Temporal Analysis of Al-Induced Programmed Cell Death in Barley (Hordeum vulgare L.) Roots
DOI:
https://doi.org/10.13128/caryologia-185Keywords:
Aluminum, caspase-1 like activity, cytochrome c, DNA fragmentation, lipid peroxidation, programmed cell deathAbstract
Aluminum (Al) is the third most elements found in the earth crust and Al toxicity is one of the most dangerous toxicants in terms of plants. As soil acidity increases due to a number of environmental factors, Al becomes soluble and transforms into toxic forms. In the present study, barley (Hordeum vulgare L.) roots were exposed to 100 µM AlCl3 solution for short (1/2, 1, 2, 3, 4, 5, 6 and 7 h) and long (24, 48, 72 and 96 h) term to reveal time dependent programmed cell death evidences. At the end of time periods, Al+3 accumulations, loss of plasma membrane integrity and lipid peroxidation increased time dependently. On the other hand, increase in caspase-1 like enzyme activities were observed in Al toxicity beginning from ½ h. Similar to apoptosis seen in animals, cytochrome c release from mitochondria to cytoplasm was also determined quantitatively. As a result of our research, increase of cytochrome c release from mitochondria to cytoplasm was time dependent which is one of the indicators of programmed cell death. Finally, under Al stress, genomic DNA fragmentation was measured by Flow Cytometry, and it was determined that DNA fragmentation was visible at first hours, but it was more significant after long term application in barley roots. In conclusion; the presented study highlights the adverse effects of Al on barley roots and importance of clarifying the relationship between Al toxicity and time dependent programmed cell death mechanism.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
- Copyright on any open access article in a journal published byCaryologia is retained by the author(s).
- Authors grant Caryologia a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles.
- In accordance with our Open Data policy, the Creative Commons CC0 1.0 Public Domain Dedication waiver applies to all published data in Caryologia open access articles.