Evaluation of artificial intelligence models for daily prediction of reference evapotranspiration using temperature, rainfall and relative humidity in a warm sub-humid environment





reference evapotranspiration, FAO56-PM, artificial intelligence, warm sub-humid environment, Yucatán Peninsula


Accurate estimation of reference evapotranspiration is essential for agricultural management and water resources engineering applications. In the present study, the ability and precision of three artificial intelligence (AI) models (i.e., Support Vector Machines (SVMs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Categorical Boosting (CatBoost)) were assessed for estimating daily reference evapotranspiration (ET0) using limited weather data from five locations in a warm sub-humid climate in Mexico. The Penman–Monteith FAO-56 equation was used as a reference target for ET0 values. Three different input combinations were investigated, namely: temperature-based (minimum and maximum air temperature), rainfall-based (minimum air temperature, maximum air temperature and rainfall), and relative humidity-based (minimum air temperature, maximum air temperature and relative humidity). Extraterrestrial radiation values were used in all combinations. The temperature-based AI models were compared with the conventional Hargreaves–Samani (HS) model commonly used to estimate ET0 when only temperature records are available. The goodness of fit for all models was assessed in terms of the coefficient of determination (R2), Nash–Sutcliffe model efficiency coefficient (NSE), root mean square error (RMSE) and mean absolute error (MAE). The results showed that among the AI models evaluated, the SVM models outperformed ANFIS and CatBoost for modeling ET0. Further, the influence of relative humidity and rainfall on the performance of the models was investigated. The analysis indicated that relative humidity significantly improved the accuracy of the models. Finally, the results showed a better response of the temperature-based AI models over the HS method. AI models can be an adequate alternative to conventional models for ET0 modeling.

Author Biographies

Crescencio de la Cruz Castillo, Colegio de Postgraduados. Campus Campeche. Carretera Haltunchen – Edzná, km 17.5, 24450, Sihochac. Champotón, Campeche

Research professor in the area of crop production, precision agriculture and sustainability of natural resources.

Javier Almorox, Departamento de Producción Agraria ETSI Agrónomos, Universidad Politécnica de Madrid, UPM, Avd. Puerta de Hierro, 2, 28040-Madrid

Research professor in the area of crop production, specialist in agrometeorology, has published on reference evapotranspiration and solar radiation models in high impact journals.

Benigno Rivera-Hernandez, Universidad Popular de la Chontalpa, Carretera Cárdenas-Huimanguillo km 2.0, 86500, Cárdenas, Tabasco

Dr. Benigno is a professional researcher in research topics related to irrigation and water management and sustainable agriculture.


Allen R.G., Pereira L.S., Raes D., Smith M. 1998. Crop evapotranspiration–Guidelines for computing crop water requirements–FAO Irrigation and drainage paper 56. Food and Agriculture Organization. Rome

Antonanzas-Torres F., Urraca R., Antonanzas J., Fernandez-Ceniceros J., Martinez-De-Pison F.J. 2015. Generation of daily global solar irradiation with support vector machines for regression. Energy Conversion and Management, 96, 277–286. DOI: 10.1016/j.enconman.2015.02.086

Baba A.P.A., Shiri J., Kisi O., Fard A.F., Kim S., Amini R. 2013. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 44(1), 131–146. DOI: 10.2166/nh.2012.074

Chang C., Lin C., Tieleman T. 2013. LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology (TIST), 307, 1–39. DOI: 10.1145/1961189.1961199

Citakoglu H., Cobaner M., Haktanir T., Kisi O. 2014. Estimation of Monthly Mean Reference Evapotranspiration in Turkey. Water Resources Management, 28(1), 99–113. DOI: 10.1007/s11269-013-0474-1

Cobaner M. 2011. Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology, 398(3–4), 292–302. DOI: 10.1016/j.jhydrol.2010.12.030

Despotovic M., Nedic V., Despotovic D., Cvetanovic S. 2015. Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews. 52, 1869-1880. DOI: 10.1016/j.rser.2015.08-035

Friedman J.H. 2002. Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367–378. DOI: 10.1016/S0167-9473(01)00065-2

Fritsch F.N., and Carlson R.E. 1980. Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246. DOI: 10.1137/0717021

Goci? M., Motamedi S., Shamshirband S., Petkovi? D., Ch S., Hashim R., Arif M. 2015. Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 113, 164–173. DOI: 10.1016/j.compag.2015.02.010

Huang G., Wu L., Ma X., Zhang W., Fan J., Yu X., Zeng W., Zhou H. 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574(1029), 1041. DOI: 10.1016/j.jhydrol.2019.04.085

Jang J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665–685. DOI: 10.1109/21.256541

Jang J.S.R., Sun C.T., Mizutani E. 1997. Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, [Book Review]. IEEE Transactions on automatic control, 42(10), 1482-1484.

