Natural hybridization between Iris minutoaurea Makino and Iris odaesanensis Y. N. Lee in Korea: evidence from cytological traits
DOI:
https://doi.org/10.36253/caryologia-2404Keywords:
Chromosome number, genome size, homoploid hybrid, Iris, pollen abortionAbstract
Interspecific hybridization resulting in diploid-homoploid hybrids is relatively rare in natural populations. The Iris genus, which comprises numerous economically important species, is a taxonomically complex group in which polyploidization and hybridization frequently contribute to taxon diversification and speciation in natural populations. In Korea, populations of the diploid Iris odaesanensis (2n = 28) and Iris minutoaurea (2n = 22) come into contact with each other, leading to homoploid hybrids, as recently demonstrated by molecular phylogenetic and morphological surveys. In this study, we aimed to confirm whether the chromosome number, genome size, and pollen viability of the putative hybrids corresponded to the hybrid nature of their diploid parental species. As previously demonstrated, the hybrids exhibited intermediate tepal color traits between the parental taxa. Iris minutoaurea, I. odaesanensis, and the putative hybrids were consistently diploid (2n = 22, 28, and 25, respectively), confirming that homoploid hybridization mainly occurred in natural populations. The genome size of the putative hybrids (mean: 3.84 pg, range: 3.80–3.86 pg) was additive when compared with those of the parental diploid species (i.e., 3.72 pg in I. odaesanensis and 3.95 pg in I. minutoaurea). No fertile pollen grains were found in the putative hybrids, which may have prevented the establishment of hybrid lineages and backcrosses with the parental species I. odaesanensis or I. minutoaurea. Together, these data confirm the existence of natural homoploid Iris hybrid populations in Korea and shed light on the dynamics of interspecific hybridization in the Iris genus.
Downloads
References
Abbott RJ, Hegarty MJ, Hiscock SJ, Brennan AC. 2010. Homoploid hybrid speciation in action. Taxon. 59(5): 1375–1386.
Arabaci T, Çelenk S, Özcan T, Martin E, Yazici T, Açar M, Üzel D, Dirmenci T. 2021. Homoploid hybrids of Origanum (Lamiaceae) in Turkey: Morphological and molecular evidence for a new hybrid. Plant Biosyst.155: 470–482.
Arnold ML, Bennett BD, Zimmer EA. 1990. Natural hybridization between Iris fulva and Iris hexagona: Pattern of ribosomal DNA variation. Evolution. 44: 1512–1521.
Arnold ML. 1993. Iris nelsonii (Iridaceae): Origin and genetic composition of a homoploid hybrid species. Am J Bot. 80: 577–583.
Baker JG. 1877. New garden plant. Iris (Apogon) Rossii, Baker, n. sp. Gardeners’ Chronicle n.s. 8: 809.
Barton NH. 2001. The role of hybridization in evolution. Mol Ecol. 10: 551–568.
Carnicero P, Kröll J, Schönswetter P. 2023. Homoploid hybrids are common but evolutionary dead ends, whereas polyploidy is not linked to hybridization in a group of Pyrenean saxifrages. Mol Phylogenet Evol. 180: 107703.
Chen C, Zheng Z, Wu D, Tan L, Yang C, Liu S, Lu J, Cheng Y, Sha L, Wang Y, Kang H, Fan X, Zhou Y, Zhang C, Zhang H. 2022. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol. 12: e8517.
Choi B, Yang S, Song J-H, Jang T-S. 2019. Karyotype analysis and genome size variation in Ajuga L. (Ajugoideae-Lamiaceae). Nord J Bot. 37: e02337.
Choi B, Weiss-Schneeweiss H, Temsch EM, So S, Myeong H-H, Jang T-S. 2020a. Genome size and chromosome number evolution in Korean Iris L. species (Iridaceae Juss.). Plants. 9: 1284.
Choi B, Kim S-Y, Jang T-S. 2020b. Micromorphological and cytological comparisons between Youngia japonica and Youngia longiflora using light and scanning electron microscopy. Microsc Res Tech. 83: 1456–1463.
Choi B, Gang G-H, Kim H, Byun H, Kwak M, So S, Myeong H-H, Jang T-S. 2021. Cytological study of Cypripedium japonicum Thunb. (Orchidaceae Juss.): An endangered species from Korea. Plants. 10: 1978.
