Effects of heat waves on soil temperatures in Slovenia


  • Tjaša Poga?ar Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana https://orcid.org/0000-0003-1047-0121
  • Lu?ka Kajfež Bogataj Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana
  • Rok Kuk Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana
  • Zalika ?repinšek Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana https://orcid.org/0000-0001-8000-6477




soil temperature, heat wave, air temperature, climate change


Soil temperature regulates the rate of plant growth and tells us much about the climatic characteristics of a particular site. Climate variability and extremes need to be studied and there is a large gap in knowledge about soil temperature during heat waves. Agricultural land is highly dependent on heat waves, which are becoming longer, more intense and more frequent, and it is important to monitor soil temperatures in situ to understand their changes during heat waves. Therefore, the aim of this work was to investigate how soil temperatures change at different depths during and after heat waves. Average daily air and soil temperature data for the 25-year period 1992-2016 were evaluated at four agrometeorological stations in three climate zones in Slovenia and analyzed during heat waves determined according to the Slovenian definition. During the period 1992-2016, 53 (Lesce) to 76 (Ljubljana) heat waves were identified. Analysis of average air and soil temperatures before, during and after heat waves showed higher responsiveness of the upper part of the soils and an increase in the time lag between maximum air temperature and maximum soil temperature with depth. The maximum temperature during the heat wave was reached on average in three to nine days, depending on the depth. Only in Moderate climate of the hilly region, the average daily temperatures at a depth of 100 cm remained below 20°C during and after the heat wave. The temperature rise in the deeper layers of the soil lasts longer than in the shallower layers. 


Acosta-Martínez V., Cotton J., Gardner T., Moore-Kucera J., Zak J., Wester D., Cox S., 2014. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Applied Soil Ecology, 84: 69-82. doi:10.1016/j.apsoil.2014.06.005.

Aguilera F., Orlandi F., Oteros J., Bonofiglio T., Fornaciari M., 2015. Bioclimatic characterisation of the Mediterranean region: future climate projections for Spain, Italy and Tunisia. Italian Journal of Agrometeorology, 1: 45-58.

ARSO, 2020. Atlas podnebnih projekcij. https://meteo.arso.gov.si/uploads/probase/www/climate/OPS21/Priloge-app/#/izbor

Bérard A., Bouchet T., Sévenier G., Pablo A.L., Gros R., 2011.Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves. European Journal of Soil Biology, 47, 6, 333-342. doi: 10.1016/j.ejsobi.2011.08.004.

Costa J.M., Egipto R., Sánchez-Virosta A., Lopes C.M., Chaves M.M., 2019. Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agricultural Water Management, 216: 484-496. doi: 10.1016/j.agwat.2018.06.001.

Fischer E.M., Seneviratne S.I., Lüthi D., Schär C., 2007a. Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34: L06707. doi.org/10.1029/2006GL029068.

Fischer E.M., Seneviratne S.I., Vidale P.L., Lüthi D., Schär C., 2007b. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Climate, 20: 5081–5099. doi: 10.1175/JCLI4288.1.

Gessner C., Fischer E.M., Beyerle U., Knutti R., 2021. Very Rare Heat Extremes: Quantifying and Understanding Using Ensemble Reinitialization. Journal of Climate 34, 16: 6619-6634. doi: 10.1175/JCLI-D-20-0916.1.

Hansen L.D., Barros N., Transtrum M.K., Rodríguez-Añón J.A., Proupín J., Piñeiro V., Arias-González A., Gartzia N., 2018. Effect of extreme temperatures on soil: A calorimetric approach. Thermochimica Acta, 670: 28-135. doi: 10.1016/j.tca.2018.10.010.

Hirschi M., Seneviratne S., Alexandrov V. et al., 2011. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4: 17-21. doi: 10.1038/ngeo1032.

Jaeger E.B., Seneviratne S.I., 2011. Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36: 1919-1939. doi: 10.1007/s00382-010-0780-8.

Jebamalar S., Christopher J.J., Ajisha M.A.T., 2021. Random input based prediction and transfer of heat in soil temperature using artificial neural network. Materials Today: Proceedings, 45, 2: 1540-1546. doi:10.1016/j.matpr.2020.08.091.

