Effects of air temperatures on acacia and chestnut honey yields: case study in Italy

Authors

  • Alessandro Messeri Institute of Bioeconomy, National Research Council (IBE-CNR), 50019 Florence https://orcid.org/0000-0001-8220-811X
  • Lorenzo Arcidiaco Institute of Bioeconomy, National Research Council (IBE-CNR), 50019 Florence
  • Evangelista Bianca Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence
  • Djialeu Tiako Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence
  • Simone Orlandini Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence
  • Gianni Messeri Institute of Bioeconomy, National Research Council (IBE-CNR), 50019 Florence
  • Marco Mancini Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence

DOI:

https://doi.org/10.36253/ijam-2296

Keywords:

bees, climate change, agrometeorology, plant phenology, ERA5 Land

Abstract

Global honey production is increasing.In Italy, the two predominant monovarietal honey types are acacia and chestnut . Climate change, with an increase in extreme weather events (including droughts, heat waves and late frosts), impacts both the phenology of melliferous species andhoneybee activity. The aim of this study was to correlate the honey yields of acacia and chestnut in five Italian climatic sub-regions with the thermal extremes during the flowering phases of the two melliferous species.The objective was to understand the impact that these parameters have on yields.The results highlighted differing impacts of thermal extremes on honey yields for acacia and chestnut, respectively . In the acacia, temperature below 4.3C° in the flowering period had a negative impact particularly in the North-West (P<0.01). Instead temperatures above 17.5C° impacted positively in North Italy. In contrast, for chestnut, temperatures above 23.5C° negatively affected honey yields in the North-West. Understanding the interaction between climate, melliferous species and bees is useful for beekeepers towards developing adaptation strategies to climate change with the aim of protecting the yields, income, animal welfare and ecosystem services.

References

Alilla R., De Natale F., Epifani C., Parisse B., Cola G., 2022. The Flowering of Black Locust (Robinia pseudoacacia L.) in Italy: A Phenology Modeling Approach. Agronomy, 12, 1623. https://doi.org/10.3390/ agronomy12071623.

Balvino-Olvera F.J., Lobo J.A., Aguilar-Aguilar M.J. et al. 2023. Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico. Sci Rep 13, 1017. https://doi.org/10.1038/s41598-022-25469-8;

Baronetti A., González-Hidalgo J.C., Vicente-Serrano S.M., Acquaotta F., Fratianni S. 2020. A weekly spatio-temporal distribution of drought events over the Po Plain (North Italy) in the last five decades. Int J Climatol 40(10), 4463–4476. https://doi.org/10.1002/joc6467.

Bartolini G., Betti G., Gozzini B., Iannuccilli M., Magno R., Messeri G., Spolverini N., Torrigiani T., Vallorani R., Grifoni D., 2021. Spatial and temporal changes in dry spells in a Mediterranean area: Tuscany (central Italy), 1955–2017. International Journal of Climatology, 42(3), 1670-1691. https://doi.org/10.1002/joc.7327.

Bartolini G., Messeri A., Grifoni D., Mannini D., Orlandini S., 2014. Recent trends in seasonal and annual precipitation indices in Tuscany (Italy). Theor. Appl. Climatol. 118, 147–157. https://doi.org/10.1007/s00704-013-1053-3.

Bertsch A.,1983. Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugar in individual flowers and the optimal foraging theory. Oecologia. 59(1), 40-8. https://doi.org/10.1007/BF00388069. Epub 2004 Sep 13. PMID: 25024144.

Blasi M., Carrié R., Fägerström C., Svensson E., Persson A.S. 2023. Historical and citizen-reported data show shifts in bumblebee phenology over the last century in Sweden. Biodivers Conserv 32, 1523–1547. https://doi.org/10.1007/s10531-023-02563-5

Brunetti M., Maugeri M., Monti F., Nanni T., 2006. Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int. J. Climatol. 26, 345–381. https://doi.org/10.1002/joc.1251.

Caloiero T., Caroletti G.N., Coscarelli R., 2021. IMERG-Based Meteorological Drought Analysis over Italy. Climate, 9, 65. https://doi.org/10.3390/cli9040065.

Corbet S.A., Willmer P.G., Beament J.W.L., Unwin D.M., Prys-jones O.E., 1979. Post-secretory determinants of sugar concentration in nectar, 2(4), 293–308. https://doi.org/10.1111/j.1365-3040.1979.tb00084.x.

Dalla Marta A., Grifoni D., Mancini M., Storchi P., Zipoli G., Orlandini S., 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. The Journal of Agricultural Science, 148(6), 657–666. https://doi.org/10.1017/S0021859610000432.

Delgado D.L., Perez M.E., Galindo-Cardona A., Giray T., Restrepo C., 2012. Forecasting the Influence of Climate Change on Agroecosystem Services: Potential Impacts on Honey Yields in a Small-Island Developing State. Psyche: A Journal of Entomology, 2012. https://doi.org/10.1155/2012/951215.

