Agricultural drought assessment on the base of Hydro-thermal Coefficient of Selyaninov in Poland




climate change, drought index, growing season, yields


Climate change on the globe has been manifested over the past few decades by, among other things, an increase in the frequency of extreme weather events, such as droughts. Drought affects millions of people around the world every year. Its effects usually appear after a long period of rainfall deficit. Based on climate projections, it is emphasized that water scarcity will be one of the most important problems in the future. Due to the importance of the increasing problem of drought, the analysis of this phenomenon in Poland was undertaken in the context of agriculture. The aim of this study was to assess the course of drought in the vegetation period during years 2001-2020 for Poland based on the Selyaninov’s coefficient (HTC). As shown in this study, the western and central parts of the country, dominated by arable land, are particularly vulnerable to drought. Due to the cyclic nature of periods classified by HTC as dry, it can be concluded that the problem of precipitation deficit for crops in Poland could get worse.


Bartczak A., Glazik R., Tyszkowski S., 2014. Identyfikacja i ocena intensywności okresów suchych we wschodniej części Kujaw. Nauka Przyroda Technologie, 8 (4), #46

Bevan S.L., Los S.O., North P.R.J., 2014. Response of vegetation to the 2003 European drought was mitigated by height. Biogeosciences, 11(11), 2897-2908.

Bokwa A., Klimek M., Krzaklewski P., & Kukułka W. 2021. Drought Trends in the Polish Carpathian Mts. in the Years 1991–2020. Atmosphere, 12(10), 1259.

Christensen J. et al. (2021). United In Science 2021: A multi-organization high-level compilation of the latest climate science information. doi:10.13140/RG.2.2.11238.14402.

Diakowska, E., Stanek, P., Iwański, S., Gąsiorek, E., 2018. Estimation of the occurrence of drought in Poland by 2060 based on the HTC index and probability distributions. In ITM Web of Conferences (Vol. 23, p. 00006). EDP Sciences.

Evarte-Bundere G., Evarts-Bunders P. 2012. Using of the Hydrothermal coeffcient (HTC) for interpretation of distribution of non-native tree species in Latvia on example of cultivated species of genus Tilia. Acta Biol. Univ. Daugavp., 12 (2): 135 – 148

Falzoi S., Acquaotta F., Pulina M.A., Fratianni S., 2019. Hydrological drought analysis in Continental Temperate and Mediterranean environment during the period 1981-2017. Italian Journal of Agrometeorology (3): 13-23. doi: 10.13128/ijam-798.

Hanel M., Rakovec O., Markonis Y., Máca P., Samaniego L., Kyselý J., & Kumar, R., 2018. Revisiting the recent European droughts from a long-term perspective. Scientific reports, 8(1), 1-11.

IPCC, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press.

Kadbhane S.J., Manekar V.L., 2021. Development of agro-climatic grape yield model with future prospective. Italian Journal of Agrometeorology (1): 89-103. doi: 10.36253/ijam-406.

Kazadjiev V., Moteva M., Georgieva V., 2012. Near and far future hydro-thermal tendencies for crop growing in Bulgaria. Sixteenth International Water Technology Conference, (IWTC 16 2012), Istanbul, Turkey.

Kępińska-Kasprzak M., Mager P., 2010. Changes of selected climate elements and their impact on agricultural production in central-west Poland. Meteorological Journal, XIII, No 1, p.3-8, Slovakia.

Kociper D., Vintar Mally K., Kajfež Bogataj L., 2019. Climate vulnerability of agriculture in statistical regions of Slovenia. Italian Journal of Agrometeorology (2): 35-48. doi: 10.13128/ijam-651.

Kuś J., 2016. Gospodarowanie wodą w rolnictwie. Studia i Raporty IUNG-PIB 47(1), 83-04.

Łabędzki L., 2007. Estimation of local drought frequency in Central Poland using the Standarized Precipitation Index SPI. Irrig. And Drain. 56: 67–77. doi: 10.1002/ird.285.

Nikolaev M. V., 2020. Integrated assessment of change in contribution of excessive moisture to farming risks in the humid zone of Western Russia. Meteorology Hydrology and Water Management. Research and Operational Applications, 8.

Skowera, B., Puła, J., 2004. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971-2000. Acta Agrophysica, 3(1), 171-177 (in Polish).

Struzik P., Kępińska-Kasprzak M., 2016. Use of conventional and satellite data for estimation of evapotranspiration spatial and temporal pattern. Meteorology, Hydrology and Water Management, Research and Operational Applications, Vol 4. Issue 2, December 2016, p. 3-13.

Struzik P., Kępińska-Kasprzak M., 2016. The 2015 catastrophic drought in Poland monitored by satellite products. Proc. 2016 EUMETSAT Meteorological Satellite Conf., 2016.

Szwed M., Karg G., Pińskwar I., Radziejewski M., Graczyk D., Kędziora A., Kundzewicz Z.W., 2010. Climate change and its effect on agriculture, water resources and human health sectors in Poland. Hazards Earth Syst. Sci., 10, 1725–1737, doi:10.5194/nhess-10-1725-2010

Szyga-Pluta, K. 2018. Zmienność występowania susz w okresie wegetacyjnym w Polsce w latach 1966-2015. Przegląd Geofizyczny (in Polish).

Taparauskiene, l., Miseckaite, O., 2017. Comparison of watermark soil moisture content with Selyaninov hydrothermal coefficient. AGROFOR, 2(2).

Toulios L., Struzik P. (editors), 2016. How the study of the Water Footprint of agricultural crops can benefit from the use of satellite remotely sensed data. Garmond Nitra, Slovakia.

Vlăduţ A. Ş., Nikolova N., & Licurici M. 2017. Aridity assessment within southern Romania and northern Bulgaria Procjena aridnosti za južnu Rumunjsku i sjevernu Bugarsku. Hrvatski Geografski Glasnik, 79(2), 5-26.

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J. I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.

Yeşilköy S., Şaylan L., 2020. Assessment and modelling of crop yield and water footprint of winter wheat by aquacrop. Italian Journal of Agrometeorology (3): 3-14. doi: 10.13128/ijam-859.

Ziernicka-Wojtaszek A., Kopcińska J., 2020. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere.




How to Cite

Chmist-Sikorska, J., Kępińska-Kasprzak, M., & Struzik, P. (2022). Agricultural drought assessment on the base of Hydro-thermal Coefficient of Selyaninov in Poland. Italian Journal of Agrometeorology, (1), 3-12.