Relationship Between Agroclimatic Conditions and Seed Quality and Seedling Growth of Crimson Clover

Growth of Crimson Clover (Trifolium incarnatum L.)

Authors

DOI:

https://doi.org/10.36253/ijam-3512

Keywords:

Mean monthly air temperature, Total monthly precipitation, Seed germination and dormancy, Shoot and root growth, Trifolium incarnatum

Abstract

This study investigated the relationship between seed quality parameters (germination, dormancy, initial shoot and root growth) of crimson clover originating from six locations in eastern Serbia and the agroclimatic conditions over a three-year period. The results indicate significantly higher seed germination rates at temperatures of 20°C and 25 °C compared to 15 °C.
A positive and statistically significant (p≤0.05) to very strong (p≤0.001) correlation was observed between mean monthly temperatures in May and seed dormancy.

In contrast, a significant negative (p≤0.05) to strong (p≤0.01) correlation was found between total monthly precipitation in May and seed germination. No statistically significant correlations were identified between mean monthly temperatures in March and April and any of the seed quality parameters or seedling growth traits. Similarly, no statistically significant correlation was found between total precipitation in March and April and seed quality indicators.
In light of global warming predictions and rising temperatures, these findings underscore the importance of adopting agronomic practices, such as seed treatment, to mitigate dormancy and  increase germinable seed rates.

References

Aćić S., Šilc U., Vrbničanin S., Cupać S., Topisirović G., Stavretović N., Dajić-Stevanović Z. 2013. Grassland communities of Stol mountain (eastern Serbia): Vegetation and environmental relationships. Archives of Biological Sciences, 65: 211–227.

Alvar-Beltrán J., Franc-eschini G. 2024. Effect of future climate on crop production in Bhutan. Italian Journal of Agrometeorology (2): 101-119. doi: 10.36253/ijam-2782

Bailly C. Gomez Roldan M.V. 2023. Impact of climate perturbations on seeds and seed quality for global agriculture. Biochemical Journal, 480: 177–196.

Baskin J.M., Baskin C.C. 2004. A classification system for seed dormancy. Seed Science Research 14: 1–16.

Bogosavljević S., Zlatković B., Ranđelović V. 2007. Flora klisure Svrljiškog Timoka/Abstract in English, Flora of the Svrljiski Timok Gorge in Eastern Serbia. In Proceedings of the 9th Symposium on flora of Southeastern Serbia and Neighbouring Regions, Nis, Serbia, 1–3 September, 41–54.

Bolingue W., Vu B.L., Leprince O., Buitink J. 2010. Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Science Research 20: 97–107.

Can E., Çeliktaş N., Hatpoğlu R., Avci S. 2009. Breaking seed dormancy of some annual Medicago and Trifolium species by different treatments. Turkish Journal Field Crops, 14: 72–78.

Chu L., Gao Y., Chen L., McCullough P.E., Jespersen D., Sapkota S., Bagavathiannan M., Yu J. 2022. Impact of Environmental Factors on Seed Germination and Seedling Emergence of White Clover (Trifolium repens L.). Agronomy, 12: 190. https://doi.org/10.3390/ agronomy12010190.

Deng X., Wang X., Yang Y., Li, J.; Gao Y., Huang H., Zhang Y., Du J., Wang P. 2025. Global Research Trends and Hotspots in White Clover (Trifolium repens L.) Responses to Drought Stress (1990–2024). Sustainability, 17, 1883. https://doi.org/10.3390/su17051883

Donohue K. 2009. Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B: Biological Sciences, 364: 1059–1074 https://doi.org/10.1098/rstb.2008.0291

Egan L.M., Hofmann R.W., Ghamkhar K., Hoyos-Villegas V. 2021. Prospects for Trifolium Improvement Through Germplasm Characterisation and Pre-breeding in New Zealand and Beyond. Frontiers in Plant Science, 16: 12:653191. doi: 10.3389/fpls.2021.653191.