Fernandes P., Antunes C., Correia O., Máguas, C. 2015. Do climatic and habitat conditions affect the reproductive success of an invasive tree species? An assessment of the phenology of Acacia longifolia in Portugal. Plant Ecology, 216(2), 343–355. http://www.jstor.org/stable/24557713.

Flores J.M., Gil-Lebrero S., Gámiz V., Rodríguez M.I, Ortiz M-A., Quiles F.J., 2019. Effect of climate change on honeybee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Science of the Total Environment, 653, 1111-11119, https://doi.org/10.1016/j.scitotenv.2018.11.004.

Giovanetti G., Aronne G. 2013. Honey bee handling behaviour on the papilionate flower of Robinia pseudoacacia L. Arthropod-Plant Interact, 7, 119–124. https://doi.org/10.1007/s11829-012-9227-y.

Gounari S., Proutsos N., Goras G., 2022. How does weather impact on beehive productivity in a Mediterranean island? Italian Journal of Agrometeorology 1: 65–81. https://doi.org/10.36253/ijam-1195.

Guo L., Dai J., Ranjitkar S., Xu J., Luedeling E., 2013. Response of chestnut phenology in china to climate variation and change. Agricultural and Forest Meteorology, 180, 164-172. https://doi.org/10.1016/j.agrformet.2013.06.004.

Hung K.L.J., Kingston J. M., Albrecht M., Holway D. A., Kohn J.R., 2018. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140. https://doi.org/10.1098/rspb.2017.2140.

Hünicken P.L, Morales C.L., Aizen M.A., Anderson G.K.S, García N., Garibaldi L.A., 2021. Insect pollination enhances yield stability in two pollinator-dependent crops. Agriculture, Ecosystems and Environment, 320, 107573. https://doi.org/10.1016/j.agee.2021.107573.

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896.

IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844.

ISMEA - Istituto di Servizi per il Mercato Agricolo Alimentare. Report settembre 2022. https://www.ismeamercati.it/api-miele;

Joshi, N.C., Joshi, P. 2010. Foraging behaviour of Apis spp. on apple flowers in a subtropical environment. New York Science Journal, 3(3), 71-76.

Juknys R., Sujetoviene G., Zeimavicius K., Gustainyte J., 2011. Effects of climate warming on timing of lime (Tilia cordata L.) phenology. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE, 8, 139). Vilnius Gediminas Technical University, Department of Construction Economics & Property.

Kim Y.K., Lee S., Song J.H., Kim M.J., Yunusbaev U., Lee M.L., Kim M.S., Kwon H.W., 2020. Comparison of Biochemical Constituents and Contents in Floral Nectar of Castanea spp. Molecules. Sep 15; 25(18), 4225. https://doi.org/10.3390/molecules25184225.

Linderholm H.W., 2006. Growing season changes in the last century. Agricultural and Forest Meteorology, 137, 1–14. https://doi.org/10.1016/j.agrformet.2006.03.006.

Mariani L., Parisi S.G., Cola G., Failla O 2012. Climate change in Europe and effects on thermal resources for crops. Int J Biom. https://doi.org/10.1007/s00484-012-0528-8

Martinelli L., Matzarakis A. 2017. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones, Sustainable Cities and Society, 29, 97–106 pp. https://doi.org/10.1016/j.scs.2016.12.004.

Mashilingi, S. K., Zhang H., Garibaldi L. A., An J. 2022. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agr. Ecosyst. Environ. 335, 108003. https://doi.org/10.1016/j.agee.2022.108003.

Medina R.G., Paxton R.J., De Luna E., Fleites-Ayil F.A., Medina L.A., Quezada-Euán J.J.G., 2018. Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae). J Therm Biol, 74, 214-225. https://doi.org/10.1016/j.jtherbio.2018.04.003.

Meier U. 2018. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Quedlinburg: Open Agrar Repositorium. https://doi.org/10.5073/20180906-074619.

Meier U., 2001. Growth Stages of Mono and Dicotyledonous Plants. BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry, Bonn.

Parri E., Lenzi A, Cifelli M, Restivo A, Degano I., Ribechini E., Zandomeneghi M., Domenici V., 2014. Studio di mieli toscani monoflorali mediante tecniche chimiche cromatografiche e spettroscopiche. Quinto Congresso di Scienze Naturali Ambiente Toscano; Edizioni ETS: Pisa, Italy, 159–169. ISBN 9788846738899.

Peat J., and Goulson D., 2005. Effects of Experience and Weather on Foraging Rate and Pollen versus Nectar Collection in the Bumblebee, Bombus Terrestris. Behavioral Ecology and Sociobiology, 58(2), 152–56. http://www.jstor.org/stable/25063598.

