Published 2025-09-26
Keywords
- MRI,
- Contrast Agents,
- Paramagnetic
How to Cite
Copyright (c) 2025 Jack Cohen, Silvio Aime

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Magnetic Resonance Imaging (MRI) is a powerful, non-invasive imaging technique widely used in medical diagnostics. However, its inherent inability to differentiate between certain tissues can limit its diagnostic capabilities, especially when distinguishing between subtle tissue differences. To overcome these limitations, contrast agents are employed to enhance the images produced by MRI and improve the clarity and accuracy of the results. This review delves into the role, types, and advancements of paramagnetic contrast agents in MRI.
References
- Earnshaw, A. (2001) Introduction to Magnetochemistry. Dover Publications.
- Curie, P. (1895) Propriétés magnétiques des corps à diverses températures. Annales de Chimie et de Physique, 5, 289-405.
- Weil, J.A., Bolton, J. R., & Wertz, J. E.. (1994) Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley.
- Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. . (1999) Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chemical Reviews, 99, 2293–2352.
- Runge, V.M. (2018) Contrast Media in Magnetic Resonance Imaging: Basic Principles and Clinical Applications. Springer.
- Weinmann, H.J., Brasch, R. C., Press, W. R., & Wesbey, G. E. (1984) Characteristics of gadolinium-DTPA complex: A potential NMR contrast agent. American Journal of Roentgenology, 142, 619–624.
- Shokrollahi, H. (2013) Contrast agents for MRI. . Materials Science and Engineering C, 33, 4485–4497.
- Bulte, J.W.M., & Kraitchman, D. L. . (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine, 17, 484–499.
- Hequet, E., Henoumont, C., Muller, RN., Laurent, S. (2019 ) Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Med Chem., 11, 1157-1175.
- Wu, B., Warnock, G., Zaiss, M. et al. (2016) An overview of CEST MRI for non-MR physicists. EJNMMI Phys, 19, 3.
- Zhou, Z., Lu, Z. R. (2019) Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 11, e1518.
- Grobner, T. (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrology Dialysis Transplantation, 21, 1104–1108.
- Thomsen, H.S. (2006) Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. European Radiology, 16, 2619–2621.
- Runge, V.M. (2016) Safety of the gadolinium-based contrast agents. Top Magnetic Resonance Imaging, 25, 137–143.
- Aime, S., & Caravan, P. (). . (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. Journal of Magnetic Resonance Imaging,, 30, 1259–1267.
- Perazella, M.A. (2009) Current status of gadolinium toxicity in patients with kidney disease. Clinical Journal of the American Society of Nephrology, 4, 461–469.
- Thomsen, H.S. (2013) Nephrogenic systemic fibrosis: History and epidemiology. Radiologic Clinics of North America,, 47, 827–831.
- Kanda, T., et al. . (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology, 270, 834–841.
- Gulani, V., Calamante, F., Shellock, F. G., Kanal, E., & Reeder, S. B. (2017) Gadolinium deposition in the brain: Summary of evidence and recommendations. The Lancet Neurology, 16, 564–570.
- Maimouni, I., et al. (2025) Gadopiclenol: A q = 2 Gadolinium-Based MRI Contrast Agent Combining High Stability and Efficacy. Investigative Radiology, 60, 234-243.
- Wahsner, J., Gale, EM., Rodríguez, A., Caravan, P. (2019) Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev., 119, 957-1057.
- Silva, A.C., Lee, J. H., Aoki, I., & Koretsky, A. P. (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): Methodological and practical considerations. NMR in Biomedicine, 17, 532–543.
- Koretsky, A.P. (2012) Manganese-enhanced MRI of the heart and brain: What does the future hold? NMR in Biomedicine, 25, 660–664.
- Widerøe, M., Ravna, A. W., & Larsen, B. R. (2011) Manganese-enhanced MRI: Biological specificity and toxicity. . NeuroImage, 54, 2316–2327.
- Bau, R., Purtell, J. E., & Powell, M. S. (2014) Magnetic properties of metalloporphyrins and related compounds. Journal of Inorganic Biochemistry, 129, 39-46.
- Sjöblom, S., et al. (2019) Magnetic properties and catalytic activity of cobalt (III) porphyrins. Journal of Catalysis, 377, 100-107.
- Kuhn, H., et al. (2013) Metalloporphyrins as contrast agents in magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 38, 727-735.
- Na, H.B., Song, I. C., & Hyeon, T (2009) Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 21, 2133–2148.
- Lee, N., Hyeon, T. (2011) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 41, 2575–2589.