Choi B, Ahn Y, Jang T-S. 2022a. Implications of foliar epidermal micromorphology using light and scanning electron microscopy: A useful tool in taxonomy of Korean irises. Micros Res Tech. 85: 2549–2557.
Choi, B., Ryu, J. & Jang, T.-S. 2022b. Can pollen exine ornamentation contribute to species delimitation in Korean Iris L. taxa (Iridaceae)? Palynology DOI: 10.1080/01916122.2022.2061064.
Choi B, Park I, So S, Myeong H-H, Ryu J, Ahn Y-E, Shim K-C, Song J-H, Jang T-S. 2022c. Comparative analysis of two Korean irises (Iris ruthenica and I. uniflora, Iridaceae) based on plastome sequencing and micromorphology. Sci Rep. 12: 9424.
Diels L. 1930. Iridaceae. In: Engler, A. & Prantl, K. (Eds.) Die natürlichen Pflanzenfamilien ed. 2, 15a. W. Engelmann, Leipzig, pp. 463–505.
Doyle JJ, Doyle JL. 1987. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19: 11–15.
Feliner GN, Álvarez I, Fuertes-Aguilar J, Heuertz M, Marques I, Moharrek F, Piñeiro R, Riina R, Rosselló JA, Soltis PS, Villa-Machío I. 2017. Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity. 18: 513–516.
Gao J, Cai W, Xiao Y, Yu F, Zheng Y, Bi X. 2021. Variation and inheritance of the degree of style branching in hybrids of Iris dichotoma × I. domestica. Sci Hortic. 288: 110303.
Goulet BE, Roda F, Hopkins R. 2017. Hybridization in plants: Old ideas, new techniques. Plant Physiol. 173: 65–78.
Grey-Wilson C. 1997b. Series Chinenses (Diels) Lawrence. In: Species Group of the British Iris Society (Eds.) A guide to species irises: Their identification and cultivation. Cambridge University Press, Cambridge, pp. 121–126.
Hojsgaard D, Hörandl E. 2019. The rise of apomixis in natural plant populations. Front Plant Sci. 10: 358.
Hörandl E. 2010. The evolution of self-fertility in apomictic plants. Sex Plant Reprod. 23: 73–86.
Jiang J, Zhu M, Ai X, Xiao L, Deng G, Yi Z. 2013. Molecular evidence for a natural diploid hybrid between Miscanthus sinensis (Poaceae) and M. sacchariflorus. Plant Syst Evol. 299: 1367–1377.
Kadereit JW. 2015. The geography of hybrid speciation in plants. Taxon. 64: 673–687.
Kim H, Choi B, Lee C, McAdam SAM, Paik J-H, Jang T-S. 2021. Micromorphological differentiation of Korean Disporum species using light and scanning electron microscopy. Microsc Res Tech. 84: 2614–2624.
Kim H, Choi B, Lee C, Paik J-H, Jang C-G, Weiss-Schneeweiss H, Jang T-S. 2023. Does the evolution of micromorphology accompany chromosomal changes on dysploid and polyploid levels in the Barnardia japonica complex (Hyacinthaceae)? BMC Pl Biol. 23: 485.
Lawrence GHM. 1953. A reclassification of the genus Iris. Gentes Herbarum. 8: 346–371.
Lee YN. 1974. New taxa on Korean flora. Korean J Bot. 17: 33–35.
Lim KY, Matyasek R, Kovarik A, Leitch A. 2007. Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot. 100: 219–224.
Lipman MJ, Chester M, Soltis PS, Soltis DE. 2013. Natural hybrids between Tragopogon mirus and T. miscellus (Asteraceae): A new perspective on karyotypic changes following hybridization at the polyploid level. Am J Bot. 100: 2016–2022.
Makino T. 1928. A contribution to the knowledge of the flora of Japan. J Jap Bot. 5(4): 15–18.
Makarevitch I, Golovnina K, Scherbik S, Blinov A. 2003. Phylogenetic relationships of the Siberian Iris species inferred from noncoding chloroplast DNA sequences. Int J Pl Sci. 164: 229–237.
Musiał K, Pagitz K, Gudžinskas Z, Łazarski G, Pliszko A. 2020. Chromosome numbers in hybrids between invasive and native Solidago (Asteraceae) species in Europe. Phytotaxa. 471(3): 267–275.
Nakai T. 1914. Plantae novae Coreanae et Japonicae. I. Repertorium novarum specierum regni vegetabilis 13: 243–250.