Phiri B.J., Fèvre D., Hidano A., 2022 Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, 1961-2017. Sci Rep, 12(1), 21298. https://doi.org/10.1038/s41598-022-25290-3. PMID: 36494404; PMCID: PMC9734161.

Piao S., Liu Q., Chen A., Janssens I.A., Fu Y., Dai J., Liu L., Lian X., Shen M., Zhu X., 2019. Plant phenology and global climate change: current progresses and challenges. Global Change Biol 25, 1922–1940. https://doi.org/10.1111/gcb.14619.

Rahimi E., Barghjelveh S., Dong P., 2021. Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran. j ecology environ 45, 14. https://doi.org/10.1186/s41610-021-00189-8.

Report Osservatorio Nazionale del miele 2022. Il valore della terra: agricoltura e nuova ruralità, economia e sostenibilità, qualità e consumo consapevole. Rivista multimediale 1/2023. https://www.informamiele.it/wp-content/uploads/2023/03/Report-2022-Il-Valore-della-Terra-per-web.pdf.

Richardson A.D., Keenan T.F., Migliavacca M., Ryu Y., Sonnentag O., Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system, Agricultural and Forest Meteorology, 69, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012.

Salinger M., Dalla Marta A., Dalu G., Messeri A., Baldi M., Messeri,G., Vallorani R., Crisci A., Morabito M., Orlandini S., Altobelli F., Verdi L. 2020. Linking crop yields in Tuscany, Italy, to large-scale atmospheric variability, circulation regimes and weather types. The Journal of Agricultural Science, 158(7), 606–623. https://doi.org/10.1017/S0021859620001021.

Salinger M., Verdi L., Dalla Marta A., Dalu G., Baldi M., Messeri G., Messeri, A., 2022. Linking maize yields in Veneto Italy, to large-scale atmospheric variability, circulation regimes and weather types. The Journal of Agricultural Science, 1–17. https://doi.org/10.1017/S0021859622000545.

Simpson N.P., Williams P.A, Mach K.J., Berrang-Ford L., Biesbroek R., Haasnoot M, Segnon A.C., Campbell D., Musah-Surugu J.I, Joe E.T., Nunbogu A.M., Sabour S., Meyer A.L.S, Andrews T.M., Singh C., Siders A.R., Lawrence J., van Aalst M., Trisos C.H., 2023. Adaptation to compound climate risks: A systematic global stocktake. iScience, 26(2), 105926. https://doi.org/10.1016/j.isci.2023.105926.

Sparks H.T., Carey P.D., 1995. The Responses of Species to Climate Over Two Centuries: An Analysis of the Marsham Phenological Record, 1736-1947. Journal of Ecology, 83(2), 321–329.

Tan K., Yang S., Wang, Z.W., Radloff, S.E., Oldroyd B.P., 2012. Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera. Apidologie, 43(6), 618–623. https://doi.org/10.1007/s13592-012-0136-y.

Villagomez G., Nurnberger F., Requier F., Schiele S., Steffan-Dewenter I., 2021. Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. Ecology and Evolution, 11(12), 7834–7849. https://doi.org/10.1002/ece3.7616.

Visser M.E and Both C., 2005. Shifts in phenology due to global climate change: the need for a yardstickProc. R. Soc. B.2722561–2569. http://doi.org/10.1098/rspb.2005.3356.

Vítková M., Müllerová J., Sádlo J., Pergl J., Pyšek P. 2017. Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manage. 15; 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057. PMID: 30237654; PMCID: PMC6143167.

Wyver C., Potts S.G., Edwards M., Edwards R., Roberts S., Senapathi D. 2023a. Climate-driven phenological shifts in emergence dates of British bees. Ecology and Evolution 13(7)- https://doi.org/10.1002/ece3.10284.

Wyver C., Potts S.G., Edwards M., Edwards R., Roberts S., Senapathi D. 2023b. Climate driven shifts in the synchrony of apple (Malus x domestica Borkh.) flowering and pollinating bee flight phenology. Agricultural and Forest Meteorology 329, 109281. https://doi.org/10.1016/j.agrformet.2022.109281.

Zhao H., Li G., Guo D. et al. 2021. Response mechanisms to heat stress in bees. Apidologie 52, 388–399. https://doi.org/10.1007/s13592-020-00830-w.

Downloads

Published

2024-08-26

How to Cite

Messeri, A., Arcidiaco, L., Bianca, E., Tiako, D., Orlandini, S., Messeri, G., & Mancini, M. (2024). Effects of air temperatures on acacia and chestnut honey yields: case study in Italy. Italian Journal of Agrometeorology, (1), 49–58. https://doi.org/10.36253/ijam-2296

Issue

Section

RESEARCH ARTICLES

Most read articles by the same author(s)