., Dankers R., Eisner S., Fekete B., Colón-González F.J., Gosling S.N., Kim H., Liu X., Masaki Y., Portmann F.T., Satoh Y., Stacke T., Tang Q., Wada Y., Wisser D., Albrecht T., Frieler K., Piontek F., Warszawski L., Kabat P., 2013. Multi-model assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America 111(9): 3245-3250. https://doi.org/10.1073/pnas.1222460110

Schumann A.H., 1993. Development of conceptual semi-distributed hydrological models and estimation of their parameters with the aid of GIS. Hydrol. Sci. J. 38(6): 519-528. https://doi.org/10.1080/02626669309492702.

Taurino L., 2004. Un sistema informativo territoriale per l’analisi della propensione al dissesto dei versanti dell’area urbinate. Degree Diss., Università di Urbino, Italy.

UNI EN ISO 748:2008 – Misurazione della portata di liquidi in canali aperti mediante correntometri o galleggianti. International Standards Organization (ISO), Geneva, Switzerland, 2008.

U.S. Army Corps of Engineers, 2013. Hydrologic modeling system HEC-HMS - User’s Manual. Davis, CA, pp. 442. http://www.hec.usace.army.mil/software/hec-hms/.

USDA NRCS, 2004. Part 630 – Hydrology National Engineering Handbook Natural Resources Conservation Service, Washington, D.C. https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21422

Williams J.R., Arnold JG, Srinivasan R, 2000. The APEX Model. BRC Report No. 00-06. Temple, TX: Texas A&M University, Texas Agricultural Extension Service, Texas Agricultural Experiment Station, Blacklands Research Center.

Williams J.R., Izaurralde R.C., 2005. The APEX model. BREC Report No. 2005‐02. Temple, Tex.: Texas A&M University, Texas Agricultural Experiment Station, Blackland Research and Extension Center.

Williams J.R., Kannan N., Wang X., Santhi C., Arnold J.G., 2012. Evolution of the SCS Runoff Curve Number and its application to continuous runoff simulation. J. Hydrol. Eng. 17(11): 1221-1229. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000694

Zotarelli L., Dukes M.D., Romero C.C., Migliaccio K.W., Morgan K.T., 2010. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Doc. AE459, University of Florida. https://edis.ifas.ufl.edu/pdffiles/AE/AE45900.pdf

Downloads

Published

2024-08-26

How to Cite

Bartolucci, M., & Veneri, F. (2024). The phenological soil water balance: a proposed model for estimating water resources for an entire watershed using crop coefficients. Italian Journal of Agrometeorology, (1), 17–48. https://doi.org/10.36253/ijam-2334

Issue

Section

RESEARCH ARTICLES