Niketić M, Tomović G, Siljak-Yakovlev S. 2018. A new spontaneous hybrid between the cultivated and wild Iris species from Serbia. Bull Nat His Museum. 11: 189–210.
Park I, Choi B, Weiss-Chneeweiss H, So S, Myeong H-H, Jang T-S. 2022. Comparative analyses of complete chloroplast genomes and karyotypes of allotetraploid Iris koreana and its putative diploid parental species (Iris series Chinenses, Iridaceae). Int J Mol Sci. 23: 10929.
Paun O, Stuessy TF, Hörandl E. 2006. The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytol. 171: 223–236.
Paun O, Forest F, Fay MF, Chase MW. 2009. Hybrid speciation in angiosperms: Parental divergence drives ploidy. New Phytol. 182: 507–518.
Pellicer J, Balant M, Fernández P, Rodríguez González R, Hidalgo O. 2022. Morphological and genome-wide evidence of homoploid hybridization in Urospermum (Asteraceae). Plants. 11: 182.
Peruzzi L, Bedini G, Andreucci A. 2012. Homoploid hybrid speciation in Doronicum L. (Asteraceae)? Morphological, karyological and molecular evidences. Plant Biosyst. 146: 867–877.
Samad NA, Dagher-Kharrat MB, Hidalgo O, Zein RE, Dougihy B, Siljak-Yakovlev S. 2016. Unlocking the karyological and cytogenetic diversity of Iris from Lebanon: Oncocyclus section shows a distinctive profile and relative stasis during its continental radiation. PLoS ONE. 11: e0160816.
Schumer M, Rosenthal GG, Andolfatto P. 2014. How common is homoploid hybrid speciation? Evolution. 68: 1553–1560.
Sim JK. 2007. Iridaceae Juss. In: Park CW, editor. The genera of vascular plants of Korea. Seoul (South Korea): Academy Publ. Co.; p.1326–1331.
Smirnov S, Skaptsov M, Shmakov A, Fritsch RM, Friesen N. 2017. Spontaneous hybridization among Allium tulipifolium and A. robustum (Allium subg. Melanocrommyum, Amaryllidaceae) under cultivation. Phytotaxa. 303: 155–164.
Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. Annu Rev Plant Biol. 60: 561–588.
Son O, Son S-W, Suh G-U, Park S. 2015. Natural hybridization of Iris species in Mt. Palgong-san, Korea. Korean J Plant Taxon. 45: 243–253. [in Korean]
Suissa JS, Kinosian SP, Schafran PW, Bolin JF, Taylor WC, Zimmer EA. 2022. Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoëtes) complex. Mol Phylogenet Evol. 166: 107332.
Stebbins GL. 1958. The inviability, weakness, and sterility of interspecific hybrids. Adv Genet. 9: 147–215.
Whitney KD, Ahern JR, Campbell LG, Albert LP, King MS. 2010. Patterns of hybridization in plants. Perspect Plant Ecol Evol Syst. 12: 175–182.
Wilson CA. 2009. Phylogenetic relationships among the recognized series in Iris section Limniris. Syst Bot. 34(2): 277–284.
Wilson CA. 2011. Subgeneric classification in Iris re-examined using chloroplast sequence data. Taxon. 60(1): 27–35.
Wilson CA. 2020. Two new species in Iris series Chinenses (Iridaceae) from south-central China. PhytoKeys. 161: 41–60.
Xiao Y-E, Yu F-Y, Zhou X-F. 2021. A new natural hybrid of Iris (Iridaceae) from Chongqing, China. PhytoKeys. 174: 1–12.
Yakimowski SB, Rieseberg LH. 2014. The role of homoploid hybridization in evolution: A century of studies synthesizing genetics and ecology. Am J Bot. 101: 1247–1258.
Yang S, Nam B-M, Jang J, Choi M-J, Choi G, Chung K-S, Choi H-J. 2020. A checklist of Gasan Mt.: An online platform for virtual specimens. Korean J Plant Taxon. 50: 453–474. [in Korean]
Young ND. 1996. Concordance and discordance: A tale of two hybrid zones in the pacific coast irises (Iridaceae). Am J Bot. 83: 1623–1629.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bokyung Choi, Tae-Soo Jang
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Copyright on any open access article in a journal published byCaryologia is retained by the author(s).
- Authors grant Caryologia a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles.
- In accordance with our Open Data policy, the Creative Commons CC0 1.0 Public Domain Dedication waiver applies to all published data in Caryologia open access articles.