Jensen M.E., Burman, R.D., Allen, R.G. 1990. Evapotranspiration and irrigation water requirements: a manual. ASCE manuals and reports on engineering practice (USA). no.70.

Kisi O. 2013. Least squares support vector machine for modeling daily reference evapotranspiration. Irrigation Science, 31(4), 611–619. DOI: 10.1007/s00271-012-0336-2

Köppen W. 1936. Das geographisca System der Klimate In: W. Köppen and G.Geiger, ed.Handbuch der Klimatologie (Handbuch der Klimatologie, vol.1: C.Gebr, Borntraeger).

Meyer D., and Wien F.H.T. 2014. Support vector machines. The Interface to libsvm in package e1071.

Midleton N, Thomas D. 1997. World atlas of desertification, 2nd edition. Oxford Univ. Press

Petkovi? D., Gocic M., Trajkovic S., Shamshirband S., Motamedi S., Hashim R., Bonakdari H. 2015. Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Computers and Electronics in Agriculture, 114, 277–284. DOI: 10.1016/j.compag.2015.04.012

Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A. 2018. CatBoost: unbiased boosting with categorical features. In Advances in neural information processing systems, 6638–6648.

RDevelopment C. 2009. TEAM 2009: R: A Language and Environment for Statistical Computing. Vienna, Austria.

Reis M., Da Silva., Junior J., Santos L., Azevedo A., Lopes E. 2019. Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Computers and Electronics in Agriculture, 165(104937), 1–10. DOI: 10.1016/j.compag.2019.104937

Shiri J., Kisi O., Landeras G., Javier Lopez J., Nazemi A.H., Stuyt L.C.P.M. 2012. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). Journal of Hydrology, 414, 302–316. DOI: 10.1016/j.jhydrol.2011.11.004.

Shiri J., Nazemi A.H., Sadraddini A.A., Landeras G., Kisi O., Fakheri Fard A., Marti P. 2014. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108, 230–241. DOI: 10.1016/j.compag.2014.08.007.

Tabari H., Kisi O., Ezani A., Hosseinzadeh Talaee P. 2012. SVM, ANFIS, regression and climate-based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444–445, 78–89. DOI: 10.1016/j.jhdrol.2012.04.007

Torrente Cantó L. 2018. Reconstrucción basada en interpolación de Hermite aplicada a funciones discontinuas. http://hdl.handle.net/10317/7584

Vapnik V. 2013. The nature of statistical learning theory. Springer Science & Business Media. Second edition. DOI: 10.1007/978-1-4757-3264-1

Wang Z., Wu P., Zhao X., Cao X., Gao Y. 2014. GANN models for reference evapotranspiration estimation developed with weather data from different climatic regions. Theoretical and Applied Climatology, 116(3–4), 481–489. DOI: 10.1007/s00704-013-0967-0

Wen X., Si J., He Z., Wu J., Shao H., Yu H. 2015. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration with Limited Climatic Data in Extreme Arid Regions. Water Resources Management, 29(9), 3195–3209. DOI: 10.1007/s11269-015-0990-2

ZHANG L., Juyang L. E. I., Qilin Z., Yudong W. 2015. Using Genetic Algorithm to Optimize Parameters of Support Vector Machine and Its Application in Material Fatigue Life Prediction. Advances in Natural Science, 8(1). DOI: 10.3968/6404.

Zhang Y., Zhao Z., Zheng J. 2020. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. Journal of Hydrology, Elsevier B.V., 588, 125087. DOI: j. jhydrol.2020.125087




How to Cite

Quej, V. H., Castillo, C. de la C., Almorox, J., & Rivera-Hernandez, B. . (2022). Evaluation of artificial intelligence models for daily prediction of reference evapotranspiration using temperature, rainfall and relative humidity in a warm sub-humid environment. Italian Journal of Agrometeorology, (1), 49–63. https://doi.org/10.36253/ijam-1373