Klju?evšek N., Hrabar A., Dolinar M., 2018. Podnebne podlage za definicijo vro?inskega vala. Vetrnica, 10, 44-53.

Lasram A., Mechlia N.B., 2015. Effects of thermal stress on the pre-heading duration and grain production for Mediterranean irrigated durum wheat. Italian Journal of Agrometeorology, 3: 25-34.

Lipiec J., Doussan C., Nosalewicz A., Kondracka K., 2013. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys., 27: 463-477. doi: 10.2478/intag-2013-0017.

Lorenz R., Jaeger E.B., Seneviratne S.I., 2010. Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37: L09703. doi: 10.1029/2010GL042764.

Manfredi P., Cassinari C., Trevisan M., 2015. Soil temperature fluctuations in a degraded and in a reconstituted soil. Italian Journal of Agrometeorology, 3: 63-72.

Melkonyan A., 2015. Climate change impact on water resources and crop production in Armenia. Agricultural Water Management, 161: 86-101. doi.org/10.1016/j.agwat.2015.07.004.

Miralles D.G., Teuling, A.J., van Heerwaarden C.C., de Arellano J.V., 2014. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7: 345-349. doi: 10.1038/ngeo2141.

Mueller L., Schindler U., Mirschel W., Shepherd G. T., Ball B. C., Helming K., Rogasik J., Eulenstein F., Wiggering H., 2010. Assessing the productivity function of soils. A review. Agronomy for Sustainable Development, 30: 601-614. doi: 10.1051/agro/2009057.

Onwuka B., Mang B., 2018. Effects of soil temperature on some soil properties and plant growth. Adv Plants Agric Res., 8, 1:34-37. doi: 10.15406/apar.2018.08.00288.

Parisse B., Pontran-dolfi A., Epifani C., Alilla R., De Natale F., 2020. An agrometeorological analysis of weather extremes supporting decisions for the agricultural policies in Italy. Italian Journal of Agrometeorology, 3: 15-30. doi: 10.13128/ijam-790.

Poga?ar T., Žnidarši? Z., Kajfež Bogataj L., Flouris A.D., Poulianiti K., ?repinšek Z., 2019. Heat Waves Occurrence and Outdoor Workers’ Self-assessment of Heat Stress in Slovenia and Greece. Int. J. Environ. Res. Public Health, 16: 597. doi: 10.3390/ijerph16040597.

Poga?ar T., Zupanc V., Kajfež Bogataj L., ?repinšek Z., 2018. Soil temperature analysis for various locations in Slovenia. Italian Journal of Agrometeorology, 23, 1: 25-34. doi: 10.19199/2018.1.2038-5625.025.

Seneviratne S.I., Lüthi D., Litschi M. et al., 2006. Land–atmosphere coupling and climate change in Europe. Nature, 443: 205-209. doi: 10.1038/nature05095

Svili?i? P., Vu?eti? V., Fili? S., Smoli? A., 2016. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia. Theor Appl Climatol, 126: 247-263. doi: 10.1007/s00704-015-1558-z.

Teskey R., Wertin T., Bauweraerts I., Ameye M., McGuire M.A., Steppe K., 2015. Tree response to extreme heat. Plant cell environ, 38: 1699-1712. doi: 10.1111/pce.12417.

Wang X., Chen R., Han C., Yong Y., Jun-Feng L., Zhangwen L., Shuhai G., Yaoxuan S., 2020. Soil temperature change and its regional differences under different vegetation regions across China International Journal of Climatology, 41. doi: 10.1002/joc.6847.

Xu W., Gu S., Zhao X.Q., Xiao J., Tang Y., Fang J., Zhang J., Jiang S., 2011. High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation, 13, 4: 528-535. doi:10.1016/j.jag.2011.02.001.

Zhang H., Wang E., Zhou D., Luo Z., Zhang Z., 2016. Rising soil temperature in China and its potential ecological impact. Scientific Reports, 6: 35530. doi.org/10.1038/srep35530.




How to Cite

Poga?ar, T., Kajfež Bogataj, L., Kuk, R., & ?repinšek, Z. (2022). Effects of heat waves on soil temperatures in Slovenia. Italian Journal of Agrometeorology, (1), 41–48. https://doi.org/10.36253/ijam-1388




Most read articles by the same author(s)