- Wang, Y.-X.J. (2013) Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quantitative Imaging in Medicine and Surgery, 1, 35–40.
- Gupta, A.K., & Gupta, M. (2005) Synthesis and suRFace engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.
- Sharma, A., Rao, H., & Politi, L. S. . (2021) Iron-based T1 contrast agents for magnetic resonance imaging: A new era of safer clinical diagnostics. Contrast Media & Molecular Imaging, I, 1–14.
- Adams, L.C., et al. (2023) Ferumoxytol-Enhanced MRI in Children and Young Adults: State of the Art. American Journal of Roentgenology, 220, 590-603.
- Lewandowski, E.C., et al. (2024) Europium(ii/iii) coordination chemistry toward applications. Chemical Communications, 60, 10655-10671.
- Zhou, J., & van Zijl, P. C. M. (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 48, 109–136.
- Tóth, É., Helm, L., & Merbach, A. E. (2014) Paramagnetic NMR Relaxation Theory and Applications. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. 2nd ed. Wiley-VCH.
- Zhang, S., Winter, P., Wu, K., & Sherry, A. D. (2001) A novel europium(III)-based MRI contrast agent. Journal of the American Chemical Society, 123, 1517–1518.
- Wu, Y., et al. (2006) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magnetic Resonance in Medicine, 55, 843–848.
- Yadav, N.N., et al. (2014) Imaging glucose metabolism using dynamic glucose-enhanced (DGE) MRI. Magnetic Resonance in Medicine, 72, 823–832.
- Esqueda, A.C., et al. (2009) A new Gd³⁺-based MRI zinc sensor. Journal of the American Chemical Society, 131, 11387–11391.
- McMahon, M.T., et al. (2008) Quantifying exchange rates in chemical exchange saturation transfer agents using frequency-labeled exchange transfer. Magnetic Resonance in Medicine, 60, 1049–1057.
- Aime, S., & Castelli, D. D. (2005) Liposomal MRI agents: SuRFace functionalization and targeting. NMR in Biomedicine, 18, 461–469.
- Liu, G., et al. (2019) LipoCEST: A platform for sensitive molecular MRI. Advanced Healthcare Materials, 8, 1801332.
- Chan, K.W.Y., et al. (2013) Responsive paraCEST MRI contrast agents for sensing pH and enzyme activity. Accounts of Chemical Research, 46, 2080–2090.
- Ferrauto, G., et al. (2011) Imaging tumor acidosis with a paramagnetic CEST MRI contrast agent. Angewandte Chemie International Edition, 50, 10762–10765.
- Di Gregorio, E., et al. ( 2024) A Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer (MRI-CEST) Method for the Detection of Water Cycling across Cellular Membranes. Angew Chem Int Ed Engl., 63, e202313485.
- Essig, M., et al. . (2006) PeRFusion MRI: The Five Most Frequently Asked Clinical Questions. American Journal of Roentgenology, 187, 792–804.
- Rovira, À., Wattjes, M. P., et al. (2015) Evidence-based guidelines: Use of MRI in multiple sclerosis—Clinical implementation in the diagnostic process. Nature Reviews Neurology, 11, 471–482.
- Tofts, P.S., et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging,, 10, 223–232.
- Padhani, A.R., et al. (2002) Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions. Journal of Magnetic Resonance Imaging,, 16, 407–422.
- Chen, C.-W., Cohen, J. S., Myers, C. E., and Sohn, M. (1984) Paramagnetic Metalloporphyrins as Potential Contrast Agents in NMR Imaging,. FEBS Lett., 168, 70.
- Patronas, N.J., et al. (1986) Metalloporphyrin Contrast Agents for Magnetic Resonance Imaging of Human Tumors in Mice. Cancer Treat. Rep, 70, 390.
- Hambright, P., et al. (1987) An Iron (III) Porphyrin that Exhibits Minimal Dimerization in Aqueous Solution. Inorg. Chim. Acta, 128, L11.
- Lyon, R.C., et al. (1987) Tissue Distribution and Stability of Metalloporphyrin. Mag. Res. Med., 4, 24-33.
- Megnin, F., et al. (1987) On the Mechanism of Selective Retention of Porphyrins and Metalloporphyrins by Cancer Cells. Biochim. Biophys. Acta, 929, 173-181.
- van Zijl, P.C.M., et al. (1990) Metalloporphyrin magnetic resonance contrast agents: feasibility of tumor-specific MRI. Invest. Radiol. , 25, S69-S70.
- Place, D.A., et al. (1992) MRI contrast-dose relationship of manganese(III)tetra(4-sulfonatophenyl) porphyrin with human xenograft tumors in nude mice at 2.0 Tesla. Magn. Reson. Imaging, 10, 919-928.
- Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R. K. (2011) The Role of Porphyrin Chemistry in Tumor Imaging and Photodynamic Therapy, Chem. Soc. Rev., 40, 340–362.
- Zhao, X., et al. . (2021) Multifunctional Porphyrin-Based Nanoparticles for Tumor Imaging and Therapy. Coord. Chem. Rev., 429, 213616.
- Zhang, L., Wang, D., Yang, K., et al. . (2013) Manganese Dioxide Nanoparticles as a MRI Contrast Agent and an Enhancer for Photodynamic Therapy in Cancer Cells. Chem. Commun. , 49, 5573–5575.
- Zhang, X., Xiao, Y., and Qian, X. (2014) A Dual-Modal Probe for Simultaneous Fluorescence and MRI Tumor Imaging. J. Mater. Chem. B, 2, 5662–5667.
- Huang, Y., et al. (2015) Paramagnetic metalloporphyrins in targeted cancer therapy. Biomaterials, 45, 35-46.
- Zhang, R., Lu, G., Sun, Z., et al. (2016) Theranostic Nanoplatforms Based on Porphyrin Derivatives for Multimodal Imaging-Guided Phototherapy. Chem. Commun., 52, 10588–10605.
- Lovell, J.F., Jin, C. S., Huynh, E., et al. (2011) Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents. Nat. Mater., 10, 324–332.
- Yang, X., Wang, D., Mao, D., and Wang, S. (2022) Porphyrin-Driven Smart Nanomedicines for Cancer Theranostics. Acta Pharm. Sin B, 12, 1885–1905.
- Kramer, C.M., et al. (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2008 update. Journal of Cardiovascular Magnetic Resonance, 10, 35.
- Prince, M.R., & Yucel, E. K. (1993) MR imaging of the vasculature with gadopentetate dimeglumine. Journal of Magnetic Resonance Imaging,, 3, 761–767.
- van der Heijde, D., et al. (2002) Magnetic resonance imaging of the wrist in early rheumatoid arthritis. Annals of the Rheumatic Diseases, 61, 844–849.
- Malghem, J., et al. (2001) Magnetic resonance imaging of musculoskeletal infections. Radiologic Clinics of North America,, 39, 183–201.
- Prince, M.R., Zhang, H., Zou, Z., Staron, R. B., & Brill, P. W. (2011) Incidence of immediate gadolinium contrast media reactions. American Journal of Roentgenology, 196, W138–W143.
- Kuo, P.H., Kanal, E., Abu-Alfa, A. K., & Cowper, S. E. (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology, 242, 647–649.
- Cowper, S.E., Robin, H. S., Steinberg, S. M., Su, L. D., Gupta, S., & LeBoit, P. E. (2006) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet, 356, 1000–1001.
- Kanal, E., et al. (2007) ACR guidance document for safe MR practices. American Journal of Roentgenology, 188, 1447–1474.
- EMA. (2017) European Medicines Agency recommends restrictions on the use of gadolinium contrast agents. Retrieved from .
- McDonald, R.J., et al. (2015) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology, 275, 772–782.
- Radbruch, A., et al. (2017) Gadolinium retention in the brain: A radiologic concern? . Radiology, 285, 901–902.
- Runge, V.M. (2001) Safety of approved MR contrast media for intravenous injection. Journal of Magnetic Resonance Imaging,, 14, 486–491.
- Li, W., Min, Y., Niu, G., et al. . (2021) Gadolinium-free contrast agents for magnetic resonance imaging: Recent progress and future perspectives. Chemical Society Reviews, 50, 5650–5671.
- Rogosnitzky, M., & Branch, S. (2016) Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. BioMetals, 29, 365–376.
- Caravan, P., Farrar, C. T., & Frullano, L. (2020) Molecular MR imaging: The road to clinical translation. Journal of the American Chemical Society, 142, 12709–12722.
- Chen, H., Zhang, W., Zhu, G., Xie, J., & Chen, X. (2017) Rethinking cancer nanotheranostics. Nature Reviews Materials, 2, 17024.
- Qin, S.Y., Cheng, Y. J., Sheng, Y. H., Zhang, A. Q., & Zhang, X. Z. (2018) Biomedical applications of iron oxide nanoparticles: Current insights into novel therapeutic strategies. Nanomedicine, 13, 1435–1450.
- Zhou, Z., Lu, Z. R. (2021) Gadolinium-free contrast agents for magnetic resonance imaging: Current trends and future directions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13, e1654.