Finch-Savage W.E., Bassel G.W. 2016. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67: 567–591 https://doi.org/10.1093/jxb/erv490

Folina A., Stavropoulos P., Mavroeidis A., Roussis I., Kakabouki I., Tsiplakou E., Bilalis D. 2025. Optimizing Fodder Yield and Quality Through Grass–Legume Relay Intercropping in the Mediterranean Region. Plants, 14: 877. https://doi.org/10.3390/ plants14060877

França-Neto J., Krzyzanowski F.C. 2022. Use of the tetrazolium test for estimating the physiological quality of seeds. Journal of Seed Science, 50: 31–44.

Fu Y., Ma L., Li J., Hou D., Zeng B., Zhang L., Liu C., Bi Q., Tan J., Yu X., Bi J., Luo L. 2024. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. Plants, 13: 1319.

Galussi A.A., Argüello J.A., Moya M.E., Zuriaga F.D., Zimmermann L.R. 2013. Seed dormancy mechanism as a factor influencing seed physiological quality in alfalfa (Medicago sativa) cv. Baralfa 85. Seed Science and Technology, 41, 1: 50-59

Greveniotis V., Bouloumpasi E., Skendi A., Korkovelos A., Kantas D., Ipsilandis C.G. 2025. Evaluation and Stability of Red and White Trifolium Species for Nutritional Quality in a Mediterranean Environment. Agriculture, 15, 391. https://doi.org/10.3390/ agriculture15040391

International Seed Testing Association (ISTA). Rules for Testing Seeds; ISTA: Zurich, Switzerland, 2020.

Messeri A., Arcidiaco L., Bianca E., Tiako D., Orlandini S., Messeri G., Mancini, M. 2024. Effects of air temperatures on acacia and chestnut honey yields: case study in Italy. Italian Journal of Agrometeorol-ogy (1): 49-58. doi: 10.36253/ijam-2296

Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. 2010. Abscisic Acid and the Control of Seed Dormancy and Germination. Seed Science Research, 20: 55–67.

Née G., Xiang Y., Soppe W.J. 2017. The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology, 35: 8–14.

Pawłowski T.A., Bujarska-Borkowska B., Suszka J., Tylkowski T., Chmielarz P., Klupczyńska E.A., Staszak A.M. 2020. Temperature Regulation of Primary and Secondary Seed Dormancy in Rosa canina L.: Findings from Proteomic Analysis. International Journal of Molecular Sciences, 21: 7008. https://doi.org/10.3390/ijms21197008

Peker C., Ozkan U., Tansi V., Sevimay C.S. 2020. Ef-fects of mixture ratios and sowing methods on for-age yields of crimson clover (Trifolium incarnatum L.) and Italian ryegrass Lolium multiflorum) mixture under Ankara conditions. Fresenius Environmental Bulletin, 29: 1534-1541.

Penfield S., MacGregor D.R. 2017. Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany, 4:819-825. doi: 10.1093/jxb/erw436.

Petrović M., Dajić-Stevanović. Z., Sokolović D., Radović J., Milenković J., Marković J. 2014. Study of red clover wild populations from the territory of serbia for the purpose of pre-selection. Genetika, 46: 471-484

Petrović B., Ranđelović V.; Zlatković B. 2007. Flora i vegetacija Krupačkog Blata kod Pirota u istočnoj Srbiji/Abstract in English, Flora and vegetation of Krupačko Blato swamp in eastern Serbia. In Proceedings of the 9th Symposium on Flora of Southeastern Serbia and Neighbouring Regions, Niš, Serbia, 1–3 September, 63–72.

Purugganan M.D. 2019. Evolutionary insights into the nature of plant domestication. Current Biology, 29: R705–R714 https://doi.org/10.1016/j.cub.2019. 05.053

Renzi J.P., Duchoslav M., Brus J., Hradilová I., Pechanec V., Václavek T., Machalová J., Hron K., Verdier J., Smýkal P. 2020. Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations. Plants, 9: 503. https://doi.org/10.3390/plants9040503

Rezaei-Manesh H., Ghaderi-Far F., Nosratti I., Siahmarguee A.B.S., Chauhan B.S. 2023. Seed dormancy and germination ecology of several clover species. Seed Science and Technology, 51: 329–353.

Statistical Office of the Republic of Serbia 2023. - Statistical year books.

Stanisavljević R., Poštić D., Štrbanović R., Tabaković M., Jovanović S., Milenković J., Đokić D., Terzić D. 2020. Effect of seed storage on seed germination and seedling quality of Festulolium in comparison with related forage grasses. Tropical Grasslands-Forrajes Tropicales, 8: 125–132

Štrbanović R., Šimić B., Stanišić M., Poštić D., Trkulja N., Oro V., Stanisavljević R. 2025. Seed Quality and Seedling Growth After Applying Ecological Treatments to Crimson Clover Seeds. Plants, 14: 839. https://doi.org/10.3390/plants14060839

Tejlor N.L., Smit R.R. 1979. Red clover breeding and genetics. In: Advances in Agronomy. Academic Press. New York In press.

Tomić D., Stevović V., Đurović D., Marjanović M., Madić M., Pavlović N., Lazarević Đ., Petrovic M. 2025. Perennial forage legumes as an element of sustainable systems. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51: 1-16 13240.

Velijević N., Simić A., Vučković S., Živanović L.J., Poštić D., Štrbanović R., Stanisavljević R. 2018. Influence of different pre-sowing treatments on seed dormancy breakdown, germination and vigour of red clover and Italian ryegrass. International Journal of Agriculture and Biology, 20: 1548–1554.

Wawo A., Lestari P., Setyowati N., Syarif F., Juhaeti T., Kartika K. 2024. The influence of tem perature on germination and seedling growth of sorghum. Italian Journal of Agrometeorology 1: 95-107. doi: 10.36253/ijam-1828

Wen Z., Lu X., Wen J., Wang Z., Chai M. 2024. Physical Seed Dormancy in Legumes: Molecular Advances and Perspectives. Plants, 13: 1473.

Willis C.G., Baskin C.C., Baskin J.M., Auld J.R., Venable D.L., Cavender-Bares J., Donohue K., Rubio de Casas R., NESCent Germination Working Group (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist 203: 300–309 https://doi.org/10.1111/nph.12782

Xie J., Li Y., Jiang G., Sun H., Liu X., Han L. 2023. Seed color represents salt resistance of alfalfa seeds (Medicago sativa L.): Based on the analysis of germination characteristics, seedling growth and seed traits. Frontiers in Plant Science, 16: doi: 10.3389/fpls.2023.1104948.

Zamanian M., Golzardi F., Gitari H., Nungula E., Salehi F., Heydarzadeh S. 2024. Enhancing forage nutritional value in Persian clover (Trifolium resupinatum) and crimson clover (Trifolium incarnatum) through intercropping and optimized seeding rate. Cogent Food & Agriculture, 10: https://doi.org/10.1080/23311932.2024.2410459

Zohary M., Heller D. 1984. The Genus Trifolium. Jerusalem: Israel Academy of Sciences and Humanities.

Zupanič M., Žnidaršič T., Podvršnik M., Sem V., Kristan B., Rihter L., Kramberger B. 2025. Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring. Plants, 14: 726. https://doi.org/ 10.3390/plants14050726

Published

2026-01-11

How to Cite

Štrbanović, R., Šimić, B. Šimić, Poštić, D., Tabaković, M., Mirjanić, D., Oro, V., & Stanisavljević, R. (2026). Relationship Between Agroclimatic Conditions and Seed Quality and Seedling Growth of Crimson Clover : Growth of Crimson Clover (Trifolium incarnatum L.). Italian Journal of Agrometeorology. https://doi.org/10.36253/ijam-3512

Issue

Section

RESEARCH ARTICLES

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.